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Abstract. The dependence of rainfall on elevation has frequently been documented in the scientific literature and may be 

relevant in Italy, due to the high degree of geographical and morphological heterogeneity of the country. However, a detailed 

analysis of the spatial variability of short-duration annual maximum rainfall depths and their connection to the landforms does 

not exist. Using a new, comprehensive and position-corrected rainfall extreme dataset (I2-RED), we present a systematic study 10 

of the relationship between geomorphological forms and the average annual maxima (index rainfall) across the whole of Italy. 

We first investigated the dependence of sub-daily rainfall depths on elevation and other landscape indices through univariate 

and multivariate linear regressions. The results of the national-scale regression analysis did not confirm the assumption of 

elevation being the sole driver of the variability of the index rainfall. The inclusion of longitude, latitude, distance from the 

coastline, morphological obstructions and mean annual rainfall contributes to explain a larger percentage of the variance, even 15 

though in different ways for different durations (1- to 24-hours). After analyzing the spatial variability of the regression 

residuals, we repeated the analysis on geomorphological subdivisions of Italy. Comparing the results of the best multivariate 

regression models with univariate regressions applied to small areas, deriving from morphological subdivisions, we found that 

“local” rainfall-topography relationships outperformed the country-wide multiple regressions, offered a uniform error spatial 

distribution and allowed to better reproduce the effect of morphology on rainfall extremes. 20 

1 Introduction and background 

The spatial patterns of rainfall depth statistics are known to be affected by the geomorphological setting (Smith, 1979; Basist 

et al., 1994; Prudhomme and Reed, 1998; Prudhomme and Reed, 1999; Faulkner and Prudhomme, 1998). The impact of 

orography on daily, multi-daily and annual precipitation events can generally be attributed to the so-called “orographic 

enhancement of precipitation”, i.e. an increase in rainfall depth along the windward slope of a relief and a decrease on the lee 25 

side, due to the lifting and the consequent drying of the air mass (Smith, 1979; Daly et al., 1994; Frei and Schär, 1998; Napoli 

et al., 2019). In complex landscape, this effect can entail significant precipitation values also on the lee side, due to landforms 

that causes delay in the hydrometeorological formation of precipitation and falling raindrops (Smith, 1979). 

The impact of the orography on extreme rainfall depths and the complicated atmosphere-orography interactions for large areas 

are still not sufficiently understood for sub-daily rainfall events. In a country like Italy, characterized by a high degree of 30 

morphological heterogeneity (Figure 1) these relations assume an evident importance, considering the significant exposure to 

Mediterranean storms (Claps and Siccardi, 2000). The focus of this study is the entire Italian territory (300,000 km2) 

considered as a representative case, both in terms of variety of landforms and in terms of variability of the rainfall extremes, 

as will be seen in the following. 

Most of the existing studies in Italy have focused on limited areas (Allamano et al., 2009; Caracciolo et al., 2012; Pelosi and 35 

Furcolo, 2015; Furcolo et al., 2016; Furcolo and Pelosi, 2018; Libertino et al., 2018; Formetta et al., 2022) and the only attempt 

to deal with sub-daily data covering the entire nation was made by Avanzi et al. (2015). 
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Figure 1. Elevation data with the boundaries of the 20 Italian administrative regions. Source: Shuttle Radar Topography Mission 

(Farr et al. (2007)). 40 

These studies suffered from the lack of a comprehensive and quality-assessed national database for sub-daily extremes. Several 

of them analyzed the Italian Alpine area. For instance, Frei and Schär (1998) focused on the entire European Alps region, and 

showed that foothills enhance monthly and seasonal precipitations, while inner valleys produce an orographic shielding effect 

on rainfall. Nevertheless, they did not find a unique precipitation depth–elevation relationship that could be considered valid 

for the entire Alps and attributed the observed variability to the effects of slope and shielding. Allamano et al. (2009) 45 

investigated the dependence of sub-daily annual maximum rainfall depths on elevation over the Italian Alpine region. They 

found a significant decreasing trend for increasing elevations and a non-uniform slope coefficient over the longitude range. 

The slope of the rainfall depth – elevation regression was shown to decrease for event durations that increased from 1 to 24 

hours. Libertino et al. (2018) showed, in the western sector of the Italian Alps (Figure 1), that shorter durations (1 – 3 hours) 

are characterized by a negative slope coefficient as a function of elevation (statistically significant at a 5% level), while longer 50 

durations (12 – 24 hours) show a positive slope and also a significant correlation, while the trend of the extremes over 6-hours 

loses significance with the elevation. Formetta et al. (2022) identified over Trento province a reverse orographic effect for 

hourly and sub-hourly durations and an orographic enhancement for duration of about 8 hours (or longer). 

Other regional works that attempted to identify orographic effects in the Mediterranean part of Italy are available for Campania 

and Sicily. Pelosi and Furcolo (2015) and Furcolo et al. (2016) analyzed the daily annual maximum rainfall depths over 55 

Campania (see Figure 1 for the geographical location) and attempted to explain systematic variations as being the result of the 

presence of orographic barriers, identified through the application of an automatic geomorphological procedure (Cuomo et al., 

2011). Their results showed a link between orographic elements and a local increase in rainfall depths, and allowed orographic 

elements that produced enhanced variability of extreme rainfall to be identified. The same group later worked on sub-daily 

annual maximum rainfall depths (Furcolo and Pelosi, 2018) and proposed a power-law amplification factor of rainfall over 60 

three mountainous systems. 

Caracciolo et al. (2012) found, in Sicily, that the longitude, latitude, distance from the sea and a concavity index are the 

variables that govern the spatial variability of rainfall depths. However, these authors found that no linear relationship between 

sub-daily annual maximum rainfall depths and elevation was significant at a 5% level over the entire island of Sicily.  

All of the previously mentioned analyses refer to an analytic relationship that connects annual maximum rainfall depths of 65 

various durations, i.e. the Average Depth-Duration (ADD) curve of the simple-scaling approach, which is usually represented 

by a power-law: 

ℎ̅𝑑 = 𝑎 ∙  𝑑n            (1) 
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where ℎ̅𝑑 is the average of the annual maximum rainfall depths of duration d, a is a scale factor and n is a scaling exponent. 

