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Abstract. The Kling-Gupta Efficiency (KGE) is a widely used performance measure because of its advantages in 

orthogonally considering bias, correlation and variability. However, in most Markov chain Monte Carlo (MCMC) 10 

algorithms, error-based formal likelihood functions are commonly applied. Due to its statistically informal characteristics, 

using the original KGE in MCMC methods leads to problems in posterior density ratios due to negative KGE values and 

high proposal acceptance rates resulting in less identifiable parameters. In this study we propose adapting the original KGE 

using a gamma distribution to solve these problems and to apply KGE as an informal likelihood function in the DiffeRential 

Evolution Adaptive Metropolis DREAM(ZS), which is an advanced MCMC algorithm. We compare our results with the 15 

formal likelihood function to show whether our approach is robust and plausible to explore posterior distributions of model 

parameters and to reproduce the system behaviors. For that, we set three case studies that contain different uncertainties and 

different types of observation data. Our results show that model parameters cannot be identified and the uncertainty of 

discharge simulations is large when directly using the original KGE. The adapted KGE finds similar posterior distributions 

of model parameters derived from the formal likelihood function. Even though the acceptance rate of the adapted KGE is 20 

lower than the formal likelihood function for some systems, the convergence rate (efficiency) is similar between the formal 

and the adapted KGE approaches for the calibration of real hydrological systems showing generally acceptable 

performances. We also show that both the adapted KGE and the formal likelihood function provide low performances for 

low flows, while the adapted KGE has a balanced performance for both low and high flows. Furthermore, the adapted KGE 

shows a general better performance for calibrations of solute concentrations. Thus, our study provides a feasible way to use 25 

KGE as an informal likelihood in the MCMC algorithm and provides possibilities to combine multiple data for better and 

more realistic model calibrations. 

1 Introduction 

Markov chain Monte Carlo (MCMC) techniques are extremely useful in uncertainty assessments and parameter estimations 

of hydrological models (Smith & Marshall, 2008). Among those MCMC methods, Vrugt et al. (2008, 2009) developed a 30 
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DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which has found numerous applications in various fields 

(Vrugt, 2016). It is an adaptation of the SCEM-UA algorithm (Vrugt et al., 2003a) that can efficiently estimate the posterior 

probability distribution of model parameters in the presence of high-dimensional and complex response surfaces with 

multiple local optima. 

The formal likelihood function, e.g. mean squared error (MSE) or root mean squared error (RMSE), obtained from first-35 

order statistical principles based on error series derived from simulations and observations, is commonly used in the 

DREAM algorithm. The formal likelihood function strongly relies on error assumptions, which can highly influence the 

shape of parameter posterior distributions (Beven et al., 2008). The informal likelihood functions such as Nash-Sutcliffe 

efficiency (NSE) and the alternative Kling-Gupta Efficiency (KGE) are often used in hydrological studies to indicate the 

general performance of model simulations (Gupta et al., 2009). These metrics represent an important measure of model 40 

performance, so-called goodness-of-fit (Pool et al., 2018). These likelihood functions are not directly derived from stochastic 

error series, but can be easily used to combine different types of data. 

There are studies that discussed how to adjust the calculation of NSE in order to overcome the problems using NSE in 

MCMC methods. For example, McMillan & Clark (2009) introduced a constant K into the adapted NSE calculation. By 

adjusting this constant, they can mimic the weight such that small improvements in NSE can also be distinctly identified 45 

leading to the chain evolution. They even found that the informal likelihoods can provide a more complete exploration of the 

behavioral regions of the response space and hence more accurate estimation of total uncertainty (McMillan & Clark, 2009). 

Freer et al. (1996) introduced a parameter as an exponent symbolled with N. They argued that higher N values have the 

effect of accentuating the weight given to the better simulations. 

However, how to properly use KGE in the MCMC methods has not been studied. Directly using KGE in MCMC methods, 50 

e.g. DREAM algorithm, may raise difficulties such as incorrect posterior ratios due to negative KGE values, and nonlinearity 

between model performance and KGE values. These difficulties essentially affect chain evolutions such as the acceptance 

rate, indicating how easy a proposal is accepted, and the convergence rate, denoting how fast a chain converges to a 

stationary distribution. As a consequence, considering the computational cost with a limited number of realizations in 

practice the informal character of KGE and its use in MCMC methods influences the exploration of posterior parameter 55 

distribution and model uncertainty, such as density of identifiable parameters. Studies showed that using informal likelihood 

functions in generalized likelihood uncertainty estimation (GLUE) may lead to unsatisfactory posterior distributions of 

model parameters (Mantovan & Todini, 2006; Stedinger et al., 2008). Using NSE as the likelihood function, the number of 

measurements cannot be considered. Therefore, with increasing number of measurements, the information added to the 

performance measure is little, thus preventing the improvement of chain evolution (Mantovan & Todini, 2006). Therefore, to 60 

feasibly use KGE in MCMC methods requires solving problems in drawing better proposals to avoid a very flat posterior 
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distribution, to account for the influence of observation size (the amount of information included in calibration) on parameter 

estimations and to achieve reasonable acceptance and convergence rates. 

