
Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil  

moisture beyond the 1 km scale  

 

The authors test the possibility of downscaling SMAP coarse soil moisture to the sub- 

kilometer resolution using Sentinel-1 SAR data. This paper is interesting and the topic  

is suitable to HESS. However, I have several major comments the authors should  

seriously consider.  

Dear reviewer, we thank you for thoroughly reading our manuscript and your helpful 

comments that we believe considerably improved the quality of the revised version of the 

manuscript. We have added our replies to the reviewer comments and suggestions in italic 

below. 

 

Major comments:  

 

1. This paper directly disaggregates the SMAP coarse soil moisture at 9 km to high resolution 

using Sentinel-1 SAR backscattering coefficients. It should be noted that the method tested 

in this paper is based on the assumption of a near-linear relationship between radar 

backscatter σ0 pp and soil moisture θ at different scales. In order to estimate the parameter 

β, a time regression is performed under the assumption that the soil roughness and 

vegetation conditions do not change greatly over a specified temporal window. Meanwhile, 

the parameter β is NOT invariant in time and space and it depends on vegetation cover and 

type as well as surface roughness. Therefore, a moving window of β estimation should be 

adopted when applying this downscaling algorithm to a long time period and the length of 

time window should be carefully determined. In this study, about 377 images of synchronized 

SMAP and Sentinel-1 were obtained during the period of January 1, 2017 to May 31, 2019. 

However, this paper did not describe how to determine the parameter β. In Page 15 Line 445, 

a temporal window of 40 data points was used to derive seasonal Γ. To derive β?  

Reply: We thank the reviewer for the valid comment. We do agree that β is also influenced by 

soil roughness and vegetation conditions and hence varies in principal in space and time. One 

of our major objectives is to test whether the downscaling algorithm can be improved by 

introducing spatial varying (land use cover dependent) downscaling parameters (β and Γ).  In 

order to take the spatial variability into account we performed the cluster analysis and used 

this to estimate a land cover dependent β value. The cluster analysis is based on the temporal 

variation in mean and std. of Sentinel backscatter (both VV and VH).  

We decided to apply a time invariant (constant) β because the vegetation and surface 

roughness barely change in the heathland and evergreen pine forest. Of course there is a 

change in vegetation and roughness in land cover class of agriculture due to land 

management. However, the crop yield is relatively constant and changes in biomass relatively 

small which has been studied by Andreasen et al. (2020). Moreover, time series of VV and VH 

(e.g. Figure 5) show the opposite trend as would be expected if the backscatter signal would 

be dominated by vegetation and surface roughness. We would expect that a higher amount 



of vegetation would enhance the volumetric backscatter, both for co- and cross polarization 

(e.g. Rosenqvist, 2018). However, what we observe is a reduction of the backscatter signal in 

the growing and peak vegetation periods (spring and summer). On the other hand, in these 

periods soil moisture is low due to relatively high temperature and evapotranspiration. This 

trend is mostly observed in the land cover class agriculture, while less visible in the heathland 

and almost not significant in the forest. Therefore, we believe that applying a time invariant, 

but spatially varying β is a valid assumption for our study area, representing a classical Danish 

rural setting. 

Inspired by the reviewer’s comment and also by the first comment of reviewer 2 we performed 

a seasonal β estimation in order to evaluate if a time varying β would be essential to consider. 

The following figure shows (a) β estimated over an interval of 3 month* (Dec-Feb, Mar-May, 

Jun-Aug, Sep-Nov, representing the seasons in Denmark) and (b) the respective R.2 

* except for the first interval, starting with January (2 month interval). 

 

What we can conclude from this analysis is that there might be a slight seasonality in β with 

low values in winter and higher values in summer (figure a ). However, if we only consider the 

β-value with acceptable R2 of above 0.5 (figure b), this trend might not be significant. To 

estimate a robust time variant β, a dynamic in the range throughout the year would be 

needed, but what we see is a relatively constant β value, except for the summer. Hence, it is 

rather difficult to achieve a good estimation of correlation when there is only little variation in 

the data (during the rest of the year).  On the other hand, we observe that particularly the β 

estimates for the agriculture cluster (red) deviate significantly from the other data (all=blue 

and heathland=green). This supports our approach in estimating spatial varying (land cover 

dependent) but time invariant β. 