Coefficient a represents the best unbiased linear estimation of the 1-hour average rainfall depths, considering that ℎ̅1  a. 70 

Avanzi et al. (2015) analyzed the spatial variability of the ADD curve parameters, a and n, at a national scale, as obtained from 

measurements of 1,494 stations distributed throughout Italy. They referred to the so-called “reverse orographic effect”, i.e. the 

relationship found between parameter a and elevation, which shows a decreasing trend. On the other hand, the scaling exponent 

n appears to increase non-linearly with the elevation. More details are provided in the following section. 

On the basis of the described background, and on the significant improvements offered by a new, up-to-date rainfall dataset, 75 

i.e. the Improved Italian – Rainfall Extreme Dataset or I2-RED (Mazzoglio et al., 2020), the present study has considered more 

than 3,700 stations with at least 10 years of data to relate the average rainfall depths in all the durations (index rainfall) to 

several morphological variables, and investigate their dependency on elevation and on other geomorphological and 

climatological parameters. 

Searching for models that allow the index rainfall to be estimated for various durations in any location in Italy is the first, 80 

important, necessary step toward addressing the building of Depth-Duration-Frequency curves over the entire country. For 

this purpose, simple (Sect. 2) and multiple (Sect. 3 and 4) national scale regression models were first investigated. We then 

introduced four geomorphological classifications to perform local-scale regression analysis in order to tackle the evident spatial 

clustering of the regression residuals (Sect. 5). The comparisons made between the results obtained from the wide-area and 

the local regressions allowed the role of the morphology on rainfall variability to be discussed, as shown in Sect. 6. Some 85 

conclusions are drawn in Sect. 7. 

2 National-scale simple regression analysis 

2.1 Methods 

As the first step of the analysis, we investigated the influence of elevation on the spatial distribution of the average of annual 

maximum rainfall depths. We calculated the ADD curve parameters for all the stations of the I2-RED dataset (Mazzoglio et 90 

al., 2020) to compare them with previous studies (mainly Avanzi et al., 2015). Parameters a and n (cf. Eq. (1)) were initially 

obtained by means of a linear regression of the logarithm of the average of all the available extremes over the 1- to 24-hour 

durations. We computed the median values of these parameters, for all over Italy, to compare them with those of Avanzi et al. 

(2015), who grouped the stations into elevation ranges of 50 meters up to 1,000 m a.s.l., and into intervals of 100 meters for 

higher elevations. We then plotted both series of medians (a and n) against the median elevation of each interval (to consider 95 

that the distribution of the rain gauges in each elevation interval was skewed) and fitted regression models. 

We studied the differences between the measured and estimated rainfall statistics to assess the effectiveness of the regression 

models, considering the observed averages of the extremes over 1, 3, 6, 12 and 24 hours. We obtained performance indices for 

each station using the estimation errors d : 

∆𝑑 =  ℎ𝑎𝑣𝑔(𝑑) − 𝑎̂ ∙ 𝑑𝑛̂ ,           (2) 100 

where havg(d) is the sample average of the extreme rainfall depth for duration d, while 𝑎̂ and 𝑛̂ are the estimates of parameters 

a and n. 

In this paper, we show and discuss only the results related to the shortest and the longest of the five durations (1 and 24 hours), 

as they can be considered the most representative of the different classes of rainfall events (convective and stratiform, 

respectively). The corresponding dependent variables are called ℎ̅1 and ℎ̅24 in the following. 105 

The error statistics that were computed are the bias, the mean absolute error (MAE), the root mean square error (RMSE) and 

the Nash-Sutcliffe model efficiency (NSE) coefficient (Nash and Sutcliffe, 1970; Wasserman, 2004). Among all the statistics, 

particular attention was dedicated to spatial bias, i.e. the bias evaluated as the difference between the spatial mean of the 

observations over a generic area, and the corresponding values predicted by the model. 
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2.2 Results 110 

By applying the procedure described in Sect. 2.1, we obtained results that are in agreement with those of Avanzi et al. (2015), 

that is: 

1) Parameter a decreases linearly with the elevation (R2 = 0.89), through the equation: 

𝑎 = 30.61 − 0.0060 ∙ 𝑧 ,           (3) 

which is comparable with the equation obtained in Avanzi et al. (2015): 115 

𝑎 = 29.17 − 0.0062 ∙ 𝑧 .           (4) 

2) Parameter n increases non-linearly with the elevation (R2 = 0.86), through the equation: 

𝑛 = 0.54 − 𝑒𝑥𝑝[−0.000077 ∙ (𝑧 + 1650)] .        (5) 

For comparison purposes, Avanzi et al. (2015) obtained 

𝑛 = 0.54 − 𝑒𝑥𝑝[−0.00086 ∙ (𝑧 + 1452)]         (6) 120 

for the latter parameter, with only a slight difference in R2 (0.89). 

The fitting of the four models is reported in Supplement n°1. 

As already mentioned, parameter a is roughly equivalent to ℎ̅1. Its overall inverse dependence on elevation is somewhat 

counter-intuitive, even though other authors have confirmed this dependence (e.g. Allamano et al., 2009; Marra et al., 2021).  

The error statistics computed on the two sets of residuals, in this work and in that of Avanzi et al. (2015), are listed in Table 125 

1. The results show that the increase in the number of stations and the recording length achieved in I2-RED have led to an 

improvement compared to the results of Avanzi et al. (2015). This result is not surprising, but more insights can be derived 

from the observation of the spatial distribution of the residuals, which were not discussed explicitly in the previous literature. 

In this regard, we mapped differences 1 and 24 to investigate where the under- and over-estimations show spatial coherence. 

