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Abstract. Meteorological forcing plays a critical role in accurately simulating the watershed hydrological cycle. With the

advancement of high-performance computing and the development of integrated watershed models, simulating the watershed

hydrological cycle at high temporal (hourly to daily) and spatial resolution (10s of meters) has become efficient and computa-

tionally affordable. These hyperresolution watershed models require high resolution of meteorological forcing as model input

to ensure the fidelity and accuracy of simulated responses. In this study, we utilized the Advanced Terrestrial Simulator (ATS),5

an integrated watershed model, to simulate surface and subsurface flow and land surface processes using unstructured meshes

at the Coal Creek Watershed near Crested Butte (Colorado). We compared simulated watershed hydrologic responses including

streamflow, and distributed variables such as evapotranspiration, snow water equivalent (SWE), and groundwater table driven

by three publicly available, gridded meteorological forcings (GMFs) – Daily Surface Weather and Climatological Summaries

(Daymet), Parameter-elevation Regressions on Independent Slopes Model (PRISM), and North American Land Data Assim-10

ilation System (NLDAS). By comparing various spatial resolutions (ranging from 400 m to 4 km) of PRISM, the simulated

streamflow only becomes marginally worse when spatial resolution of meteorological forcing is coarsened to 4 km (or 30% of

the watershed area). However, the 4 km resolution has much worse performance than finer resolution in spatially distributed

variables such as SWE. Using temporally disaggregated PRISM, we compared models forced by different temporal resolutions

(hourly to daily), sub-daily resolution preserves the dynamic watershed responses (e.g., diurnal fluctuation of streamflow) that15

are absent in results forced by daily resolution. Conversely, the simulated streamflow shows better performance using daily

resolution compared to that using sub-daily resolution. Our findings suggest that the choice of GMF and its spatiotemporal

resolution depends on the quantity of interest and its spatial and temporal scale, which may have important implications on

model calibration and watershed management decisions.

1 Introduction20

The accuracy of meteorological forcings such as precipitation plays a crucial role in simulating watershed hydrological

cycle. With the advancement of high-performance computing and the development of integrated hydrologic models (e.g.,

Amanzi-Advanced Terrestrial Simulator (ATS) (Coon et al., 2019), ParFlow (Kollet and Maxwell, 2006), and HydroGeo-
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Sphere (Aquanty, 2015)), simulating watershed hydrological cycle at high temporal and spatial resolution has become possible

(Wood et al., 2011). These models often require gridded meteorological forcing (GMF), which is typically fused from various25

sources, including ground-based gages, radar, satellite remote sensing, as well as regional and global climate models. Due to

different interpolation methods and data sources, GMF is available at different spatial and temporal resolutions and contains

considerable uncertainties (Schreiner-McGraw and Ajami, 2020).

Recently, GMF products, notably Daily Surface Weather and Climatological Summaries (Daymet) (Thornton et al., 1997, 2021),

Parameter-elevation Regressions on Independent Slopes Model (PRISM) (Daly et al., 2008) and North American Land Data30

Assimilation System (NLDAS) (Mitchell, 2004; Xia et al., 2012)), have become popular for hydrologic modeling within the

conterminous United States (CONUS) owing to their temporally and spatially complete coverage and relatively high spatiotem-

poral resolution. Past studies have compared and evaluated the performance of GMF against weather stations (Behnke et al.,

2016; Daly et al., 2008; Muche et al., 2020). Daly et al. (2008) presented a detailed comparison between PRISM and Daymet

and found that, for the products available in 2008, PRISM outperforms Daymet, especially in mountainous and coastal areas of35

the western U.S. Behnke et al. (2016) compared eight widely used meteorological forcing datasets including Daymet, PRISM,

and NLDAS against Global Historical Climatology Network-Daily (GHCN-D) stations across the CONUS. They found that

different interpolation methods affected the accuracy of downscaled meteorological data and care should be taken when se-

lecting meteorological forcing for a given region. In a similar study, Muche et al. (2020) compared four GMFs (i.e., Daymet,

PRISM, NLDAS, and Global Land Data Assimilation System (GLDAS)) as precipitation data sources, and evaluated the pre-40

cipitation estimates at GHCN-D stations within the Delaware Watershed at Perry Lake in eastern Kansas. They showed that

precipitation from Daymet and PRISM were more closely matched with precipitation collected at GHCN-D than that from

NLDAS and GLDAS.

Understanding the bias and fidelity of each meteorological forcing and the effects of meteorological forcing spatiotemporal

resolution on simulated watershed responses is important for accurate simulations of watershed processes. Previous studies45

have evaluated the impact of different GMF on model simulated surface runoff and streamflow (Muche et al., 2020; Behnke

et al., 2016; Gao et al., 2017; Elsner et al., 2014). Using the Soil and Water Assessment Tool (SWAT), Muche et al. (2020) eval-

uated model performance on simulated streamflow against observation under different GMFs. They found that the simulated

streamflows yielded a higher correlation when driven by PRISM and Daymet than those by NLDAS and GLDAS. Eum et al.

(2014) evaluated hydrologic responses using the Variable Infiltration Capacity (VIC) model forced by three GMFs available in50

Canada. They found notable differences in simulated surface runoff during the snow-melt period, but not so much during the

snowfall period. However, these studies mostly focused on meteorological forcing effects on surface runoff and ignored other

relevant hydrological processes (e.g., snowmelt, evapotranspiration (ET), and subsurface flow). In addition, these studies used

either semi-distributed models (e.g., SWAT) or coarse regional-scale land surface models (e.g., VIC), which do not fully utilize

the GMF at their finest resolutions.55

Compared to semi-distributed models, fully-distributed, integrated hydrologic models are favorable in simulating watershed

hydrologic responses to changes in climate forcing as they can preserve the spatial heterogeneity of inputs from GMF and

provide a spatially distributed representation of both surface and subsurface flow processes. Recently, Maina et al. (2020)
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used ParFlow-Community Land Model (CLM), a fully distributed, processes-based watershed model, to study the effect of

spatial resolution of meteorological forcing (0.5 to 40.5 km) generated from the WRF model on spatially resolved hydrologic60

responses, including snow water equivalent (SWE), ET, infiltration, surface ponded depth and groundwater table. Using the

Cosumnes Watershed as a testbed, they found that most hydrologic variables were seasonally and spatially dependent on the

different spatial resolutions of the meteorological forcing. Although climate models such as WRF provide alternative GMF at

any given spatiotemporal resolution, they require extensive expert knowledge in setting up and running the models and thus are

less popular compared to publicly available GMF (e.g., Daymet, PRISM, and NLDAS). To our knowledge, few, if any, studies65

have utilized the common GMFs to investigate the impact of spatial resolution of meteorological forcing on both watershed

cumulative variables (e.g., streamflow) and distributed variables (e.g., SWE, ET, and groundwater level).

The temporal resolution of meteorological forcing, especially precipitation, plays an important role in the timing of runoff

generation. It is particularly important for flood volume modeling (Ficchì et al., 2016), flood forecasting (Wetterhall et al.,

2011), and hydrodynamic modeling in urban catchment (Ochoa-Rodriguez et al., 2015; Bruni et al., 2015). The temporal reso-70

lution of rainfall inputs has shown to affect the simulation of surface runoff more strongly than variations in spatial resolution

during storm events (Ochoa-Rodriguez et al., 2015). High temporal resolution is also important for studying watershed bio-

geochemical cycling since sub-daily meteorological forcing could induce diurnal snowmelt that produces regular infiltration of

cold, chemically distinct snow water into the soil which alters the soil temperature and chemical composition of soil and ground

water (Petrone et al., 2007; Woelber et al., 2018). Despite the importance of the temporal resolution of input forcing, the impact75

of GMF temporal resolution on watershed hydrodynamics has largely been overlooked. For example, a daily timestep is used

routinely in watershed hydrologic modeling and the simulated daily streamflow is generally used to compare with observed

daily streamflow even though sub-daily streamflow measurement is collected in most United States Geological Survey (USGS)

stream gages.