We agree with the reviewer that both the incidence angle correction and β estimation add to the 

uncertainty of the downscaled product. We acknowledge these comments and will expand the 

discussion in the manuscript to emphasize these aspects.  

 

2. Page 14 Line 425-426: The soil moisture derived by CRNS shows a good linear correlation 

with Sentinel-1 VV and VH backscatter at a resolution of 100 m and 200 m at the agricultural 

and heathland site. A good linear correlation between radar backscatter and soil moisture 

was observed in this study, which is the foundation of the downscaling algorithms. However, 

this good correlation may be caused by seasonal vegetation variations as indicated in Line 

427-429. Please do more analyses to prove that the good correlation between radar 

backscatter and soil moisture was not induced by vegetation changes.  

Reply: We understand the concern of the reviewer about the impact of vegetation on the 

correlation between CRNS and Sentinel backscatter. We believe that the good correlation 

between CRNS and Sentinel backscatter is soil moisture dominated at the heathland and 

agricultural site because: 

 There is little correlation between CRNS and backscatter in the forest where we believe 

that that the Sentinel (C-band) backscatter is dominated by volume scattering of the 

pine trees and does barely penetrate to the soil. 

 There is a high correlation in the heathland where the low vegetation is relatively 

constant over the seasons. Hence, temporal changes in backscatter are due to soil 

moisture, which is supported by the good correlation to CRNS signal.  

 We can observe a good correlation also in the agriculture even though the biomass 

and vegetation cover changes, as a result of land management. We believe that 

changes in backscatter are dominantly driven by soil moisture because we observe 

lower backscatter values in spring/summer during the growing and peak. If the 

backscatter would be highly influenced by these vegetation changes, we would expect 

a positive correlation between backscatter and vegetation (higher backscatter signals 

coinciding with higher vegetation). However, we observe the opposite. Therefore we 

believe that the backscatter value in the agriculture is mostly influenced by soil 

moisture. 

 Previous studies (Andreasen et al., 2020) about the CRNS method in the same area 

showed that the amount of biomass (8.42t/ha) and its seasonal change in the 

agriculture are rather small and hence the CRNS signal is mostly representative for soil 

moisture in this area. The reason for this is that the amount of water in the crop is 

small compared to the amount of water stored in the rootzone.  

Taking all these points into account, we believe that the strong correlation of backscatter 

and CRNS is due to soil moisture changes and only insignificantly influenced by vegetation. 

We will add a condensed version of this line of arguments to the manuscript.   

 

3. Page 15 Table 5: This table lists eight types of β and Γ combinations. However, the reviewer 



cannot follow how the β and Γ were estimated and the differences between different 

experiments. Please make more explanations.  

 

Reply: Thank you for the comment. We will try to clarify it further below and we will add this 

more detailed explanation to the manuscript in the Supplemental Material. 

To investigate whether the downscaling product can be improved by introducing land use 

cover dependent downscaling parameters (β and Γ), we performed these eight different 

downscaling tests. Hereby we combined either:  

 one constant value for β (space and time invariant), estimated as: θSMAP/VV 

 or three constant values for β (time invariant), one for each land use cover, estimated 

as: θSMAP/VVCluster  (compare Table 4 and Supplemental Material Fig. S3) 

 

with 

 

 one constant value for Γ (space and time invariant), estimated as: δVVmean/δVHmean 

 or three constant values for Γ (time invariant), one for each land use cover, estimated 

as: δVVCluster_mean/δVHCluster_mean    

 or one time-varying Γ (space invariant), estimated as: δVVmean/δVHmean applying a 

moving window of 40 

 or three time-varying Γ, one for each land use cover, estimated as 

δVVCluster_mean/δVHCluster_mean applying a moving window of 40 

 

4. Page 15 Table 4: This study estimated cluster dependent parameters β and Γ. The 

parameter of β was obtained from linear regression of soil moisture θcoarse at coarse 

resolution and averaged backscatter within this coarse pixel. However, the soil moisture  

θcoarse represents the average soil moisture condition. How can the θcoarse be related to 

backscatters of different land cover types? Please clarify it and make more explanations.  

