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1. GENERAL COMMENTS

RC: This paper carefully studies long short-term memory networks (LSTM) for rainfall-runoff prediction,
using a large-sample of catchments in France. The key focus is on exploring local and regional models
as well as the impact of the ‘lookback’ period, an important hyper-parameter of LSTM, with respect
to predictive performance and physical understanding of the model results. The authors include
well-thought out experiments to identify the impact of the lookback period and cases where local and
regional LSTM models are best suited. The authors also benchmark LSTM with GR4J, due to its
useful ability to capture ground water exchanges with aquifers and/or between catchments.

The authors spend a considerable amount of effort on tying the performance of LSTM, locally and
regionally, to a physical understanding of the results. Some examples include the comparison between
local and regional LSTM models with GR4J in terms of a water balance exercise in Section 5.3 as well
as the ability of LSTM to predict runoff in controlled catchments at a higher degree of accuracy than
GR4J (in Section 5.4). This paper also presents findings (e.g., LSTM does not necessarily outperform
simple conceptual rainfall-runoff models) that are counter to other recent studies on LSTM (Gauch
et al., 2021; Kratzert et al., 2019; Lees et al., 2021); in all such cases, the authors take the time to
carefully describe potential reasons for these differences. Overall, this paper is very strong and I could
not find much to criticize. The methodology seems correct. The figures are very nice and easy to
interpret and I did not find any of the content, tables, or figures to be superfluous.

I suspect this paper will be very useful to other researchers interested in exploiting the general-
ity of machine learning for hydrological modelling and rainfall-runoff prediction, in particular. I think
the paper only needs some very minor corrections and some additional brief explanations (as noted
below). Afterwards, the paper could be published.

AR: We would like to thank you for reading our manuscript carefully and with interest and for your encouraging
comments. We are very pleased to read that you find our paper useful. We would like to invite you to find our
point by point response to your comments in the following sections.
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2. SPECIFIC COMMENTS

2.1. Line 32
RC: Does LSTM also help mitigate against exploding gradients? If so, this would be good to mention as

well.

AR: Thank you for this relevant question. The answer is, yes. This is because vanishing and exploding gradients
both result from the same mathematical challenge when optimizing neural networks (NNs) with very high
non linearities, although the latter case (exploding gradients) is less frequent Goodfellow et al. (2016)). A
full description on how LSTM overcomes both vanishing and exploding gradients is given in Hochreiter and
Schmidhuber (1997). To put it briefly and in very simple words, in deeply nested NNs, such as (vanilla) RNNs
when lookback (T ) becomes large, it happens that a factor — which in the problematic case is not close to
an absolute value of 1 — gets multiplied by itself over and over — T times — due to the chain rule of the
calculus. Therefore, the result will either exponentially shrink (if the factor is initially < 1) or exponentially
grow (if the factor is initially > 1) and this is where the vanishing or exploding gradient issue arises.

LSTM establishes derivatives that neither vanish nor explode. Contrary to RNNs, LSTM weights are not
constant in all time steps and depend on the input of each time step (Xt).

Following the reviewer’s suggestion, we propose to include this explanation in the new version. We also
intend to rewrite this section to make it more clear and tractable. For instance, we realized that the term
“sharing important information between time steps of a time sequence” that we used in Line 151 could be
misleading as we did not specify what kind of parameter sharing we were referring to and the reader could
confuse it with the “constant weights” in RNNs.

2.2. Figure 1
RC: It would be good to include a description of the acronyms HP and FR in the figure caption (since it is

unclear what these acronyms represent).

AR: Thank you for noticing this. Following your suggestion and the point made by the Anonymous Referee #2 on
our naming strategy, we plan to revise all instances of acronym/letter based names. Nevertheless, “HP” and
“FR” were intended to be acronyms for Hyperparameter and France, respectively.

2.3. Grammatical corrections
RC: For the most part, the paper is well-written but there are a number of grammatical errors. I stopped

correcting such errors around line 154. I recommend that a very carefully read through the paper be
completed before re-submission.

AR: Thank you for spotting these grammatical errors. We will proofread the entire paper to fix the mentioned
mistakes and to check for any other errors.

2.4. Line 165
RC: The sentence on line 165 can be moved to the last sentence of the same sub-section. A short sentence,

‘The main equations used in LSTM are as follows (Ref, XXX):’ can be used in it’s place.

AR: Thank you for this suggestion. We will update this subsection as proposed.
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Figure 1: Sensitivity of the derivative of the Sigmoid and tanh functions to the range of input data.

2.5. Lines 205-206
RC: Is this sort of standardization the most appropriate for LSTM? Since sigmoid and tanh activation

functions are used, should not the data be scaled to [0,1] or [-1,1] as these ranges match the output
ranges of the (previously mentioned) activation functions? Perhaps others have adopted the form of
standardization adopted here, if so, can the authors indicate this?

AR: Thank you for this interesting question. LeCun et al. (2012) explain that why centering the input data around
0 and scaling them by the standard deviation is typically a good idea and usually makes gradient descent
converge faster. Besides, we could not in principle benefit from a [0, 1] scaling since the temperature feature
could include negative values.
The interesting point of standardization comes when we investigate how the derivative of different activation
functions changes with respect to the range of input data. Please note that here we are talking about the
activation function for the hidden layers and not the last layer, which is given by the type of the problem —
Softmax for multi-class classification, Sigmoid for binary classification, and Identity for regression.
Looking at Figure 1 of the present document, it turns out that the Sigmoid (σ(x)) and tanh functions suffer
from a problem — their derivative gets saturated very quickly. By the term “saturation”, we mean that their
derivative approaches very quickly to zero indicating that weights can not get updated effectively at these
points thus the NN can not learn effectively. We observe this problem almost everywhere except in the small
region in the middle centered around 0 where the derivative is the most dynamic. Therefore, having the
inputs centered around 0 with a variance of 1 would also help fall in the useful area of these functions. Please
note that even in their dynamic region the derivatives are small and could bring about the vanishing gradient
problem in NNs with high non linearities.
Now, you might ask why not simply using an activation function that does not have vanishing gradients, for
instance ReLu? The answer is that the ReLu activation function proved to be typically a more appropriate
default choice — if we are allowed to use it. In LSTM, there is a specific reason for which we need to stick
with the sigmoid function in gates, despite the mentioned disadvantages. Indeed, the it plays a “gate” role —
a function granting us a value between 0 and 1 — and it is not possible to replace it by ReLu or any other
activation functions not having this output range.

Kratzert et al. (2018) mentioned that they standardized their data using the mean and standard deviation of
their training data and we will indicate this information in the new version.
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2.6. Adam algorithm
RC: What were the hyper-parameters (alpha, beta_1, beta_2) set to in the Adam algorithm?

AR: We kept all arguments in the Adam optimization module of the Keras library, including α (learning rate), β1,
and β2 (L1 and L2 norms) at their default values (Chollet et al., 2015):

tf.keras.optimizers.Adam(
learning_rate =0.001,
beta_1=0.9,
beta_2=0.999,
epsilon=1e-07,
amsgrad=False,
name="Adam",
)

2.7. Equation 17
RC: what does epsilon represent?

AR: Thank you for noticing this. We forgot to indicate that Kratzert et al. (2019) added this term (ϵ) to the
denominator in the equation of NSE∗ so that the loss function would not explode when s was very close to 0
(catchments with very small discharge variance).

3. TECHNICAL CORRECTIONS

RC: Lines 16, 35, 57, 61, 73, 135, 148-150, 154, Figure 6

AR: Thank you for these corrections. We will update the mentioned lines and figure.
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