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Abstract 

Soil moisture estimates at high spatial and temporal resolution are of great value for optimizing water and 

agricultural management. To fill the gap between local ground observations and coarse spatial resolution remote 

sensing products we use SMAP and Sentinel-1 data together with a unique dataset of ground- based soil moisture 

estimates by cosmic ray neutron sensors (CRNS) and capacitance probes to test the possibility of downscaling soil 30 

moisture to the sub-kilometre resolution. For a high latitude study area within a highly heterogeneous landscape 

and  diverse land use in Denmark we first show that SMAP soil moisture and Sentinel-1 backscatter time series 

correlate well with in situ observations of CRNS. Sentinel-1 backscatter in VV and VH polarization both show a 

strong correlation with CRNS soil moisture at higher spatial resolutions (20 m - 400 m) and exhibit distinct and 

meaningful signals at different land cover types. At a first glance sSatisfying statistical correlations with CRNS 35 

soil moisture time series and capacitance probes are obtained using the SMAP Sentinel-1 downscaling algorithm. 

However, the spatial distribution of soil moisture pattern is inconclusive. Accounting for different land use in the 

downscaling algorithm additionally improved  the spatial distribution slightly. However, the investigated 

downscaling algorithm cannot does not fully account for the vegetation dependency at sub-kilometre resolution.. 

The study implies that further The study suggests that future research focussing on is needed in thefurther  40 

modification modifying of the downscaling algorithm to could produce improve representative soil moisture 

pattern at fine scale since, however backscatter signals are clearlyappear informative.   
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Soil moisture, the amount of water in the vadose zone, is an important state variable in the hydrological cycle 

controlling water exchange between land-surface and atmosphere. It influences rainfall-runoff processes and the 

water availability for plants (Ochsner et al., 2013). Hence, it has relevance for water management, agricultural 45 

optimization (Vereecken et al., 2008) and natural hazards such as drought, floods (Grillakis et al., 2016) or forest 

fires (Bartsch et al., 2009; Chaparro et al., 2016).  

Different applications require information about soil moisture at different spatio-temporal scales from small size 

centimetres-scale, to e.g. monitor growth of a single plant, to hundreds of kilometres for climate forecasting 

(Sabaghy et al., 2018). For application in water management and agricultural optimization in mesoscale 50 

catchments (sizes between 100 and 10000 km2), soil moisture information at a spatio-temporal resolution of few 

hundred meters and close to daily time intervals is desirable (Sabaghy et al., 2018). Complementary to other 

conventional observation (i.e., groundwater head and discharge, Meyer et al., 2018a) and non-conventional 

observation data (e.g., groundwater ages; Meyer et al., 2018b, 2019), soil moisture can serve for calibration and 

validation of hydrological models (Shahrban et al., 2018) and hence contribute to enhancing their prediction 55 

accuracy.  

Existing techniques to measure spatio-temporal dynamics of soil moisture at field scale (reviewed by Vereecken 

et al., 2014) include sensor networks with a footprint of few cubic-centimetres, hydro-geophysical techniques, 

cosmic ray neutron sensors (CRNS) with footprint of a few hundred meters (Andreasen et al., 2016) and (satellite) 

remote sensing with a footprint of tens of kilometres (Mohanty et al., 2017). Variations in soil texture, topography, 60 

climate, land use/cover (LUC) result in a high spatial variability of soil moisture even on field scale (Peng et al., 

2017; Vereecken et al., 2014). These variations are most prominent in absolute soil moisture values whereas the 

temporal dynamics are less influenced (Peng et al., 2017). While ground observations provide a high temporal 

resolution of soil moisture dynamics, they are less efficient in capturing spatial variation on catchment/field scale 

due to their small footprint.  65 

Soil moisture observation from space, on the other hand, provide large spatial coverage but is limited to a coarse 

spatial resolution. Within the last fifteen years NASA and ESA launched satellite missions dedicated for soil 

moisture observations, i.e. SMAP (in 2015) and SMOS (in 2009), respectively. These missions provide freely 

available near surface soil moisture observations several times a week over the whole globe with a high sensing 

accuracy of soil moisture but a relatively coarse resolution of 36-40 km (Mohanty et al., 2017). The satellites carry 70 

passive L-band radiometers with a frequency of 1.4 GHz that receive natural radiation in form of brightness 

temperature emitted from the earths’ surface (Das et al., 2014). Microwaves at this frequency are sensitive to the 

dielectric properties of the upper few centimetres of the soil. The dielectric constant varies with the water content 

with values between 3 [-] (dry conditions) and 80 [-] (fluid water) which make the radiometer suitable for soil 

moisture monitoring.  75 

To overcome the limitations in spatial resolution of the radiometer derived soil moisture data, different 

downscaling approaches have been investigated. Many different techniques exist that either use a statistical 

correlation (e.g. Mascaro et al., 2011, 2010) or physically based models to combine satellite and land surface 

characteristics (e.g. Fang et al., 2018), satellite and ground observation (e.g. Ridler et al., 2014), satellite derived 

indices (e.g. Fang et al., 2013; Peng et al., 2016, Tagesson et al., 2018) or different satellite derived products (e.g. 80 

thermal, optical or active-passive microwave data) (e.g. Entekhabi et al., 2014; Wagner et al., 2007) with the aim 

to downscale the relatively coarse scale soil moisture observations from passive radiometers, e.g. SMAP and 

SMOS (Tagesson et al., 2018). Two recent review papers by Peng et al. (2017) and Sabaghy et al. (2018) give 

comprehensive summaries of different downscaling approaches including a categorization and their respective 

advantages and disadvantages.  85 

Initially, the SMAP mission was composed of a passive L-band radiometer and an active L-band SAR (synthetic 

aperture radar) to provide optimal data, e.g. coincidence in revisit time, incident angles and frequencies for using 

an active-passive downscaling approach. However, the active radar failed after a few months of operation and 

therefore the use of other SAR satellites have been explored. The ESA mission of Sentinel-1 SAR satellites seems 

particularly suitable for this approach because of the high resolution of up to 10 m x10 m and a revisit time of 3-5 90 

days. However, uncertainties arise from the mismatch of revisit times between SMAP and Sentinel-1 and changing 

incidence angles of Sentinel-1 that needs to be corrected for. These effects might only have a limited influence on 

accuracy (He et al., 2018). Moreover, Sentinel-1 carries a C-band SAR (at frequency of 5.405GHz) which is more 

influenced by vegetation and surface roughness than the L-band SMAP radiometer (Calvet et al., 2011). 

Nevertheless, He et al. (2018) compared different SMAP Sentinel-1 downscaling algorithms at spatial resolutions 95 

of 9 km, 3 km and 1 km and evaluated the soil-moisture-based downscaling algorithm as highly accurate 

(particularly at the coarser resolutions). Global soil moisture products exist, e.g. provided by NASA at resolutions 

of 3 km and 1 km, that are derived by the combined SMAP Sentinel-1 downscaling approach applied to downscale 
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brightness temperature and afterwards transforming it to soil moisture or directly to downscale soil moisture (Das 

et al., 2019). The high resolution NASA soil moisture product covers the globe from latitudes +60 (North) to -60 100 

(South) (e.g. SMAP/Sentinel-1 L2 Radiometer/Radar 30-Second Scene 3 km EASE-Grid Soil Moisture). However 

the temporal and spatial coverage at our investigation area at a latitude of +56 (North) is incomplete for the 1 km 

product. Following the satisfying results of the downscaling approach at the medium resolution (1 km, 3 km and 

9 km) by He et al. (2018) and Das et al. (2019), we investigate the applicability of the same approach on high 

resolution (sub-kilometres scale). 105 

The applicability of remotely sensed soil moisture estimation is strongly related to its accuracy (Colliander et al., 

2017). Therefore, ground- based soil moisture measurements, mostly from soil moisture probes, are used to 

validate remotely sensed soil moisture products. One major challenge of the validation task is the mismatch of 

spatial scales between point measurements on the ground and large-scale satellite products (Bircher et al., 2012a; 

Colliander et al., 2017). Often ground measurements are upscaled to the satellite resolution, introducing 110 

uncertainties as the absolute values of the small scale sensors are not representative (Colliander et al., 2017). 

Innovative ground-based soil moisture measurements with the cosmic ray method provide soil moisture 

information over a footprint of a few hundred meters (Andreasen et al., 2016) and have recently been used for 

validating satellite derived soil moisture on original sensing scale (e.g. Montzka et al., 2017; Ochsner et al., 2013). 

However, it has not yet been applied in the context of validation of downscaled soil moisture products. The 115 

expected advantage of using CRNS for validation of downscaled soil moisture at a few hundred meter scale is the 

similarity in scale and hence a better comparability of the two observation methods. 