Reply: We follow the reviewer’s comment and will explain further how we derive the spatially 

varying β. Commonly, β relates to the sensitivity of soil moisture to co-polarization radar 

backscatter (𝜎VV) and can be estimated as the slope of a linear regression of 
𝜃𝑆𝑀𝐴𝑃

𝑉𝑉𝑐𝑜𝑎𝑟𝑠𝑒
 time 

series. For the land cover dependent β we used the mean and std. of VV and VH time series at 

different resolutions, e.g. 100 m resolution, in a k-means clustering and derived three clusters 

at the specific (e.g. 100 m) scale spatially distributed over the entire study area. These three 

clusters represent the three dominant land use/cover types (heathland, agriculture and 

forest). The cluster dependent β was consequently estimated based on the linear regression 

of the time series 
𝜃𝑆𝑀𝐴𝑃

𝑉𝑉𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑚𝑒𝑎𝑛
. For example for cluster 1, β  was estimated based on the time 

series of spatial mean of the backscatter signal (VV) of all Sentinel pixels in cluster 1 within the 



corresponding SMAP pixel 
𝜃𝑆𝑀𝐴𝑃

𝑉𝑉𝑐𝑙𝑢𝑠𝑡𝑒𝑟1 𝑚𝑒𝑎𝑛
. The distribution of the clusters and the mean and std. 

of the backscatter signal are shown in figure 4 in the manuscript. 

 We will add this explanation is a condensed version to the manuscript to clarify how β was 

derived. 

 

Other comments:  

 

1. Table 1 and Figure 3 can be merged, with R2, bias and RMSE putting in the scatter plots.  

Reply: Thank you for this suggestion. We will combine Table 1 and Figure 3. 

 

2. Page 5 Line 210-211: The Ahlergaarde catchment is covered by 21 SMAP pixels. Please 

indicate the 21 SMAP pixels in Figure 1 with grids. Are the SMAP pixels in resolution of 9 km 

by 9 km or 36 km by 36 km?  

 

Reply: We thank the reviewer and understand his/her wish. Since we are using mainly the 

average of the 21 pixels, we would not like to include the grid in the main manuscript. If the 

reviewer and editor think it would be useful we would of course add a figure to the 

supplemental material showing the grid of the SMAP coverage at the study area. The 

resolution of the 21 SMAP pixel used in our study is the 9km EASE-grid. We will add a sentence 

in the manuscript to make it more clear. 

 

3. Page 6 Line 230-233: For a deeper investigation of the spatial pattern information content 

of the Sentinel-1 data, an unsupervised data driven k-means cluster analysis is performed 

based on four parameters, the mean and the standard deviation of both the  

VV and the VH backscatter.  

How were the mean and the standard deviation values calculated, over temporal variations 

or spatial variations of radar backscatter? Please clarify.  

Reply: We thank the reviewer for the comment and explain further how the cluster analysis 

was performed. The mean and std. were calculated over temporal variation of the Sentinel 

(VV and VH) backscatter, which were used for the clustering that resulted in three clusters that 

are associated with the different land use types as illustrated in figures 4, 5 and 6.  We will 

clarify this aspect in the manuscript. 

 

4. Page 11 Line 375: Heath in Table 2 should be Heathland. 

Reply: Thank you for the comment, we will change as suggested. 
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The manuscript by Meyer et al., 2021 presented an interesting study in estimating high-
resolution soil moisture via the combination of SMAP L3 soil moisture and Sentinel 1 
backscatter data.  I recommend that the authors address the following comments before 
considering the paper for publication. 

Dear reviewer we thank you for your profound reading and the constructive comments that 
we believe considerably improved the quality of the revised version of the manuscript. We 
have added our replies to the reviewer comments and suggestions in italic below. 

1. Soil moisture at sub-kilometre is indeed in high demand by many regional and local 
applications. Combination of radiometer and SAR data is definitely valuable and provides a 
promising way to improve spatial resolution. One major concern is the strong combined 
effects of incidence angle, biomass and surface roughness on the backscatter. The studies 
applied a simple methods to calibrate the incidence angle and made a key assumption that 
ð�›½ is invariant in time and space. What impacts of such assumption can influence on the 
downscaled soil moisture? Furthermore, is that possible to conduct a sensitivity analysis to 
investigate such impacts? 

Reply: We thank the reviewer for his/her valid comment and understand his/her concerns 
about the incidence angle correction and assumption used for β estimation.  