In this study we propose adapting the gamma distribution and KGE to find a feasible solution for properly using KGE as an 

informal likelihood function in DREAM(ZS). We test the robustness of this approach with three case studies representing 65 

known and unknown systems with varying amount of observations and also different types of data using two hydrological 

models (a lumped and a semi-distributed). The aim of our study is to attempt to form the probability calculation based on 

KGE in a pseudo formal way. The derivation of probability based on KGE in a statistically sound manner is beyond the 

scope of this study and will need future work. We compare the performance between the original KGE, GLUE (generalized 

likelihood uncertainty estimation), the formal likelihood function, the log-transformation and the adapted KGE. We aim to 70 

show whether the adapted KGE is robust and plausible to explore posterior distributions of model parameters and to 

reproduce the hydrological behaviors. Thus, we will compare performance (1) regarding acceptance, convergence, and 

uncertainty between the adapted KGE, the original KGE, a formal likelihood function and a log-transformation; (2) 

regarding discharge simulations in terms of general performance, variability, bias and correlation for total, low and high 

flows; and (3) model performance combining discharge and solutes. These comparisons allow us to provide 75 

recommendations for more reliable applications of KGE in MCMC methods in different research areas. 

2 Material and Methods 

2.1 Kling-Gupta Efficiency 

Kling-Gupta Efficiency (KGE) takes account of variability (α), non-scaled bias (β) and correlation (r) by computing the 

Euclidian distance (ED) of the three components from the ideal point, which avoids the underestimation of variability and 80 

enables the comparison of the bias term between catchments (Gupta et al., 2009). 

𝐾𝐺𝐸 = 1 − 𝐸𝐷            (1) 

𝐸𝐷 = √(𝑟 − 1)2+(𝛼 − 1)2 + (𝛽 − 1)2         (2) 

with 𝛼 =
𝜎𝑠

𝜎𝑜
 and 𝛽 =

𝜇𝑠

𝜇𝑜
 

where (µs, σs) and (µo, σo) are the mean and standard deviation of simulations and observations, respectively. KGE ranges 85 

from -∞ to 1 with the optimal value at unity. A value larger than -0.41 indicates that a model improves upon using the mean 

(Knoben et al., 2019). 
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2.2 Adapting KGE in DREAM(ZS) 

2.2.1 Basics of DREAM(ZS) 

DREAM(ZS) is one type of DREAM algorithms, which uses sampling from an archive of past states to generate candidate 90 

points in each individual chain. It automatically tunes the scale and orientation of the proposal distribution towards the target 

distribution and maintains a detailed balance and ergodicity (Vrugt et al., 2008, 2009). We take DREAM(ZS) as an example 

and investigate the appropriate way to use KGE within DREAM(ZS). Since our goal is to adapt KGE as an informal 

likelihood function, we focus on the Metropolis probability, 𝑝𝑎𝑐𝑐(𝑿𝑖 → 𝑿𝑝
𝑖 ), which calculates the probability to accept a 

proposal. 95 

𝑝𝑎𝑐𝑐(𝑿𝑖 → 𝑿𝑝
𝑖 ) = 𝑚𝑖𝑛[1, 𝑝(𝑿𝑝

𝑖 )/𝑝(𝑿𝑖)]         (3) 

where 𝑝(𝑿𝑝
𝑖 )  and 𝑝(𝑿𝑖)  denote the probability density of the proposal and the present location of the i-th chain. If 

𝑝𝑎𝑐𝑐(𝑿𝑖 → 𝑿𝑝
𝑖 ) is larger than a random value drawn from the uniform distribution U(0, 1), the proposal will be accepted, 

otherwise the chain remains in the present location. After chain evolutions, the Gelman-Rubin 𝑅�̂� convergence diagnostic is 

computed for each parameter j={1, . . . , d}. If 𝑅�̂�≤1.2, the convergence can be declared. 100 

𝑅�̂� =  √
𝑁+1

𝑁
·

�̂�+
2(𝑗)

𝑊𝑗
−

𝑇−2

𝑁·𝑇
           (4) 

where N and T signify, respectively, the number of chains and the number of samples in each chain. 𝑊𝑗 is the within-chain 

variance, and �̂�+
2(𝑗)

 is an estimate of the variance of the j-th parameter of the target distribution. 

We choose the easily applied formal likelihood function (lik=11 in Table B1, Vrugt, 2016) to calculate the log-likelihood 

(LogL), which assumes the error residuals to be normally distributed. It is described as: 105 

LogL =  −
𝑛

2
𝑙𝑜𝑔{∑ 𝑒𝑡(𝑿)2𝑛

𝑡=1 }          (5) 

where 𝑒𝑡(𝑿) denotes the t-th error residuals. n is the total number of observations. 

2.2.2 Deriving pseudo probability density based on KGE 

Based on above-mentioned basics of DREAM(ZS), using KGE as a likelihood function becomes the proper calculation of 

pseudo probability density 𝑝(𝑿𝑝
𝑖 ). From the straightforward and easily applied way, one would directly use KGE as 𝑝(𝑿𝑝

𝑖 ) 110 

by setting the negative KGE values to zeros. However, it results in two problems (Fig. 1): 

 Problem 1: the probability density 𝑝(𝑿𝑝
𝑖 ) needs to be positive in order to get a positive ratio 𝑝(𝑿𝑝

𝑖 )/𝑝(𝑿𝑖) to 

determine the right orientation to accept a proposal. However, KGE ranges from -∞ to 1. Setting negative KGE 
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values to zero can work, but then we lose the orientation of proposals with negative KGE values. Thus, it reduces 

the efficiency of chain evolution. 115 

 Problem 2: the model performance does not linearly increase with the linear increase of KGE. Therefore, directly 

using positive KGE as the pseudo probability density 𝑝(𝑿𝑝
𝑖 ) will lead to a high possibility to accept poor proposals. 

