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Dear Editor, Dear Referees,

We would like to invite you to find in the present document a summary of the major changes we have made to
the paper (§1), our response to the report provided by Editor Efrat Morin (§2), our point by point response to
the review made by Referee John Quilty (§3), and our point by point response to Anonymous Referee #2’s
review (§4).

Kind regards,
Authors

1. SUMMARY OF THE MAJOR CHANGES

In the revised version, we have made the following major changes:

1. Sample — we have refined the initial sample by excluding:

(a) the catchments with less than 30 years of full discharge record,

(b) the influenced catchments with a degree of influence1 greater than or equal to 0.1 (di ≥ 0.1).

The reduced sample that we have used for the revised manuscript has 361 catchments. We would also
like to note that we do not have any more such an HP sample since the hyperparameter tuning approach
has been fundamentally revised — according to Anonymous Referee #2’s review.

2. Neural network architecture — we have dropped the S2 architecture of the old manuscript, which had
2 LSTM layers. In the revised manuscript, we have used the S1 architecture (from the old manuscript)
for all LSTM experiments.

3. Learning rate — we have changed our learning rate to 0.0001. This is the learning rate that previous
studies have reported (Kratzert et al., 2018; Lees et al., 2021).

4. Tuning hyperparameters — we have made the following changes:

(a) in the revised manuscript, we have not tuned the “number of LSTM layers” and “batch size”,

1The di variable is defined in lines 95-99 of the old manuscript.
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(b) as suggested by Anonymous Referee #2, we have included the “number of hidden units” in the
tuning hyperparameters along with lookback. Following the previous studies, we have also added
“dropout rate” to the hyperparameters to be tuned.

In the revised manuscript, we have thus considered six variations of lookback — 30, 60, 90, 180,
365, 730 [days] — and 3 variations for hidden unit size — 64, 128, 256 — and 3 dropout rates —
0.0, 0.2, 0.4.

5. Hyperparameter tuning approach — we have performed a full “catchment wise” hyperparameter tuning
for LSTMs trained on individual catchments and a full “model wise” hyperparameter tuning for LSTMs
trained on a group of catchments, as proposed by Anonymous Referee #2. We therefore performed 54
hyperparameter tunings for each of the LSTMs found in the revised manuscript.

6. Approach to selection of the best hyperparameter set — we have investigated a new approach for group
trained LSTMs. (Please see §3.5 of the revised manuscript.)

7. Static attributes — following the recommendation from Anonymous Referee #2, we have included four
new attributes — mean daily solid precipitation, mean daily solid precipitation, mean daily potential
evapotranspiration, and median altitude — in the static inputs of group trained LSTMs.

8. Research questions of the paper are revisited. Please see Introduction of the revised manuscript.

9. The title of the paper is changed to “How can we benefit from regime information to make use of
LSTM runoff models more effectively?”
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2. EDITOR Efrat Morin

Dear authors
We had review reports from two reviewers. There are a few major concerns that were raised mainly by
reviewer #2, mostly focused on hypertuning. I would like to emphasize two points:
- The hypertuning should include more important LSTM parameters, including the cell state dimension, the
sequence length (lookback), and others.
- For a fair comparison, hypertuning has to be done separately for each catchment group (including the group
of all catchments). The hyperparameters found for the single catchments do not necessarily work for the
catchment groups. If you decide to submit a revised paper, please address the above and other comments of
the reviewers.

AR: We would like to thank you for the provided report and your conclusion, with which we fully agree. In the
revised manuscript, we have fully followed the approach suggested by Anonymous Referee #2 and have
totally revised our hyperparameter tuning approach. We have included “hidden unit size” in our tuning
hyperparameters. Please see §4.2.1 and §4.2.3 for further details.

3. REFEREE John Quilty

3.1. General comments
RC: This paper carefully studies long short-term memory networks (LSTM) for rainfall-runoff prediction,

using a large-sample of catchments in France. The key focus is on exploring local and regional models
as well as the impact of the ‘lookback’ period, an important hyper-parameter of LSTM, with respect
to predictive performance and physical understanding of the model results. The authors include
well-thought out experiments to identify the impact of the lookback period and cases where local and
regional LSTM models are best suited. The authors also benchmark LSTM with GR4J, due to its
useful ability to capture ground water exchanges with aquifers and/or between catchments.

