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Abstract. This study discussed water storage in aquifers of hillslopes under temporally varied 10 
rainfall recharge by employing a hillslope-storage equation to simulate groundwater flow. The 11 
hillslope width was assumed to vary exponentially to denote the following complex hillslope 12 
types: uniform, convergent, and divergent. Both analytical and numerical solutions were acquired 13 
for the storage equation with a recharge source. The analytical solution was obtained using an 14 
integral transform technique. The numerical solution was obtained using a finite difference 15 
method in which the upwind scheme was used for space derivatives and the third-order Runge–16 
Kutta scheme was used for time discretization. The results revealed that hillslope type 17 
significantly influences the drains of hillslope storage. Drainage was the fastest for divergent 18 
hillslopes and the slowest for convergent hillslopes. The results obtained from analytical solutions 19 
require the tuning of a fitting parameter to better describe the groundwater flow. However, a gap 20 
existed between the analytical and numerical solutions under the same scenario owing to the 21 
different versions of the hillslope-storage equation. The study findings implied that numerical 22 
solutions are superior to analytical solutions for the nonlinear hillslope-storage equation, whereas 23 
the analytical solutions are better for the linearized hillslope-storage equation. The findings thus 24 
can benefit research on and have application in soil and water conservation.  25 

Keywords: Groundwater; Boussinesq equation; Hillslope storage; Complex hillslopes. 26 
1 Introduction 27 
Mountains in Taiwan are considerably high and steep, and the flow velocity of surface water and 28 
subsurface water is so high that it can cause severe soil erosion on hillslopes. Therefore, the 29 
management of catchment areas has become a crucial issue in Taiwan. Generally, hillslope form, 30 
water transportation, sediment transport, and aquifer structure are the main factors affecting 31 
catchment. 32 

Some in-situ observations and experiments have investigated subsurface water flow problems. 33 
For example, Anderson and Burt (1978) adopted an automatic system to detect soil moisture 34 
content and found that it is significantly affected by topography. Mosley (1979) measured 35 
overland flow and subsurface flow in a forest watershed and found that the flow discharge in a 36 
river is greatly influenced by overland flow and subsurface flow and that the subsurface flow is 37 
considerably decreased on mild slopes. O’Loughlin (1986) presented a topographic analysis 38 
approach to predict the saturated zone of a watershed. McDonnell (1990) conducted an isotope 39 
study and reported that the speed of water flow permeability in an aquifer is affected by the slope 40 
in a watershed by means of isotope study. Genereux et al. (1993) used a chemical method to time 41 
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water flow from different upstream regions to the outlet and concluded that the travel time of flow 42 
can be topographically determined in a watershed. Woods and Rowe (1996) also reported that 43 
subsurface flow discharge significantly varies with topography and environmental conditions. 44 
Subsequently, Woods et al. (1997) presented a new topographic index to predict the spatial pattern 45 
change in subsurface flow and saturated zone thickness based on the collected data. 46 

By contrast, some researchers have studied subsurface flow by using analytical approaches and 47 
numerical methods. Childs (1971) first derived a generalized Boussinesq equation to delineate 48 
groundwater flow in a sloping aquifer. Evans (1979) presented a bivariate quadrature function to 49 
represent different topographic surfaces of catchments and further integrated terrain analysis and 50 
slope mapping. Brutsaert (1994) linearized the Boussinesq equation and analytically solved it to 51 
describe groundwater level. This solution provides a crucial framework to study slope features 52 
and their hydrological response. Fan and Bras (1998) substituted Darcy’s law into the continuity 53 
equation of subsurface flow and derived an analytical solution by using the method of 54 
characteristics. On the basis of Evans (1979), Troch et al. (2002) presented nine hillslopes to 55 
represent the conventional hillslope types in hydrology and used the method of characteristics to 56 
analytically solve the hillslope-storage kinematic wave equation for subsurface flow. Troch et al. 57 
(2003) changed the variable h (water depth) in the Boussinesq equation to s (hill storage) and then 58 
solved many versions of the equation by linearizing and simplifying it, using the finite difference 59 
method to discretize the space and the multistep solver to deal with time. Later, Troch et al. (2004) 60 
employed an exponential form to describe the variation of hillslope width and substituted it into 61 
the linearized Boussinesq equation; then, they analytically solved the equation by using the 62 
Laplace transform and compared the results with numerical solutions for the nonlinear hill-storage 63 
equation with uniform rainfall recharge. 64 

Taken together, all the aforementioned studies have indicated that geology has a considerable 65 
influence on groundwater flow, but most studies have considered only uniform rainfall recharge 66 
rates. Therefore, the present study employed the hill-storage Boussinesq equation of Troch et al. 67 
(2003, 2004) to delineate groundwater flow and water storage in hillslopes but used randomly 68 
distributed recharge rates to comply with natural rainfall recharge conditions. The present 69 
numerical solution for the nonlinear Boussinesq equation was obtained using the finite difference 70 
method. Discretization in space was performed using the central difference and upwind scheme, 71 
but discretization in time was performed using the third-order total variation diminishing (TVD) 72 
Runge–Kutta scheme. The present analytical solution to the linearized equation was acquired 73 
using the generalized integral transforms technique presented by Özisik (1968). 74 
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2 Mathematical formulation 75 
Figure 1 presents a schematic of an aquifer overlying an impermeable base with an inclined 76 
angle 𝜃𝜃. The ground surface is vegetation free, and the sole drain of groundwater is an open 77 
channel at the outlet. The aquifer was assumed to be saturated, homogeneous, and isotropic, 78 
with a constant thickness and variable width. 79 
2.1 Governing equation 80 
The continuity equation for groundwater flow with rainfall recharge yields 81 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑅𝑅𝑅𝑅                                                            (1) 82 