For instance, the probability is 0.75 (0.6/0.8) to accept a proposal with KGE=0.6 under the present sample with 

KGE=0.8. However, the performance of a simulation with KGE=0.8 is much better compared to one with 

KGE=0.6. 120 

We propose solving these two problems with adapting the gamma distribution and KGE to derive a proper probability 

density (Fig. 1). The gamma distribution has two parameters, the shape parameter (k) and the scale parameter (θ), and is 

evaluated for variables with positive values. When the shape parameter k=1, the probability distribution is one-side with non-

linear decreasing probability for increasing variable values. Therefore, we can use 1-KGE (ranges from 0 to ∞) as the 

variable for gamma distribution and get higher probability for larger KGE values. When choosing the scale parameter θ=0.5, 125 

the increasing rate of probability becomes faster when KGE>0.5, especially when KGE>0.7 the probability increases much 

faster. This helps chain evolution to find proposals which leads to high model performance. The non-linear increase of 

probability with increasing KGE is shown as the red line in the top right box of Fig. 1. The log-likelihood is used in 

DREAM(ZS), thus we derive the pseudo log-likelihood (LogL) using gamma distribution and KGE. To include the influence 

of observation size on the parameter estimations, analogy to the formal likelihood function we take account of the number of 130 

observations (the term n/2 in the formal log-likelihood) in deriving the pseudo log-likelihood. Finally, we have the pseudo 

log-likelihood using KGE and gamma distribution as: 

LogL =  
𝑛

2
𝑙𝑜𝑔(𝑓(1 − 𝐾𝐺𝐸|𝑿; 𝑘, 𝜃)), with k=1 and θ=0.5       (6) 

where, f() is the gamma probability density function; k and θ are the shape and scale parameters, respectively. n is the 

number of observations. X represents the parameter vector of the calibrated model. The purpose of this approach is to 135 

provide a feasible way to incorporate KGE as the informal likelihood function for MCMC methods, in our case DREAM(ZS). 

Another goal is to achieve similar performance as using the formal likelihood function such as RMSE so that we can 

compare the model simulations and predictions between formal and informal (our approach, KGE) likelihood functions. 
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Figure 1 Concept of adapting KGE in DREAM(ZS). It shows the problems of using the original KGE as the likelihood function in 140 
DREAM(ZS) and how to adapt gamma distribution and KGE to get a proper informal likelihood. 

2.3 Case studies 

To test the robustness of our new approach, we define three case studies: (1) true and pseudo-analytical posterior 

distributions of model parameters are known by a virtual experiment, and uncertainties in model structures and input data are 

absent; (2) calibrations and evaluations with a long observation time-series using a rainfall-runoff model, which allows 145 

comparing the performance between three approaches by varying the amount of data in calibration. The parameterization of 

the system is unknown and there are uncertainties in model structure, input data and observations; and (3) a model 

calibration combining hydrodynamics and simple solute transport for a more complex karst system with a large subsurface 

heterogeneity and processes for fast recharge and groundwater discharge from conduit networks. The observation period is 

short and uncertainties exist in model structure, input and observation data, and model parameter estimations. 150 

2.3.1 Case study 1: virtual experiment 

We generate a virtual experiment using a rainfall-runoff model (the HBV model). We obtain the forcing data, daily mean 

temperature and daily precipitation (2001–2008), from the German site in Liu et al. (2021). The HBV model represents 

typical catchment rainfall-runoff processes considering one soil water storage and two groundwater storages (Lindström et 

al., 1997). In this virtual experiment, we use the model version without snow processes, which contains nine parameters. 155 

Since our goal is not the model itself but the calibration of model parameters, we only provide descriptions of model 

parameters (Table 1). For the model structure and equations, refer to Liu et al. (2021). 
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Table 1 Names, description, ranges and virtual true values of the HBV model parameters for the virtual experiment 

Parameter Description Unit 
Parameter ranges True 

value lower upper 

BETA Shape coefficient of recharge function [-] 1 6 4.5 

FC Maximum water storage in the unsaturated-zone store [mm] 50 700 600 

K0 Additional recession coefficient of upper groundwater store [d-1] 0.05 0.99 0.5 

K1 Recession coefficient of upper groundwater store [d-1] 0.01 0.8 0.25 

K2 Recession coefficient of lower groundwater store [d-1] 0.001 0.15 0.07 

LP 
Soil moisture value above which actual evaporation reaches 

potential evaporation 
[-] 0.3 1 0.55 

PERC Maximum percolation to lower zone [mmd-1] 0 6 3 

UZL Threshold parameter for extra outflow from upper zone [mm] 0 100 60 

MAXBAS Length of equilateral triangular weighting function [d] 1 3 2 

note: K0, UZL and MAXBAS (shaded ones) are insensitive parameters in this case study, thus are fixed to the true values 