The objective of this study is to intercompare three widely available GMFs (i.e., PRISM, Daymet, and NLDAS) and to80

evaluate the impact of meteorological forcing spatial and temporal resolution on simulated watershed hydrologic responses

including streamflow, ET, SWE, soil moisture, ponded surface water depth, and groundwater table. We choose ATS as the

integrated watershed model to couple surface and subsurface flows with land surface processes (Coon et al., 2019). The model

can fully resolve the meteorological forcing on a much finer resolution (<= 100 m) using unstructured triangular grids. We

seek to understand the impact of meteorological forcing by comparing model simulations with field observations including85

GHCN-D stations, USGS stream gages, and remote sensing products. We aim to answer the following questions: (1) How

would different GMF in their native resolution impact the simulated streamflow, distributed variables such as SWE? (2) What

are the effects of spatial and temporal resolution of GMF on simulated streamflow and spatially distributed variables? and (3) Is

spatial resolution more important than temporal resolution of the GMF for watershed simulations? To address these questions,

we perform different numerical experiments using ATS by forcing the model with various spatial and temporal resolutions of90

GMFs. We choose a mountainous watershed due to its complex terrain and heterogeneous weather conditions, which provides

an ideal testbed for studying the impact of meteorological forcing spatiotemporal resolution on watershed dynamic responses.

The findings from this study are relevant for the use of GMF dataset on watershed hydrologic simulations using fully distributed
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watershed models in mountainous watersheds. It also provides important implications on watershed calibration using inverse

modeling.95

2 Methods

2.1 Study site

Our study site is located in the Coal Creek Watershed (Hydrologic Unit Code (HUC): 140200010204) with an area of 53.2 km2

located within the larger East Taylor Watershed (HUC: 14020001) near Crested Butte, in southwestern Colorado (Figure 1).

The Coal Creek Watershed is a high alpine, snow-dominated catchment, characterized as warm summer, humid continental100

climate on the Koppen classification system (Koppen and Geiger, 1930). It receives ∼850 mm of precipitation annually, with

∼530 mm as snowfall which was estimated from long-term Daymet forcing dataset (Thornton et al., 2021). The primary land

cover types are evergreen forest (62.6%) and shrub (20.5%). This watershed has strong variations in topography and land cover,

which is representative of many headwater, mountainous watersheds in the western U.S.

2.2 ATS model setup105

ATS is an integrated, distributed hydrologic code that solves the diffusion wave approximation of the St. Vernant equations

for surface flow coupled to Richards equation for flow in variably saturated porous media in the subsurface (Coon et al.,

2019, 2020). The Richards equation is described as:

∂

∂x
(φs)+O · q = 0 (1)

with:110

q =− 1

µ
krκ(Op+ ρg) (2)

where φ is the effective porosity [-], s is the saturation [-], q is Darcy flux [m/s], µ is the dynamic viscosity [Pa · s], kr is

relative permeability [-], κ is the saturated hydraulic permeability [m2], p is water pressure [Pa], and g is the gravitational

constant [m/s2].

The diffusive wave approximation to overland flow is described as:115

∂h

∂t
+O · (hv) =Qw +Qss (3)

with:

v =− h2/3

n ·max(ε,
√
Oz)

O(z+h) (4)

where h is the depth of ponded water [m], v is the surface flow velocity [m/s], Qw is all external source/sink term [m/s],

Qss is the exchange flux between surface and subsurface systems [m/s], n is the Manning’s coefficient [s/m1/3], z is surface120

elevation [m], and ε is a small positve regularization to keep the equations non-singular in places with zero bed slope [m].
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Figure 1. Map of Coal Creek Watershed in relation to the larger East Taylor Watershed as well as its relative location in the western US (red

dot). Also shown are the location of GHCN-D stations, USGS stream gage, National Hydrography Dataset Plus (NHDPlus) stream network,

and Digital Elevation Model (DEM). The marked points (A-D) and (1-4) are point locations used to observe groundwater table and surface

ponded depth, respectively.

The ATS meshes including surface land covers and subsurface structures and properties were developed using the Watershed

Workflow package (Coon and Shuai, 2021), which brings together a variety of data streams, delineates the catchment, and

generates a variable resolution mesh with refined resolution at the stream network. Resolutions ranged from typical triangle

areas of 5,000 m2 near the stream network to 50,000 m2 away from the stream network. This triangular surficial mesh was125

then elevated using Digital Elevation Model (DEM) from the USGS National Elevation Dataset (NED) 30m resolution dataset.

On the surface, 14 land cover types were delineated from the National Land Cover Database (NLCD 2016) product for

the CONUS. The Leaf Area Index (LAI) seasonal variations for each land cover type were retrieved from MODIS (https:

//modis.gsfc.nasa.gov/data). Some of the plant functional type and their properties such as rooting profile and photosynthetic

parameters were adopted from parameters used in the CLM 4.5 technical notes (Oleson et al., 2013).130
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In the subsurface, the model was discretized into 19 terrain-following layers with a total thickness of ∼28 m. A total of 6

soil layers encompassed the top 2 m of the domain. The depth to bedrock (DTB) was determined from SoilGrids (Shangguan

et al., 2017) that varies from 3 m at the shallowest to 26 m at the deepest. The geologic layers were sandwiched between the

soil and bedrock layers. The vertical resolution of the mesh gradually increased from 5 cm at the surface to 2 m at the 2 m

depth, and it remained constant at 2 m until the bottom of the model domain at a depth of 28 m. The total number of cells is135

171,760.

Based on the National Resources Conservation Service (NRCS) Soil Survey Geographic (SSURGO) soils database, 22 soil

types were identified and mapped within the soil layer. Due to the edge-matching issues in the SSURGO soil database (Gatzke

et al., 2011), the 22 soil types were regrouped into 9 types to remove the discontinuity of a soil type across soil survey area

boundaries. Using a global surface geology dataset from GLobal HYdrogeology MaPS (GLHYMPS) 2.0 (Huscroft et al.,140

2018), 11 geologic material types were identified and mapped within the geologic layer. The spatial distribution of the soil and

geological layers was shown in Figure 2. The permeability and porosity for each soil type were retrieved from the SSURGO

database, and the van Genuchten parameters were determined using Rosseta v3, a pedotransfer function that relates sand, silt,

and clay percentage to van Genuchten parameters (Zhang and Schaap, 2017). The permeability and porosity for each geology

type were retrieved from the GLHYMPS database. Bedrock functions as a confining layer and is assumed to have a very small145

permeability of 1×10−17 m2.