 For the incidence angle correction we followed the standard approach that is discussed in 
Mladenova et al. (2013) and applied for a similar purpose in He et al. (2018): 𝜎𝑟𝑒𝑓

0 =
𝜎𝜃𝑖 

0 𝑐𝑜𝑠𝑛 (𝜃𝑟𝑒𝑓)

𝑐𝑜𝑠𝑛 (𝜃𝑖)
. Hereby the exponent n is roughness dependent and varies between 0.2 and 3.4 

(Mladenova et al., 2013). He et al., (2018)  evaluated a value of n=2 as suitable for a similar 
application as in this study. In our study area, the mean incidence angle of Sentinel-1 is 36.87° 
(min 30.25° and max 41.74°). Early on in our study we compared VV and VH time series with 
and without incidence angle correction, using an exponent of 2. We could see that the 
correction has a higher effect on VV than on VH. We evaluated that a correction with the 
exponent of 2 is feasible because it improves the time series by reducing the noise but still 
showing a dynamic behavior. We do acknowledge that this choice might introduce uncertainty 
and that applying different exponents might have even further improve our results. However, 
an extended analysis of the impact of incidence angle correction was out of the scope of our 
study.   

As we understand the concern of the reviewer about the β estimation is similar to comment 1 
raised by reviewer 1, we hope that we already there answered satisfactorily. For an easier 
reading we add our reply to reviewer 1 here again:  

“One of our major objectives is to test whether the downscaling algorithm can be improved 

by introducing spatial varying (land use cover dependent) downscaling parameters (β and Γ).  

In order to take the spatial variability into account we performed the cluster analysis and used 

this to estimate a land cover dependent β. The cluster analysis is based on the temporal 

variation in mean and std. of Sentinel backscatter (both VV and VH).  



We decided to apply a time invariant (constant) β because the vegetation and surface 

roughness barely change in the heathland and evergreen pine forest. Of course in the 

agriculture due to land management there is a change in vegetation and roughness, however, 

the crop yield is relatively constant and changes in biomass relatively small which has been 

studied by Andreasen et al. (2020). Moreover, time series of VV and VH (e.g. Figure 5 ) show 

the opposite trend as would be expected if the backscatter signal would be dominated by 

vegetation and surface roughness. We would expect that a higher amount of vegetation 

would enhanced the volumetric backscatter, both in co- and cross polarization (e.g. 

Rosenqvist, 2018). But, what we observe is a reduction of the backscatter signal in the growing 

and peak vegetation periods (spring and summer). On the other hand in these periods soil 

moisture is low due to relatively high temperature and evapotranspiration. This trend is mostly 

observed in the agriculture while less visible in the heathland and almost not significant in the 

forest. Therefore, we believe that applying a time invariant, but spatial varying β is a valid 

assumption for our study system. 

Inspired by the reviewer’s comment and also by the first comment of reviewer 2 we performed 

a seasonal β estimation in order to evaluate if a time varying β would be essential to consider. 

The following figure shows (a) β estimated over an interval of 3 month* (Dec-Feb, Mar-May, 

Jun-Aug, Sep-Nov, representing the seasons in Denmark) and (b) the respective R.2 

* except for the first interval, starting with January (2 month interval). 

 

What we can conclude from this analysis is that there might be a slight seasonality in β with 

low values in winter and higher values in summer (figure ,a ). However, if we only consider the 

β -value with acceptable R2 of above 0.5 (figure , b), this trend might not be significant. On the 

other hand, we observe that particularly the β estimates for the agriculture cluster (red) 

deviate significantly from the other data (all=blue and heathland=green). This supports our 

approach in estimating spatial varying (land cover dependent) but time invariant β.” 



The reviewer is right that both the incidence angle correction and β estimation add to the 
uncertainty of the downscaled product. We will emphasize these aspects in the discussion of 
our manuscript.  

2. CRNS data was used as a reference to evaluate satellite-based soil moisture. Since CRNS 
neutron is also influenced by vegetation water content, did you calibrate such impacts in  
deriving volumetric soil moisture? The CRNS also has variable spatial and vertical footprints. 
Not sure if the direct comparison with satellite surface soil moisture is appropriate. Is that 
possible to consider such representative errors in your evaluation? 

Reply: We thank the reviewer for his/her valid comment and will explain the CRNS data set in 
detail. A short version of the explanation will be added to the manuscript.  