Since the analytical posterior distributions of model parameters of a hydrological model is hardly achievable, we use the 160 

following procedure to generate the pseudo-analytical posterior distribution. Firstly, we set the catchment area of 100 km2 

and run the model with “true” parameters for 2004–2008 to obtain the simulated discharge. Secondly, assuming a normal 

distribution for error residuals (a common assumption for hydrological modeling), we generate random values from a normal 

distribution (mean = 0, standard deviation = 5% of the mean simulated discharge) and add these random values as 

measurement errors to the simulated discharge to form the observations. Finally, due to no uncertainty in input data and 165 

model structure, using this setting for measurement errors we can use the formal likelihood function (equation 5) to derive 

the pseudo-analytical posterior distribution of model parameters. We performed a local parameter sensitivity analysis before 

model calibrations to find insensitive parameters (K0, UZL and MAXBAS in Table 1, changing these parameters only affects 

model performance KGE by 0.001). Therefore, we fixed the three parameters in calibration, resulting in six parameters to be 

calibrated. 170 

2.3.2 Case study 2: long observations for a rainfall-runoff modeling 

In order to test the capability of our approach for a real system with uncertainties in forcing, observations, model structure 

and model parameters, we select a catchment from the CAMELS-US dataset (Newman et al., 2014, 2015) and simulate the 

rainfall-runoff processes with the HBV model as case study 1. We also compare the performance of our transformed KGE 

with the GLUE method. We have the following criteria to select this catchment: 1) catchment area is between 100 and 500 175 

km2 to avoid the influence of channel routing; 2) the snow fraction is zero to avoid the snow processes to reduce the HBV 

model parameters and the number of parameters remain nine (table 1); and 3) the carbonate rock fraction is zero since we 
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will test a karst catchment as a separate case study. We then choose the first catchment (smallest number in catchment ID) 

that fulfills our criteria, the catchment 02246000 (gauging station at North Fork black creek NR Middleburg, FLA, USA). It 

has a catchment area of 451 km2 with the mean annual precipitation of 1352 mm. The main land cover is savannas, 180 

accounting for 77% of the total area. Details of the catchment properties can be found in CAMELS-US dataset (Newman et 

al., 2014, 2015). 

 

Figure 2 Study area of the catchment with the gauging station at North Fork black creek NR Middleburg, FLA, USA for the case study 2. 
 185 

2.3.3 Case study 3: short observations for a heterogeneous karst system 

In order to test the capability of our new approach for a complex system, we set case study 3 in a karst system that has 

conduit systems resulting in fast recharge and discharge. It has uncertainties from the forcing data, the model structure and 

observation errors. Daily discharge time-series and weekly solute (Cl-, NO3
- and SO4

2-) concentrations of the hydrological 

years 10.1.2006−9.30.2009 are combined for model calibrations. The study site is located in Southern Spain with a recharge 190 

area of 13.85 km2 (the study site in Hartmann et al., 2014). In this case, we use the same model, the VarKarst model with the 

solute transport routine, for spring discharge and solute simulations since it was successfully applied to this site before 

(Hartmann et al., 2014). The VarKarst model is a semi-distributed hydrological model, which considers subsurface 

heterogeneity, soil and epikarst storage dynamics and groundwater hydrodynamics. It uses a mixing routine to simply 

reproduce the solute transport. These processes are represented by 10 parameters (Table 2). Details of the VarKarst model 195 
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processes and assumptions can be found in Hartmann et al. (2014). Discussion of the transport processes is beyond the scope 

of this study, we, therefore, choose the same processes as published in Hartmann et al., (2014). Our study then focuses on 

comparing the performance of different calibration approaches. 

 

Figure 3 Study area of the Rosario spring for case study 3. This map is an updated version of the map in Hartmann et al. (2014) 200 
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Table 2 Names, descriptions and ranges of the VarKarst model parameters 

Parameter Description Unit 
Parameter ranges 

lower upper 

Vmean,S Mean soil storage capacity [mm] 0 500 

Vmean,E Mean epikarst storage capacity [mm] 0 500 

aSE Soil/epikarst depth variability constant [-] 0.1 2 

Kmean,E Epikarst mean storage coefficient [d] 1 50 

afsep Recharge separation variability constant [-] 0.1 2 

KC Conduit storage coefficient [d] 1 20 

aGW Groundwater variability constant [-] 0.1 2 

aGeo Equilibrium concentration variability constant [-] 0 2 

log10 GeoCl Equilibrium concentration of Cl in matrix [log10 (mg L-1)] 0 5 

log10 GeoSO4 Equilibrium concentration of SO4 in matrix [log10 (mg L-1)] 0 5 

2.3.4 Calibration and evaluation 

For calibration of the three case studies, we have the GLUE approach and  DREAM(ZS) with different likelihood functions: 

(1) using the original KGE as the likelihood function (“KGEori” thereafter) – here negative KGE is set to zero to avoid 205 

negative posterior density ratios; (2) using the traditional formal likelihood assuming error is normally distributed(“formal” 

thereafter); (3) using the log-transformation (“formallog” thereafter), which is suggested good for low flows (McInerney et 

al., 2017) and (4) using our new approach adapting gamma distribution and KGE to derive the pseudo log-likelihood 

(“KGEgamma” thereafter). We use three parallel Markov chains (default setting in DREAM(ZS)), and set 20,000 realizations for 

case studies 1 and 2, while 30,000 realizations for case study 3 (due to more processes and parameters). The last 25% of 210 

realizations are used to approximate the posterior distributions and the corresponding parameter sets are used for the 

discharge simulations in the evaluation period. They are also used to derive the parameter uncertainty and the total 

simulation uncertainty (parameter uncertainty + randomly sampled error from a normal distribution with mean=0 and 

standard deviation=root mean squared error of the simulation with the maximum a posteriori parameter) in DREAM(ZS). 