 

In the present study we first focus on an in-depth analysis of soil moisture from ground observations and remote 

sensing data from SMAP and Sentinel-1. We present a comparison of the ground-based soil moisture 120 

measurements at three CRNS sites (Andreasen et al., 2016) and a dense network of 30 capacitance probes (Bircher 

et al., 2012b) with SMAP derived soil moisture and Sentinel-1 co- and cross-polarization backscatter. Afterwards 

we investigate the feasibility to apply the SMAP Sentinel-1 downscaling approach of soil moisture to estimate 

spatially distributed soil moisture at a sub-kilometre resolution and validate the downscaled soil moisture with the 

in situ soil moisture estimates by CRNS and capacitance probes. Moreover a modification of the downscaling 125 

algorithm is proposed in which we account for the vegetation dependency of the algorithm parameters using a k-

means cluster analysis. We choose the Ahlergaarde catchment in Western Denmark as study area since it has been 

subject to many hydrological studies within the HOBE projects (Jensen and Refsgaard, 2018) and hence provides 

a rich data set of high quality observation data. Furthermore, it is a catchment of the national water resources model 

(DK-model, Henriksen et al. 2003) and soil moisture at the hundred meter scale is of high interest for potential 130 

application in hydrological modelling. Reasons for downscaling soil moisture in this area include (1) the variability 

of soil texture, LUC and the relatively small size of agricultural fields and (2) the incompleteness of existing soil 

moisture data from NASA at a spatial resolution of 1 km and below.  

2.1 Study area  

The Ahlergaarde catchment, a sub-catchment of the Skjern catchment, is located in western Denmark, at about 56° 135 

latitude, and covers an area of about 1058 km2 (Fig. 1). The maritime climate with mild winters and cool summers 

is dominated by a westerly wind regime with frequent rain. The mean annual precipitation is about 990 mm, 

maximum in autumn, minimum in spring. Mean annual evapotranspiration and mean temperature are 575 mm and 

8.2°C, respectively (Jensen and Illangasekare, 2011). The topography is relatively flat (up to 125 m in the East 

and at sea level in the West) (Jensen and Illangasekare, 2011). The surface geology in the area is characterized by 140 

glacial outwash plains consisting of Quaternary sand and gravel with some moraine till. The texture of the topsoil 

varies across the area and is dominated by fine to coarse sand from glacio- fluvial and glacio- lacustrine origin 

(Jensen and Refsgaard, 2018). The Skjern catchment is characterized by agricultural use for crop (55%) and pasture 

(grass, 30%), followed by forest (7%), heathland (5%) and urban areas (2%) (Jensen and Illangasekare, 2011). The 

average sizes of agricultural fields in the area are less than 100 ha (Stelljes et al., 2017). The main growing seasons 145 

are spring and summer with harvesting in late summer and autumn. Due to the predominantly high permeable 

sandy soils with low water retention capacities, groundwater is abstracted for irrigation in approximately 50% of 

the catchment area during the summer months from May to August with an average annual demand of 20 mm/year 

and up to 55 mm/year in dry years (e.g. 2014; Jensen and Refsgaard, 2018) which correspond to two to five times 

the demand of domestic and industrial water (Jensen and Illangasekare, 2011; Jensen and Refsgaard, 2018).  150 

In 2007, a long-term hydrological observatory, HOBE, was set up in the Skjern catchment with the aim to enhance 

the understanding of hydrological processes at catchment scale and the impacts of anthropogenic and natural 

2. Methods 
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changes such as LUC and climate change (Jensen and Illangasekare, 2011).  In the course of these multi-

disciplinary investigations, soil moisture monitoring has been implemented with a network of capacitance probes 

(Bircher et al., 2012) as well as three CRNS systems for stationary measurement of temporal dynamics of soil 155 

moisture at the dominant LUC types, agriculture, heathland and forest (Andreasen et al., 2020) (Fig. 1). Daily 

precipitation data is available at the agricultural field site (Voulund) and forest field site (Gludsted) (DMI.dk, 2021, 

Fig. 2, a). In the present study soil moisture from these ground observations and from remote sensing are used in 

the period from January 1st, 2017 till May 31st, 2019. This period includes exceptionally dry periods in summer 

2018 and winter 2018/2019 (Fig. 2, a). 160 

 

 

Figure 1:(a) Location of the study area in Western Denmark with the SMAP pixel extent. Closer look into the area on 

a LUC map: (b) showing the entire study area, (c) a zoom encompassing all three CRNS stations, for which the results 

are presented and (d) a close look on one of the specific field sites, Voulund (agricultural field). Ground observations 165 

are indicated with green crosses = location of capacitance probes and red dots = CRNS stations at the field sites 

V=Voulund, H=Harrild and G=Gludsted. 

2.2 The downscaling algorithm 

In the present study, the active-passive downscaling approach based on Das et al. (2011), Das et al. (2014) and He 

et al. (2018) is applied. Hereby, the passive radiometer soil moisture data of high accuracy but low spatial 170 

resolution is combined with high resolution active SAR. The SAR actively emits electromagnetic pulses and 

(a) (b) 

(c) (d) 
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measures the transmitted energy from the earth surface in form of backscatter (e.g. Das et al., 2014). The 

downscaling principle relies on the negative relation between brightness temperature and co-polarized SAR 

backscatter over the dielectric constant which is positively related to soil moisture.  

The algorithm is adapted from He et al. (2018) who modified the baseline SMAP Sentinel-1 algorithm of Das et 175 

al. (2011, 2014, 2018) by directly downscaling the soil moisture product to spatial resolutions of 9 km, 3 km and 

1 km instead of downscaling brightness temperature and subsequently transforming it to soil moisture (He et al. 

2018). One major advantage of this technique is that no additional data, such as ground temperature or vegetation 

water content is needed, which are often difficult to obtain at the relevant resolution, but necessary to invert soil 

moisture from brightness temperature (He et al., 2018). The downscaled soil moisture at fine scale 𝜃𝑓𝑖𝑛𝑒 is 180 

estimated by  

 

𝜃𝑓𝑖𝑛𝑒 = 𝜃𝑐𝑜𝑎𝑟𝑠𝑒 + 𝛽[(𝑉𝑉𝑓𝑖𝑛𝑒 − 𝑉𝑉𝑚𝑒𝑎𝑛_𝑐𝑜𝑎𝑟𝑠𝑒) + 𝛤(𝑉𝐻𝑚𝑒𝑎𝑛_𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑉𝐻𝑓𝑖𝑛𝑒)] 

 

Here, 𝜃𝑐𝑜𝑎𝑟𝑠𝑒  is the soil moisture retrieved from SMAP, VV and VH are the co-polarization and cross-polarization 185 

backscatter from Sentinel-1, respectively. Fine means at target resolution and coarse at SMAP resolution. 

Moreover, the downscaling algorithm involves the estimation of two parameters, 𝛽 and 𝛤. For clarification, we 

use σVV and σVH to refer to the original SAR backscatter in co-polarization and cross-polarization and VV and VH 

for the converted backscatter to dB, respectively. They relate as follows:  

𝑉𝑉 [𝑑𝐵] = 10 ∙ 𝑙𝑜𝑔10(𝜎𝑉𝑉) 190 

𝑉𝐻 [𝑑𝐵] = 10 ∙ 𝑙𝑜𝑔10(𝜎𝑉𝐻) 

𝛽 relates to the sensitivity of soil moisture to co-polarization radar backscatter (𝜎VV) and can be estimated as the 

slope of a linear regression of 
𝜃𝑆𝑀𝐴𝑃

𝑉𝑉𝑐𝑜𝑎𝑟𝑠𝑒
 time series. β is generally assumed to be invariant in time and space. Γ 

represents the sensitivity of temporal changes in co-polarization to cross-polarization and is calculated based on 

differential pairs of co- and cross-polarization, Γ =
𝛿𝑉𝑉

𝛿𝑉𝐻
  , at the fine scale (Das et al., 2018; He et al., 2018). The 195 

term  𝛤 ∗ (𝑉𝐻𝑚𝑒𝑎𝑛_𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑉𝐻𝑓𝑖𝑛𝑒) describes the scale heterogeneity of vegetation and surface roughness as the 

cross-polarization backscatter deviation from fine to coarse scale. This needs to be removed from the fine-scale 

correction of VV to obtain local soil moisture changes.  