The authors spend a considerable amount of effort on tying the performance of LSTM, locally and
regionally, to a physical understanding of the results. Some examples include the comparison between
local and regional LSTM models with GR4J in terms of a water balance exercise in §5.3 as well as
the ability of LSTM to predict runoff in controlled catchments at a higher degree of accuracy than
GR4J (in §5.4). This paper also presents findings (e.g., LSTM does not necessarily outperform simple
conceptual rainfall-runoff models) that are counter to other recent studies on LSTM (Gauch et al.,
2021; Kratzert et al., 2019; Lees et al., 2021); in all such cases, the authors take the time to carefully
describe potential reasons for these differences. Overall, this paper is very strong and I could not find
much to criticize. The methodology seems correct. The figures are very nice and easy to interpret and I
did not find any of the content, tables, or figures to be superfluous.

I suspect this paper will be very useful to other researchers interested in exploiting the general-
ity of machine learning for hydrological modelling and rainfall-runoff prediction, in particular. I think
the paper only needs some very minor corrections and some additional brief explanations (as noted
below). Afterwards, the paper could be published.

AR: We would like to thank you for reading our manuscript carefully and with interest and for your encouraging
comments. We are very pleased to read that you find our paper useful. We would like to invite you to find our
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point by point response1 to your comments in the following subsections.

3.2. Specific comments
3.2.1 Line 32

RC: Does LSTM also help mitigate against exploding gradients? If so, this would be good to mention as
well.

AR: Thank you for this relevant question. The answer is, yes. This is because vanishing and exploding gradients
both result from the same mathematical challenge when optimizing neural networks (NNs) with very high
non linearities, although the latter case (exploding gradients) is less frequent (Goodfellow et al., 2016). A
full description of how LSTM overcomes both vanishing and exploding gradients is given in Hochreiter and
Schmidhuber (1997). To put it briefly and in very simple words, in deeply nested NNs, such as (vanilla)
RNNs when the length of processing sequence (T ) becomes large, it happens that a factor — which in the
problematic case is not close to an absolute value of 1 — gets multiplied by itself over and over — T times —
due to the chain rule of the calculus. Therefore, the result will either exponentially shrink — if the factor is
initially < 1 — or exponentially grow — if the factor is initially > 1 — and this is where the vanishing or
exploding gradient issue arises. LSTM is designed to establish derivatives that neither vanish nor explode.

RV: Following the reviewer’s suggestion, we have included this explanation in the revised manuscript (§3.1). We
have also rewritten the whole section on LSTM’s principles to make it more clear and tractable. We have
removed unclear and confusing explanations and have given practical information on computation of different
variables of the forward pass in an LSTM cell.

3.2.2 Figure 1

RC: It would be good to include a description of the acronyms HP and FR in the figure caption (since it is
unclear what these acronyms represent).

AR: Thank you for this comment and we agree with you.

RV: Following your suggestion and the point made by the Anonymous Referee #2 on our naming strategy, we
have revised all instances of acronym/letter based names — all such instances are replaced by descriptive
names.

3.2.3 Grammatical corrections

RC: For the most part, the paper is well-written but there are a number of grammatical errors. I stopped
correcting such errors around line 154. I recommend that a very carefully read through the paper be
completed before re-submission.

AR: Thank you for spotting these grammatical errors. We agree with you about the section containing Line 154
and its surrounding. We found it also a bit stiff and wordy.

RV: We have thus totally rewritten this section to make it more concise, clear, and useful. We hope it reads well
now in the revised manuscript (§3.1). We have also proofread the entire paper to check for any further errors.

1All line and figure mentions found in the title of the subsections of this section regard the old manuscript.
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3.2.4 Line 165

RC: The sentence on line 165 can be moved to the last sentence of the same sub-section. A short sentence,
‘The main equations used in LSTM are as follows (Ref, XXX):’ can be used in it’s place.

AR: Thank you for this suggestion.

RV: We have rewritten this subsection, as mentioned in the above RV.

3.2.5 Lines 205-206

RC: Is this sort of standardization the most appropriate for LSTM? Since sigmoid and tanh activation
functions are used, should not the data be scaled to [0,1] or [-1,1] as these ranges match the output
ranges of the (previously mentioned) activation functions? Perhaps others have adopted the form of
standardization adopted here, if so, can the authors indicate this?