For case study 1, following a standard calibration procedure we use 2001-2003 as the warm-up period and 2004-2008 as the 215 

calibration period. The posterior distribution of model parameters derived from DREAM(ZS) using the formal likelihood 

function will be deemed as the pseudo-analytical posterior distribution. By comparing to it, we can investigate whether 

calibrations using KGEori and KGEgamma can explore the right posterior distribution and true model parameters.  

For case study 2, the true model parameters are unknown. We use 25 hydrological years (10.1.1980−9.30.2005) to perform 

the calibration and evaluation. We choose the Daymet forcing data to drive our hydrological model since this meteorological 220 
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data has potential evapotranspiration (PET) estimates and was used to calculate the catchment climatic properties (Addor et 

al., 2017). We use the first 5 years as the warm-up period, then the following 10 years for calibration and the last 10 years for 

evaluation. We test the performance of four approaches (GLUE, formal, formallog and KGEgamma) using 1, 3, 5, 8 and 10 

years of observations for calibrations, respectively to check the capability of the four approaches for calibration of a real 

system with varying amount of available observations. For the GLUE method, we use Nash-Schetcliff efficiency (NSE) as 225 

the objective function. We set 20,000 realizations and choose the top 25% in performance (keep the same as DREAM(ZS)) as 

the behavioral parameter sets to explore the posterior distribution. 

For case study 3, the true model parameters are unknown too. We calibrate the hydrodynamics and solute transport 

simultaneously. For calibrations using the formal likelihood function, we normalize each observation variable by its mean to 

exclude the influence of units and magnitudes of discharge and solute concentrations. We compare the performance of three 230 

approaches: (i) We use the formal likelihood function and use the normalized daily discharge and normalized weekly 

concentrations of three solutes as the combined observations (“formalnorm” thereafter). Here we do not consider the 

difference in the total number of observations between discharge and three solutes (the total number of discharge 

observations is ten times of each solute); (ii) We also use the formal likelihood function. But we replicate each normalized 

solute observations ten times to have the same weight for discharge and each solute (“formalnorm,w”). Issues regarding 235 

different weights for discharge and solutes and different ways to obtain weights are out of the scope of our study; and (iii) 

We use the KGEgamma approach. Firstly, we calculate KGE for discharge and each solute using their observations and 

simulations (totally four KGE values, for discharge, Cl-, NO3
- and SO4

2-). Then we calculate the mean of the four KGE 

values (equal weight for the four variables, same as (ii)) and use it in the KGEgamma approach. We use three hydrological 

years (10.1.2003−9.30.2006) for warm-up of the simulations and the three following hydrological years 240 

(10.1.2006−9.30.2009) for calibration. It is the same as the calibration setting in Hartmann et al. (2014) considering the short 

observations of each solute. . 

The model performance for calibration and evaluation is examined using KGE and its three components representing 

variability (α), bias (β) and correlation (r). The calculations of KGE, α, β and r refer to equations 1 and 2. We evaluate the 

model performance using the four metrics for total flow, low flow (smaller than 10th percentile of observed discharge) and 245 

high flow (larger than 90th percentile of observed discharge) and also for three solutes. 

3 Results 

3.1 Case study 1: posterior parameter exploration 

When using the original KGE (set negative KGE values to zeros) as the likelihood function, the posterior parameter range is 

only slightly reduced for all sensitive parameters compared to the prior uniform distribution. In addition, the density around 250 

the true values of model parameters are still very flat, indicating true model parameters are barely identified (Fig. 4). When 
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applying the adapted KGE (adapting the gamma distribution and KGE to derive probability density), the posterior parameter 

range is much more reduced and the reduced range is more or less centered at the true values as shown in Fig. 4. Compared 

to the pseudo-analytical posterior distributions of all model parameters derived from the formal likelihood function using the 

special virtual setting, the adapted KGE approach (KGEgamma) shows similar magnitude and shape regarding the posterior 255 

distributions. It suggests that our adapted KGE approach performs similarly as using the traditional formal likelihood 

function and can explore the right parameter posterior distributions. 

 

Figure 4 Posterior distributions of sensitive model parameters for the virtual experiment. The red cross symbol denotes the true model 

parameter value. KGEori indicates using the original KGE (set negative KGE to zero) as the likelihood function, while KGEgamma represents 260 
our new approach using gamma distribution and KGE to derive the probability density, and the case formal, pseudo-analytical means 

pseudo-analytical posterior distribution derived from the formal likelihood function. Note that the densities of using KGEori is very low  

and close to the x axis. 

As expected, using the original KGE, we have a very high acceptance rate (ca. 60-80%, Fig. 5a), leading to a very fast 

convergence (Fig. 5b). This results in a large uncertainty bound in the discharge simulations (Fig. 5c), and the uncertainty of 265 

peak discharges is particularly large. With the adapted KGE, we see that the acceptance rate becomes smaller and the 

convergence gets slower. This can be explained by introducing the nonlinearity of the adapted KGE: probability densities for 

large and small KGE values are more distinct compared to the original KGE. Fig. 5a also shows that the acceptance rate of 

our approach is 5-10%, which is lower than ca. 20% of the formal likelihood function. Similarly, the convergence rate of our 

approach is slower than the formal likelihood function (Fig. 5b). It suggests that using the formal likelihood function has a 270 

higher efficiency than the approach adapting KGE for calibrations of a system that only contains little uncertainty (only 

small observation errors in our case). However, when more uncertainties appear, e.g. uncertainties in forcing data and model 

structures, the convergence rates (efficiency) become similar between the adapted KGE and the formal likelihood function 