2.3 Data used:  

2.3.1 SMAP (L-band) 200 

The SMAP satellite mission by NASA was launched January 25th, 2015 and provides soil moisture measurement 

with an accuracy of 4% (at the original 36 km resolution of the SMAP) in the top 5 cm of the soil at different 

lateral scales, down to 3 km, obtained from a combination of a passive L-band radiometer and an active L-band 

SAR (Entekhabi et al., 2014), both operating with a constant incidence angle of 40°. The passive radiometer is 

more sensitive to water in the soil, providing measurements at ∼40 km resolution, while the radar is more 205 

influenced by surface roughness and vegetation structure and can provide much higher resolutions. As the active 

SAR radar failed in July 2015, other SAR satellites have been investigated to be used in combination with the 

SMAP radiometer.  

In this study the SMAP radiometer enhanced Level-3 soil moisture product (L3_SM_AP), provided as a daily 

composite on a 9 km EASE-grid were obtained (O’Neill et al., 2018) for January 2017 to 31st May 2019. The daily 210 

mean of the ascending and descending product was used, unless only one of them was available. The Ahlergaarde 

catchment is covered by 21 SMAP 9 km EASE grid pixels. 

2.3.2 Sentinel-1 (C-band): 

The Sentinel-1 satellite mission of ESA’s Copernicus programme comprises two polar-orbiting active radar 

satellites that were launched in 2014 and 2016, respectively. At high latitudes Sentinel-1 has a revisit frequency 215 

of about 3-5 days. The C-band SAR of Sentinel-1 provides high resolution, weather independent microwave 

backscattering in dual polarization (σHH+ σHV and σVV+ σVH ). It operates with an incidence angle range of 20° to 

46°. In order to use the two satellites in combination, incidence angles of Sentinel-1 need to be corrected to a 

reference angle. Here we use a reference angle of 40°, corresponding to the SMAP incidence angle. The radar 

backscatter, 𝜎𝜃𝑖

0 , obtained at an incidence angle, 𝜃𝑖, was normalized to a reference angle, 𝜃𝑟𝑒𝑓, after the method of 220 

Mladenova et al. (2013) which was also applied by He et al. (2018): 

 𝜎𝑟𝑒𝑓
0 =

𝜎𝜃𝑖 
0 𝑐𝑜𝑠𝑛 (𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠𝑛 (𝜃𝑖)
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with n=2 (Mladenova et al., 2013). In principle, the exponent n is roughness dependent and varies between 0.2 

and 3.4 (Mladenova et al., 2013). He et al. (2018)  evaluated a value of n=2 as suitable for a 

similar application as in this study. Based on a comparison of VV and VH time series with and without the 225 

incidence angle correction, we concluded that an exponent of 2 is feasible because it improves the time series by 

reducing the noise while still showing a dynamic behavior. The effect of the incidence angle correction was higher 

on VV than on VH.  

In this study, Sentinel-1 A and B Level -1 GRD data in Interferometric Wide swath mode (IW) with a full 

resolution of 10 m x 10 m was acquired from Google Earth Engine and pre-processed with thermal noise removal, 230 

radiometric calibration and terrain correction (Filipponi, 2019). 428 Sentinel-1 images cover the Ahlergaarde 

catchment during the study period from January 1st, 2017 till May 31st, 2019. In order to investigate the trade-off 

level between noise and signal, temporal dynamics of VV and VH backscatter at different aggregated scales are 

explored at three field sites. Sentinel-1 VV polarization relates to a combination of soil moisture, biomass and 

vegetation structure while Sentinel-1 VH polarization is assumed to be mostly sensitive to biomass and vegetation 235 

structure. For a deeper investigation of the spatial pattern information content of the Sentinel-1 data, an 

unsupervised data driven k-means cluster analysis (Lloyd, 1982) is performed based on four parameters, the 

temporal mean and the standard deviation of both the VV and the VH backscatter .at target resolution within the 

study area. The clustering is performed for different spatial aggregation levels (results will be shown for 20 m, 

100 m and 1000 m) and different number of cluster groups (2-6). The standard deviation within each cluster does 240 

not decrease when applying more than three clusters, hence the data contains information to differentiate clearly 

between three clusters, but not necessarily more.  

Two cross-ratios of the polarized backscatter are calculated to further investigate the relation to biomass and soil 

moisture: 

1)  VV/VH is similar to Γ and calculated based on dB converted backscatter as 245 

VV/VH=10*log10 (σVV)/10*log10 (σVH) [dB/dB].  

2)  VH/VV=10*log10 (σVH/σVV) [dB] is first calculated in original backscatter and afterwards converted to 

dB. Harfenmeister et al. (2019), Veloso et al. (2017) and Vreugdenhil et al. (2018) found that the ratio 

VH/VV better relates Sentinel-1 backscatter to biomass and compensate for effects of soil moisture and 

radiometric instability of sensors. 250 

 

2.3.3 Data processing: 

For the study period 881 SMAP and 428 Sentinel-1 images were available. The first two years of the Sentinel-1 

mission were excluded because the data was not as regular and did not show seasonal variation as the ones images 

for the proceeding years used in this study. There were 24 SMAP images without data which were removed. Soil 255 

moisture estimates from satellite are erroneous when the ground is frozen (dielectric constant of frozen water is 2 

- 3 [-]). Therefore, 77 SMAP data points were removed when the air or soil temperature, measured at the field site 

Voulund, were low in the winter months and the soil moisture estimates thus were unrealistically low. Further, to 

ensure optimal downscaling results the satellite data was reduced to only those days where both SMAP and 

Sentinel-1 data is available. This synchronization reduced the data set to 377 images. The synchronized SMAP 260 

Sentinel data haswith a resulting averagean average frequency of two to three days.Sentinel-1 pixels that show 

values relating to buildings (identified by high VV) and lakes (identified by low VV) were removed from the 

Sentinel-1 data set. In details this means: all VV and VH backscatter that were positive were replaced by NaN. 

Artefacts in the VV and VH data were removed when backscatter values were lower than -40. Lakes and open 

water were removed when mean VV or mean VH backscatter were lower than -19. Pixels that had more than 30 265 

NaN out of the 377 images were removed for the whole period. The synchronized SMAP Sentinel data has an 

average frequency of two to three days. Finally, to smooth the Sentinel-1 data for all analysis a temporal moving 

average of five images was applied to all remaining data at the resolution investigated.  

2.3.4 Ground observation – validation data 

In situ ground observations of soil moisture are available from installed capacitance probes and stationary CRNS 270 

sensors. The data and set up are briefly presented here while details can be found in the respective publications. In 

the course of the HOBE project, a network of 30 observation stations (Fig. 1; green crosses) each equipped with 

three to five capacitance probes (Decagon 5TE sensors) to monitor soil moisture at different depths (at 0-5 cm, 

20-25 cm and 50-55 cm, and in the litter layer where applicable) have been installed in the Ahlergaarde catchment 

in 2009 (Bircher et al., 2012b). The locations were chosen with respect to representing the variability in LUC and 275 

soil texture (Bircher et al., 2012a). Hence, 22 probes are located in agricultural land, 4 in heathland and 4 in forest. 

The sensors record soil water contentmoisture each 30 min and are representative for a soil volume of about 300 

cm3 (Decagon Devices Inc, 2016). A recent study investigated the representativeness of these capacitance probes 
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and concluded that dynamics in soil moisture exhibit low deviation while absolute values can be difficult to obtain 

precisely (Denager et al., 2020). 280 

Within the framework of HOBE, three stationary CRNS stations were established in 2013 and 2014 (Andreasen 

et al., 2020) (Fig. 1) and data collection is still going on. The field sites are located within 10 km of each other and 

represent the three main LUC of the catchment: agricultural land (Voulund), heathland (Harrild) and forest 

(Gludsted). Hourly CRNS intensity is measured using the CR1000/B system of Hydroinnova LLC, Albuquerque, 

New Mexico. Following Poissonian statistics, the relative measurement uncertainty of neutron intensity, N, 285 

decreases with increasing neutron intensity and the standard deviation equals N0.5. The measured CRNS intensity 

is corrected for variations in barometric pressure, atmospheric water vapour and incoming cosmic-ray intensity 

using data from the neutron monitor data base (nmdb.eu). The measured CRNS intensity is sensitive to soil 

moisture in the upper decimeters of the ground within an area of hectometers (Andreasen et al., 2017). The standard 

N0-calibration function (Desilets et al., 2010) was used to convert CRNS intensity measurements to volumetric 290 

soil moisture (Andreasen et al., 2020). Daily moving averages were calculated to obtain acceptable statistics. 

The influence of the vegetation water content on the CRNS estimated soil moisture is low at the study site because 

of the limited change in vegetation cover in the heathland and pine forest and the relatively low amount of biomass 

in the agriculture (8 t/ha consisting of ~15% cellulose and 85% water, Andreasen et al., 2020). The impact of the 

vegetation cover on the CRNS intensity using field measurements of neutrons at two energy ranges and neutron 295 

transport modeling (Monte Carlo N-Particle code version 6, MCNP6) showed very little impact of the vegetation 

cover at the agricultural site compared to bare soil conditions (Andreasen et al., 2020, Figure 4).  