The influence of the vegetation water content on the CRNS estimated soil moisture is low. In 
the Heathland and pine forest, there is very limited change in vegetation cover. At the 
agricultural site the amount of biomass is relatively low (8 t/ha consisting of ~15% cellulose 
and 85% water, Andreasen et al., 2020). Andreasen et al. (2020) also tested the impact of the 
vegetation cover on the CRN intensity using field measurements of neutrons at two energy 
ranges and neutron transport modeling (Monte Carlo N-Particle code version 6, MCNP6) of 
the agricultural field site.  Their analysis showed very little impact of the vegetation cover 
compared to bare soil conditions (Andreasen et al., 2020, Figure 4).  

The second concern of the reviewer relates to the variability in spatial and vertical footprints. 
We do agree with the reviewer that the CRNS footprint varies in space and time. However, it 
should be noted that the sensor sensitivity is highest in the close vicinity of the probe (86% 
within a radius of 200m) and decreases exponentially with distance from the sensor. The CRNS 
sensors were installed at three different land use/cover types in 2013/2014 and data collection 
is still ongoing. The location of the sensors has been carefully chosen. They are set up in a way 
that they are in the same soil type and placed far enough from the next land use/cover type 
to prevent influence/mixture of different LUC signals. Furthermore, Ahlergaarde catchment is 
situated on a glacial outwash plain, and the study area is characterized by homogeneous soil 
(sandy and stratified soil with similar chemical composition). Therefore, we do not expect 
changes in the vertical and horizontal footprint area to affect the CRN signal significantly. A 
network of capacitance probes (please note that this network is not the same as used in our 
manuscript, but specifically set up to validate/compare the CRNS estimates), TDR 
measurements and soil probes are placed/taken strategically in the vicinity of the CRNS 
sensors. The long time series of CRNS estimated soil moisture has been shown to be very robust 
in comparison to the average of these measurements (Andreasen et al., 2020). The same data 
set has been successfully used to improve the closing of the water balance by Denager et al. 
(2020).  

The CRNS estimates of soil moisture are subject to uncertainties, but we believe that at this 
stage and for our purpose the method is better than any other available technology, and 
particularly because the spatial scale is similar to the envisaged downscaled soil moisture 
product. 



 3. Another comment is regarding the validation of your downscaled soil moisture. As authors 
described, small modifications to the downscaling approach can induce significant changes in 
spatial patterns, it is therefore challenging to identify the best approach. I agree with such 
statement, but also want to ask how to distinguish noise and real soil moisture patterns? 
Direct comparison with CRNS might not sufficient due to the scale mismatch and high diversity 
of soil properties. In addition, can you give some practical advice or outlook on how to 
generate sub-kilometre soil moisture products, which can be used for fine-scale applications?  

Reply: Thank you for the comment. We understand the concern of the reviewer and try to 
explain our approach. We believe that the application of CRNS soil moisture estimates, in 
addition to more conventional capacitance probes measurement constitute a major 
improvement for validation of remotely sensed and downscaled soil moisture products. The 
biggest advantage is the similar scale of horizontal sensitivity of the downscaled product and 
the CRNS which is in the order of few hundreds meter. To minimize the impact of noise we 
smoothed the Sentinel backscatter, spatially (a minimum aggregation to 20 m) and 
temporally, by applying a moving average of five images. Moreover, meaningful trends in the 
time series are visible that follow the season and the expected soil moisture. By validating 
against different independent ground measurements (CRNS and capacitance probes), each of 
them of course has advantages and disadvantages, we try to enhance the reliability of our 
approach and results. One of our main challenge was to get a reliable data set for validation. 
In our study area the capacitance probe time series had many gaps. Moreover, we think that 
the CRNS does not have as bad a mismatch in scale as other soil moisture products, e.g. 
capacitance probes. 

We fully agree with the reviewer that one of the major challenge in current soil moisture 
research is the differentiation between noise and soil moisture and the different scales of 
downscaled product and validation data. We hope that the application of new technologies, 
e.g. roving CRNS, can address these issues in the future.   

Our advice for future research in this area includes getting a high quality dataset in the same 
scale for validating of the downscaled product. This could be achieved e.g. by enlarging the 
study area so that more CRNS stations can be used (e.g. it exist a network of about 50 CRNS 
stations across Europe). The use of such a network for calibration of the downscaling 
parameters β and Γ might be successful and hence improve the algorithm substantially. 