The model was first run for 1,000 years with constant precipitation (∼ 850 mm/yr) as the cold-spinup that resulted in

steady-state model outputs at the final timestep, which was then used as the initial condition for a 10-year (October 1, 2004 -

October 1, 2014) transient simulation (i.e., warm-spinup) driven by the Daymet forcing. Model state at the end of the 10-year

run was used as the initial condition for a 4-year transient run (October 1, 2015 - October 1, 2019) driven by various GMFs. The150

water year 2015 was treated as a second warm-spinup and was discarded from the analysis to avoid any influence from previous

spinup runs. The study period features a high snow year (∼ 709mm in water year 2017) and a low snow year (∼ 296mm in

water year 2018), allowing us to demonstrate how different meteorological forcing impact watershed responses under various

weather conditions. ATS runs were taken at sub-hourly timestep determined by the model while outputting streamflow and

watershed averaged variables at hourly timestep. Due to large file size, spatially distributed variables such as SWE and ET155

were output at daily timesteps. Each run took ∼ 17 hours wallclock time using 64 processors on the Cori clusters at the

National Energy Research Scientific Computing Center (NERSC). The models were not calibrated because the focus of this

study was to evaluate the effect of meteorological forcings on model simulation instead of estimating the optimal parameters

used in ATS.

2.3 Gridded meteorological forcing160

For this comparison, three widely used GMF were considered: PRISM (Daly et al., 2008), NLDAS-2, (Xia et al., 2012)),

and Daymet v4 (Thornton et al., 1997, 2021). NLDAS-2 and Daymet v4 are hereafter referred to as NLDAS and Daymet,

respectively. The detailed comparison between each meteorological dataset can be found in Table 1.
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Figure 2. (a) Land cover, (b) soil map, (c) geology map of Coal Creek Watershed that are generated from Watershed Workflow. (d) ATS

simulated surface ponded depth and soil saturation on October 1, 2018. The zoomed in plot shows the 3D unstructured triangular mesh.
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The Daymet climate forcing is a gridded, daily product with a spatial resolution of 1-km, covering continental North Amer-

ica, Puerto Rico, and Hawaii. It assimilates data from weather stations (primarily GHCN-D stations) and accounts for elevation,165

prevailing winds, storm tracks, and proximity to large water bodies (Thornton et al., 1997). Here, the latest Daymet version

4 product is used because this product has gone through significant bias corrections in station observations and the gridded

product shows a better match with weather stations compared to the earlier versions (Thornton et al., 2021).

The PRISM forcing is developed by the PRISM climate group at the Oregon State University and is recognized as the official

climate dataset for the U.S. Department of Agriculture. It utilizes a wide range of monitoring networks including GHCN-D170

stations and local/state weather stations to generate daily, spatially continuous climate data for the CONUS. The PRISM

provides a native grid resolution of 30-arcsec (∼800m) for a fee, but also provides a coarsened 4 km resolution free of charge.

We used the native 30-arcsec resolution and downscaled (upscaled) the dataset to obtain finer (coarser) spatial resolutions.

The NLDAS dataset is a gridded, hourly product with a spatial resolution of 1/8th degree (∼12 km at the study site) for the

entire North American region. The non-precipitation forcing variables are primarily derived from the North American Regional175

Reanalysis (NARR) by spatially interpolating data from the 32-km resolution NARR grid to the 1/8th degree NLDAS grid while

temporally disaggregated from 3-hourly to hourly frequency (Cosgrove et al., 2003). The precipitation is a product of a temporal

disaggregation of a gage-only Climate Prediction Center (CPC) analysis of daily precipitation into hourly frequency, performed

directly on the NLDAS grid and including an orographic adjustment based on the widely-applied PRISM climatology.

All three datasets provide temperature and precipitation as the primary forcing with a few secondary forcing variables.180

In addition to temperature and precipitation, ATS requires solar radiation (both incoming shortwave radiation (Srad) and

longwave radiation (Lrad)), relative humidity, and wind speed as forcing inputs. Relative humidity can be estimated based on

vapor pressure and mean temperature (Bolton, 1980). Lrad can be estimated from Srad and relative humidity. Because PRISM

does not provide Srad and Lrad, we used solar radiation from Daymet instead. Wind speed was assumed to be constant (i.e.,

4m/s) for both Daymet and PRISM. Compared to PRISM and Daymet, NLDAS provides the most complete set of variables185

to drive ATS simulations.

Different meteorological forcings have different definitions for a calendar day and they are often different from the local time

used in the observation data (see Table A1 in the Appendix). Time zone adjustment and lag corrections have been applied to

account for the time lag difference between meteorological forcing and local gages. For example, PRISM lags Daymet by one

day, so PRISM has been shifted forward one day to be consistent with Daymet. Both model simulation and gage observation190

have been converted to Coordinated Universal Time (UTC) timezone for hourly streamflow comparison. For consistency, all

simulated streamflow are in hourly resolution and are compared to hourly USGS streamflow in Section 3.

To study the effect of spatial resolution of meteorological forcing, precipitation, and temperature from 800m PRISM and

1 km Daymet have been downscaled (upscaled) into finer (coarser) spatial resolutions. The downscaling of 800 m PRISM

or 1 km Daymet into 400 m used a data-driven downscaling approach. Specifically, Random Forests (Breiman, 2001) were195

used to extract the relationships between precipitation (or average temperature) and topography. These relationships were

developed at 800 m (for PRISM) and 1 km (for Daymet) resolutions and were used as-is to generate the 400 m downscaled

estimates. The downscaled precipitation grids were additionally filtered to ensure a smooth field in low-gradient areas without
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affecting high-gradient areas (Daly et al., 2008). The topographic variables considered were elevation, slope, aspect, latitude,

and longitude. These variables were extracted from the NED 10 m resolution product and upscaled to 400 m and 800 m200

(for PRISM) via bilinear interpolation. Upscaling of topographic variables was done in maximum increments of 2x (e.g.,

10m−> 20m−> 40m and so on).

For consistency, spatial upscaling of 800 m PRISM into 1600 m and 4000 m was performed using a coarsen function

from python package–xarray (http://xarray.pydata.org) by applying moving average based on a 2x2 window size. The same

approach was used for spatial upscaling of 1 km Daymet to 2 km and 4 km. To study the effect of temporal resolution of me-205

teorological forcing, the daily PRISM dataset was disaggregated into hourly resolution using the temporal pattern of NLDAS.

The hourly PRISM dataset was then aggregated into 12-hourly temporal resolution by taking the mean (for temperature) or

sum (for precipitation) for the aggregated period.

In ATS, meteorological forcing is distributed linearly across its temporal resolution, and each model surface cell gets its me-

teorological forcing through spatially bilinear interpolation. For example, both Daymet and PRISM apply their meteorological210

forcing at the daily time scale, whereas NLDAS applies its meteorological forcing at an hourly time scale.

2.4 Observation data

Instantaneous streamflow data (every 15 minutes) are available from April 1st through November 15th every year since 2014

at a USGS gage (station number: 09111250), located at the watershed outlet. The 15-min streamflow was aggregated to hourly

streamflow which was used to compare against model simulations in the Results Section. Past Airborne Snow Observatory215

(ASO) survey has four flights covering this watershed in 2018 and 2019 to survey the snow depth and SWE. Remote sensing

products such as the Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day composite ET is available at a 500 m

resolution since 2000. Groundwater measurements and field observed soil moisture data are not available within the study site.

To compare the accuracy of each meteorological forcing against field observations, all three meteorological forcings in their

native resolutions were compared against GHCN-D weather stations within the East Taylor Watershed. In total, there were220

seven stations with long-term precipitation records and four stations with long-term temperature records (see GHCN-D station

locations in Figure 1). Both precipitation and temperature time series were extracted at each GHCN-D gage location from the

GMF.