 The footprint of the CRNS varies slightly in space and time. However, the sensor sensitivity is highest in the close 

vicinity of the probe and decreases exponentially with distance from the sensor. The location of the sensors has 

been carefully chosen by placing them in same soil type and far enough from the next LUC type to prevent 300 

influence/mixture of different LUC signals. Furthermore, Ahlergaarde catchment is situated on a glacial outwash 

plain, and the study area is characterized by homogeneous soil (sandy and stratified soil with similar chemical 

composition). Therefore, changes in the vertical and horizontal footprint area are not expected to affect the CRNS 

signal significantly. A network of capacitance probes (please note that this network is not the same as used in our 

manuscript, but specifically set up to validate/compare the CRNS estimates), are placed strategically in the vicinity 305 

of the CRNS. The long time series of CRNS estimated soil moisture has been shown to be very robust in 

comparison to the average of these measurements (Andreasen et al., 2020) . Finally, The same data set has been 

successfully used to improve the closing of the water balance by (Denager et al., (2020).  

 

 310 

 

One challenge in the validation of satellite derived soil moisture with ground observations is the difference in 

scales and representation of vertical sensing depth intervals. To test whether it is reasonable to compare daily mean 

soil moisture estimates of the remote sensing product with ground observations from different methods 

representing soil moisture at different depths intervals, the relation of near surface soil moisture (0-5 cm) and soil 315 

moisture at 20-25 cm depth measured by capacitance probes is investigated by a linear regression analysis 

(Supplemental Material; Fig. S1). An acceptable correlation at the majority of the stations support that the 

comparison is reasonable.  

2.3.5 Spatio-temporal comparison of remotely and in situ soil moisture estimates 

To allow a better comparison of the estimated spatial soil moisture a subset of 16 capacitance probe locations 320 

(three in heathland and 13 in the agriculture) was chosen that meet the criteria that probes at 2.5 and 22.5 cm depth 

show a good correlation in temporal dynamics and cover both the dry summer in 2018 and the wet winter of 

2017/2018 (Supplemental Material Fig. S1). The relatively low data quality, incomplete time series and shift in 

absolute values at the agriculture stations relate to the disturbances caused by the removal and followed 

reinstallation several times a year to allow ploughing of the fields.  325 

For each of the 16 station the soil moisture range was computed and compared to the same analysis using the 

downscaled results. To make the analysis more robust the stations were first ordered according to their absolute 

value and assigned a rank (R). The mean summed difference (mSDR) of the observed rank (Robs) and downscaled 

rank (Rdow) was calculated, 

𝑚𝑆𝐷𝑅 =
∑  (𝑅𝑜𝑏𝑠,𝑖 − 𝑅𝑑𝑜𝑤,𝑖)

𝑁=16
𝑖=1

𝑁
 330 

and used to evaluate how well the downscaled soil moisture agrees with the in situ estimates by capacitance probes. 

The smaller the SDR the better the data agree. For the 16 stations the optimal mSDR is 0 [-], i.e. observed and 

downscaled soil moisture values are ranked identically. For completely random data, with no correlation between 

observed and downscaled soil moisture ranks, the average mSDR is 5.3 [-], while the maximum mSDR is 8 [-]. 

These values were estimated using 50 million random combinations of the 16 soil moisture samples. 335 
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3.1 Comparison of remote sensing data with in situ measurements of daily soil moisture  

3.1.1 SMAP 

The temporal dynamics of the soil moisture retrieval from the 21 SMAP pixels are very similar and show strong 

seasonal dynamics. The SMAP derived mean soil moisture content is high in autumn and winter and low in the 

summer (Fig. 2, b). High variability of the 21 SMAP pixels coincide with precipitation events and high soil 340 

moisture content (Fig. 2, b & f). Overall, the soil moisture estimates by SMAP mimic the trends seen in CRNS 

(Fig. 2, c) and capacitance probes (Fig. 2, d), showing a significantly drier summer period in 2018 compared to a 

wetter summer in 2017. Also the winter 2018/2019 is significantly drier compared to the winter 2017/2018. The 

spring to autumn period in 2018 (Fig. 2, e-h) shows that SMAP soil moisture (Fig. 2, f) increases abruptly in 

response to rain events (Fig. 2, e) while the ground soil moisture products of CRNS (Fig. 2, g) and capacitance 345 

probes (Fig. 2, h) respond more gradually. The difference in response is most likely a result of the vertical sensing 

depth of the different methods, i.e. SMAP <5 cm, CRNS approximately 0-25 cm and capacitance probes 0-5 cm. 

 

 

 350 

Figure 2: (a) Precipitation at two field sites, Voulund (agriculture) and Gludsted (forest). Differences in peaks relate to 

irrigation at the agriculture site (Source of precipitation data: DMI.dk, 2021, open data). (b) Time series of daily soil 

moisture estimates by SMAP for all 21 pixels and averaged over the whole area. (c) Time series of CRNS derived daily 

soil moisture at the three field sites Voulund (agriculture), Harrild (heathland) and Gludsted (forest). (d) Time series of 

daily soil moisture (in adepth of 0-5cm) derived by capacitance probes  and representing the mean of the three LUC. 355 

The left panel (a-d) shows the time series for the entire 2.5 year study period while the right panel (e-h) shows the 

growing period May-September in 2018.  

The linear regression of soil moisture estimates derived from SMAP and CRNS at the three different field sites 

show a good correlation between the different sensing methods with an acceptable areal mean RMSE (0.056 [-]) 

and a high correlation (R2=0.7) (Table 1, Fig. 3), even before any downscaling attempt and hence represents a big 360 

difference in sensing scales. The same holds for the correlation of soil moisture estimates derived from SMAP and 

capacitance probes at 0-5 cm depth. The mean of the 30 capacitance probes fits very well the mean of the SMAP 

estimated soil moisture (Table 1, Fig. 3), as also observed previously with SMOS data (Bircher et al., 2012). 

3. Results  
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Table 1: R2 and RMSE between soil moisture derived by SMAP and CRNS or capacitance probes, respectively. 

SMAP vs. CRNS  Capacitance probes 

 R2 RMSE [-]  R2 RMSE [-] 

Voulund 0.710 0.072 Agriculture 0.560 0.054 

Harrild 0.408 0.065 Heathland 0.462 0.068 

Gludsted 0.619 0.060 Forest 0.537 0.114 

Areal mean 0.700 0.056 Mean 0.557 0.059 

 365 

 

 

 

 
 370 

 

Figure 3: Upper panel: Scatter plots of SMAP estimated soil moisture versus in situ soil moisture estimates by CRNS at 

the different field sites at Voulund (agriculture), Harrild (heathland) and Gludsted (forest) and as a weighted areal 

mean. Lower panel: Scatter plots of SMAP estimated soil moisture versus in situ soil moisture estimates by capacitance 

probes for different lad use types and he mean. Black dotted line shows the linear regression and grey dotted line the 375 

1:1 line. R2 and RMSE between soil moisture derived by SMAP and CRNS or capacitance probes are indicated in each 

subplot. 

3.1.2 Sentinel-1  

3.1.2.1 LUC definition based on k-means Cluster analysis of Sentinel-1 

The results of the k-means cluster analysis show that the different clusters have their distinct behaviours in mean 380 

and standard deviation of VV and VH, in space (Fig. 4) and time (Fig. 5). These groups can be related to the 

dominant LUC types, agriculture, heathland and forest, heathland and agriculture. Cluster 1 (light grey) shows a 

medium mean-VV, high std.-–VV, low-medium mean-VH and high std.-VH (Fig. 4). This cluster shows the most 

dynamics in mean VV and mean VH, i.e. lowest value in summer and has a much larger spatial variability than 

the other two clusters shown by the high std. (Fig. 5). This cluster is characterized by a high seasonal variability 385 

in biomass and soil moisture. The cluster corresponds to agricultural land use (compared to the ortophoto and LUC 

SMAP vs. CRNS 

SMAP vs. Capacitance 
probes 

R2=0.710 RMSE=0.072 R2=0.619 RMSE=0.060 R2=0.408 RMSE=0.065 R2=0.700 RMSE=0.056 

R2=0.560 RMSE=0.054 R2=0.462 RMSE=0.068 R2=0.537 RMSE=0.114 R2=0.557 RMSE=0.059 
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map) where the biomass changes with growing and harvest season and soil moisture is varying with precipitation 

and irrigation. Cluster 2 (grey) shows low mean-VV, low std.-VV, low mean-VH and low std.-VH (Fig. 4). Here 

the vegetation is low with little seasonal variation. This cluster corresponds to heathland which is also visible in 

comparison to the ortophoto and LUC map. In heathland and agriculture the mean VH shows similar temporal 390 

dynamics as mean VV with a clear decrease in summer. Cluster 3 (black) is characterized by high mean-VV, low 

std.-VV, high mean-VH and low std.-VH (Fig.4) and low seasonal variation (Fig. 5). This corresponds to forest 

with high amount of biomass which mask changes in soil moisture and with little seasonal variation due to the 

constant vegetation cover of pine trees. It seems unlikely that Sentinel-1 data carry information on soil moisture 

dynamics in the forest which is dominated by the biomass signal. For these areas the downscaled soil moisture 395 

estimates would mimic the one from SMAP, maybe except for the extraordinary dry summer of 2018 (Fig. 5). The 

different aggregation levels of the cluster analysis show that a resolution of 1000 m is quite coarse and 

consequently a lot of information is lost. Table 2Table 1 shows the fraction of LUC types for the three clusters at 

three different resolutions and for the LUC map. Compared to the LUC map, the fraction of heathland and forest 

are overestimated while the agriculture is underestimated. In the area the agricultural fields are surrounded by 400 

windbreaks which are classified by the k-means clustering as heathland or forest, see Fig. 4.  