where 𝑠𝑠 is water storage [L2], 𝑄𝑄 is discharge [L3T−1], 𝑅𝑅 is the hillslope width function of 83 
the flow distance 𝑥𝑥 [L], and R is rainfall recharge [LT−1]. 84 
Because the hillslope width in this study is not constant, the equation of hillslope width 85 
proposed by Troch et al. (2004) was introduced to delineate three hillslope types: convergent, 86 
uniform, and divergent. 87 

𝑅𝑅(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑎𝑎𝜕𝜕                                                              (2)  88 

where c is the width at the outlet [L] and a is a parameter [L−1]. The hillslope type is convergent 89 
if a > 0, uniform if a = 0, and divergent if a < 0. 90 
The flow discharge obeying Darcy’s law yields  91 

𝑄𝑄 = −𝑅𝑅𝑘𝑘𝑝𝑝ℎ�(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 𝜕𝜕ℎ�

𝜕𝜕𝜕𝜕
+ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃) = −𝑘𝑘𝑝𝑝𝜕𝜕

𝑛𝑛
[𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 𝜕𝜕

𝜕𝜕𝜕𝜕
( 𝜕𝜕
𝑛𝑛𝑛𝑛

) + 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃]                        (3) 92 

and then substituting Eq. (3) into Eq. (1) results in 93 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝜕𝜕
𝑛𝑛
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝑛𝑛
𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕
�� + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑅𝑅𝑅𝑅                                  (4) 94 

where 𝑠𝑠 ≈ 𝑠𝑠 ∙ ℎ� ∙ 𝑅𝑅, 𝑠𝑠 is drainable porosity, 𝑘𝑘𝑝𝑝 is hydraulic conductivity [LT−1], and ℎ� is 95 

average water depth [L]. Note that ℎ� and R are defined as 96 

ℎ� = ℎ�(𝑥𝑥, 𝑡𝑡) = 1
𝑛𝑛(𝜕𝜕)∫ ℎ(𝑥𝑥,𝑦𝑦, 𝑡𝑡)𝑛𝑛 𝑑𝑑𝑦𝑦                                            (5) 97 

R = R(𝑡𝑡) = ∑ 𝑅𝑅𝑘𝑘[𝑈𝑈(𝑡𝑡 − 𝑡𝑡𝑘𝑘−1) − 𝑈𝑈(𝑡𝑡 − 𝑡𝑡𝑘𝑘)]𝑛𝑛
𝑘𝑘=1                                    (6) 98 

where 𝑅𝑅𝑘𝑘 is the recharge rate within a time step and 𝑈𝑈(−) is a unit step function. 99 
Because Eq. (4) is a nonlinear equation, solving it analytically is difficult; therefore, the 100 

following linearization technique was adopted according to Troch et al. (2003): 101 

𝜕𝜕
𝑛𝑛
≃ 𝑏𝑏 𝜕𝜕𝑐𝑐�

𝑛𝑛�
= 𝑏𝑏𝑠𝑠𝑏𝑏                                                            (7) 102 
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where b is a fitting parameter (0 ≤ 𝑏𝑏 ≤ 1 ), 𝑠𝑠𝑐𝑐�   is average storage capacity [L2 ], 𝑅𝑅�   is the 103 
average width of the aquifer [L], and 𝑏𝑏 is the average aquifer depth along the hillslope. 104 
Inserting Eqs. (2) and (7) into Eq. (4) to linearize the nonlinear term yields 105 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑝𝑝𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝜕𝜕 𝑐𝑐
𝑛𝑛

(𝜕𝜕
2𝜕𝜕

𝜕𝜕𝜕𝜕2
− 𝑎𝑎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
) + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑅𝑅𝑐𝑐𝑐𝑐𝑎𝑎𝜕𝜕                                 (8) 106 

Equation (8) is a linearized equation and thus can be solved using an analytical approach. 107 
2.2 Initial condition 108 
The distribution of water storage was initially assumed along the x direction as follows: 109 

𝑠𝑠(𝑥𝑥, 0) = 𝛾𝛾𝑠𝑠𝑅𝑅(𝑥𝑥) = 𝛾𝛾𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝜕𝜕, 0 < 𝑥𝑥 < 𝐿𝐿                                        (9) 110 

where 𝛾𝛾 is the initial constant water depth [L] and 0 ≤ 𝛾𝛾 ≤ 𝑏𝑏. 111 
2.3 Boundary conditions 112 
According to Brutsaert (1994) and Verhoest and Troch (2000), no influx occurred at the 113 
upstream boundary condition (BC; x = L), that is, 114 

𝑄𝑄 = −𝑅𝑅ℎ�𝑘𝑘𝑝𝑝(𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃 𝜕𝜕ℎ�

𝜕𝜕𝜕𝜕
+ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃) = 0, 𝑡𝑡 > 0                                      (10) 115 

which yields 116 

𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

[ 𝜕𝜕
𝑛𝑛

(𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝜕𝜕

𝑛𝑛
𝜕𝜕𝑛𝑛
𝜕𝜕𝜕𝜕

)] + 𝑘𝑘𝑝𝑝
𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 ⋅ 𝑠𝑠 = 0, 𝑡𝑡 > 0                                  (11) 117 