2.5 Model evaluation metrics

Model simulated outputs were compared against observation data including hourly streamflow from a USGS gage and spatially225

distributed SWE from the ASO survey. The modified Kling-Gupta efficiency (KGE) and its three components (r, γ, β) were

used to evaluate the model performance (Kling et al., 2012) in addition to the standard Nash-Sutcliffe Efficiency (NSE). The

theoretical version of the KGE metric is

KGE = 1−
√

(r− 1)2 +(γ− 1)2 +(β− 1)2 (5)
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with:230

r =
cov(S,O)

σsσo
(6)

γ =
σs/µs

σo/µo
(7)

β =
µs

µo
(8)

where S and O represents simulated and observed values, respectively, r is correlation coefficient, γ is variability ratio, β is

the bias ratio, cov(S,O) is the covariance between simulated and observed values, σ is the standard deviation, µ is the mean.235

Using the modified KGE avoids the effect of input bias on the variability indicator which has an advantage over the

original KGE (Gupta et al., 2009; Kling et al., 2012), and it also allows diagnostic interpretation of the performance score.

KGE decomposes model performance into correlation (r), variability (γ) and bias (β) term. For example, the correlation

measures the temporal dynamics of streamflow (i.e., timing) while the variability and bias measure the flow duration curve

(i.e., magnitude). The KGE ranges from −∞ (poorest model skill) to 1 (perfect) when all three terms reach unity. Simiarly,240

the NSE ranges from −∞ (poorest model skill) to 1 (perfect).

Taylor Diagram is used to show how close a set of patterns (e.g., meteorological forcing) match observations (Taylor, 2001).

On each Taylor Diagram, performance metrics such as standard deviation and Pearson’s correlation coefficient (r) are shown

together. The azimuthal angle represents correlation, and the radial distance represents the standard deviation. Also can be

shown is the centered Root Mean Square Error (RMSE) between simulation and observation. The relationship between these245

statistics was shown below:

E2 = σs
2 +σo

2− 2σsσor (9)

where E is the centered RMSE, which is also measured by the geometric distance between simulation and observation

data points on the Taylor Diagram (unit is the same as standard deviation). In cases where more than one observation point are

plotted on the same diagram, the centered RMSE is omitted. Note that the centered RMSE is a mean-removed RMSE, and250

thus any bias in the data is not shown.

The closer the distance between simulation and observation data point on a Taylor Diagram, the smaller the centeredRMSE

(observation data point has centeredRMSE = 0), the more similarity they show in terms of standard deviation, and the higher

the correlation coefficient (observation data point has r = 1).
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3 Results255

3.1 Comparison between meteorological forcing and weather stations

Taylor Diagram was used to compare the similarity in precipitation and temperature patterns between meteorological forcing

and GHCN-D stations (Figure 3). Compared to temperature, precipitation showed stronger spatial heterogeneity among stations

indicated by the larger difference in standard deviation and correlation. The close clustering of temperature data points indicated

that the difference between different stations in temperature patterns was small. For precipitation, PRISM showed a strong260

correlation (r > 0.9) with GHCN-D at three stations, whereas Daymet only showed a strong correlation at one location and

all NLDAS sites showed a relatively weak correlation (0.5< r < 0.85). For temperature, all three meteorological forcings

showed a very strong correlation (r > 0.95) with GHCN-D, though Daymet was slightly better than PRISM and NLDAS.

Previous studies also reported similar findings at different watersheds that Daymet and PRISM showed better agreement with

ground-based observational data than NLDAS (Muche et al., 2020), and the temperature was more accurately represented than265

precipitation (Behnke et al., 2016).

Triple Collocation Analysis (TCA) was performed for precipitation and temperature using three GMFs over the East-Taylor

watershed (see details in Appendix A2). Both precipitation and temperature showed strong spatial heterogeneity of the noise

standard error in all three GMFs. On average, Daymet and PRISM showed less error compared to NLDAS for both precipitation

and temperature, though the temperature error in some locations of Daymet were higher than those of PRISM and NLDAS.270

3.2 ATS simulations driven by different meteorological forcing products

To compare the effects of different GMF products on the ATS simulations, precipitation and temperature from each GMF were

used as the primary forcing variables with the same other variables (e.g., solar radiation, humidity, and etc.) from Daymet.

To further isolate the impact of different meteorological forcing variables, precipitation and temperature from each GMF was

systematically varied. For example, different precipitation from each GMF were used while keeping temperature the same in275

each simulation, and vice versa.

Using different precipitation and temperature, simulated hourly streamflow forced by Daymet (1 km, daily) showed better

performance against USGS hourly streamflow, followed by PRISM (800 m, daily) and NLDAS (12 km, hourly) during a three

year simulation period (Figure 4). In their native resolutions, Daymet outperformed PRISM and NLDAS with the largestKGE

(0.62) andNSE (0.54) against observed streamflow (also see the statistical summary in Table 2). The high agreement between280

observed and simulated streamflow forced by Daymet is remarkable given that the ATS model has not been calibrated. In

general, all three models underestimated discharge (β < 1) while showing slightly more variability (γ > 1), especially in 2018

and 2019. As expected, models using hourly NLDAS showed larger variability (γ = 1.54) due to the highly dynamic flow

variations in simulated streamflow compared to those using daily Daymet or PRISM. Daymet underestimated peak flows but

it showed larger flow variability during low flows and early spring.285

Not surprisingly, precipitation played a more important role than temperature in driving the simulated watershed responses.

Using different precipitation source alone had similar performance than using both precipitation and temperature from each
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Figure 3. Taylor Diagram showing the correlation coefficients and standard deviations between meteorological forcing and GHCN-D gages

(black) for (a) precipitation and (b) temperature. The azimuthal angle represents correlation, and the radial distance represents the standard

deviation. Each marker symbol represents a different GHCN-D station location.

GMF. In both cases, Daymet outperformed PRISM and NLDAS in simulated streamflow (Figure 5). The KGE and NSE metrics

from Daymet and PRISM were much higher than those from NLDAS (Table 2). However, using different temperature source

alone had little effect on the simulated streamflow (Figure 6). Both KGE and NSE metrics were very similar among different290

GMFs (Table 2).
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Figure 4. Simulated hourly discharge at watershed outlet compared with USGS hourly streamflow forced by different precipitation and

temperature from each GMF. Also shown is the flow duration curve comparison.
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Figure 5. Simulated hourly discharge at watershed outlet compared with USGS hourly streamflow forced by different precipitation from

each GMF. Also shown is the flow duration curve comparison.
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Figure 6. Simulated hourly discharge at watershed outlet compared with USGS hourly streamflow forced by different temperature from each

GMF. Also shown is the flow duration curve comparison.
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Table 2. Summary of statistical metrics for evaluation of streamflow at watershed outlet using precipitation and/or temperature from different

meteorological forcing

Forcing variable Source r γ β KGE NSE

Prcp & Temp PRISM 0.69 1.02 0.54 0.45 0.38

Daymet 0.75 1.05 0.72 0.62 0.54

NLDAS 0.60 1.54 0.35 0.06 0.20

Prcp PRISM 0.72 1.06 0.57 0.48 0.43

Daymet 0.75 1.05 0.72 0.62 0.54

NLDAS 0.51 1.34 0.32 0.10 0.08

Temp PRISM 0.73 1.00 0.69 0.59 0.49

Daymet 0.75 1.05 0.72 0.62 0.54

NLDAS 0.72 1.18 0.75 0.58 0.46

Table 3. Summary of statistical metrics for evaluation of streamflow at watershed outlet under different meteorological forcing spatial and