(refer to the following subsections, Fig. 6b). Compared to the width of the discharge uncertainty bound using the original 

KGE (Fig. 5c), calibration using the formal likelihood function and the adapted KGE  both reduce the average width of total 275 
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discharge uncertainty bound by ca 85%. Since this virtual experiment does not assume uncertainty in the input data and the 

model structure, the adapted KGE shows a similar performance in the uncertainty estimation as using the formal likelihood 

function; both can closely reproduce observations. 
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 280 

Figure 5 Acceptance rate (a), convergence rate shown with �̂�-statistic (b), and uncertainty of discharge simulations (total uncertainty) for 

the virtual experiment (c). KGEori indicates using the original KGE as the likelihood function, whileKGEgamma represents our new approach 

using gamma distribution and KGE to derive the probability density, and the case formal means using the traditional formal likelihood 

function. Note the uncertainty bounds for formal and KGEgamma are too small to be visually seen. 

3.2 Case study 2: model parameter calibrations with long observations 285 

Calibration for a real system (with uncertainties in forcing, observations, and model structure and parameters), the 

acceptance rate of the adapted KGE is lower than that of the formal likelihood function, but higher than that of the log-

transformation (Fig. 6a) for calibrations using both short and long observations., The convergence rate is almost identical 

between the formal likelihood function and the adapted KGE (higher than the log-transformation, Fig. 6b) This indicates that 

our approach has a same efficiency as the formal likelihood function and a higher efficiency than the log-transformation for 290 

calibrations of a system with more uncertainties. With more observations in calibrations, the unidentified parameters K0 and 

UZL (Fig. 6c and 6d) using the adapted KGE and the formal likelihood function become identified (Fig. 6g and 6h). The 

identified parameter values for K0 (Fig. 6g) show a similar distribution that is different from the log-transformation, while 

the identified parameter values for UZL (Fig. 6h) differ between the three approaches. The identified parameter K1 with 1-

year observations in calibration (Fig. 6e) shows a similar distribution as using 10-year observations (Fig. 6i) between the 295 

adapted KGE and the formal likelihood function, which is different from the log-transformation. The density is higher at the 
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peak when using more observations (Fig. 6i). For the identified parameter MAXBAS between the three approaches is similar 

when using 1-year observations for calibration (Fig. 6f), but it changes after adding more observations into calibration (Fig. 

6g), where the adapted KGE approach shows a similar distribution as the log-transformation. This suggests that using 

different likelihood functions may lead to different identified model parameters for a system with various uncertainties due 300 

to parameter interactions. More information may be needed to confine the model parameters. 

  

Figure 6 Acceptance rate (a), convergence rate shown with �̂� -statistic (b), and posterior distributions of selected parameters for 

calibrations with 1-year (c-f) and 10-year (g-j) observations, respectively. KGEgamma represents our new approach using gamma 

distribution and KGE to derive the probability density, the case formal means using the traditional formal likelihood function, and 305 
formallog means using the log transformation. The subscripts 1yr and 10yr denote calibrations with 1-year and 10-year observations, 

respectively. The four parameters (nine parameters in total) are selected to represent different cases from unidentified (less observations 

for calibrations) to identified (more observations for calibrations) parameter and show how the identified parameters change when using 

different amount of observations for calibrations. 

In this section, we focus on analyzing the performance in the evaluation period to show the prediction ability of the four 310 

approaches. Generally, the uncertainty of the model performance (represented by the interquartile of KGE, α, β and r) of the 

GLUE approach is much larger than the other three approaches (Fig. 7) regardless of total flow, low flow or high flow. With 

the increasing amount of observations added to calibrations, the performance of GLUE does not change significantly for all 

four metrics and for all flow conditions, while using the adapted KGE or the formal likelihood function we can see an 
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increasing trend of the model performance. The log-transformation only has an improved performance regarding low flow 315 

with increasing observation data. In the following, we focus on comparing the performance between the adapted KGE, the 

formal likelihood function and the log-transformation. The log-transformation has a better performance for low flow as 

expected, but a lower performance for high flow. The formal likelihood function without transformation has a better 

performance for high flow but a lower performance for low flow. The adapted KGE combines these advantages, leading to a 

good and balanced performance for low and high flows. For the total flow, the general performance KGE of our approach is 320 

higher than using the other two formal likelihood functions. The three approaches perform similarly for the variability (α) for 

calibrations with 3-5 years of data, while the adapted KGE tends to overestimate and the other two formal likelihood 

functions underestimate variability when more data is added to calibrations. The adapted KGE has a smaller overestimation 

of bias (β) than the formal likelihood functions. They have similar performance in terms of the correlation (r) for the total 

flow. For the low flow, the performances (all metrics) of all three approaches are poor. The adapted KGE and the log-325 

transformation have a similar general performance in KGE, which is better than the formal likelihood function without log-

transformation. The adapted KGE has a lower overestimation of variability and a better simulation of bias, while the two 

formal likelihood functions has a better performance in correlation. For the high flow, the adapted KGE and the formal 

likelihood function perform similarly in terms of KGE, bias (β) and correlation (r), which are both better than the log-

transformation. But the adapted KGE has a better representation of variability (α) than the two formal likelihood functions. 330 
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Figure 7 General performance (KGE), variability (α), non-scaled bias (β) and correlation (r) for total flow, low flow (smaller than 10th 

percentile of observed discharge) and high flow (larger than 90th percentile of observed discharge) during the evaluation period using the 

GLUE approach (GLUE), the formal likelihood function (formal), the log-transformation (formallog) and our approach using KGE and 

gamma distribution to derive probability density (KGEgamma) with varying amount of observations (1-year to 10-year) in calibration, for 335 
instance, calibration with 1-year observations is shown as Cal=1yr. The boxplot shows the performance of the last 25% of all simulations 

(top 25% in performance for GLUE), which is used to approximate the “true” system behavior in DREAM(ZS). The performance is only 

shown for the evaluation period to avoid too much information in the boxplot and to represent the prediction ability of different approaches. 