AR: Thank you for this interesting question. LeCun et al. (2012) explain that why centering the input data around
0 and scaling them by the standard deviation is typically a good idea and usually makes gradient descent
converge faster. Besides, we could not in principle benefit from a [0, 1] scaling since the temperature feature
might include negative values.
The interesting point of standardization comes when we investigate how the derivative of different activation
functions changes with respect to the range of input data. Please note that here we are talking about the
activation function for the hidden layers and not the last layer, which is given by the type of the problem — for
instance, Softmax for multi class classification, Sigmoid for binary classification, and Identity for regression.
Looking at Fig. 1 (of the present document), it turns out that the Sigmoid (σ(x)) and tanh functions suffer
from a problem — their derivative gets saturated very quickly. By the term “saturation”, we mean that their
derivative approaches very quickly to zero indicating that weights can not get updated effectively at these
points thus the NN can not learn effectively. We observe this problem almost everywhere except in the small
region in the middle centered around 0 where the derivative is the most dynamic. Therefore, having the
inputs centered around 0 with a variance of 1 would also help fall in the useful area of these functions. Please
note that even in their dynamic region the derivatives are small and could bring about the vanishing gradient
problem in NNs with high non linearities.
Now, you might ask why not simply using an activation function that does not have vanishing gradients, for
instance ReLu? The answer is that the ReLu activation function proved to be typically a more appropriate
default choice — if we are allowed to use it. For LSTM, there is a specific reason for which we need to stick
with the Sigmoid function in gates, despite the mentioned disadvantages. Indeed, the it plays a “gate” role —
a function granting us a value between 0 and 1 — and it is not possible to replace it by ReLu or any other
activation functions not having this output range.

RV: We have included a summary of this answer in §3.2 of the revised manuscript, where we have also referred to
Kratzert et al. (2018), who standardized their data using the mean and standard deviation of the training data.

3.2.6 Adam algorithm

RC: What were the hyper-parameters (alpha, beta_1, beta_2) set to in the Adam algorithm?

AR: Except for learning rate (α) that we have set to 0.0001 in the revised manuscript, we have kept all other
arguments, including β1 and β2 (L1 and L2 norms), at their default values in Keras (Chollet et al., 2015):
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Figure 1: Sensitivity of the derivative of the Sigmoid and tanh functions to the range of input data.

tf.keras.optimizers.Adam(
learning_rate =0.0001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-07,
amsgrad=False,
name="Adam",
)

RV: In the revised manuscript, we have included a phrase indicating this setting (§3.5).

3.2.7 Equation 17

RC: what does epsilon represent?

AR: Thank you for noticing this — we had forgotten to indicate that Kratzert et al. (2019) added this term (ϵ) to
the denominator in the equation of NSE∗ so that the loss function would not explode when s was very close
to 0 (catchments with very small discharge variance).

RV: We have updated the text to include this explanation (§3.5).

3.3. Technical corrections
RC: Lines 16, 35, 57, 61, 73, 135, 148-150, 154, Figure 6

AR: Thank you for spotting these errors.

RV: The manuscript is (almost) rewritten. We tried to avoid such errors in the new manuscript and hope that such
errors have not accrued in the new version.
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4. ANONYMOUS REFEREE #2

AR: We would like to thank you, Anonymous Referee #2, for your review and constructive thoughts, which have
greatly improved our paper. You were critical of the design of our experiments and hyperparameter tuning
approach and had identified technical issues warranting a major revision of these two aspects. We agree with
you. We have made all the revisions you had suggested. We have updated our point by point response to your
individual comments according to these revisions and would like to invite you to find it below.

4.1. Summary of review
RC: This paper addresses two research questions related to the use of LSTMs for rainfall-runoff modeling:

(1) Does appropriate sequence length depend on hydrological regime, and (2) should LSTM training be
done on hydrologically similar basins?
To state my opinion up front, I have run similar experiments (unpublished) and found results that are
qualitatively different than what are reported here. There are several technical issues in this paper
(overall, the methodology is not appropriate for testing the stated hypotheses), and it might be worth
addressing those before we look carefully at the results.

AR: We thank the reviewer for their interest in performing similar experiments. We would be happy to engage in
an ongoing dialogue with the reviewer about the details of their experiments since without further information,
in particular, on the hydro-geo-climatic context of their data, it would be hard to provide a definite explanation.
Indeed, such discrepancies could be investigated at different levels. At the highest level, we would conjecture
that the reason lies in definition of the homogeneity component. We believe that the hydrological similarity
rule — i.e., the regime classification — is a crucial question. Given the term “similar experiments”, we could
think of the following two cases.