temporal resolutions

Meteorological

forcing

Spatial resolution Temporal resolu-

tion

r γ β KGE NSE

PRISM 400 m daily 0.70 1.01 0.53 0.44 0.38

800 m hourly 0.43 1.12 0.45 0.20 0.07

800 m 12-hourly 0.61 1.07 0.49 0.35 0.26

800 m daily 0.69 1.02 0.54 0.45 0.38

1600 m daily 0.68 1.08 0.55 0.44 0.37

4000 m daily 0.64 1.20 0.56 0.40 0.33

Daymet 400 m daily 0.76 1.04 0.71 0.63 0.55

1 km daily 0.75 1.05 0.72 0.62 0.54

2 km daily 0.73 1.10 0.72 0.60 0.50

4 km daily 0.73 1.14 0.73 0.59 0.49

NLDAS 12 km hourly 0.60 1.54 0.35 0.06 0.20
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Table 4. Summary of statistical metrics used for evaluation of spatially distributed SWE under different meteorological forcing at different

times compared to observed SWE from ASO

Date Meteorological

forcing

Spatial reso-

lution

Temporal

resolution

r γ β KGE NSE

March 31, 2018 PRISM 400 m daily 0.51 1.04 0.00 -0.12 -8.20

PRISM 800 m daily 0.50 1.04 0.00 -0.12 -8.20

PRISM 1600 m daily 0.46 0.94 0.00 -0.13 -8.20

PRISM 4000 m daily 0.37 0.86 0.00 -0.18 -8.20

Daymet 1 km daily 0.47 1.11 0.00 -0.14 -8.20

NLDAS 12 km hourly 0.15 1.00 0.00 -0.31 -8.20

May 24, 2018 PRISM 400 m daily 0.55 1.53 0.00 -0.22 -0.12

PRISM 800 m daily 0.51 1.54 0.00 -0.24 -0.12

PRISM 1600 m daily 0.47 1.77 0.00 -0.37 -0.12

PRISM 4000 m daily 0.28 2.92 0.00 -1.28 -0.12

Daymet 1 km daily 0.35 3.41 0.00 -1.69 -0.12

NLDAS 12 km hourly -0.01 1.14 0.00 -0.43 -0.12

April 7, 2019 PRISM 400 m daily 0.55 0.62 0.00 -0.16 -11.30

PRISM 800 m daily 0.53 0.61 0.00 -0.17 -11.31

PRISM 1600 m daily 0.50 0.57 0.00 -0.20 -11.31

PRISM 4000 m daily 0.37 0.48 0.00 -0.29 -11.31

Daymet 1 km daily 0.47 0.58 0.00 -0.21 -11.31

NLDAS 12 km hourly -0.04 0.49 0.00 -0.53 -11.31

June 10, 2019 PRISM 400 m daily 0.76 1.62 0.00 -0.20 -1.16

PRISM 800 m daily 0.71 1.61 0.00 -0.21 -1.16

PRISM 1600 m daily 0.66 1.48 0.00 -0.16 -1.16

PRISM 4000 m daily 0.50 0.82 0.00 -0.13 -1.16

Daymet 1 km daily 0.73 1.23 0.00 -0.06 -1.16

NLDAS 12 km hourly -0.13 1.75 0.00 -0.69 -1.16

Average SWE across the watershed showed large differences between different meteorological forcings (Figure 7). Daymet

had the largest simulated SWE on average, while NLDAS had the smallest simulated SWE. PRISM produced a similar SWE

pattern with Daymet, and their magnitude was very close except for the year 2017. The accumulation of SWE started around

the same time for all three meteorological forcing, though SWE disappeared early for NLDAS in the last two years.295

Spatially, all meteorological forcing significantly underestimated SWE (β ≈ 0) when compared to SWE from ASO (Table

4), and the difference becomes larger in higher elevation with more accumulated snow (Figure 9). The large difference may
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be attributed to the higher spatial resolution (50 m) used in the ASO snow survey than the spatial resolution of the GMF.

Simulated SWE by the three models showed a larger variability (γ > 1) than the observed SWE, except on April 7, 2019 when

variability was smaller than the observed SWE. Interestingly, the largest variability occurred on May 24, 2018 when little snow300

was accumulated on the surface. Most of the time, PRISM showed a higher correlation between simulated and observed SWE

than that from Daymet and NLDAS. In contrast, NLDAS showed the poorest correlation (r < 0.2) with observation.

All three GMFs showed similar ET dynamics because they used the same solar radiation from Daymet (Figure 7 and Figure

8). Compared to the remote sensed 8-day composite ET from MODIS, all three meteorological forcing showed a consistent

seasonal trend with the MODIS with underestimated ET in the spring. Additionally, the simulated 8-day composite ET by305

Daymet and PRISM was higher than that from NLDAS in the peak growing season in 2017 and 2019.

3.3 Effects of meteorological forcing spatial resolution

To evaluate the effects of spatial resolution of meteorological forcing, precipitation and temperature from different spatial

resolutions of PRISM and Daymet were used to drive the model. Because the findings from both PRISM and Daymet were

similar, only results from PRISM were summarized below (see Appendix A3 for Daymet comparison Figure A3 and A4). As310

the spatial resolution became finer, the spatial pattern of precipitation and temperature became more heterogeneous and were

more strongly associated with local topography, land use, and land cover. On the contrary, coarser-resolution meteorological

forcing produced more homogeneous and smoother spatial patterns with less accuracy (Figure A8 and A9). In addition to

precipitation and temperature, the effect of spatial resolution of solar radiation (i.e., Srad) was tested and was found to have

little impact on watershed hydrologic variables (see Appendix A4).315

The simulated discharge showed similar performance in terms of KGE and NSE compared to the observation when meteoro-

logical forcing spatial resolution was<= 1600m (Table 2). In fact, the KGE and NSE of 400 m, 800 m, and 1600 m resolution

were almost identical. All four resolution showed higher variability (γ > 1) with relatively high correlation (r > 0.6) in simu-

lated streamflow than the observation. The variability became larger (γ = 1.20) and the correlation became weaker (r = 0.64)

as meteorological forcing spatial resolution reached 4 km (Figure 10). The simulated SWE and total water storage changes320

were almost identical for all spatial resolutions except during the snowmelt period when the 4 km spatial resolution shows

faster snowmelt in early summer across all three years (Figure A10). The spatial distribution of SWE when compared with

ASO SWE showed significantly large bias (β ≈ 0) and thus negative KGE and NSE for all spatial resolution at all time (Figure

11 and Table 4). Generally, the 4 km resolution had the worst performance and became most obvious on May 24, 2018. PRISM

at 400 m and 800 m showed a similar spatial pattern thus a similar correlation with ASO SWE.325

Soil moisture at the top 5 cm layer showed similar pattern when spatial resolution was <= 1600m (Figure A11). The

differences between 4 km resolution and finer resolution became obvious during the snowmelt period (May 24, 2018 and June

10, 2019) when soil becomes saturated. For example, soil in the northwest region from the 4 km resolution was wetter on May

24, 2018, whereas soil close to the outlet from the 4 km resolution was wetter on June 10, 2019. Similarly, spatially distributed

ET did not show a significant difference until meteorological forcing resolution reached 4 km (Figure A12).330
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Figure 7. Simulated hourly watershed average SWE and ET under different meteorological forcing. Also shown is the comparison between

MODIS and simulated 8-day composite ET.
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Figure 8. Zoomed in plot showing simulated hourly watershed average SWE, ET and discharge under different meteorological forcing from

June 1st, 2017 to June 29th, 2017.
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Figure 9. Spatial distribution of SWE under different meteorological forcing, and their comparison with ASO SWE data at four different

survey times.