 

 

 

 405 

Figure 4: Top: (a) Ortophoto (GeoDanmark-data, 2018) of the study area (as in Fig. 1, c). (b) Land use map (Aarhus 

University, 2016) in a resolution of 10 m, light grey= agriculture, grey= heathland, black=forest, white cities and roads. 

(c) Cross-ratio in [dB]. (d) Cross-ratio in original backscatter. (e)-(h) Mean and standard deviation of Sentinel-1 co-and 

cross-correlation images at a 20 m scale. (i)-(k) Clustering results at different scales (20 m, 100 m and 1000 m). 

Locations of CRNS stations indicated in red circles on all subfigures. 410 

 

 

(a) Orthophoto 2018 (b) Land use (c) VV/VH (d) VH/VV=10∙log(σ
VH

/σ
VV

) 

(e) VV mean (f) VV std (g) VH mean (h) VH std 

(i) Clusters, 20m  (j) Clusters, 100m (k) Clusters, 1000m Clusters: 
Black = forest 

Dark grey = heathland 

Light grey = agriculture 
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Figure 5: Temporal dynamics of mean and standard deviation of VV, VH and the two cross ratios VV/VH and VH/VV 

for the different clusters at spatial resolutions of 20 m, 100 m and 1000 m.  

Table 2Table 1: Fraction of LUC types in the LUC map and in the clusters at spatial resolutions of 20 m, 100 m and 415 

1000 m.  

Type LUC map 20 m 100 m 1000 m 

Cities and lakes, etc. 0.140 -- -- -- 

Agriculture 0.557 0.399 0.349 0.430 

Heathland 0.087 0.295 0.337 0.366 

Forest 0.214 0.302 0.314 0.204 

 

Comparing the cluster results at different resolutions with the known actual LUC types at the 30 capacitance probe 

locations show reasonable agreement for resolutions between 20 m-400 m with misclassifications of <25%. At 

coarser resolutions (1000 m) the misclassification is >42%. At these high resolutions, wrongly classified stations 420 

are typically located in the periphery of an agricultural field and are therefore classified as heathland (read 

windbreaks) instead of agriculture. There are also a few stations in the heathland wrongly classified as agriculture 

because l. Large areas of the heathland are covered with grass. At coarser resolutions (1000 m) the 

20 m 100 m 1000 m 
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misclassification is >42%. Both from the spatial pattern and classification statistics a spatial resolution higher than 

1000 m is desirable.  425 

To better understand the influence of biomass on the backscatter, the temporal dynamics of the cross-ratios are 

explored. VH/VV remains relatively constant without seasonal changes for the forest cluster (Fig. 5). For the 

heathland and particularly for the agriculture clusters VH/VV are more dynamic in time with higher values in 

summer and lower values in the winter. In winter the biomass is low in heathland and agriculture but relatively 

constant in the evergreen pine forests. VH/VV increases in spring when the growing period starts, reaches the 430 

maximum in summer (here VH/VV of agriculture and heathland reach a similar level as the forest), and decreases 

again after harvest in the autumn. The similar value observed across LUC types in summer could indicates that the 

signal is might be more influenced saturated by biomass than in the other seasons.  

The variability across the area in VV and VH increases as the mean VV and VH values decreases as can be seen 

from plotting std. against mean values (Fig. 6). At resolutions of 20 m and 100 m the clusters are clearly 435 

identifiable by this relation, while at 1000 m this is not the case, suggesting that 1000 m resolution is too coarse. 

At this scale, due to the heterogeneity of the area, LUC types start to overlap and therefore cannot be as clearly 

separated by the cluster analysis any more. 

 

Figure 6: Results of cluster analysis: relation between std. and mean for both VV and VH at three different spatial 440 

resolutions. Black is the relation for the entire area (cluster independent) and coloured are the respective relations for 

each cluster.  

The zoom into the agricultural field at Voulund (Fig. 7) shows that Sentinel-1 backscatter in VV, VH and their 

cross-ratio VH/VV aligns well with  the dominant land cover types and that surrounding features, like windbreaks 

and other agricultural fields can be distinguished clearly as they have a different vegetation, management and 445 

irrigation schemes. These local heterogeneities are best kept at high resolutions and diminish when lowering the 

resolution as shown by the clusters at different spatial resolutions. 

20 m 100 m 1000 m 
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Figure 7: Zoom on the agricultural field site Voulund at a resolution of 20 m. (a) Ortophoto (GeoDanmark-data, 2018), 

(b) land use map (Aarhus University, 2016), (e)-(g) Clusters maps at 20 m, 100 m and 100 m spatial resolution. (l)-(o) 450 

Spatial pattern of Sentinel-1 backscatter in VV, VH , at single dates during the year 2018 as well as the respective mean 

and standard deviation of the entire period (h)-(k) and (c) VV/VH and (d) VH/VV. Red circle indicates the location of 

the CRNS station at Voulund. 

3.2 Downscaling resolution 

To identify the optimal downscaling resolution VV and VH have been aggregated to different scales at the three 455 

CRNS sites, 20m, 50m, 100m, 200m, 400 m and 1000 m (for brevity, only results for 20 m, 100 m and 1000 m 

are shown on Fig. 8)(20 m, 100 m and 1000 m shown in Fig. 8). The temporal dynamics at the different aggregation 

scales were evaluated based on how noisy they appear, how much they still allow distinguishing seasonal signals 

and on how much they are influenced by mixed LUC types that result in smoothing out the signal. Time series of 

VV and VH and backscatter at different resolutions at the three different study sites (for brevity, only results for 460 

20 m, 100 m and 1000 m are shown on (Fig. 8) show that the signal loses a considerable amount of temporal 

dynamics and hence a lot of information at a level of 1000 m resolution. At a resolution of 20 m the signal on the 

other hand is rather noisy and a meaningful resolution that represents the seasonal variation without much noise is 

to be expected in the scale of hundreds of meters.  

 465 

(l) VV: 1-4-2018 (m) VV: 2-4-2018 

(h) VV mean (i) VV std 

(c) VV/VH (d) VH/VV=10∙log(σVH/σVV) 

(j) VH mean (k) VH std 

(e) Clusters, 20 m (f) Clusters, 100 m (g) Clusters, 1000 m  

(a) Orthophoto 2018 (b) Land use 

(n) VH: 1-4-2018 (o) VH: 2-4-2018 

Clusters: 
Black = forest 
Dark grey = heathland 

Light grey = agriculture 
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Figure 8: Time series of Sentinel-1 backscatter, VV, VH at the three CRNS sites at different aggregation levels (20 m, 

100 m and 1000 m) at the three CRNS sites at Voulund (agriculture), Harrild (heathland) and Gludsted (forest). 

The soil moisture derived by CRNS shows a good linear correlation with Sentinel-1 VV and VH backscatter at a 

resolution of 100 m and 200 m at the agricultural and heathland sites (Table 3Table 2, Supplemental Material Fig. 470 

S2). At Harrild (heathland) the correlation is highest due to the minimal changes in vegetation cover of the 

heathland. There are other factors apart from soil moisture that control VV which becomes clear at the agricultural 

site where the vegetation cover changes over the seasons. At the forest site (Gludsted) where the VV backscatter 

is dominantly influenced by biomass there is almost no signal of soil moisture and hence the correlation between 

CRNS and VV is poor. Somewhat surprising is the correlation of VH and CRNS derived soil moisture at Voulund 475 

and Harrild, indicating that at resolutions <1000 m soil moisture impacts VH backscatter. 