The maps, reported in Figure 2, clearly show that clusters of residuals with high residuals of the same sign emerge in various 130 

areas of the country: for instance, many coherent errors larger than 3 times the MAE are present in the Liguria region (see 

Figure 1 for the geographic position) for both durations. Therefore, despite the high R2 values, significant spatially correlated 

errors can undermine the practical validity of these general relationships. 

On the basis of these results, the need for a more detailed spatial analysis of these variables became evident. A set of new 

analyses, aimed at reducing the local bias and increasing the reliability of the results, was therefore introduced. 135 

 

Error statistic 
𝒉̅𝟏 - Avanzi et al., 2015 

(Eqs. (4) and (6)) 

𝒉̅𝟏 - This paper 

 (Eqs. (3) and (5)) 

𝒉̅𝟐𝟒 - Avanzi et al., 2015 

 (Eqs. (4) and (6)) 

𝒉̅𝟐𝟒 - This paper 

 (Eqs. (3) and (5)) 

Bias (mm) 2.65 1.07 9.64 6.05 

MAE (mm) 5.48 5.29 22.22 22.27 

RMSE (mm) 7.39 6.98 32.81 31.99 

NSE (-) -0.01 0.10 -0.02 0.03 

Table 1. Comparison of national-scale error statistics related to the estimates performed with our data and those of Avanzi et al. 

(2015). The results were obtained with Eqs. (3) to (6). 
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 140 

Figure 2. Residuals of the estimations of the 1-hour (a) and 24-hour (b) durations performed using Eqs. (3) and (5). 

3 National-scale multiple regression analysis 

3.1 Methods 

In an attempt to improve the evaluation of the relationships between rainfall and topography, we undertook an analysis of the 

relationships between rainfall and several geomorphological (and climatological) parameters, which may complement the 145 

explanatory power of elevation. Unlike what was done in Avanzi et al. (2015), multivariate models were used in the literature 

to relate rainfall statistics and various morphological variables, both of which were evaluated at the same location. In these 

approaches, no aggregated or median spatial statistics of rainfall were considered. Prudhomme and Reed (1998, 1999), for 

instance, identified meaningful geographic and morphological attributes of each location as good explanatory variables of the 

daily rainfall maxima in Scotland. They showed that obstruction indices, derived from the orography, and the distance from 150 

the coastline, are able to define how morphological barriers influence the characteristics of the extremes. These appear to work 

better that the EXPO variable used by Basist et al. (1994) and Konrad (1996). 

Basist et al. (1994) defined EXPO as the distance between a rain gauge and an upwind barrier whose elevation is at least 500 

m higher than the station. Konrad (1996) suggested an elevation of the barrier at least 150 m higher than the station. 

Prudhomme and Reed (1998) also tried to use this variable, setting the elevation difference at 200 m but concluded that the 155 

definition of EXPO has several drawbacks, as it is based on arbitrary thresholds and is defined assuming a specific and 

subjective direction.  

Introducing new variables with omni-directional meaning, as the distance from the sea, the obstruction and the barrier, which 

are evaluated in the 8 main directions, Prudhomme and Reed (1998) were able to explain a much larger percentage of 

variability in the annual maximum daily rainfall than that explained by the EXPO variable. 160 

Caracciolo et al. (2012) applied this latter approach on the Sicily Island (South of Italy): they found that the longitude, 

elevation, a barrier obstruction index and the distance from the coastline are able to represent the spatial variability of parameter 

a for the whole island, while the longitude, elevation, a concavity index and the slope are able to satisfactorily describe the 

variability of exponent n. They also noticed that different descriptors became significant when analyzing smaller portions of 

the island.  165 

Based on the above considerations, in this work we followed the approach suggested by Prudhomme and Reed (1998, 1999), 

considering two groups of variables computed for each station location, i.e.: 
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a) geographic and climatic variables, which do not require computation and do not depend on the landscape forms, that is, 

longitude (LON, expressed in the WGS84 UTM32N reference system, in m), latitude (LAT, expressed in the WGS84 UTM32N 

reference system, in m), elevation above sea level (z, in m), minimum distance from the coastline (C, in km), and mean annual 170 

rainfall (MAR, taken from Braca et al., 2021, in mm); the latter represents a very robust climatological variable, which is 

seldom used as ancillary information but easily available throughout the world thanks to the presence of various rainfall 

databases (Schneider et al., 2011; Fick and Hijmans, 2017; Muñoz Sabater, 2019). 

b) morphological variables, or descriptors, based on a Digital Elevation Model (DEM), computed for each cell in a square 

grid. These variables are: 175 

- Slope (S, in degrees), defined as the angle of the inclination of the terrain to the horizontal, which is evaluated using 

the 8 closest DEM cells; 

- Obstruction (OBS, in degrees), defined as the maximum angle needed to overcome the highest orographic obstacles 

in the eight main cardinal directions (i.e., the maximum of the angles subtended by the line that connects the rain 

gauge with the highest orographic peak within a 15 km radius in the eight main directions, see Figure 3); 180 

- Barrier (BAR, in m), defined as the distance between the rain gauge and the highest orographic obstacle defined in 

OBS (Prudhomme and Reed, 1998 and 1999; see Figure 3); 

- Maximum slope angle (MSA, in degrees), i.e. the angle with the greatest slope needed to overcome obstacles within 

a 15 km radius in the eight main directions (see Figure 3); 

- Maximum slope angle distance (MSAD, in m), defined as the equivalent of BAR, but computed with respect to MSA 185 

(see Figure 3); 

- Openness (OP, in radians), defined as a mean angular measurement of the relationships between the surface of the 

relief and the horizontal distances, in the eight main directions (Yokoyama et al., 2002). 

The values of all of these variables depend on the landscape forms and can vary according to the resolution of the used DEM. 

In our case, after thorough consideration, we adopted the Shuttle Radar Topography Mission (SRTM) DEM, which has a 190 

resolution of 30 meters (Farr et al., 2007). However, the openness required to be evaluated on the SRTM DEM resampled at 

a resolution of 500 m due to computational limitations. This computation was conducted with the SAGA “Topographic 

openness” module, using a radial limit of 5 km. This value was obtained after testing different radial limits and selecting the 

one that presents the best correlation with the mean rainfall depth. 