Case 1 The exact same classification is applied to a sample in a non French context. In this case, we would
be afraid that the exact same rule would not be immediately applicable to other climatic contexts.
The following elaboration on our classification approach aims to underline how it is intensely context
dependent — in terms of number of classes, criteria, and thresholds.

As a property of the French context, we knew in advance that there existed five main regime
patterns, which we named Uniform, Mediterranean, Oceanic, Nival Pluvial, and Nival. Therefore,
any catchment in our sample could be classified in one of the five categories. Using the fact sheets
available at https://webgr.inrae.fr/activites/base-de-donnees/, we tried to
identify hydro-geo-climatic signals that could reflect different features of all five patterns. The
decision feature(s) — based on which we could distinguish one pattern from the others — was (were)
not the same for all regimes. For instance, we were observing that the minimum temperature attribute
alone was able to detect the Nival pattern. While, in catchments with known water ground effects,
it was certainly a criterion on discharge that was doing this. In the same spirit of a decision tree
algorithm, but at a human level, we concluded that the mean annual discharge, total precipitation, and
temperature signals would be the most useful signals to exploit to identify the distinctive attribute(s)
in each class. After a number of trial and errors on different properties of these signals, such as the
number, magnitude, and time of occurrence of their global/local peaks, we identified our classification
attributes — IQ, IP , and Tmin — and their thresholds. Therefore, inferring the similarity rule for
any other climatic context warrants a redefinition of different elements in this analysis.

Case 2 Another classification (concluded at an AI or a human level) is applied to data belonging to a non
French context. In this case, getting different results would not be surprising — since a different rule
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involves different decision attributes and criteria. The question in this case would be rather the extent
to which we could compare the results obtained from two different classifications.

To conclude on this point, we believe that such cross study comparisons warrant caution, since the imposed
similarity rule will not be identical between the studies. That is why we would like to emphasis and
acknowledge that research questions established on a subjective component, such as regime classification in
our paper, will always make the corresponding conclusions subject to that component.

RC: My overall recommendation is to revise the experiment as suggested in one of the comments below.
The experimental design that is appropriate to test the (two) hypotheses outlined here is very simple
(but somewhat computationally expensive). If the authors were to find similar results using a more
appropriate experiment, this would be an interesting study.

RV: We provide the details of our revision later in §4.2.3 where the reviewer details their suggested design of
experiments.

4.2. Comments
4.2.1 Hyperparameter tuning

RC: Hyperparameter tuning was done on LSTMs trained on individual basins. LSTMs trained on individual
basins behave fundamentally differently than LSTMs trained on multiple basins, which means that
lessons learned from hypertuning on individual basins do not translate to multiple-basin models.

RV: We have totally revised our hyperparameter tuning approach following the methodology suggested by
the reviewer. We have defined 54 hyperparameter tunings, where 54 reflects the number of all possible
combinations of the three considered hyperparameters — LSTM sequence length with 6 variations, hidden
unit number with 3 variations, and dropout rate with 3 variations; that is 6× 3× 3. For “each and every one”
of the paper’s LSTMs — either trained on individual or a group of catchments — we have performed these
54 tunings. Please see §3.2 and §3.4 of the revised manuscript.

RC: Additionally, 15 catchments is not enough for robust hypertuning – we would need to perform hyperpa-
rameter tuning on the full (evaluation) dataset (although see a later comment – the experimental design
needs to be changed fundamentally). Also, notice that the only portions of the “hypertuning” that were
actually used for the other experiments in this paper were (1) discarding the S2 model architecture,
and (2) batch size.

RV: Please see the above RV on our new hyperparameter tuning approach.

4.2.2 Number of hidden units in the LSTM layer

RC: There is strong relationship between the dimension of the cell state and the sequence length, and also
between the cell state dimension and the ability of the model to generalize (Kratzert et al. (2019) shows
how the model uses the cell state to map catchment similarity). This parameter was not included in
the hyperparameter tuning, and it was also not considered in the experimental design. 64 cell states is
smaller than used by most of the previously published work. The hypotheses that are tested here are
about the ability of the model to generalize and about memory timescales, both of which are directly
controlled by the cell state (more cell states means more ability to have different memory timescales for
different hydrological regimes).
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AR: We thank the reviewer for this relevant and constructive comment regarding the number of hidden units in the
LSTM layer.