4. In cluster analysis, 20m, 100m, 1000m were selected and analysed. What is the criterial to 
choose these scales? For the downscaled soil moisture, 100 m is presented as “the 
downscaled sub-kilometre” product. Does it mean it is the tradeoff between quality and 
resolution? 

Reply: We thank the reviewer for this remark. Actually, we performed the whole analysis with 
many different resolutions between 20 m and 1000 m. The objective is to investigate the sub 
kilometer scale because previous studies aimed for the 1km scale. For the perspective in 
applying the downscaled soil moisture for catchment hydrological questions, a resolution in 
the hundreds meter is favorable. Moreover, the CRNS footprint lies in the 100-200 m 
resolution. In order to be concise in our results we choose to mainly show the 100 m results in 
detail and occasionally show also the 20 m and 1000 m results, but not the 50 m, 200 m, 400 



m, 500 m and 800 m which we had also performed. Hence, the 100 m resolution is not a trade 
of, as the 200 m may look similarly meaningful. However, from our results we can clearly see, 
that at the 1000 m resolution a lot of valuable information is lost, e.g. compare figures 4, 6 
and 8. The choice of showing the 100 m resolution results from the purpose (future application 
in hydrological modelling), available ground data (CRNS with a footprint of 100-200 m) and 
aiming for conciseness. 

 

5. Remote the comma in the title. 

Reply: Thank you for the comment. We will change as suggested. 

 

6. Caption figure 4: c is backscatter and d is db. 

Reply: Thank you for the comment. We will double check to be sure there is no mistake. 
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Comments to the author: 

Dear authors, 

 

thank you again for the submission of your manuscript. Both reviewers generally seem positive and 

consider the manuscript suitable for publication. Your responses are generally appropriate and I 

invite you to implement them carefully in a revised version of the manuscript. 

 

The two main concerns of the reviewers regard: (i) the motivation for the static/dynamic nature of 

the parameters; and (ii) the approach to validating the downscaled data. I would ask you to put 

particular emphais on adressing these two points, and I want to note that I agree particularly with 

the second one. 

 

More specifically, I am very concerned that the 1 km data consistently outperform all finer-resultion 

data at all stations, both at CRNS and HOBE reference sites. I strongly disagree with the statement 

that "... the additional value of the downscaling lies more in the improved spatial resolution than in 

the better statistical fit of time series".  

 

The (properly chosen) statistical fit does, in fact, quantify objectively whether or not spatial 

resolution is actually improved. Visual spatial detail alone does not prove higher (soil moisture) 

information content. Land cover patterns are clearly visible in the high-resolution maps, but it is not 

a given that these accurately reflect soil moisture patterns. In contrast, 1 km data consistently 

correlate better even with point-scale data, and also exhibit smaller RMSEs. That is, even in absolute 

terms the 1 km estimates are closer to the point measurements than the sub-km resolution 

estimates.  

 

In essence, this suggests that the downscaling does not add, but in fact removes soil moisture 

information from the original measurements when progressing beyond 1 km resolution, so the only 

conclusion supported by the analyses shown is that downscaling beyond 1 km scale is not feasible 

with the methods tested. 

 

Note also that I do not think that the reason why no better improvements are observed is a lack or 

scale mismatch with the reference data. I, personally, consider the two-step evaluation strategy with 

both CRNS and HOBE solid, although it might benefit from additionally evaluating spatial correlations 

(at least with the HOBE network) to actually quantify the degree to which spatial patterns are 

resolved. 

 

I believe that this links back to the first main concern of both reviewers regarding the 

parameterization of the downscaling model... Could it be that the model and its parameterization 

converges to a limit in accuracy once approaching 1 km resolution due to all the factors pointed out 

in their comments, i.e., that the spatial and temporal variability in roughtness, vegetation, etc. is not 

(or perhaps even cannot be) properly resolved?  

 

Best regards, 

Alexander Gruber 

 

 



Dear Alexander Gruber/editor,  

We thank you for the overall positive feedback. We have now revised our manuscript according to the 

comments received. In particular, we have put emphasize on addressing the two main concerns 

regarding (i) the motivation for the static/dynamic nature of the parameters; and (ii) the approach to 

validating the downscaled data. Also we have modified the statement regarding the value of the 

downscaling to specify that this is mainly the case for the investigated study where we before 

downscaling have a very good correlation of the coarse–scale SMAP to the CRNS-estimated soil-

moisture. 

Kind regards,  

Rena Meyer & co-authors 