Table 3Table 2: Statistics of linear regression between VV and VH backscatter at different spatial resolution at the 

specific HOBE locations and CRNS derived soil moisture. See the corresponding scatterplots in the supplemental 

material (Fig. S2). 

spatial 

resolution 
VOULUND 

(agriculture) 

HARRILD 

(heathland) 

GLUDSTED 

(forest) 

 R2 R2 R2 

CRNS versus VV VH VV VH VV VH 

20 m 0.267 0.430 0.353 0.309 0.018 0.016 

50 m 0.254 0.336 0.376 0.346 0.004 0.006 

100 m 0.292 0.290 0.477 0.469 0.005 4.1e-06 

200 m 0.281 0.313 0.568 0.619 5.1e-04 0.005 

400 m 0.286 0.273 0.465 0.392 1.4e-04 2.5e-04 

1000 m 0.613 0.369 0.571 0.451 9.5e-04 8.9e-04 

 480 

3.3 Downscaling soil moisture using the SMAP Sentinel-1 approach 

 

As we just showed, the Sentinel-1 backscatter shows a good correlation to ground- based soil moisture 

observations in the heathland and agriculture at resolutions <1000 m. Therefore a downscaling approach using the 

SMAP Sentinel-1 approach to derive soil moisture pattern at the 100 m scale is pursued in areas used for agriculture 485 
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or covered by heathland, corresponding to approximately 2/3 of the study area. The SMAP Sentinel-1 downscaling 

approach involves the estimation of two parameters β and Γ.  

The assumption that β is invariant in time and space is not totally valid as C-SAR is influenced by vegetation cover 

which changes both over time (growing/harvesting season) and space due to LUC (e.g., grass and forest). However, 

a time invariant β is applied because the vegetation and surface roughness barely change in the heathland and 490 

evergreen pine forest. There is a change in vegetation and roughness in the agriculture due to land management. 

However, the crop yield is relatively constant and changes in biomass relatively small Andreasen et al. (2020). 

Moreover, time series of VV and VH (e.g. Figure 5) show the opposite trend as would be expected if the backscatter 

signal would be dominated by vegetation and surface roughness. A higher amount of vegetation would enhance 

the volumetric backscatter, both for co- and cross polarization (e.g. Rosenqvist, 2018) but what can be observed 495 

is a reduction of the backscatter signal in the growing and peak vegetation periods (spring and summer). On the 

other hand, in these periods soil moisture is low due to relatively high temperature and evapotranspiration. This 

trend is mostly observed in the agriculture, while less visible in the heathland and almost not significant in the 

forest. An evaluation whether a seasonally varying β-estimation would be essential to consider (details can be 

found in the Supplemental Material S3) showed that a time invariant β seems to be a suitable simplification for 500 

the present study site in a typical Danish environment. 

Γ represents the sensitivity of temporal (seasonal) changes in co-polarization to cross-polarization (Das et al., 

2018; He et al., 2018). In the current study a temporal window of 40 data points was used to derive seasonal Γ. In 

our area and particularly at the scale <1000 m the classical approach (Table 5, type 3) showed some shortcomings, 

e.g. the downscaled soil moisture pattern showed very strong dependency on LUC (Supplemental Material Fig. 505 

S5). To take the spatial variability of β but also Γ the downscaling parameters into account, we additionally 

explored varying these downscaling parameters downscaling with β (Table 4; Supplemental Material Fig. S3) and 

Γ (Supplemental Material Table S4) changing in space according to the LUC clusters (see Table 3; Supplemental 

Material Fig. S4 and Table S4). The cluster dependent β was estimated as the linear regression of the time series 
θSMAP

VVcluster mean
. Hereby VVCluster mean is the time series of spatial mean of the co-polarized backscatter signal (VV) of 510 

all Sentinel pixels in each cluster within the corresponding SMAP pixel. The distribution of the clusters and the 

mean and std. of the backscatter signal are shown in Figure 4. Finally, the impact of including a temporal Γ was 

explored. In the current study a temporal window of 40 data points was used. 

 

 515 

Table 4Table 3: Statistics of β (θ vs. VV) estimation at spatial resolutions of 20 m, 100 m and 1000 m, shown for β 

invariant in space (entire area) or variant in space according to the three clusters. 

β-estimation 20 m  100 m  1000 m  

β [m3/m3/dB] R2 β [m3/m3/dB] R2 β [m3/m3/dB] R2 

Entire area 0.074 0.693 0.074 0.694 0.074 0.693 

Agriculture 0.041 0.672 0.044 0.683 0.056 0.702 

Heathland 0.083 0.721 0.082 0.722 0.081 0.690 

Forest 0.128 0.346 0.128 0.364 0.125 0.443 

 

Downscaled soil moisture maps were produced at spatial resolutions of 20 m, 100 m, and 1000 m. For conciseness 

we present the results The presentation of results focusses onof the 100 m and 1000 m resolution (Fig. 9 and 520 

Supplement Material Fig. S65 and S76). Eight types of β and Γ combinations (Table 5Table 4) were used and 

evaluated against the ground-observed soil moisture. Hereby, β was either estimated invariant in space and time 

as θSMAP/VV or spatial varying according to the three LUC as θSMAP/VVCluster (compare Table 4 and Supplemental 

Material Fig. S4). Γ was estimated either as invariant in space and time as δVVmean/δVHmean, invariant in time but 

varying according to the three LUC as δVVCluster_mean/δVHCluster_mean, time-varying (space invariant) as 525 

δVVmean/δVHmean (applying a moving window of 40) or time and space varying estimated as 

δVVCluster_mean/δVHCluster_mean (applying a moving window of 40) (Table 4).The evaluation of the downscaling 

results is based (1) on the statistical values of the non-linear least square regression of time series of downscaled 

and CRNS derived soil moisture (slope, R2, and RMSE) at the three field sites and (2) on the minimized order 
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difference of downscaled soil moisture and the capacitance probe network located in the heathland (three stations) 530 

and in the agriculture (thirteen stations). Moreover, a similar or reduced RMSE as between original SMAP and 

CRNS (RMSE ≈ 0.056 [-], Fig. 3Table 1) is evaluated positively. Since the original coarse resolution SMAP fits 

very well and contains the average soil moisture information, a high reduction in RMSE when comparing temporal 

dynamics is not expected. Therefore, in the present study,  as the additional value of the downscaling task lies 

more in the improved spatial resolution than in the better statistical fit of already well matching time series.  535 

Table 5Table 4: Combinations of the downscaling parameters β and Γ applying the classical algorithm with one 

parameter for the entire area (indicated in bold) and different types applying cluster dependent parameters (indicated 

in italic).  

Combinations of β and Γ 

(modes and types) 

β [m3/m3/dB] Γ [dB/dB] 

 Slope of θSMAP/VV δVV/δVH 

Type 1  1 constant β 1 constant Γ 

Type 2 1 constant β 3 constant Γ 

Type 3 – classic 1 constant β 1 time-varying Γ 

Type 4 1 constant β 3 time-varying Γ 

Type 5 3 constant β 1 constant Γ 

Type 6 3 constant β 3 constant Γ 

Type 7 3 constant β 1 time-varying Γ 

Type 8 3 constant β 3 time-varying Γ 

 

At the 1000 m spatial resolution the classical approach (type 3) produces acceptable results (Table 6Table 5). The 540 

downscaled soil moisture fits very well with the CRNS derived soil moisture at the agricultural site (Fig. 10, a 

shows results for type 8 but type 3 time series are alike). At the heathland the downscaled soil moisture time series 

mostly follows the original SMAP signal. Here a time-lag is observed when it dries out in the summer of 2018. 

The RMSE of the least square regression between downscaled and CRNS derived soil moisture improves by 

around 50% to 0.034 [-] at the agricultural field compared to the original CRNS versus SMAP RMSE of 0.072 [-545 

]. At the heathland the RMSE gets worse from 0.065 [-] (CRNS versus SMAP) to 0.121 [-] for the downscaled 

soil moisture while at the forest site the RMSE stays in the similar range to the original one. At the 1000 m scale 

these statistics do not significantly improve by using a cluster dependent β or cluster dependent, time varying Γ. 

The mSDR of the capacitance probes at the 1000 m scale ranges between 5.6 and 6.1. The spatial pattern of mean 

downscaled soil moisture (Fig. 9) show low values in the heathland, medium values in the forest and medium to 550 

high values in the agriculture. The standard deviation of the downscaled soil moisture is low in heathland and 

forest and higher in the agriculture. The downscaling type 4 enhances the differences in std θ between heathland 

and forest (low) compared to agriculture (high) while type 8 diminishes these (Fig. 9).  