RV: In addition to 64, we have included two larger hidden unit sizes — 128 and 256 — in our hyperparameter
tuning.

4.2.3 Design of experiments

RC: It would be interesting (and useful) to know whether there is value in clustering catchments prior
to training models, and if so whether we could find correlations between different hyperparameters
(e.g., sequence length, cell state dimension) and hydrological regime (the former is a more interesting
question than the latter, in my opinion). The way to test this is simple – you separately (and fully)
hypertune each model. For example, if you want to test the clustering strategy described in lines
120-125, you would hypertune models separately for each catchment group (considering all of the
important LSTM hyperparameters), and as a benchmark you would hypertune a model for all of the
catchments combined. Then the results would be directly comparable. After that, you could look at
whether there was any relationship between hydrological regime and the “optimal” (hypertuning is
never actually optimal) sequence length for that cluster. If you really wanted to train single-basin
models (which I suggest you should not do), then these need to be separately (and fully) hypertuned for
each basin.

AR: We appreciate the detailed description of the suggested design of experiments (DOE) and we acknowledge
that it is thorough. We recognize that the reviewer identifies the following limitations for our old DOE with
respect to our research questions:

Limitation 1 We had proposed a hypothesis: the effective size of lookback and regime of catchments are
correlated. In order for the hypothesis to be valid, all lookbacks should have been tested for all
regimes as well as the entire sample. In the old manuscript, this had been done only in local
training and not for regional LSTMs.

Limitation 2 The second hypothesis was that training less but hydrologically homogeneous catchments
would be more effective than training more but hydrologically heterogeneous catchments. In
our old regional experiments, we had used the lookbacks that were concluded at the local scale.
Therefore, we might have not taken the most effective lookback for regional models when
answering to the second research question.

Limitation 3 In the reviewer’s opinion, the number of hidden units should have been varied along with the
lookback size.

RV: We have revised our DOE as follows taking into account the reviewer’s suggestions and the three identified
limitations:

Revision 1 For all group trained LSTMs, we have tested all and the exact same lookbacks that have been
tested for LSTMs trained on individual catchments. This revision has addressed Limitation 1 and
2.

Revision 2 In doing Revision 1, we have tested 3 different hidden units ≥ 64 for all local and regional
LSTMs to address Limitation 3.

9



4.2.4 Interest of local models

RC: I wonder why we are training local models. There is no situation where we would ever use a model
trained on a single catchment for any real-world purpose. Additionally, the behavior of the LSTM
is fundamentally and qualitatively different when trained on one catchment vs. many, which means
that we cannot learn anything general or useful from locally trained models. If there was a specific
hypothesis that we wanted to test that required training local models, then this might make sense, but I
do not believe this is the case here – we could ask the question about appropriate sequence length on
hydrologically grouped models, and asking the question this way would give us a more useful answer.
Just a note: Kratzert et al. (in all papers after their 2018 paper) trained single-basin models only to
make the point that this is not an appropriate thing to do.

AR: We agree with the reviewer and share their interest in using universal regional models. We also agree with the
reviewer on the point that hyperparameters of local models are not optimal for regional LSTMs. That is why
in the revised manuscript we have performed a full hyperparameter tuning for all models, as suggested by
the reviewer. In the revised manuscript, we have kept the local LSTM to be able to study our first research
question at the local scale as well. We have been also interested in benchmarking the LSTM against the GR4J
model. We believe that having a local baseline would also help the reader to better interpret and understand
different aspects of the regional results that we present, such as the performance gain in the passage from
local to regional trainings.

4.3. Minor comments
4.3.1 S2 Architecture

RC: The S2 architecture (stacked LSTMs) is interesting, but not related to either of the hypotheses of
the study. What was the motivation for testing this and how does it relate to the questions that were
motivated in the introduction? I’m not saying to remove it, just give us some reasoning or motivation.
Also, when the “complexity” of this model is discussed, you might give us the number of free parameters
so that we can get a sense of what the differences are.