Surface ponded depth showed very little difference between different spatial resolutions. Four locations (labeled as 1-4 in

Figure 1) were selected across the watershed to show the ponded depth variations (Figure 12). One was located at the upstream

branch and the other three were located along the Coal Creek main stem. Similar to the watershed discharge, ponded depth

only differed when the spatial resolution was coarsened to 4 km. The 4 km resolution had a faster recession during peak flows

compared to results from other finer resolutions, and the 4 km resolution was also less responsive to rainfall. On average,335

surface ponded depth varied less than 0.2 m during peak flows.

A transect was selected running from mountain top to river valley bottom with four selected observation locations (labeled

as A-D in Figure 1) and groundwater table time series was plotted in Figure 13. In general, groundwater rose during snowmelt

(April to June) and rainfall events and fell in the dry period (July to September). Location A was at the mountain top and the

groundwater table was∼4 m below the land surface except during the snowmelt period when the groundwater table rose to the340
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surface. Since location A was dominated by snow and receives less rainfall, the rise in the groundwater table was mainly due to

snowmelt. Location B and C showed similar trends in groundwater table fluctuations, however, they showed more peaks since

they were influenced by both snowmelt and rainfall. The groundwater table at location D was mostly close to the surface except

during the dry season when groundwater started to decline. The 4 km resolution behaved very differently from the other finer

resolutions at location A, where the groundwater table peaked earlier due to earlier infiltration from snow. In a dry year in 2018,345

the groundwater table did not even rise during the snowmelt period at location A. In general, the coarser the meteorological

forcing resolution, the larger the bias in precipitation, and the more the groundwater table buffered from snowmelt and rainfall.

Figure 10. Simulated discharge at watershed outlet compared with USGS gage under different spatial resolution of PRISM. Also shown is

the flow duration curve comparison.
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Figure 11. Spatial distribution of SWE under different spatial resolution of PRISM, and their comparison with ASO SWE data at four

different survey times.

3.4 Effects of meteorological forcing temporal resolution

The effect of meteorological forcing (i.e., precipitation and temperature) temporal resolution on watershed hydrologic simula-

tions was evaluated by using hourly, 12-hourly, and daily PRISM datasets. All resolutions outputted hydrological variables in350

hourly timestep and were compared with hourly observed streamflow. In addition to precipitation and temperature, the effect

of temporal resolution of solar radiation (i.e., Srad) was tested. The temporal resolution of solar radiation slightly changed the

dynamics of streamflow, but overall the impact on watershed hydrologic variables was negligible (see Appendix A4).

The match between simulated and observed hourly discharge in terms of KGE was better with daily resolution than hourly

and 12-hourly temporal resolution (see Figure 14 and Table 3). The low performance (KGE = 0.20) under hourly resolution355

was mainly due to the relatively lower correlation (r = 0.43) and higher variability (γ = 1.12) between simulated and observed

streamflow. This is not surprising since hourly meteorological forcing has a more dynamic forcing pattern including hourly

temperature and precipitation, and thus it yielded a more dynamic overland flow pattern that can be quite different from field

observations. To investigate the hydrograph in more detail, discharge time series were zoomed into the high flow season in

2017 (Figure 15). It was clear that models driven by hourly and 12-hourly PRISM contained sub-daily flow fluctuations that360
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Figure 12. Simulated surface ponded depth at four selected locations under different spatial resolution of PRISM.
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Figure 13. Simulated groundwater table at four selected locations (A-D) under different spatial resolution of PRISM. Dashed line indicates

the surface elevation. Also see Figure 1 for location detail.
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would be absent in models driven by daily PRISM. Models driven by 12-hourly PRISM had a weaker diurnal flow pattern in

terms of magnitude. This is because hourly PRISM retains the diurnal signal of air temperature and thus the diurnal snowmelt

pattern, whereas 12-hourly PRISM had a weaker diurnal signal due to only changing air temperature every 12 hours (Figure

15). On the other hand, daily PRISM assumes uniform air temperature throughout a day, and thus produced streamflow that

was much smoother without diurnal fluctuations. In general, discharge from the hourly PRISM peaked earlier and had less365

steep recession limb compared to that from 12-hourly and daily PRISM.

Hourly PRISM had the largest snowmelt and ET variations, followed by 12-hourly and daily PRISM (Figure 15). Compared

to the remote sensed 8-day composite ET from MODIS, the simulated 8-day composite ET forced by the different temporal

resolution of PRISM showed a consistent seasonal trend with the MODIS (Figure 16). However, significant model underesti-

mation was observed in the spring. All three PRISM resolutions showed similar trends of seasonal snowpack accumulation.370

However, there was a large difference in peak SWE. Hourly PRISM reached a smaller SWE peak and the snow melted earlier

compared to 12-hourly and daily PRISM, which might be the combined effects of faster snowmelt and slightly larger ET.

4 Discussions

4.1 The choice of gridded meteorological forcing for integrated watershed simulation

We compared three GMFs at their native resolution, Daymet (daily, 1 km), PRISM (daily, 800 m) and NLDAS (hourly, ∼12375

km), in driving watershed responses including watershed outlet discharge and spatially distributed variables such as SWE and

ET. Can we choose the "best" meteorological forcing for integrated watershed modeling based on discharge comparison alone?

What are the strengths and weaknesses of each GMF?

In surface hydrologic modeling, hydrologists often judge the performance of a numerical model by the ability to match the

streamflow at the watershed outlet (Staudinger et al., 2019). However, streamflow alone is not good enough for evaluating380

the performance in meteorological forcing because discharge at the watershed outlet has limited information on the spatial

distribution of model outputs (e.g., SWE). Even though simulated streamflow from Daymet has the best match (i.e., highest

KGE) against observation, the spatially distributed SWE from Daymet has a weaker correlation with the observed SWE from

ASO survey than that from PRISM. Both Daymet and PRISM perform better than NLDAS in simulating discharge and spatial

SWE due to their relatively fine spatial resolution. As shown in Figure 9, NLDAS hardly captures the spatial heterogeneity385

of SWE when comparing to ASO SWE. The entire watershed area (∼53.2 km2) is smaller than the size of one pixel of the

NLDAS grid (∼12 × 12 km or ∼ 144 km2), making the meteorological forcing almost homogeneous at the watershed scale.

For a watershed simulation that usually has a mesh resolution< 1 km, Daymet or PRISM provides the best spatial resolution

available across the CONUS. However, they do not have the complete forcing dataset that could be directly applied to water-

shed models without filling in the missing dataset. Daymet has most of the forcing variables except wind speed and longwave390

radiation. PRISM is missing both wind speed and solar radiation (both short- and long- wave radiation), which is important for

calculating surface energy balance and estimating ET. A common approach is to fill in the missing variables using a different

source. For example, Mourtzinis et al. (2017) used solar radiation from the National Aeronautics and Space Administration’s
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Figure 14. Simulated hourly discharge at watershed outlet compared with hourly USGS streamflow under different temporal resolution of

PRISM. Also shown is the flow duration curve comparison.
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Figure 15. Zoomed in plots showing hourly simulated snowmelt, ET, and discharge under different temporal resolution of PRISM in May,

2017.
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Figure 16. Simulated watershed average SWE and ET under different temporal resolution of PRISM. Also shown is the comparison between

MODIS and simulated 8-day composite ET.
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POWER (NASA-POWER) database (12,000 km2 resolution) combined with PRISM’s temperature and precipitation to simu-

late a crop model. In our study, we used Daymet as a source of solar radiation for PRISM, and the model was able to simulate395

streamflow reasonably well (KGE = 0.45) (Table 2) while capturing the spatial heterogeneity of distributed variables.