Substituting Eq. (7) into Eq. (11) results in 118 

𝑘𝑘𝑝𝑝𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (𝑘𝑘𝑝𝑝
𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 − 𝑎𝑎𝑘𝑘𝑝𝑝𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐

𝑛𝑛
)𝑠𝑠 = 0, 𝑡𝑡 > 0, 𝑥𝑥 = 𝐿𝐿                           (12) 119 

Furthermore, the outlet does not store water (x = 0) because water is drained out by a channel: 120 

𝑠𝑠(0, 𝑡𝑡) = 0, 𝑡𝑡 > 0                                                         (13) 121 

2.4 Analytical solution 122 
To solve Eq. (8) associated with Eqs. (9), (12), and (13), the integral transforms presented by 123 
Özisik (1968) were introduced as follows: 124 
Integral transform: 125 

𝑃𝑃�(𝛽𝛽𝑚𝑚, 𝑡𝑡) = ∫ 𝐾𝐾(𝛽𝛽𝑚𝑚, 𝑥𝑥′)𝐿𝐿
𝜕𝜕′=0 𝑃𝑃(𝑥𝑥′, 𝑡𝑡)𝑑𝑑𝑥𝑥′                                        (14) 126 

Inverse transform: 127 
𝑃𝑃(𝑥𝑥, 𝑡𝑡) = ∑ 𝐾𝐾(𝛽𝛽𝑚𝑚, 𝑥𝑥)∞

𝑚𝑚=1 𝑃𝑃�(𝛽𝛽𝑚𝑚, 𝑡𝑡)                                            (15) 128 
where 𝐾𝐾(𝛽𝛽𝑚𝑚, 𝑥𝑥) is the kernel function and 𝑃𝑃� is the transformed function of P. 129 

Before the aforementioned problem was solved, Eq. (8) was rewritten as 130 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐴𝐴 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

+ 𝐵𝐵 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑅𝑅𝑐𝑐𝑐𝑐𝑎𝑎𝜕𝜕                                                  (16) 131 

where 𝐴𝐴 = 𝑘𝑘𝑝𝑝𝑏𝑏𝑏𝑏
𝑛𝑛

𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃, 𝐵𝐵 = 𝑘𝑘𝑝𝑝
𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 − 𝑎𝑎𝑘𝑘𝑝𝑝𝑏𝑏𝑏𝑏

𝑛𝑛
𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃. 132 

Next, Eq. 17 is set as follows: 133 

𝑠𝑠(𝑥𝑥, 𝑡𝑡) = 𝑐𝑐−
𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐−

𝐵𝐵2

4𝐴𝐴𝜕𝜕𝑠𝑠∗(𝑥𝑥, 𝑡𝑡)                                                 (17) 134 
and substituting Eq. (17) into Eqs. (16), (9), (12), and (13) results in 135 

1
𝐴𝐴
𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕
= 𝜕𝜕2𝜕𝜕∗

𝜕𝜕𝜕𝜕2
+ 𝑔𝑔(𝑥𝑥, 𝑡𝑡)                                                       (18) 136 

𝑠𝑠∗(𝑥𝑥, 0) = 𝛾𝛾𝑠𝑠𝑐𝑐𝑐𝑐�𝑎𝑎+
𝐵𝐵
2𝐴𝐴�𝜕𝜕, 0 < 𝑥𝑥 < 𝐿𝐿                                            (19) 137 

𝐴𝐴 𝜕𝜕𝜕𝜕∗

𝜕𝜕𝜕𝜕
+ 𝐵𝐵

2
𝑠𝑠∗ = 0, 𝑡𝑡 > 0, 𝑥𝑥 = 𝐿𝐿                                                (20) 138 

s∗(0, t) = 0, t > 0                                                          (21) 139 

where 𝑔𝑔(𝑥𝑥, 𝑡𝑡) = 𝑅𝑅(𝜕𝜕)𝑐𝑐
𝐴𝐴

𝑐𝑐(𝑎𝑎+ 𝐵𝐵
2𝐴𝐴)𝜕𝜕𝑐𝑐

𝐵𝐵2

4𝐴𝐴𝜕𝜕. 140 

Taking the integral transform of Eqs. (18)–(21) yields 141 

𝑑𝑑𝜕𝜕∗���(𝛽𝛽𝑚𝑚,𝜕𝜕)
𝑑𝑑𝜕𝜕

+ 𝐴𝐴 ∙ 𝛽𝛽𝑚𝑚
2 ∙ 𝑠𝑠∗� (𝛽𝛽𝑚𝑚, 𝑡𝑡) = 𝐴𝐴 ∙ �̅�𝑔(𝛽𝛽𝑚𝑚, 𝑡𝑡)                                   (22) 142 