 195 

Figure 3. Representation of the MSA, MSAD, OBS and BAR morphological variables. 

Multiple linear regression models were built, based on the relationship: 

𝑌 = 𝐗 ∙ 𝜷 + 𝜹 =  ∑ 𝛽𝑖𝑋𝑖
𝑁
𝑖=1 + 𝜹 ,          (7) 

where the dependent variable Y is related to the matrix of the independent variables X, or covariates.  in Eq. (7) is the vector 

that contains the regression model coefficients and  is the vector of the residuals.  200 

In order to select the best model equation, the number i of covariates can be increased as necessary, according to the criteria 

of statistical significance of the estimated parameters. Caracciolo et al. (2012), for instance, used a stepwise regression 

approach. In this paper, we have preferred to use a generalized multiple regression approach whereby increasing the number 

of covariates to i+1 does not necessarily preserve the descriptors that were the most significant at step i. This approach entails 
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always considering all the possible combinations of 2, 3 or 4 covariates until the “best” model is found. Other tests made using 205 

five or more variables did not lead to significantly higher R2
adj values. 

The “best” regression model was selected on the basis of an analysis of the regression residuals, favoring models with the 

highest adjusted coefficient of determination, R2
adj. Student’s t-test was used to quantify the significance of the independent 

variables. We checked for the possible presence of multicollinearity for each model in which all the covariates passed Student’s 

t-test, as this could lead to the formulation of an unstable model. Multicollinearity was measured using the Variance Inflation 210 

Factor (VIF), which is determined by placing the j-th independent variable as the dependent variable and calculating the 

coefficient of determination R2
adj of the multiple regression performed on the remaining p – 1 independent variables (Eq. (8)). 

𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2            (8) 

Values of VIF greater than 5 were associated with a non-acceptable level of multicollinearity, and the corresponding model 

was discarded (Montgomery et al., 2012). 215 

3.2 Results 

The equations of the best regression models (built using two to four variables) are reported in Eqs. (9) to (11) for ℎ̅1 and in 

Eqs. (12) to (14) for ℎ̅24 . The R2
adj values in Eqs. (9) to (11) are 0.46, 0.52 and 0.54, respectively. The coefficients of 

determination are higher for ℎ̅24, i.e. 0.66, 0.67 and 0.68 (Eqs. (12) to (14), respectively). 

h1 = 20.3163 – 0.0080  z + 0.0117  MAR         (9) 220 

h1 = - 21.6293 – 0.0061  z + 0.0134  MAR + 26.2682  OP       (10) 

h1 = - 10.6928 – 0.0051  z – 0.0273  C + 0.0131  MAR + 19.8449  OP     (11) 

h24 = 16.1392 – 0.0937  C + 0.0712  MAR         (12) 

h24 = 33.1529 – 1.8574  10-5  LON – 0.1319  C + 0.0701  MAR      (13) 

h24 = 127.2773 – 2.9498  10-5  LON – 1.9130  10-5  LAT - 0.0971  C + 0.0735  MAR    (14) 225 

Considering the three ℎ̅1  models (Eqs. (9) to (11)), it is possible to notice the negative slope coefficient associated with 

elevation. This confirms what was discussed in the previous section. On the other hand, it is remarkable that the best models 

found for ℎ̅24  do not include the elevation: this outcome can be explained by considering the fact that MAR is always 

significant, regardless of the number of variables. Models in which MAR was excluded actually present z as a significant 

covariate, but with less relevance than the regression models for ℎ̅1. 230 

Regardless of the number of the variables considered, and despite the marked increase in the corresponding value of R2
adj, 

compared to the simple regression, we found that the residuals of the multivariate regressions were still characterized by spatial 

clustering and high local errors, basically all in the same areas in Figure 2. In other words, resorting to additional variables but 

keeping a uniform relationship between each variable and precipitation over all of Italy does not produce a decisive reduction 

in the bias for large areas of the country. Thus, we decided to deconstruct the modeling approach and to look for clues of 235 

distinct generating mechanisms in distinct areas of Italy. 

4 Sub-national scale multiple regression analysis 

4.1 Methods 

In this section, an additional paradigm is introduced into the models for the spatial variability of precipitation to reduce the 

spatial bias, namely the selection of limited areas to build “local” regression models, as an alternative to using data for the 240 

whole of Italy. Such an attempt was already made by Caracciolo et al. (2012), who borrowed the subdivision criterion from 

previous regional frequency analyses. In this work, we have focused on the role of geography and morphology on the spatial 

variability of annual maximum rainfall depths. 
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To better understand how to move from national scale relationships to relationships valid for smaller areas, we started by 

considering the Alpine area separately from the Apennine region along the entire peninsula, and from the two main islands 245 

(Sicily and Sardinia; see Figure 1 for the geographic positions), as a first approximation. We then built four different 

multivariate models: 1. The Alpine region (i.e., from Piedmont, including the western part of Liguria, eastward up to Friuli 

Venezia Giulia; this region was delineated using the SOIUSA classification, as suggested by Accorsi, 2016); 2. The Apennine 

region, including peninsular Italy; 3. Sicily; 4. Sardinia. We evaluated the best regression models for these four regions, as 

described in Sect. 3.1, using up to four covariates. 250 

4.2 Results 

The new set of models built for the four regions were tested by computing the error statistics over the entire country. The 

obtained results indicated that they provided higher R2
adj than for the national case and better error statistics (see Table 2 for a 

comparison with the previous multivariate approach). The better results achieved in terms of RMSE, MAE, NSE at the national 

scale are due to the improvements obtained for the two main islands (Sicily and Sardinia). More insights are provided in Sect. 255 

6. 