On the other hand, NLDAS provides the most complete forcing dataset with hourly resolution but comes with a spatial

resolution of ∼12 km which is too coarse for watershed simulation, especially watershed with complex terrain. The spatial

resolution may become less important as model resolution becomes coarser and the focus is on system-scale water budget.

For example, NLDAS at its native resolution has been applied at the continental scale to study transpiration partitioning using400

ParFlow-CLM at 1 km resolution (Maxwell and Condon, 2016). Past studies have also attempted downscaling of NLDAS to

much finer spatial resolution (Ko et al., 2019; Pan et al., 2016). For example, Ko et al. (2019) downscaled the meteorological

forcing variables from the 12-km resolution of NLDAS to 1-km resolution using high-resolution terrain information at the Río

Sonora Basin. There has been other attempt to merge the high-spatial resolution of PRISM dataset with the NLDAS dataset

which produced a complete forcing dataset of daily, 4 km resolution covering the CONUS (Abatzoglou, 2013).405

Ideally, the GMF with a finer spatiotemporal resolution while providing the most complete forcing is desirable. However,

none of the three GMFs are perfect. An alternative approach is to use meteorological forcing outputted from climate models

such as WRF. It has the flexibility of generating much finer spatial and temporal resolution output while providing all available

meteorological forcing. Maina et al. (2020) used the nested-domain configuration of WRF to dynamically generate meteoro-

logical forcing variables at various spatial resolutions (from 0.5 km to 13.5 km) for use with ParFlow-CLM. Although forcing410

generated by WRF provides a viable option for meteorological input in the hydrologic model, it requires additional expertise

and effort to setup and run the WRF model which is more challenging than directly using the publicly available gridded forcing

(e.g., Daymet).

4.2 Spatial vs temporal resolution: which one is more important?

Is there an optimal spatiotemporal resolution of meteorological forcing for driving watershed simulation while producing415

realistic results? Should we choose finer spatial resolution over finer temporal resolution? Depending on the quantity of interest

and the spatial and temporal scale of the study, the choice may differ. In this study, watershed outlet discharge is shown to be

less sensitive to both the spatial and temporal resolution of meteorological forcing because it is an accumulative quantity.

The simulated discharge is almost identical between PRISM 400 m, 800 m, and 1600 m resolution. The simulated discharge

only becomes noticeably worse when the spatial resolution of meteorological forcing is coarsened to 4000 m (or 30% of the420

watershed area). Similarly, the watershed average SWE, ET, total water storage do not show significant differences between

different spatial resolutions of PRISM.

The spatial resolution becomes more important if the quantity of interests are the spatial distributed hydrologic variables.

For example, the SWE distribution under 400 m and 800 m PRISM resembles more closely with ASO SWE than results under

much coarser spatial resolution. Maina et al. (2020) also found the SWE distribution to be sensitive to the spatial resolution425

of meteorological forcing, with the finer resolution being able to accurately reproduce SWE spatial distribution as well as

total SWE volume. In addition, a higher spatial resolution of forcing would preserve the spatial heterogeneity of distributed
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variables better and may provide better estimates of variables at point locations (e.g., SWE at the NRCS’s Snowpack Telemetry

(SNOTEL) stations and groundwater table at wells). For example, the groundwater table at high elevations can be quite different

under different spatial resolutions of meteorological forcing (Figure 13).430

Temporal resolution becomes more important than spatial resolution if simulating storm events or flash floods that happen

within several hours, resulting in a sharp increase of stream discharge (Ochoa-Rodriguez et al., 2015). The regular, periodic

streamflow fluctuations induced by sub-daily snowmelt or ET could also impact the hyporheic exchange between surface

water and groundwater (Loheide and Lundquist, 2009), which in turn impact nutrient cycling in the stream and hyporheic

zone biogeochemical processes (Shuai et al., 2017; Song et al., 2018). On the contrary, it is challenging to match the simulated435

variable from high temporal resolution with field observation. For example, the performance in simulated discharge deteriorates

when temporal resolution increases from daily to hourly using PRISM (Figure 14). Additionally, hourly meteorological forcing

is difficult to obtain and may be subject to large bias and errors. There are also sparse weather stations that collect hourly or

higher frequency data. Thus it is impossible to obtain sub-daily resolution by direct interpolation across weather stations.

The current available hourly meteorological forcing is usually disaggregated from coarse temporal resolution. For example,440

the hourly NLDAS is disaggregated from NARR 3-hourly frequency. Previous studies have shown that NLDAS had large

discrepancies towards SWE in higher elevation where lower SWE was simulated (Sheffield et al., 2003; Maxwell and Condon,

2016). Air temperature has also been shown to be systematically colder in winter and warmer in the spring months compared

to the observations (Pan et al., 2003). These biases could be attributed to the ∼ 12 km spatial resolution that greatly smoothed

the local topographic variability.445

4.3 Limitations, implications, and transferability of current study

There is a lack of high-resolution observation data to compare with the simulated variables. For example, the snow survey from

ASO has only been conducted a total of four times at this watershed and misses the temporal dynamics of snow depth. There

is also not a single SNOTEL station within the watershed that we can use to compare simulated SWE at point location with

the observed SWE. In addition to snow, we also do not have high-resolution ET data. Although MODIS provides an 8-day450

composite ET, it is relatively coarse compared to the temporal resolution examined in the study. In the subsurface, there is no

observed groundwater table depth or soil moisture data that can be used for the comparison. The remote sensed soil moisture

product (9 to 36 km resolution) from Soil Moisture Active Passive (SMAP) is likely to be too coarse to have any meaningful

comparison.

Uncertainty in the meteorological forcing has not been quantified. There is undoubtedly uncertainty in each GMF that may455

impact the simulated watershed responses, however, this is not the focus of this study. Precipitation collected from ground-based

gages often has measurement uncertainty, which could lead to large uncertainty in interpolated gridded data sets especially in

the mountainous region where the gage network is sparse (Schreiner-McGraw and Ajami, 2020). In general, PRISM is assumed

to perform better in matching gage observation in the mountainous regions compared to Daymet because of the relatively

complex interpolation method (Daly et al., 2008). However, PRISM does not outperform Daymet in all gages (see Figure 3).460

Further, in areas where the terrain is flat and the gage network is dense, Daymet might perform better than, if not equally
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well as, PRISM. Therefore, it is important to put the results into context when comparing different meteorological forcing in a

watershed setting.

Uncertainty in model parameterization has not been investigated, however, it does not change the conclusions of this study as

all simulations use the same set of model parameters except for meteorological forcing. It is well known that model parameters465

such as subsurface structure and properties impact surface and subsurface flows and consequently ET and water storage. As

shown in this study, models using different meteorological forcing may produce dramatically different watershed responses

including streamflow. This has important implications on model calibration when the objective is to minimize the differences

between simulated and observed streamflow, which is true for most watershed hydrologic model calibration studies (Cromwell

et al., 2021). The choice of GMF affects the simulated streamflow, and in turn, the optimal parameters that are calibrated using470

the simulated streamflow. Elsner et al. (2014) showed that there were substantial differences in calibrated model parameters

and simulated water balance using four different meteorological forcing for the same watershed. As a result, the choice of

meteorological forcing plays a critical role in model calibration and thus long-term planning and watershed management using

such calibrated model. Studying the impact of different meteorological forcing on model calibration is the focus of our future

work.475

In this study, we choose Coal Creek as an illustrative example to show the effects of meteorological forcing spatiotemporal

resolution on watershed simulations. The study site has strong variations in topography and land cover, which is an ideal site

for testing heterogeneous spatial and temporal pattern of meteorological forcing. Our conclusions would hold for other moun-

tainous headwater watersheds that are dominated by snow because we did not make any site-specific assumptions. However,

additional studies are needed to evaluate the GMF in other areas that are not dominated by snow.480

5 Conclusions

This study aimed to compare three widely available GMFs (i.e., Daymet, PRISM, and NLDAS) and evaluate the impacts

of spatiotemporal resolution of meteorological forcing on simulated streamflow, ET, SWE, soil moisture, surface ponded

depth, and groundwater table in a snow-dominated mountainous watershed. The different spatial and temporal resolutions

were generated by either downscaling or upscaling the native meteorological forcing resolution. The resulting meteorological485

forcing was then applied as input to drive a fully-distributed, integrated watershed model (i.e., ATS).