The performance of the calibration period is provided in Fig. S1 in the supplement. The optimal value for KGE, α, β and r is one, and the 

closer to one the better the performance. 340 

3.3 Case study 3: model parameter calibrations for a heterogeneous karst system 

For calibration combining discharge and solute concentrations at this heterogeneous karst system with short observation 

records, the adapted KGE is superior than the formal likelihood function regardless of the weight given to discharge and 

solutes (Fig. 8). For the general performance measured by KGE, the adapted KGE approach performs best, followed by the 

formal likelihood function with same weights in discharge and each solute, and then the calibration with different weights 345 

(the number of discharge data is 10 times of each solute). The performance regarding discharge is similar between the three 

approaches (the mean KGE is around 0.9) with a slight higher performance for the adapted KGE approach. However, the 

adapted KGE approach improves the mean performance regarding Cl-, NO3
- and SO4

2- by 7%, 10% and 44% compared to 

the formal likelihood function using discharge and solutes. The adapted KGE approach has a very good representation of 

variability (α) compared to the other two approaches, especially for discharge, Cl- and SO4
2- where the variability metric α is 350 

centered around 1. The performance in terms of bias (β) is in the range of 0.9 and 1.1 for all three approaches. The 

correlation of simulated and observed discharge is all larger than 0.9 for the three approaches. But the adapted KGE and the 

formal likelihood function using the same weight in discharge and solutes have a higher performance (improvement is up to 

17%) regarding correlation for the three solutes compared with the formal likelihood function using different amount of 

observation data. 355 
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Figure 8 General performance (KGE), variability (α), non-scaled bias (β) and correlation (r) for discharge and solutes (Cl-, NO3
- and 

SO4
2-) for a heterogeneous karst system using the formal likelihood function with normalized observations (formalnorm), the formal 

likelihood function with equal weights of normalized discharge and each solute (formalnorm,w) and our approach using KGE and gamma 360 

distribution to derive probability density (KGEgamma). The boxplot shows the performance of the last 25% of all simulations, which is used 

to approximate the “true” system behavior in DREAM(ZS). The optimal value for KGE, α, β and r is one, and the closer to one the better 

the performance. 

Since the formal likelihood function with the same weight for discharge and solutes (formalnorm,w) has a better performance 

than the formal likelihood function with different amount of observation data for discharge and solutes (formalnorm), we only 365 

show the comparison regarding the total uncertainty between formalnorm,w and KGEgamma in Fig. 9. The two approaches have a 

similar uncertainty estimate (both total uncertainty in Fig. 9 and parameter uncertainty in Fig. S2) for discharge and NO3
-. 

However, the formalnorm,w approach has a big underestimation for Cl- and SO4
2- compared to the adapted KGE approach even 

though the uncertainty width is similar. From Fig. 9, we can see the adapted KGE approach can cover most very high and 

very low concentration values in the total uncertainty band. For the parameter uncertainty (Fig. S2), the adapted KGE 370 

approach performs better for Cl- and SO4
2- as well. This indicates that the adapted KGE approach can better represent the 

uncertainty when using multiple types of data for calibration such as discharge and three solutes in this case study. 
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Figure 9 Total uncertainty for discharge and solutes (Cl-, NO3
- and SO4

2-) for a heterogeneous karst system using the formal likelihood 375 
function with equal weights of normalized discharge and each solute (formalnorm,w) and our approach using KGE and gamma distribution 
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to derive probability density (KGEgamma). The total uncertainty is estimated based on the last 25% of all simulations. The parameter 

uncertainty is shown in Fig. S2 in the supplement. 

4 Discussion 

Using the original KGE as the likelihood function, model parameters are not well identifiable, which results in a very large 380 

uncertainty in the simulation. This is because directly using the original KGE as the likelihood estimate assumes a linear 

increase of probability density with the linear increase of KGE. It leads to the identification of parameter proposals with 

good KGE performance more difficult and inefficient. The difference between large and small KGE values is not distinctly 

large enough that the probability to accept poor proposals is high. This is why we find a very large acceptance rate and a 

very fast convergence rate. Mantovan and Todini (2006) and Stedinger et al. (2008) also mentioned that using the informal 385 

likelihood function, such as Nash-Sutcliffe Efficiency (NSE), in the generalized likelihood uncertainty estimation (GLUE) as 

objectives cannot find proper posterior distributions of model parameters. Therefore, directly using the original KGE should 

be avoided and some adaptations to solve the incapability of exploring the posterior distributions such as our approach are 

needed in MCMC methods. 

The adapted KGE can well estimate the pseudo-analytical posterior distributions of model parameters derived from the 390 

formal likelihood function in case study 1. This suggests that it is capable of exploring the parameter posterior distributions. 