𝑠𝑠∗� (𝛽𝛽𝑚𝑚, 0) = ∫ 𝐾𝐾(𝛽𝛽𝑚𝑚, 𝑥𝑥′)𝐿𝐿
𝜕𝜕′=0 𝛾𝛾𝑠𝑠𝑐𝑐𝑐𝑐�𝑎𝑎+

𝐵𝐵
2𝐴𝐴�𝜕𝜕

′
𝑑𝑑𝑥𝑥′ ≡ 𝐹𝐹�(𝛽𝛽𝑚𝑚)                           (23) 143 

with the kernel 144 

𝐾𝐾(𝛽𝛽𝑚𝑚,𝑥𝑥) = �
2�𝛽𝛽𝑚𝑚

2+𝐵𝐵
2
4𝐴𝐴2� �

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

�
1 2⁄

∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑚𝑚𝑥𝑥)                                (24) 145 

and 146 

�̅�𝑔(𝛽𝛽𝑚𝑚, 𝑡𝑡) = ∫ 𝐾𝐾(𝛽𝛽𝑚𝑚, 𝑥𝑥′) 𝑅𝑅(𝜕𝜕)𝑐𝑐
𝐴𝐴

𝑐𝑐(𝑎𝑎+ 𝐵𝐵
2𝐴𝐴)𝜕𝜕′𝑐𝑐

𝐵𝐵2

4𝐴𝐴𝜕𝜕
𝐿𝐿
𝜕𝜕′=0 𝑑𝑑𝑥𝑥′                               (25) 147 

where 𝛽𝛽𝑚𝑚 (𝑚𝑚 ∈ 𝑵𝑵, a natural number) is the root of the following eigen equation: 148 

𝛽𝛽𝑐𝑐𝑐𝑐𝑡𝑡 (𝛽𝛽𝐿𝐿) = − 𝐵𝐵
2𝐴𝐴

                                                         (26) 149 

Notably, the eigenvalue 𝛽𝛽𝑚𝑚  is affected by the slope 𝜃𝜃 , the fitting parameter b, the average 150 
aquifer depth 𝑏𝑏, and the parameter a. 151 
Solving Eq. (22) associated with Eqs. (23)–(26) yields 152 
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𝑠𝑠∗� (𝛽𝛽𝑚𝑚, 𝑡𝑡) = 𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕 �𝐹𝐹�(𝛽𝛽𝑚𝑚) + ∫ 𝑐𝑐𝐴𝐴𝛽𝛽𝑚𝑚

2𝜕𝜕′𝜕𝜕
𝜕𝜕′=0 𝐴𝐴�̅�𝑔(𝛽𝛽𝑚𝑚, 𝑡𝑡′)𝑑𝑑𝑡𝑡′�                      (27) 153 

Taking inverse transform of �̅�𝑠 results in 154 

𝑠𝑠∗(𝑥𝑥, 𝑡𝑡) = ∑ 𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕∞

𝑚𝑚=1 �𝐹𝐹�(𝛽𝛽𝑚𝑚) + ∫ 𝑐𝑐𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕′𝜕𝜕

𝜕𝜕′=0 𝐴𝐴�̅�𝑔(𝛽𝛽𝑚𝑚, 𝑡𝑡′)𝑑𝑑𝑡𝑡′�                  (28) 155 

By employing Eq. (17), we can obtain 156 

𝑠𝑠(𝑥𝑥, 𝑡𝑡) = 2𝑐𝑐𝑐𝑐
−𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐

−𝐵𝐵2

4𝐴𝐴 𝜕𝜕 ∑
𝛽𝛽𝑚𝑚−𝛽𝛽𝑚𝑚𝑒𝑒

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�𝐿𝐿cos (𝛽𝛽𝑚𝑚𝐿𝐿)+�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝑒𝑒
�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝐿𝐿𝜕𝜕𝑠𝑠𝑛𝑛(𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�

2
+𝛽𝛽𝑚𝑚

2
∞
𝑚𝑚=1 ∙157 

𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴2�

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

[𝛾𝛾𝑠𝑠 + 𝑅𝑅(𝑡𝑡) 𝑒𝑒
�𝐴𝐴𝛽𝛽𝑚𝑚

2+𝐵𝐵
2

4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴

]𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑚𝑚𝑥𝑥)                    (29) 158 

After the storage was obtained, the water level (h), discharge (Q), outflow rate (q), and relative 159 
storage (𝑠𝑠𝑟𝑟) were calculated, respectively, as follows:  160 

ℎ�(𝑥𝑥, 𝑡𝑡) = 𝜕𝜕
𝑛𝑛∙𝑛𝑛(𝜕𝜕) = 2

𝑛𝑛∙𝑒𝑒𝑎𝑎𝑎𝑎
 𝑐𝑐

−𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐

−𝐵𝐵2

4𝐴𝐴 𝜕𝜕 ∑
𝛽𝛽𝑚𝑚−𝛽𝛽𝑚𝑚𝑒𝑒

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�𝐿𝐿𝑐𝑐𝑐𝑐𝜕𝜕(𝛽𝛽𝑚𝑚𝐿𝐿)+(𝑎𝑎+ 𝐵𝐵

2𝐴𝐴)𝑒𝑒�𝑎𝑎+
𝐵𝐵
2𝐴𝐴�𝐿𝐿𝜕𝜕𝑠𝑠𝑛𝑛(𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�

2
+𝛽𝛽𝑚𝑚

2
∞
𝑚𝑚=1 ∙161 

        �
𝛽𝛽𝑚𝑚

2+𝐵𝐵
2
4𝐴𝐴2�

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

� �𝛾𝛾𝑠𝑠 + 𝑅𝑅(𝑡𝑡) 𝑒𝑒
�𝐴𝐴𝛽𝛽𝑚𝑚

2+𝐵𝐵
2

4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴

� 𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕 sin (𝛽𝛽𝑚𝑚𝑥𝑥)         (30) 162 

𝑄𝑄(𝑥𝑥, 𝑡𝑡) = (2𝐵𝐵 − 𝐵𝐵𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃)𝑐𝑐𝑐𝑐
−𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐

−𝐵𝐵2

4𝐴𝐴 𝜕𝜕 ∑
𝛽𝛽𝑚𝑚−𝛽𝛽𝑚𝑚𝑒𝑒

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�𝐿𝐿cos (𝛽𝛽𝑚𝑚𝐿𝐿)+�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝑒𝑒
�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝐿𝐿𝜕𝜕𝑠𝑠𝑛𝑛(𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�

2
+𝛽𝛽𝑚𝑚

2
∞
𝑚𝑚=1 ∙163 

 
𝛽𝛽𝑚𝑚

2+𝐵𝐵
2
4𝐴𝐴2�

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

[𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕𝛾𝛾𝑠𝑠 + 𝑅𝑅(𝑡𝑡) 𝑒𝑒

�𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴

]sin (𝛽𝛽𝑚𝑚𝑥𝑥) +  164 

2𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑐𝑐
−𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐

−𝐵𝐵2
4𝐴𝐴 𝜕𝜕 �

𝛽𝛽𝑚𝑚 − 𝛽𝛽𝑚𝑚𝑐𝑐
�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠(𝛽𝛽𝑚𝑚𝐿𝐿) + �𝑎𝑎 + 𝐵𝐵
2𝐴𝐴� 𝑐𝑐

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�𝐿𝐿sin (𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎 + 𝐵𝐵
2𝐴𝐴�

2
+ 𝛽𝛽𝑚𝑚

2

∞

𝑚𝑚=1

 165 

𝛽𝛽𝑚𝑚(𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴2� )

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

�𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝑡𝑡𝛾𝛾𝑠𝑠+𝑅𝑅(𝑡𝑡) 𝑐𝑐

�𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵2

4𝐴𝐴

� 𝑐𝑐𝑐𝑐𝑠𝑠(𝛽𝛽𝑚𝑚𝑥𝑥)                  (31) 166 

𝑞𝑞(𝑡𝑡) = 2𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑐𝑐
−𝐵𝐵2
4𝐴𝐴 𝜕𝜕 �

𝛽𝛽𝑚𝑚 − 𝛽𝛽𝑚𝑚𝑐𝑐
�𝑎𝑎+ 𝐵𝐵

2𝐴𝐴�𝐿𝐿𝑐𝑐𝑐𝑐𝑠𝑠(𝛽𝛽𝑚𝑚𝐿𝐿) + (𝑎𝑎 + 𝐵𝐵
2𝐴𝐴)𝑐𝑐�𝑎𝑎+

𝐵𝐵
2𝐴𝐴�𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎 + 𝐵𝐵
2𝐴𝐴�

2
+ 𝛽𝛽𝑚𝑚

2

∞

𝑚𝑚=1

 167 

    
𝛽𝛽𝑚𝑚(𝛽𝛽𝑚𝑚

2+𝐵𝐵
2
4𝐴𝐴2� )

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

[𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕𝛾𝛾𝑠𝑠 + 𝑅𝑅(𝑡𝑡) 𝑒𝑒

�𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴

]                    (32) 168 
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𝑠𝑠𝑟𝑟(𝑥𝑥, 𝑡𝑡) =
𝑠𝑠

𝑠𝑠 ∙ 𝑏𝑏 ∙ 𝑅𝑅(𝑥𝑥) =
2

𝑠𝑠 ∙ 𝑏𝑏 ∙ 𝑐𝑐𝑎𝑎𝜕𝜕
𝑐𝑐
−𝐵𝐵
2𝐴𝐴𝜕𝜕𝑐𝑐

−𝐵𝐵2
4𝐴𝐴 𝜕𝜕 169 

∑
𝛽𝛽𝑚𝑚−𝛽𝛽𝑚𝑚𝑒𝑒

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�𝐿𝐿𝑐𝑐𝑐𝑐𝜕𝜕(𝛽𝛽𝑚𝑚𝐿𝐿)+(𝑎𝑎+ 𝐵𝐵

2𝐴𝐴)𝑒𝑒�𝑎𝑎+
𝐵𝐵
2𝐴𝐴�𝐿𝐿𝜕𝜕𝑠𝑠𝑛𝑛(𝛽𝛽𝑚𝑚𝐿𝐿)

�𝑎𝑎+ 𝐵𝐵
2𝐴𝐴�

2
+𝛽𝛽𝑚𝑚

2
[

𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴2�

𝐿𝐿�𝛽𝛽𝑚𝑚
2+𝐵𝐵2 4𝐴𝐴2� �+𝐵𝐵 2𝐴𝐴�

]∞
𝑚𝑚=1 [𝛾𝛾𝑠𝑠 +170 

𝑅𝑅(𝑡𝑡) 𝑒𝑒
�𝐴𝐴𝛽𝛽𝑚𝑚

2+𝐵𝐵
2

4𝐴𝐴�𝑡𝑡−1

𝐴𝐴𝛽𝛽𝑚𝑚
2+𝐵𝐵

2
4𝐴𝐴

]𝑐𝑐−𝐴𝐴𝛽𝛽𝑚𝑚
2𝜕𝜕𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽𝑚𝑚𝑥𝑥)                                 (33) 171 