To evaluate the performance of meteorological forcing, one should compare all aspects of watershed hydrologic responses.

Daymet has the best match in simulated streamflow, however, the simulated spatially distributed SWE has a weaker correlation

with the observed ASO SWE compared to that from PRISM. NLDAS performs the worst in both simulated streamflow and

spatially distributed SWE due to its coarsest grid resolution. By systematically varying precipitation and temperature from490

each GMF, streamflow is found to be more sensitive to precipitation than temperature. Overall, NLDAS provides the most

comprehensive dataset with the highest temporal resolution (hourly) but comes with a spatial resolution of ∼ 12 km that is too

coarse for watershed simulation, especially areas with complex terrain. On the contrary, both PRISM (800 m) and Daymet (1

km) provide finer spatial resolution, capable of simulating watershed hydrological variables at high resolution, though PRISM
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is missing the important solar radiation. Using precipitation and temperature from PRISM along with solar radiation from495

Daymet provides an alternative to drive watershed simulation with relatively high accuracy.

Using different spatial resolutions of PRISM ranging from 400 m to 4 km, the simulated discharge shows a minor difference

when spatial resolution is < 4 km (or the grid area is < 30% of the watershed area). Similarly, the watershed average SWE,

ET, total water storage do not show significant differences between different spatial resolutions. Spatial resolution becomes

more important when simulating spatially distributed hydrologic variables such as SWE and groundwater table.500

Using a different temporal resolution of PRISM (hourly to daily), the simulated discharge showed better performance with

daily resolution compared to that forced by 12-hourly and hourly resolution. However, models forced by the sub-daily reso-

lution preserve the dynamic watershed responses (e.g., diurnal fluctuation of streamflow) that are absent in results forced by

daily resolution. This may have important implications on watershed biogeochemical reactions that often happen at sub-daily

time scales.505

It is difficult to choose the "best" meteorological forcing dataset because each dataset has its strengths and weaknesses, and

what is best depends on the quantity of interest and its spatial and temporal scale. Ideally, we want to choose the GMF with the

finest spatiotemporal resolution while providing the most complete forcing. None of the three GMFs are perfect. An alternative

approach is to use meteorological forcing outputted from climate models such as WRF, which has the flexibility of generating

much finer spatial and temporal resolution output while providing all available meteorological forcing datasets.510

The choice of GMF affects the simulated streamflow and thus has an important implication on model calibration when the

objective is to minimize the differences between simulated and observed streamflow. The findings of the effects of meteoro-

logical forcing spatiotemporal resolution on watershed simulations could be transferable to other mountainous watersheds that

are snow-dominated.

Code and data availability. The datasets and scripts used in this study can be found on ESS-Dive: https://data.ess-dive.lbl.gov/datasets/515

doi:10.15485/1861432. The downscaled PRISM/Daymet at 400 m resolution is available at https://data.ess-dive.lbl.gov/view/doi:10.15485/

1822259.
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Appendix A

A1 Calendar day definition used in meteorological datasets

Table A1. Calendar day as defined in meteorological datasets and USGS gage

Meteorological forcing Calendar day in local timezone [UTC-

05]

Calendar day in UTC

PRISM 07:00 D−1 to 06:59 D 12:00 D−1 to 11:59 D

Daymet v4 07:00 D to 06:59 D+1 12:00 D to 11:59 D+1

NLDAS-2 19:00 D−1 to 18:59 D 00:00 D to 23:59 D+1

USGS gage 00:00 D to 23:59 D 05:00 D to 04:59 D+1

Abbreviations: D−1: previous day; D: current day; D+1: next day.
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A2 Triple Collocation Analysis (TCA) of meteorological forcing520

Triple Collocation Analysis (TCA) was used to characterize the uncertainties (e.g., error variance and signal to noise ratio)

in each of the GMF without knowing the ground truth. Here, we applied TCA to precipitation and temperature product,

respectively using the three GMFs over the larger East-Taylor watershed. The PRISM and Daymet product have been upscaled

to a 12-km grid to be consistent with the spatial resolution of the NLDAS product. The aggregated daily NLDAS was used to

be consistent with the temporal resolution of PRISM and Daymet. The major assumption for TCA is that the error models are525

linear and independent between different sources, which is not appropriate for precipitation data (Kratzert et al., 2021). Instead,

we chose a multiplicative error model for precipitation source following the methodology of Alemohammad et al. (2015).

Because log-transformed precipitation values were used in the multiplicative model, the daily precipitation was temporally

aggregated to weekly values to avoid zero precipitation values. As a result, the total number of sample size across the temporal

domain was significantly reduced, which could pose challenge for the TCA when sample size was small. The missing values530

in Figure A1 and A2 (white pixels) were the result of having too few samples.

Figure A1. TCA results for precipitation data in the three GMFs. The colormap shows the standard error (the lower the better) for each pixal

region.

Figure A2. TCA results for temperature data in the three GMFs. The colormap shows the standard error (the lower the better) for each pixal

region.

36



A3 Comparison of model outputs from different spatial resolution of Daymet

Figure A3. Simulated discharge at watershed outlet compared with USGS gage under different spatial resolution of Daymet. Also shown is

the flow duration curve comparison.
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Figure A4. Simulated watershed average SWE and ET under different spatial resolution of Daymet.
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A4 Impact of spatial and temporal resolution of solar radiation

The effect of solar radiation (i.e., Srad) spatial resolution was tested using Daymet shortwave radiation at 1km, 2km and 4km

resolution while keeping the other forcing variables the same. The effect of solar radiation temporal resolution was tested using535

NLDAS shortwave radiation at hourly, 12-hourly and daily resolution while keeping other forcings the same. By comparing

ET and streamflow, the spatial resolution of shortwave radiation has little impact on ET and streamflow, whereas the temporal

resolution of shortwave radiation slightly changed the dynamics of ET and streamflow. Overall watershed responses are less

sensitive to solar radiation than precipitation and temperature.

Figure A5. Simulated watershed outlet discharge under different spatial resolution of Srad. Also shown is the flow duration curve comparison.
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Figure A6. Simulated watershed outlet discharge under different temporal resolution of Srad. Also shown is the flow duration curve com-

parison.
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Figure A7. Zoomed in plots showing simulated SWE, ET, and watershed outlet discharge under different temporal resolution of Srad.
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A5 Additional results from PRISM comparison under different spatial resolution540

Figure A8. Spatial distribution of precipitation under different spatial resolution of PRISM at April 27, 2019.
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Figure A9. Spatial distribution of air temperature under different spatial resolution of PRISM at April 27, 2019.
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Figure A10. Simulated watershed average SWE and changes in total water storage under different spatial resolution of PRISM.
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Figure A11. Spatial distribution of soil moisture under different spatial resolution of PRISM at four different times.
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Figure A12. Spatial distribution of ET under different spatial resolution of PRISM at four different times.
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