 

Error statistic 𝒉̅𝟏 – Nation 𝒉̅𝟏 – 4 regions 𝒉̅𝟐𝟒 – Nation 𝒉̅𝟐𝟒 – 4 regions 

Bias (mm) 0 0 0 0 

MAE (mm) 3.83 3.65 13.14 11.71 

RMSE (mm) 4.98 4.77 18.43 16.53 

NSE (mm) 0.54 0.58 0.68 0.74 

Table 2. Error statistics of the multiple regression models at a national scale and for the 4 macro-regions described in Sect. 4.1, for 

𝒉̅𝟏 and 𝒉̅𝟐𝟒. 

It is interesting to compare the results obtained for the individual Alpine region with those of Allamano et al. (2009), who 260 

analyzed almost the same area. In that case, the ADD curve parameters appeared to be related to elevation and longitude. For 

the different durations Allamano et al. (2009) also estimated a regression model by linear regression between rainfall depth, 

elevation and longitude. The dependence of short-duration rainfall on elevation and longitude was found to be statistically 

significant for all the time intervals, except for the 1-hour duration: in this case, the longitude was not statistically significant. 

In our application, the best relationships found for ℎ̅1 and ℎ̅24 are those of Eqs. (15) and (16) (characterized by R2
adj = 0.75 265 

and 0.76, respectively): 

ℎ̅1 = 60.9365 – 1.6664  10-5  LAT – 0.0046  z + 0.0148  MAR + 25.1825  OP     (15) 

ℎ̅24 = 59.0632 – 7.2955  10-5  LON – 0.2223  C + 0.4306  OBS + 0.0822  MAR    (16) 

As expected, the ℎ̅1 - z relationship has a negative slope and the Eq. (15) does not include the longitude as covariate, in 

agreement with Allamano et al. (2009). The same negative relationship is found in a 24-hour equation that include z (which 270 

produces an R2
adj = 0.74, that is, lower than that of Eq. (16)). These findings confirm the results of Allamano et al. (2009), who 

found a general decrease in rainfall depth for increases in elevation for all the durations (up to 24 hours). Eq. (16) also confirms 

that, although ℎ̅1 decreases systematically with elevation over the whole alpine region, the dependence of ℎ̅24 on z decreases 

as the longitude increases, i.e. moving westward.  

The full set of equations used for the four regions are provided in Supplement n°2, together with the R2
adj.  275 

Although the improvements achieved with multivariate models over the simple regressions are evident, we found that they 

were not decisive in providing a homogeneous spatial distribution of the errors. We in fact observed that, even with the best 

model, we were not able to reduce the clustering effect shown in Figure 2 for the peninsular region (see also Supplement n°3). 

We believe that a model capable of describing the observed spatial variability of the index rainfall simultaneously at a national 

and a local level requires additional insights, which can be obtained using a finer spatial segmentation of Italy. 280 
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5 Local-scale simple regression analysis of morphological regions 

5.1 Methods 

On the basis of the considerations presented above pertaining to the spatial clustering of residuals, we examined the possibility 

of obtaining a meaningful segmentation of large areas in subdomains that could be used to obtain “local” relationships between 

annual maximum rainfall depths and terrain properties. The main reasoning behind the segmentation is that some macroscopic 285 

morphological differences can determine markedly different behaviors of the relationships between rainfall and elevation (or 

other local variables). One example concerns what happens in the windward and leeward sides of mountain ridges, which 

represent transversal obstacles to the humid masses coming from the sea. Accordingly, we considered some general 

geomorphological classifications of the landscape that delineate homogeneous areas based on the homogeneity of the 

macroscopic land properties, such as convexity and texture. 290 

We considered four geomorphological classifications (GC) and denominated them as GC1 to GC4, according to their diversity 

and success in the geomorphological literature (see the Data Availability section for more information). 

The first considered classification, called GC1, was proposed by Iwahashi and Pike (2007); they classified the Earth’s surface 

into 16 topographic types, at a 1-km resolution, based on slope gradient, local convexity and surface texture. We vectorized 

the raster map, which is available on the European Soil Data Centre website, and then, to reduce the presence of small areas, 295 

that could have an extent of just a few km2, all the areas covered by less than 10 pixels (10 km2) were merged with the adjacent 

class. Among the four different classifications that were used, this is the only one that has a worldwide coverage, as all the 

other classifications are available at a national scale. A detailed description of the methodologies used by the authors is 

available in the related references, thus allowing all the classifications to be reproduced over other nations. 

The second classification − GC2 − is the “Carta delle Unità Fisiografiche dei Paesaggi italiani” (“Map of the physiographic 300 

units of Italian landscapes”) and is included in the “Carta della Natura” (“Map of Nature”; Amadei et al., 2003). A vector 

maps, which was obtained by means of a visual interpretation of satellite images aided by the analysis of further land cover 

maps and morphological - lithological characteristics, was available at a 1:250,000 scale. 

The third classification − GC3 − was proposed by Guzzetti and Reichenbach (1994). It was obtained, in vector format, by 

combining an unsupervised three-class cluster analysis of four properties of altitude (altitude itself, slope curvature, frequency 305 

of slope reversal and elevation-relief ratio) with a visual interpretation of morphometric maps and an inspection of geological 

and structural maps.  

The fourth classification − GC4 − is the one that delineates areas with the greatest detail, as it is based on local morphometric 

properties of the landscape. It was proposed by Alvioli et al. (2020), who considered a set of 439 watersheds, covering the 

whole of Italy, grouped into seven clusters on the basis of the various properties of the slope units within each basin, e.g. a 310 

distribution of slope units sizes and aspects. In this work, adjacent watersheds of the same class were collapsed (GIS dissolve), 

thus producing a total of 178 areas. Geomorphologically homogeneous terrain partitions were defined as “slope units” that 

were delimited by drainage and divide lines and delineated with a method that was first introduced by Alvioli et al. (2016), 

and which is widely used in the literature for geomorphological zonation purposes. 

An additional geomorphological classification, which was proposed by Meybeck et al. (2001) and which has a worldwide 315 

coverage, was also considered. It is based on a combination of a relief roughness index and elevation, and in principle could 

have been a good fifth candidate. However, it was not included in this analysis because, except for a very large geographical 

zones, the resulting delineated areas often contained very few rain gauges, which would have made it impossible to perform 

the desired statistical analyses. 