The generalized integral transform technique was employed to acquire the above analytical 172 
solutions because its convergence of the solution is better than that by the Laplace transform 173 
method (Wu and Hsieh, 2019). 174 
2.5 Numerical method 175 

In addition to using an analytical approach to solve the linearized equation, Eq. (8), a 176 
numerical model was developed to solve the original nonlinear equation, Eq. (4). With reference 177 
to Swanson and Turke (1990), the upwind scheme and central difference of finite difference 178 
method were used to discretize the space, and with reference to Shu and Osher (1989), the third-179 
order TVD Runge–Kutta scheme was applied to deal with time. The space was divided into m 180 
+ 1 nodes with an equal interval of ∆𝑥𝑥 along the x direction, in which the nodes 𝑠𝑠 = 1 and 181 
𝑠𝑠 = 𝑚𝑚 + 1  are virtual outside the domain (Fig. 2). The difference equation for space 182 
discretization of water storage is as follows: 183 

𝜕𝜕𝜕𝜕𝛼𝛼𝑗𝑗

𝜕𝜕𝜕𝜕
= 𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐

𝑛𝑛2
[
𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠+1)−𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠)−𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−184 

(
𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +𝑠𝑠𝛼𝛼

𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠𝛼𝛼𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +𝑠𝑠𝛼𝛼

𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠+1)−𝜕𝜕𝛼𝛼𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)(34)                                           185 

where i is the node number (i = 1,2,…,m + 1), j is time, and 𝑠𝑠𝛼𝛼 is the solution of order 𝛼𝛼. 186 
Furthermore, from Eq. (9), the initial condition becomes 187 

𝑠𝑠𝛼𝛼𝑗𝑗(𝑠𝑠) = 𝛾𝛾𝑠𝑠𝑐𝑐𝑐𝑐𝑎𝑎𝜕𝜕𝑖𝑖 , 𝑠𝑠 = 1,2, … ,𝑚𝑚 + 1, 𝑗𝑗 = 0                                    (35) 188 

and the BC becomes 189 
1. No flux at the upstream BC 190 

 1
∆𝜕𝜕
�𝜕𝜕𝛼𝛼

𝑗𝑗(𝑚𝑚+1)
𝑛𝑛(𝑚𝑚+1) −

𝜕𝜕𝛼𝛼𝑗𝑗(𝑚𝑚)
𝑛𝑛(𝑚𝑚) � + 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃 = 0 191 

  ⇒ 𝑠𝑠𝛼𝛼𝑗𝑗(𝑚𝑚 + 1) = 𝜕𝜕𝛼𝛼𝑗𝑗(𝑚𝑚)
𝑛𝑛(𝑚𝑚)

− 𝑠𝑠𝑡𝑡𝑎𝑎𝑠𝑠𝜃𝜃 ∙ 𝑅𝑅(𝑚𝑚 + 1) ∙ ∆𝑥𝑥, 𝑗𝑗 > 0                        (36) 192 

2. No storage at the downstream BC (Taylor series expansion to increase accuracy) 193 

https://doi.org/10.5194/hess-2021-50
Preprint. Discussion started: 23 February 2021
c© Author(s) 2021. CC BY 4.0 License.



9 

 

𝑠𝑠𝛼𝛼𝑗𝑗(1) = −2𝑠𝑠𝛼𝛼𝑗𝑗(2) + 1
3
𝑠𝑠𝛼𝛼𝑗𝑗(3)                                             (37) 194 

Regarding the discretization in time, the third-order TVD Runge–Kutta method yields the 195 
following: 196 
𝑠𝑠1 = 𝑠𝑠0 + ∆𝑡𝑡𝑡𝑡(𝑠𝑠0)                                                        (38) 197 

𝑠𝑠2 = 𝑠𝑠1 + ∆𝜕𝜕
4

[−3𝑡𝑡(𝑠𝑠0) + 𝑡𝑡(𝑠𝑠1)]                                             (39) 198 

𝑠𝑠3 = 𝑠𝑠2 + ∆𝜕𝜕
12

[−𝑡𝑡(𝑠𝑠0) − 𝑡𝑡(𝑠𝑠1) + 8𝑡𝑡(𝑠𝑠2)]                                     (40) 199 

where 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3 are the solutions of each order. 𝑡𝑡(𝑠𝑠) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. s0 is the initial condition. The 200 

final difference equation is listed in Appendix A. 201 

3 Results and Discussion 202 

3.1 Verification of the analytical solution 203 
To validate the present analytical solution, the following parameter values presented by Troch 204 
et al. (2004) were adopted: slope length L = 100 m, slope 𝜃𝜃 = 5%, n = 0.3, b = 1, D = 2 m, 𝑘𝑘𝑝𝑝 205 