AR: Thank you for this interesting inquiry. The original intent behind studying the S2 architecture in the old
manuscript was to act on classical instructions that are given for training any Deep Learning models: prevent
underfitting. We wanted to see if vertically stacking LSTMs could immediately bring a better performance
thanks to a better hierarchical learning — in the same spirit of operating successive convolutions in a
Convolutional Neural Network, if we could “metaphorically” think that what LSTM looks for in time is
comparable to what a CNN detects in space. But, we did not observe any instant improvement. There were
thus two speculations: either, we still underfit a lot, or, the stacked setup would not basically help. Finding a
definite answer to the question of “still underfitting” required an unmanageable amount of work — stacking
more LSTMs and increasing hidden units until we overfit and repeating all local and regional experiments at
every step — and after all such effort, there was still the risk that “the stacked setup would not basically help”.
We therefore chose to assume that it was the second hypothesis that held true — stacking LSTMs vertically
would not bring significant performance improvement. Thus, we ruled out the S2 structure.

RV: We have excluded this architecture from the revised manuscript.
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4.3.2 Purpose of validation set (Line 192)

RC: The validation set is intended to be used for finding the best weights and biases during training and control
overfitting. I think this is just a typo. Validation data is used to help find the best hyperparameters and
control overfitting (it is explicitly *not* used to help tune weights and biases, except through early
stopping).

RV: In the revised manuscript, for all local and regional trainings, we have used the validation data to select the
best hyperparameter set as well as in the Early Stopping algorithm.

4.3.3 Catchments with very short train data (Line 201)

RC: What remains constitutes the train period (P1) the length of which varies between 1 year to 40 years in
the FR sample. It is a little concerning to have different sized training data records per catchment,
especially if some catchments only have 1 year of training data. This is *especially* problematic if we
are looking at differences between what data is required to train in different types of catchments.

AR: In the old manuscript all catchments with less than 10 years of training data had been excluded from the
analyses at a very early stage.

RV: In the revised manuscript, we have excluded all catchments with less than 10 years of training data from the
study.

4.3.4 Training duration (Line 180)

RC: In line 180 is reads like you are doing sequence-to-one prediction, however in line 259 you say that
you are using a patience of 50 epochs with a maximum of 500 epochs. Typically you only need this
many epochs if you are doing sequence-to-sequence training. Regardless, the number of epochs used
by previous studies was in the range of 20-50. Have you found that more epochs help (we looked at
this carefully in previous studies), or is there something else about your model that is different from
previously published work?

AR: Thank you for this interesting inquiry. One reason that we opted for the early stopping algorithm was that
it would not impose to all catchments/simulations the same predefined non traversable training duration.
Instead, it allows the model to continue to learn as long as its performance (on the validation set) is improving.

The so large numbers that we considered for these two parameters were meant to provide a free boundary
for training duration. This would give the model the freedom to learn as long as it needed (unknown to us)
without being stopped too early — due to either a too little patience or a too small maximum number of
epochs.

This feature was advantageous to us since our data set was new and had not been used in any of the previous
studies, notably that it included catchments with very long time series — sometimes up to 40 years for the
training data.
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4.3.5 Static attributes (Line 291)

RC: This is a pretty small list of catchment attributes. Given that catchment attributes are available globally
(e.g., HydroAtlas), and this will directly influence the generalizability of a model, why did we use such a
limited set of attributes here?

AR: Thank you for this relevant question. We agree with the reviewer. In the old manuscript, we thought that not
considering plenty of static attributes would be concerning if the model was to apply to ungauged catchments,
which was not the case in our paper. We therefore took the classical static descriptors often used in previous
regionalization studies in the French context (Oudin et al., 2008).

RV: In the revised manuscript, we have included four more attributes — mean daily solid precipitation, mean
daily solid precipitation, mean daily potential evapotranspiration, and median altitude — in the static inputs
of group trained LSTMs, giving in total 10 static features.

4.3.6 Naming strategy

RC: In general, naming experiments with non-descriptive names like R1, R2. P1, etc. makes the paper more
difficult to read than is necessary. This means that the reader must always refer back to the text in order
to understand each figure. This can be solved simply by naming each of the models/experiments/datasets
with descriptive names.

AR: We fully agree with the reviewer and thank them for this constructive suggestion.

RV: We have replaced all such instances by descriptive names as suggested by the reviewer. We have, for instance,
replaced P1, P2, and P3 by training, validation, and test. We have chose SINGLE, REGIONAL, and HYBRID
names for our LSTMs.
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