Coherently with the aim of addressing connections between terrain properties and rainfall at a more local level, we built a set 320 

of linear regression models between elevation and index rainfall for all the classifications, considering an individual model for 

each outlined geomorphological zone. Only the internal rain gauges in each of these homogeneous areas with a minimum of 
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5 available stations that had to ensure at least 100 m of difference in elevation were considered for the regressions. There were 

four possible outcomes of the applications: a) a positive and significant correlation (at the 5% level); b) a negative and 

significant correlation; c) a non-significant correlation; d) an insufficient number of stations or an insufficient difference in 325 

elevation. 

5.2 Results 

The results for ℎ̅1 are presented hereafter, while the details on ℎ̅24 are available in Supplement n°4. The results obtained for 

each geomorphological zone are mapped in Figures 4(a-d). Blue areas denote geographical zones where ℎ̅1 increases together 

with the elevation, while the red palette applies to zones where rainfall decreases with the elevation. The color intensity is 330 

proportional to the respective slopes. The light gray color denotes zones in which the linear regression is not statistically 

significant (at a 5% level), while dark gray denotes insufficient data (case d). A comparison of the maps (Figure 4a to Figure 

4d) clarifies that the more detailed the geomorphological zonation is, the less likely it is to satisfy the requirements necessary 

to build a significant regression. On the other hand, if one applies regression models to finer geomorphological classifications, 

it is possible to see that the regression sign is not uniform over the entire country. For example, with regard to 1-hour data, it 335 

is possible to clearly recognize the presence of zones with a positive rainfall depth versus elevation trend for pre-hill/plain 

morphology in both GC3 (Figure 4c) and GC4 (Figure 4d).  

The spatial distribution of the light gray zones is an important information: no trend can be assumed over these areas, because 

the p-value is greater than 0.05. Consequently, ℎ̅1 can be considered constant over these areas. Finally, the occurrence of the 

dark gray zones is directly connected to the kind of classification: the smaller the areas delineated by the classification are, the 340 

more likely it is that the requirement of having at least 5 rain gauges with at least 100 m difference in elevation is not satisfied. 

In this regard, we can observe that the above requirements are not met for the elevation difference, i.e. in plain areas, and it is 

necessary to assume a constant ℎ̅1 in the area as being the most reasonable value.  

The maps in Figures 4(a-d) show the availability of more detail in the spatial analysis of the relationship between rainfall depth 

and elevation has a remarkable effect on both the sign of the regression and the slope of the regression line in several areas. In 345 

addition, even the quality of the relationship can improve, as can be seen from a comparison of Figures 4(e-h): far more areas 

with high R2 can be seen in Figure 4h than in Figure 4e. This allows us to conclude that lower values of R2 are obtained in 

wider areas.  

The same analysis was conducted on ℎ̅24 , where all of the above outcomes were confirmed, except for the sign of the 

precipitation vs elevation relationship (Supplement n°4). 350 
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Figure 4. Slope coefficients of the regression between the mean 1-hour rainfall depth and elevation for GC1 (a), GC2 (b), GC3 (c) 

and GC4 (d); the R2 of the regression between the mean 1-hour rainfall depth and elevation for GC1 (e), GC2 (f), GC3 (g) and GC4 

(h). Geomorphological data source: Iwahashi and Pike (2007), Amadei et al. (2003), Guzzetti and Reichenbach (1994) and Alvioli et 355 
al. (2020). 

5.3 Error analysis 

To test the reliability of the regression models built over the GCs, the linear equations found in each geomorphological zone 

were applied to all the rain gauge positions, to obtain errors that could be examined at the country scale. The global indices 

computed for the GC areas in which the regressions were statistically significant are reported in Table 3 for ℎ̅1 and in Table 4 360 

for ℎ̅24. These results clearly show a lower performance of the GC1 than the national-scale regression model. On the other 

hand, the error statistics in Table 3 and Table 4 show that GC4 produces the smallest errors and this geomorphological 

subdivision therefore presents the best performances. It is possible to understand this result by considering that GC4 uses 

watershed units, while the other classifications are based on the automatic processing of digital terrain data. 

A constant value of the index rainfall computed as the spatial average of ℎ̅𝑑  was adopted over any areas where the 365 

morphological regression model was not statistically significant. In this way, it was possible to compute the statistical indexes 

at the whole country scale. The error statistics obtained with this application are reported in the last rows of Table 3 and Table 

4. 

 

Regression model Bias (mm) MAE (mm) RMSE (mm) NSE (-) 

GC1 Iwahashi and Pike 0 5.94 7.67 0.10 

GC2 Carta della Natura 0 5.65 7.18 0.15 

GC3 Guzzetti and Reichenbach 0 5.15 6.77 0.27 

GC4 Alvioli et al. over statistically significant areas 0 4.53 5.84 0.50 

GC4 Alvioli et al. over the entire nation 0 3.87 5.12 0.52 

Table 3. National-scale error statistics for the 1-hour interval. Statistics for GC1, GC2 and GC3 were only evaluated over areas 370 
where the regression was statistically significant at a 5% level, while GC4 was tested on both statistically significant areas and over 

the entire nation, using the mean rainfall, where there was a p-value > 0.05 or where the requirement of at least 5 rain gauges with 

at least 100 m difference in elevation was not satisfied. 
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Regression model Bias (mm) MAE (mm) RMSE (mm) NSE (-) 

GC1 Iwahashi and Pike 0 30.44 39.49 -0.11 

GC2 Carta della Natura 0 20.30 31.29 0.11 

GC3 Guzzetti and Reichenbach 0 20.03 28.84 0.32 

GC4 Alvioli et al. over statistically significant areas 0 14.84 21.12 0.61 

GC4 Alvioli et al. over the entire nation 0 14.36 20.73 0.60 

Table 4. National-scale error statistics for the 24-hour interval. Statistics for GC1, GC2 and GC3 were only evaluated over areas 375 
where the regression was statistically significant at a 5% level, while GC4 was tested on both statistically significant areas and over 

the entire nation, using the mean rainfall, where there was a p-value > 0.05 or where the requirement of at least 5 rain gauges with 

at least 100 m difference in elevation was not satisfied. 