= 1 mh-1, initial water depth γ = 0.4 m, and R = 10 mmd-1. The values of the parameters in Eq. 206 
(2) controlling the width and shape were 𝑎𝑎 = 0.02 m−1  and 𝑐𝑐 = 6.77 m  for a convergent 207 
hillslope, 𝑎𝑎 = 0  and 𝑐𝑐 = 21.627 m  for a uniform hillslope, and 𝑎𝑎 = −0.02 m−1  and 𝑐𝑐 =208 
50.024 m for a divergent hillslope. The projected areas of all three hillslopes were the same 209 
size (2162.7  m2 ), so they received the same rainfall recharge. The received volume was 210 
4325.4 m3, and the initial water storage was also assumed to be consistent. 211 

Figure 3 illustrates the spatial variation of groundwater levels for different shapes for 1, 5, 212 
and 20 days, and Fig. 4 presents the temporal variation of flow rates at the outlet for different 213 
shapes. Both figures reveal that our results using the generalized integral transform technique 214 
agree well with the Laplace transform method by Troch et al. (2004), thus validating our 215 
analytical solutions. However, we could not use the Laplace transform method directly in the 216 
present study for two reasons. First, the inverse Laplace transform is too complex, and finding 217 
the function is challenging even after performing the inverse Laplace transform. Second, the 218 
convergence of solutions using our approach was better than that obtained by the Laplace 219 
transform method as discussed in Wu and Hsieh (2019). Compared with Verhoest and Troch 220 
(2000), whose solution summation requires the first 999 terms, namely O(103), to reach 221 
convergence, the present solution requires only the first O(102) terms, leading to a convergence 222 
that is more than 10 times faster. 223 
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3.2 Verification of the numerical solution 224 
With reference to Troch et al. (2003), two cases are illustrated. Case 1 had no rainfall recharge 225 
but did have initial water depth, and Case 2 had no initial water depth but did have rainfall 226 
recharge. The simulated representative hillslope type was uniform (𝑎𝑎 = 0 and 𝑐𝑐 = 50 m), and 227 
the following parameters were adopted: L = 100 m, 𝜃𝜃 = 5%, n = 0.3, D = 2 m, 𝑘𝑘𝑝𝑝= 1 mh-1, 𝛾𝛾 228 

= 0 and 0.4 m, and R = 0 and 10 mmd-1. 229 
Figures 5 and 6 present the variation in relative storage for Case 1 with 𝛾𝛾 = 0.4 m and Case 230 

2 with R = 10 mmd-1, respectively. Again, the results agree well with those of Troch et al. (2003), 231 
thus validating the present numerical solution. 232 
3.3 Comparison between analytical solutions and numerical solutions 233 

With the parameters D = 2 m and γ = 1 m, the simulated results for convergent hillslope are 234 
shown in Figs. 7–9, in which parameter b was selected for better simulated results. When (R, b) 235 
= (50, 0.5–0.7), (25, 0.3), and (10, 0.2) in Figs. 7–9, respectively, an obvious discrepancy was 236 
noted between the analytical and numerical solutions for different durations. The averaged 237 
absolute relative percentage differences were 2.78% when b = 0.2 and 3.93% when b = 0.7 in 238 
Fig. 7(a), 16.09% when b = 0.5 and 8.72% when b = 0.7 in Fig. 7(b), and 35.49% when b = 0.5 239 
and 23.76% when b = 0.7 in Fig. 7(c). These results indicate that the discrepancy increased with 240 
duration even when an optimal fitting parameter b was selected. Similar trends can be observed 241 
in Figs. 8 and 9. Furthermore, the shift became relatively large for a higher recharge rate (R = 242 
50 mmd-1 in Fig. 7) and smaller for a lower recharge rate (R = 10 mmd-1 in Fig. 9) especially 243 
for a longer period. Similar trends were found for a uniform hillslope when (R, b) = (50, 0.3), 244 
(25, 0.2), and (10, 0.2) in Figs. 10–12, respectively, and for divergent hillslope when (R, b) = 245 
(50, 0.2), (25, 0.1), and (10, 0.08) in Figs. 13–15, respectively. 246 
  Taken together, the aforementioned results imply that the present analytical solutions are 247 
highly sensitive to the fitting parameter b. In fact, the parameter b in Eq. (7) is affected by hill 248 
storage, aquifer width, and aquifer thickness. Therefore, adjusting b for different hillslope types 249 
and different recharge rates can bring the analytical results closer to the numerical results. In 250 
this study, the fitting parameter b was determined using trial and error. To summarize, the 251 
optimal parameter b is relatively large for convergent hillslope but relatively small for divergent 252 
hillslope. The parameter b also increases with the recharge rate. As the recharge rate increases, 253 
the water storage increases, and the discrepancy between both solutions also increases, 254 
especially for convergent hillslopes. 255 
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3.4 Variation of the remaining hill storage 256 
To obtain the remaining hill storage at any time for the three hillslopes with any constant 257 

slope, the parameter 𝑠𝑠′ , which denotes the dimensionless remaining amount of hill-storage 258 
water, was defined as follows: 259 