Table 6Table 5: Statistics of downscaling results: downscaled soil moisture vs. CRNS derived soil moisture at the 

different filed sites; difference in rank of capacitance probes. 555 

 CRNS at VOULUND  

(agriculture) 

CRNS at VOULUND  

(shorter period) 

CRNS at HARRILD  

(heathland) 

CRNS at GLUDSTED 

(forest) 

Capac

i-tance 

probes 

 slope R2 RMSE 

[-] 

slope R2 RMSE 

[-] 

slope R2 RMSE 

[-] 

slope R2 RMSE 

[-] 

mSDR 

100 m   

Type 1:  1.170 0.189 0.124 0.902 0.305 0.073 0.598 0.345 0.138 0.548 0.289 0.061 5.9 

Type 2:  1.501 0.307 0.123 1.190 0.469 0.107 0.614 0.352 0.153 0.331 0.185 0.111 6.0 

Type 3:  1.014 0.139 0.130 0.781 0.292 0.067 0.508 0.346 0.136 0.662 0.301 0.068 6.3 

Type 4:  1.472 0.283 0.126 1.181 0.479 0.106 0.542 0.355 0.151 0.322 0.177 0.112 5.6 

Type 5:  0.835 0.236 0.098 0.709 0.350 0.065 0.596 0.314 0.104 1.148 0.398 0.173 4.4 

Type 6:  1.030 0.365 0.071 0.879 0.518 0.045 0.613 0.335 0.118 0.772 0.394 0.069 3.9 

Type 7:  0.743 0.185 0.103 0.638 0.339 0.063 0.497 0.307 0.101 1.346 0.369 0.194 5.8 

Type 8:  1.013 0.342 0.074 0.874 0.532 0.043 0.534 0.334 0.115 0.757 0.383 0.070 4.5 

1000 m  

Type 1:  1.013 0.724 0.033 1.003 0.727 0.035 0.659 0.412 0.123 0.619 0.426 0.057 5.6 
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Type 2:  0.975 0.701 0.032 0.971 0.700 0.033 0.744 0.412 0.158 0.411 0.331 0.070 5.6 

Type 3:  1.030 0.731 0.034 1.014 0.731 0.035 0.579 0.412 0.121 0.731 0.416 0.065 5.8 

Type 4:  0.977 0.708 0.032 0.969 0.712 0.033 0.687 0.401 0.161 0.415 0.329 0.070 5.8 

Type 5:  1.084 0.740 0.036 1.063 0.740 0.037 0.541 0.383 0.088 1.173 0.541 0.142 6.1 

Type 6:  1.041 0.722 0.033 1.028 0.726 0.035 0.606 0.398 0.112 0.821 0.608 0.043 6.0 

Type 7:  1.104 0.745 0.037 1.075 0.740 0.038 0.481 0.379 0.088 1.361 0.476 0.162 5.9 

Type 8:  1.043 0.729 0.033 1.025 0.729 0.034 0.562 0.393 0.114 0.829 0.600 0.043 6.0 

              

CRNS vs. 

original 

SMAP 

1.246 0.710 0.072 1.24 0.714 0.074 0.708 0.408 0.065 0.890 0.619 0.061  

 

Figure 9: Downscaling results at the 1000 m and 100 m spatial resolution: spatial pattern of the mean and standard 

deviation of downscaled soil moisture shown for types 1, 3, 4 and 8. 

At the 100 m spatial resolution the statistics of the downscaled and CRNS derived soil moisture (Table 6Table 5) 

are almost equally good for the different types and at each of the CRNS locations. The statistical results at Voulund 560 

(Table 6Table 5) are shown for the whole period and a shorter period (12th May 2017 to 31st January 2018 and 1st 

April 2018 to 29th March 2019) as there are some obvious mismatches in the winter/spring seasons that overrule 

the otherwise good match between CRNS and downscaled soil moisture. The R2 are around 0.3 at Harrild 

(heathland), and 0.2 to 0.4 at Gludsted (forest) and the RMSE are around 0.10 [-] to 0.15 [-] at Harrild and more 

varying (between 0.06 [-] to 0.191 [-]) at Gludsted. At the agricultural site R2 is between 0.13 and 0.37 for the 565 

whole period and between 0.29 and 0.53 for the shorter period while the RMSE is 0.07 [-] to 0.13 [-] and 0.04 [-] 

to 0.11[-] for the respective periods. The mSDR of capacitance probes ranges between 6.3 and 3.9 for all types. 

The downscaling soil moisture results at the 100 m scale improve with a LUC dependent β and Γ. However, the 

spatial distribution of downscaled soil moisture differs substantially between the different types (Fig. 9).  
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Figure 10: (a) – (c): Temporal dynamics of SMAP soil moisture (averaged over the 21 pixels), in situ soil moisture 

(CRNS) and downscaled soil moisture (type 8) at 100 m and 1000 m spatial resolution at the three different CRNS sites 

at Voulund (agriculture), Harrild (heathland) and Gludsted (forest). (d) – (g): Scatter plot of minimum, maximum, 575 

mean and range of downscaled soil moisture at 100 m and 1000 m spatial resolution versus in situ soil moisture by 

capacitance probes.  

From the design of the present study a thorough analysis of SMAP and Sentinel-1 data compared to local estimates 

of soil moisture by CRNS and capacitance probes was conducted before we applied the SMAP Sentinel-1 

downscaling algorithm to produce distributed soil moisture pattern at high spatial resolutions of 20 m and 100 m. 580 

The novelty of our approach stems from (1) the downscaling resolution with goes far below 1 km which has been 

the lower target resolution of many recent studies (2) vegetation dependent parameters in downscaling algorithm 

and (3) the combination/validation of downscaled soil moisture with a variety of ground-based soil moisture 

observation, i.e. capacitance probes as well as stationary CRNS. The latter method allows estimating soil moisture 

at a scale of a few hundred meters which compares with the target resolution of the downscaled soil moisture.  585 

4.1 Data analysis 

SMAP derived soil moisture and Sentinel-1 backscatter at different spatial resolutions were compared to in situ 

observations of soil moisture by CRNS and capacitance probes distributed over different LUC classes. The 

application of CRNS soil moisture estimates complementing the more conventional capacitance probes 

measurement constitutes a significant improvement for validation of remotely sensed and downscaled soil 590 

moisture products. The major advantage is the similar scale of horizontal sensitivity of the downscaled product 

and the CRNS which is in the order of few hundreds meter. However, the differentiation between soil moisture 

4. Discussion 

(a) 

(c) 

(d) (f) 

(b) 

(g) (e) 
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signal and noise constitutes still a major challenge. To minimize the impact of noise, the Sentinel backscatter was 

smoothed spatially (a minimum aggregation to 20 m) and temporally, by applying a moving average of five images. 

Moreover, meaningful trends in the time series are visible that follow the season and the expected soil moisture. 595 

By validating against different independent ground measurements (CRNS and capacitance probes) the reliability 

of the approach and the obtained results is enhanced. However, each of the independent measurements has 

advantages and disadvantages. In our study area the capacitance probe time series had many gaps and therefore 

we complemented it by using CRNS which in turn are subject to uncertainties related to soil water content and 

sensing footprint (as discussed in paragraph 2.3.4).  600 

Soil moisture estimates derived by SMAP (0.08 – 0.4) show a higher dynamic range than the one derived by CRNS 

(0.08 - 0.3) which might be caused by the more surficial penetration depth of the SMAP (Mohanty et al., 2017). 

Similar to Peng et al. (2017), we therefore believe that the dynamics are more reliable than absolute values. The 

temporal dynamics between the two correlate well for the entire area (R2= 0.7, RMSE = 0.056 [-]) and at the 

agricultural site (Voulund, R2= 0.71, RMSE = 0.072 [-]) while a little bit less for the heathland (Harrild, R2= 0.408, 605 

RMSE = 0.065 [-]) and forest (Gludsted, R2= 0.619, RMSE = 0.061 [-]) sites. Similarly, the SMAP estimated soil 

moisture and the mean of the capacitance probes network are in accordance (R2= 0.557, RMSE = 0.048[-]) which 

was expected since the capacitance network is used for validation of the SMOS mission (Bircher et al., 2012). 

However, the single capacitance probe locations (some have a poor data coverage) diverge significantly from the 

mean and the SMAP due to local heterogeneities in soil properties that are not disintegrated on the coarse spatial 610 

resolution of SMAP. The correlation between SMAP and CRNS is better than between SMAP and capacitance 

probes (cf. Fig. 3Table 1) which supports the advantage of observations at more comparable spatial resolutions. 

The downscaling task adds to further improve the comparability of the remotely sensed and in situ observed soil 

moisture.  