6 Discussion 

The different regression models used in this work to investigate the role of morphology on the spatial distribution of sub-daily 380 

annual maximum rainfall depths produced results deserving some comments. First of all, it must be mentioned that a 

nationwide multiple regression model that includes morpho-climatic attributes represents a significant step forward with 

respect to the simple regression model, as the error statistics show. In this approach, working at a national scale and given the 

elongated shape of the Italian peninsula, geographic location was expected to play a major role in the spatial distribution of 

extremes, even though this evidence was not mentioned in similar national-scale analyses (see e.g. Faulkner and Prudhomme, 385 

1998, for the UK, and Avanzi et al., 2015, for Italy). The role of geography progressively weakened while seeking further 

improvements, in terms of MAE and RMSE, through the application of distinct multiple regressions to four macro-regions, i.e. 

the Alps, the Peninsular Italy and the main islands (Supplement n°5). 

Our findings show that while the 24-hour index rainfall exhibits a clear overall dependence on the geographic location at a full 

national scale (Eq. (14)), the same does not apply to 1-hour extremes (Eq. (11)). In an area with a lesser span in latitude (the 390 

Italian Alps), instead, the 1-hour extremes curiously show some dependence on latitude (Eq. (15)). This outcome, when 

compared with the one at the full national scale, suggests that the relationships with the geography could derive from some 

other hidden mechanism. Formetta et al. (2022) seem to followed a similarthe same reasoning, empirically recognizing the 

role of geography and elevation as they partitioned by longitude and elevation even a small area (the province of Trento) before 

applying their statistical analyses.  395 

While the multivariate regression can be a good tool to express geographic dependence, and on 24-hour extremes the national 

scale helps in drawing some general findings, the residual errors in large clustered areas are still very significant. Therefore, 

geographic attributes seem not to drive uniformly the variability of rainfall extremes all over Italy, as the high residuals of the 

multiple regression over these areas do not apparently follow any latitudinal/longitudinal gradient. These findings can derive 

only from a national-scale analysis. 400 

The better suitability of the application of multiple regressions on four regions is confirmed by the increase of the adjusted 

coefficient of determination (R2
adj), as reported in Section 3.2 and in Supplement n°2. Moreover, while the national-scale 

multiple regression model provides high negative residuals over Sardinia and high positive residuals over Sicily, the four-

region multiple regression model significantly improves this result (see Supplement n°3-5 for more details). However, similar 

improvements were not achieved in the peninsular and alpine areas of the country. 405 

The subsequent investigations undertaken in Section 5 descend from the above considerations, i.e. the building of regressions 

in morphological regions that are a fraction of the whole area is an attempt to overcome the highlighted lack of regularity in 

the dependence between rainfall and geography. Among all the considered geomorphological classifications, the selection of 

rain gauges for the model application is more effective in the case of GC4 (Alvioli et al., 2020), which embeds also 

hydrographic information. The GC4 model behaves reasonably well for both the 1- and 24-hours durations, compared to the 410 
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multiple regression models, as far as the national scale is considered. Table 5 summarizes all the previously mentioned 

statistics. 

 

Regression model Bias (mm) MAE (mm) RMSE (mm) NSE (-) 

1h National simple regression 1.07 5.29 6.98 0.10 

1h National multiple regression 0 3.83 4.98 0.54 

1h Four-regions multiple regression 0 3.65 4.77 0.58 

1h GC4 regression 0 3.87 5.12 0.52 

24h National simple regression 6.05 22.27 31.99 0.03 

24h National multiple regression 0 13.14 18.43 0.68 

24h Four-regions multiple regression 0 11.71 16.53 0.74 

24h GC4 regression 0 14.36 20.73 0.60 

Table 5. Error statistics for the 1- and 24-hour intervals at a national scale. Average spatial values are used for the gray areas in 

Figure 4d. The bias of the national simple regression is different from zero being evaluated as 𝒃𝒊𝒂𝒔𝒅  =  
𝟏

𝒏
∙ ∑ 𝒉𝒂𝒗𝒈(𝒅) − 𝒂̂ ∙ 𝒅𝒏̂. 415 

Analyzing the error statistics computed globally at the national scale, it seems that the four-region multiple regression approach 

is the most precise. However, this is not necessarily true at a local scale. In order to clarify the drawbacks that large-scale 

regression models can produce, for the 1h case we compared the residuals obtained from the four-region multiple regression 

model (Figure 5a) in the areas identified by GC4 with the residuals of the GC4 regression model by selecting: 1) the GC4 areas 

that were statistically significant (Figure 5b) and 2) the entire nation (Figure 5c). The mean rainfall depths were considered 420 

over not statistically significant areas (i.e., the gray areas visible in Figure 5b). The GC4 regression models resulted to be 

statistically significant for ℎ̅1 for the 45% of the Italian area, for a total of 31 different areas, while the GC4 model for ℎ̅24 

resulted statistically significant in 49% of the area, for a total of 47 different zones (in the Supplementary Material figures 

dealing with the 24h case are available). From a comparison of the maps in Figure 5, it is possible to note that the multiple 

regression model has a spatially non-uniform bias while the average bias obtained from the individual models in the zones 425 

selected by GC4 is zero all over Italy. Maps of all the other statistics are reported in Supplement n°5 (Figure S4). This outcome 

is evident also for the 24-hour case (see, for example, the maps of the bias - Figure S5a-e). 

 

Figure 5. 1h case. Local bias for the four-region multiple regression model (a), the GC4 simple linear regression model over 

statistically significant areas (b) and the GC4 simple linear regression model over all the areas (c). Geomorphological data source: 430 
Alvioli et al. (2020). 