The adapted KGE has a lower acceptance rate and convergence rate compared to the formal likelihood function for the 

virtual experiment (case study 1). The possible reason is that one KGE value can cover multiple error combinations with the 

same RMSE around the true optimum, which makes the RMSE a bit more efficient to draw proposals for parameters very 

close to the true optimum (known parameters in case study 1) for a system that only contains little uncertainty. However, 395 

calibrations of real systems usually contain more uncertainties e.g., uncertainties in forcing (including the spatial averaging), 

observation data (measurement errors), and uncertainty in model structures. The adapted KGE has a similar convergence rate 

(efficiency) as the formal likelihood for the real-world calibrations (case study 2). In particular, the acceptance rate of the 

adapted KGE is around 20% for a system that we have good input and observations (case study 2). This is similar to the 

formal likelihood function and is also close to the theoretically optimal acceptance rate (0.234) in Metropolis algorithms with 400 

random walk (Yang et al., 2020). 

The uncertainty bound of discharge simulations in case study 1 is almost identical between the adapted KGE and the formal 

likelihood function. This indicates our approach can behave similarly concerning discharge uncertainty estimation as the 

formal likelihood function. For the calibration to the real systems, the adapted KGE even has a higher general performance 

in terms of the mean KGE of the evaluation for the total, low and high flows than the formal likelihood function and the log-405 

transformation. McMillan & Clark (2009) had a similar finding that using another informal likelihood function, NSE, in 

MCMC methods outperforms the formal likelihood for calibrations with high variability and multi-optimum. The formal 

likelihood functions go along with the strong assumption that errors are distributed normally (Vrugt et al., 2008, 2009), the 
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informal likelihood function KGE takes into account more variability without strict assumptions on error sources (Gupta et 

al., 2009). The adapted KGE performs similar to the formal likelihood function regarding the correlation between 410 

simulations and observations shown in case study 2. However, they all have lower performance for the low flow simulations 

compared to the total and high flow. While the log-transformation works well for low flow (case study 2), the adapted KGE 

has a good and balanced performance for both high and low flows. It also shows a lower overestimation of bias in low flows 

shown as the metric β in case study 2. Jeannin et al. (2021) found that using formal likelihood functions such as RMSE as 

objectives has a large bias in baseflow simulations. For RMSE as the objective, each individual error has the same weight. 415 

To have a high overall performance, the optimization tends to firstly fit the high flows since its error is relatively larger and 

the contribution to RMSE is thus larger. The log-transformation can improve the calibration for low values but is not good 

for high values. The adapted KGE and the formal likelihood function both have a better representation of variability (α) with 

more observations included in calibrations. This makes sense since more data is involved in calibration more information on 

variability will be captured in calibrations. 420 

While our approach has a similar performance as the formal likelihood function for discharge simulations, we find similar 

posterior distributions for certain parameters but also inconsistent posterior distributions for some parameters between the 

formal and informal approaches. This is because some model processes interplay with other processes such that there are 

compensates of one parameter for another, i.e. parameter interactions. Adding additional information, e.g. solutes in case 

study 3, can help to further constrain model parameters (Hartmann et al., 2017) that represents the complexity of real 425 

hydrological systems. Our study show that the adapted KGE approach is superior on simultaneously calibrating model 

parameters with different types of data than the formal likelihood function. This can improve the model calibration using the 

traditional separate steps such as firstly calibrating discharge and then solute processes in Liu et al. (2020). Many studies 

have shown that multi-objective calibrations allow to adequately and properly estimate important characteristics of a system 

(Vrugt, et al., 2003b; Yapo et al., 1998). Using KGE can provide a feasible way to combine various types of observations as 430 

a measure of multi-objective performance and avoids issues regarding data units, scales and frequency. 

Even though our approach adapts the gamma distribution to compute the probability density for KGE, the way we formulate 

the likelihood function based on KGE is still informal. It means the derivation of the likelihood is not from a strict theoretical 

probability framework, which is a limitation of our approach. Nevertheless, our approach provides a feasible and pragmatic 

way and a close solution to the formal likelihood function to avoid the pitfalls of directly using the original KGE in MCMC 435 

methods. Future work is needed to find a solution to link probability density and KGE in order to incorporate KGE in a 

statistical manner as much as possible. 
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5 Conclusions 

Our study demonstrates that using the original KGE in DREAM(ZS) results in a very high acceptance rate and a large 

uncertainty bound of discharge simulations. This is due to the confusing evolution orientation for negative KGE values and 440 

the nonlinear performance of KGE. To solve these two problems, we propose adapting KGE with the gamma distribution to 

formulate the pseudo log-likelihood function to avoid negative posterior density ratios and to include a proper nonlinearity of 

performance. With three case studies we demonstrate that the adapted KGE performs as good as the formal likelihood 

function for the exploration of the posterior distributions of model parameters. Through the calibrations varying the amount 

of observations included in the calibration, we show that the adapted KGE is robust and has a good and balanced 445 

performance for both low and high flows compared to the formal likelihood function and the log-transformation. Our 

approach even has a higher general performance, the mean KGE of the evaluation, and a smaller bias overestimation of low 

flows than the formal likelihood function. Our study shows that the adapted KGE approach outperforms the formal 

likelihood function for calibrations using discharge and solutes. The limitation of our approach is the lack of theoretical 

probability derivation. Besides that formal limitation, our approach keeps the advantages of KGE, e.g. consideration of 450 

variability and possibilities to combine multiple types of data, and performs like a pseudo formal likelihood. Thus, it 

provides a feasible way to use KGE as an informal likelihood function in MCMC methods. 
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