Spatial changes in Sentinel-1 backscatter are influenced by the dominant LUC, and have been used for a k-means 615 

clustering. Temporal changes for each cluster are significantly different, regarding both absolute mean values, 

dynamic behavior and standard deviation. Changes in biomass appears to be best described using the cross-ratio 

VH/VV [dB] which has also been suggested by Harfenmeister et al. (2019). The analysis of an appropriate 

downscaling scale showed that lower resolutions cause increased misclassification of LUC and that the temporal 

changes in Sentinel-1 at specific sites are reduced markedly. A downscaling resolution of 100 m is therefore 620 

desirable. A good correlation between CRNS and Sentinel-1 backscatter at 100-200 m resolution is observed at 

the low biomass locations (Harrild and Voulund) (as expected due to the footprint of the CRNS and the highly 

heterogeneous agricultural landscape with filed sizes in the scale of hectometers (<1000m2)). A good correlation 

between CRNS and Sentinel-1 backscatter at 100-200 m resolution is observed (as expected due to the footprint 

of the CRNS). From the combined time series analysis it becomes clear that the Sentinel-1 signal in the forest is 625 

very much influenced by vegetation structure and no or little correlation can be drawn to soil moisture. One 

explanation could be the wavelength of the C-SAR backscatter of 5.6 cm which is best in detecting objects of 

similar sizes (Rosenqvist, 2018). Therefore, the C-band is sensitive to soil moisture within sparse and low biomass 

areas as in the heathland and in the agriculture while the signal is dominated by volumetric scattering of the pine 

trees in the forest.  In the heathland, the vegetation is low and relatively constant over the seasons and dynamics 630 

in backscatter relate therefore to changes in soil moisture. In the agriculture the amount of biomass (8.42t/ha) and 

its seasonal change are rather small (Andreasen et al., 2020) and hence the CRNS signal is mostly representative 

for soil moisture in this area. This is supported by the time series that show lower backscatter values in 

spring/summer during the growing and peak season. If the backscatter would be highly influenced by vegetation 

changes rather than soil moisture the opposite would be expected, a positive correlation between backscatter and 635 

vegetation (higher backscatter signals coinciding with higher vegetation). One exception might be tThe very high 

(less negative) VV backscatter at Voulund (e.g. Fig. 8) at the beginning of the study period might therefore 

alsowhich might be  rather be an artefact as a result from agricultural soil management, e.g. tilling than a signal 

influenced by soil moisture.  Studies have also shown that C-SAR is influenced by soil roughness, particularly if 

it is very smooth or very rough. The very high (less negative) VV backscatter at Voulund (e.g. Fig. 8) at the 640 

beginning of the study period might therefore also rather be an artefact as a result from agricultural soil 

management, e.g. tilling than a signal influenced by soil moisture.  

 

4.2 Soil moisture dependency on Sentinel-1 backscatter 

The similar temporal evolution of VV and VH at the heathland and agriculture clusters supports the assumptions 645 

that VH is not only impacted by biomass but also to a significant extent by soil moisture. This has been reported 

previously (El Hajj et al., 2019; Harfenmeister et al., 2019). Comparing VV and VH backscatter with the CRNS 

derived soil moisture at the different field sites (Table 3Table 2; Supplemental Material Fig. S2) shows that at high 

spatial resolutions (20 m - 400 m) VH shows higher or at least as much correlation as VV with soil moisture at 
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Voulund (agriculture) and Harrild (heathland). At the Gludsted forest site, the correlation for both VV and VH to 650 

CRNS soil moisture is very poor at all spatial resolutions (Table 3Table 2) possibly due to the above mentioned 

influence of volume scattering of the leafage. Hence, the principal assumption that VH is primarily influenced by 

biomass while VV is influenced by biomass and soil moisture only holds for coarse spatial resolution of 1000 m 

and is possibly restricted to areas without dense forest.  

4.3 Downscaling 655 

The modified SMAP Sentinel-1 downscaling algorithm that has previously been successfully tested (He et al., 

2018) was applied. At a first glance the results looked reasonable since the downscaling parameters β, Γ, as well 

as SM values were estimated within logical ranges and in the same order as in He et al. (2018) (β ranging from 

0.03-0.093 [m3/m3/dB] and Γ ranging from 0.5 – 0.9). The performance statistics of R2 and RMSE were acceptable 

and in ranges that were previously published (e.g. He et al., 2018). At Voulund (agriculture), the downscaling 660 

algorithm produces similar results at 100-m- and 1000-m-scale. The downscaled soil moisture time series appear 

trustworthy as the downscaled soil moisture is different from the original SMAP soil moisture and is in agreement 

to the measured CRNS soil moisture (Fig. 10, a). However, for the 100-m resolution there are still some 

discrepancies in soil moisture during late winter-early spring that could be related to field management practices. 

At Harrild (heathland), the downscaled soil moisture is very similar for the 100-m- and the 1000-m-scale (Fig. 10, 665 

b), indicating that the sub-kilometer downscaling is as trustworthy as the kilometer-scale. The downscaling 

algorithm has decreased the absolute values and the dynamic changes are dampened compared to the original 

SMAP soil moisture. However these changes are not in agreement with the CRNS soil moisture values, which in 

general have higher soil moisture throughout the year. Furthermore, the timing of the drying out summer 2018 is 

not fully captured. Moreover, from visual assessment, at the 100 m spatial resolution the downscaled spatial soil 670 

moisture pattern show a strong dependency on LUC types, particularly when applying the classical (type 3) 

algorithm (Fig. 9). These patterns look also very similar to the Sentinel-1 backscatter patterns (e.g. Fig. 4). It is 

questionable if the soil moisture depends to such a strong degree on the LUC, given that the area is affected by the 

same climatic effects and soil properties change independent from LUC. Therefore, it is also questionable if the 

downscaled soil moisture is correct. The cluster dependent downscaling scheme (e.g., type 8) dampens the strong 675 

LUC pattern and also minimizes the mismatch of the order of capacitance probes. Albeit, similar statistics (Table 

6Table 5) can result in reversed soil moisture patterns, e.g. forest is very dry (e.g. type 5) or very wet (e.g. type 4) 

compared to the heathland and agriculture (Supplemental Material Fig. S76). Our study shows that the statement 

of González-Zamora et al. (2015) about the comparison of satellite derived soil moisture and in situ observations 

is also valid for the downscaled product. They concluded that temporal dynamics in soil moisture can be better 680 

reproduced than spatial patterns.  

Our downscaling results underpin that the original SMAP soil moisture has a very good match in temporal 

dynamics with the ground observations; therefore, the statistics are difficult to improvenot  significantly improved 

by downscaling using Sentinel-1. However,We showed that the spatial patterns change significantly with different 

small modifications to the classical downscaling algorithm and it remains a challenginge to clearly identify the 685 

best approach. Nevertheless we demonstrate that  Both, soil moisture estimates at the 1000 m and 100 m spatial 

resolution , are improved with cluster dependent β. Additionally, onOn the 100 m scales, also a cluster depend Γ 

improves the downscaled soil moisture results, which is not the case at the 1000 m scale.  

 

Our study shows a strong correlation between Sentinel-1 VV, VH backscatter and CRNS soil moisture at the 690 

agricultural and heathland sites in central Denmark (R2 in the magnitude of 0.3 to 0.6 depending on the different 

scales) and also a good match between SMAP and CRNS, particularly in temporal dynamics (R2 =0.7, RMSE = 

0.056 [-]). However, applying the well-established SMAP Sentinel-1 downscaling algorithm remains a challenge 

for higher spatial resolutions (20 m - 400 m). One reason is the strong correlation between VH and soil moisture 

at this scale, because the SMAP Sentinel-1 algorithm assumes that VH is predominantly influenced by biomass 695 

and vegetation structure. This seems valid for the coarser spatial resolutions (>1000 m) to which the algorithm has 

been successfully applied many times before. To dampen the otherwise close resemblance of downscaled soil 

moisture to LUC pattern we introduced LUC dependent downscaling parameters (β, Γ) which improved the results 

only marginally. Nevertheless, the soil moisture pattern of the downscaled product remained ambiguous. Since it 

is possible to create a well matching relationship of VV, VH and local CRNS further modifications to the algorithm 700 

are needed to solve the current challenge in downscaling to sub-kilometre spatial resolutions. To be successful in 

this endeavour, such analysis would benefit from a larger data set of in situ measurements at the relevant scale to 

better validate the spatial patterns produced. This could be achieved by expanding the study area and including 

more CRNS stations (e.g. there exists a network of about 50 CRNS stations across Europe (Bogena et al., 2022)). 

5. Conclusion 



21 

 

The use of such a network for calibration of the downscaling parameters β and Γ might be successful and hence 705 

improve the algorithm substantially. 
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