An additional comparison was undertaken to investigate the local bias. In this case, we computed the bias for each subdomain 

of GC4. We compared the bias values obtained using the following four conditions: 1) the national-scale simple regression 

model (Eqs. (3) and (5)), 2) the national-scale multiple linear regression model (Eqs. (11) and (14)), 3) the four-regions multiple 
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regression model (Eqs. (S3), (S6), (S9), (S12), (S15), (S18), (S21) and (S24) in Supplement n°2) and 4) the GC4 simple 435 

regression model (Sect. 5). 

The results are illustrated in the maps of Figure 6, which shows the best regression model for each area in different colors: 

Figures 6a-b are related to ℎ̅1, while Figures 6c-d refer to ℎ̅24; Figures 6a and 6c only highlight the situations where significant 

regressions were found. The results in Figures 6b and 6d include the bias calculated in non-statistically significant areas with 

respect to the spatial average of the rainfall depths. The good results obtained in the areas where the spatial mean values are 440 

adopted can be seen by comparing the borders of the GC4 areas with the clusters of the residuals of the multiple regression 

model (see Supplement n°3). A dedicated multiple regression model was built for the island of Sardinia: nevertheless, the bias 

all over the GC4 areas is smaller when the local spatial average is used. A good correspondence between the residual clusters 

and the GC4 borders is evident. 

From Figure 6, it is possible to conclude that the morphological subdivisions allow a set of simple linear regression models to 445 

be built that can perform better almost everywhere than the other wide-area models in terms of local bias. 

Figure 6.  Absolute bias assessment for all the regression models used for the 1-hour case (a,b) and 24-hour case (c,d). The color 

refers to the model that provides the lowest absolute value of the bias. The GC4 model bias in cases (a) and (c) was only evaluated 

for statistically significant areas, while it was evaluated over every area in (b) and (d). Geomorphological data source: Alvioli et al. 450 
(2020). 

7 Conclusions 

In this paper, we have analyzed the role of orography and morphology on short-duration annual maximum rainfall depths, 

taking advantage of a new and comprehensive database for Italy, I2-RED (Mazzoglio et al., 2020). The approach finds its 

relevance in the first use of the most complete and updated data collection of short-duration annual maxima available for the 455 

whole Italian territory. As regards the previous knowledge on the topic, our analyses allowed to better understand, confirm 

and extend previous results from the literature. 

The results described in this paper show that a national-scale simple regression model of the precipitation vs elevation presents 

some weaknesses (high residual values, high local- and national-scale bias, low NSE coefficient, etc) and therefore needs to 

be improved. 460 

The use of multiple regression models introduces some benefits, such as a reduction of MAE and RMSE at the national scale, 

nevertheless they were not successful in reducing the local bias. 

Considering the necessity of working on smaller domains, we analyzed several geomorphological classifications which are 

able to preserve the intrinsic value of the statistically significant landscape variables that emerge in regression models. Four 

different geomorphological classifications available in literature were used to provide criteria for the identification of 465 

homogeneous regions. We applied simple linear regression models over these homogeneous domains and compared the 

performances at both a national and a local level. Among all the considered classifications, the selection of rain gauges for the 

model application was found to be more effective in the case of GC4 (Alvioli et al., 2020), which embeds hydrographic 

information. 
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The best approach was selected by evaluating the error statistics for the bias at both a national and a local scale, and at a 470 

national scale for MAE, RMSE and NSE. The obtained results have shown that using simple linear regression applied to GC4 

model performs better than all the others, in the areas in which the GC4 model is statistically significant, in terms of bias. As 

far as national statistics are concerned, considering the mean rainfall depths in the gray areas in Figure 5b does not significantly 

affect the performance of GC4, in terms of MAE, RMSE and NSE, in particular for the 1-hour duration. In short, we propose 

using the GC4 model where possible and adopting the (spatial) mean value of the rainfall depths in case of non-statistically 475 

significant relationship. 

This work has led to the following conclusions. The relationship between precipitation and elevation is not meaningful in all 

the areas in Italy, as already pointed out by Caracciolo et al. (2012) for the Island of Sicily. In this work, this concept has 

systematically been extended to the whole country, and significant relationships have only been obtained for 45% of the area 

for ℎ̅1 and 49% for ℎ̅24. As far as the model that we suggest using is concerned, that is GC4, we are aware that improvements 480 

are possible, considering that no significant regressions were found over 55% (ℎ̅1) and 51% (ℎ̅24) of the territory. However, it 

should be pointed out that the rainfall station density is not sufficient for the application of the here proposed method over 9% 

of the territory. 

Details regarding the model based on GC4 and numerical values of the regression parameters are provided in the Data 

availability. 485 

Data availability 

The Iwahashi and Pike geomorphological classification (GC1) is available on https://esdac.jrc.ec.europa.eu/content/global-

landform-classification, the “Carta della Natura” classification (GC2) is available on 

https://www.isprambiente.gov.it/it/servizi/sistema-carta-della-natura, the Guzzetti and Reichenbach classification (GC3) is 

available upon request to the authors, while the Alvioli et al. classification (GC4) ise available on 490 

http://geomorphology.irpi.cnr.it/tools/slope-units. 

The rainfall data was obtained from the I2-RED database. Although the Italian law requires an open-source policy for all public 

data, this right has not yet been implemented by all the Italian agencies involved in the management of the rain gauge network. 

The agreements we signed with some of these agencies, aimed at monitoring the correct use of the data, restricted their use to 

the aims of the authors’ project. As a result of these legal restrictions, a complete version of I2-RED can only be provided to 495 

two groups of people: members of the authors’ research group (which is already fully authorized to use the data), and people 

who can prove they have received clearance from the regional authorities. The entire quality-controlled database is available 

on Zenodo (https://doi.org/10.5281/zenodo.4269509), albeit with restricted access. The data can be used by third parties, for 

an indefinite timeframe, upon having completed an agreement with the authors and with the regional agencies involved in the 

data collection. The raw data availability depends on the region: a complete description of how to access this data is reported 500 

in Mazzoglio et al. (2020). 

The model based on GC4 and the numerical values of the regression parameters are available as a Supplement. 
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