𝑠𝑠′(𝑡𝑡) = ∫ 𝜕𝜕(𝜕𝜕,𝜕𝜕)𝑑𝑑𝜕𝜕𝐿𝐿
0

∫ 𝜕𝜕(𝜕𝜕,0)𝑑𝑑𝜕𝜕𝐿𝐿
0

≈ ∑ 𝜕𝜕(𝜕𝜕,𝜕𝜕)𝑎𝑎=𝐿𝐿
0 ∆𝜕𝜕

∑ 𝜕𝜕(𝜕𝜕,0)∆𝜕𝜕𝑎𝑎=𝐿𝐿
0

                                              (41) 260 

Because the numerical solutions were obtained by solving the nonlinear Boussinesq equation, 261 
which is more complete, the discussion hereafter is based on the numerical model. When a 1-262 
day duration was used as an example with 𝜃𝜃  = 5% and no recharge, the remaining 263 
convergent:uniform:divergent storage ratio was approximately 1:0.984:0.888; when 𝜃𝜃 = 15%, 264 
the ratio became 1:0.937:0.785; 𝜃𝜃 = 30%, 1:0.826:0.572; 𝜃𝜃 = 40%, 1:0.826:0.572; 𝜃𝜃 = 55%, 265 
1:0.779:0.488; 𝜃𝜃 = 100%, 1:0.688:0.359. As expected, water drained the fastest on the steepest 266 
divergent hillslopes. Figures 16–18 demonstrate that when the slope and simulation duration 267 
increased, the remaining hill storage decreased. To summarize, the reduction rate of hill storage 268 
became large for steep slopes, especially for divergent hillslopes. 269 
3.5 Temporally varied recharge rates effect 270 

Because the recharge rate is not uniformly distributed, this study considered it to have 271 
temporal variation. Assuming 𝜃𝜃 = 5% , D = 5 m, and 𝛾𝛾  = 0, three patterns of recharge 272 
distribution variation (Fig. 19) were considered to discuss their effects on hill storage. Figure 273 
20 illustrates the spatial variation of the water table under different recharge types for a 274 
convergent hillslope at different durations. The simulated scenarios had the same aquifer and 275 
groundwater conditions, except for the recharge patterns. The results reveal that the water table 276 
was significantly affected by the recharge type within a short period (12 h), but after 1 day, it 277 
was almost no longer affected by the recharge type. Similar results were obtained for uniform 278 
and divergent hillslopes. 279 

We added three more recharge types: peak in the first section, peak in the last section, and 280 
double peak; Fig. 21 illustrates the variation of outflow for different hillslopes under six types 281 
of recharge. Figure 21(a) demonstrates that each outflow peak was different and that the 282 
maximum peak occurred at the curve of peak in the last section, but all outflows gradually 283 
approached one value for the convergent hillslope under the same accumulative recharge 284 
amount. Similar results are found in Fig. 21(b) and 21(c) for uniform and divergent hillslopes, 285 
respectively. Furthermore, the cross-sectional area at the outlet for the convergent hillslope was 286 
relatively small; thus, the flow rate was the lowest. By contrast, the cross-sectional area at the 287 
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outlet for the divergent hillslope was relatively large; thus, the flow rate was the highest. These 288 
hydraulic characteristics are indicated in Fig. 21(a) and 21(c). Figure 21 also illustrates that 289 
when the recharge ceases, the outflow for convergent hillslopes decreases and then gently 290 
increases for a long period due to the slow release of hill-stored water. For uniform hillslopes, 291 
the outflow reduces slowly when the recharge stops, but for divergent hillslopes, the outflow 292 
drops more rapidly owing to the fast water release. 293 
4 Concluding remarks 294 

To elucidate water storage of different hillslopes with variable width under any type of 295 
temporally varied rainfall recharge, both analytical and numerical approaches were employed 296 
to solve the Boussinesq equation. Numerical solutions to the nonlinear hillslope-storage 297 
equation and analytical solutions to the linearized hillslope-storage equation were subsequently 298 
presented. A summary of our findings is as follows: 299 
1. The analytical solutions were derived using the generalized integral transform technique 300 

and verified with the method of Troch et al. (2004), which was derived using the Laplace 301 
transform method. The results were consistent for convergent, uniform, and divergent 302 
hillslopes. Our numerical solutions agreed well with the results of Troch et al. (2003), 303 
which were obtained through the numerical integration of the partial differential equation. 304 

2. Although our analytical solutions were verified with previous analytical solutions, the 305 
results need tuning of the parameter b to better fit the results of the numerical model in the 306 
same scenarios. The results reveal that as the recharge increases, b increases, with b being 307 
the largest for convergent hillslopes and the smallest for divergent hillslopes. 308 

3. Comparison of the analytical and numerical results reveals that especially for convergent 309 
hillslopes, when the recharge decreases, the discrepancy between the results also decreases.   310 

4. For the same hillslope, the hillslope storage of water decreases as the slope increases 311 
because water drains fast along a steep slope. For the same slope and recharge distribution, 312 
water storage is the most abundant for convergent hillslopes because of slow drainage and 313 
least for divergent hillslopes because of rapid drainage. 314 

The findings of the present study thus can be useful for father research and have value in the 315 

practical application of the soil and water conservation issue.316 
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Appendix A 317 
 318 
Difference equations of the hill-storage equation 319 

𝑠𝑠1𝑗𝑗(𝑠𝑠) = 𝑠𝑠0𝑗𝑗 + ∆𝑡𝑡 ∙ {𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

[
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠)−𝜕𝜕0𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−320 

(
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)}(A.1) 321 

𝑠𝑠2𝑗𝑗(𝑠𝑠) = 𝑠𝑠1𝑗𝑗 + −3∆𝜕𝜕
4

∙ {𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

[
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠)−𝜕𝜕0𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−322 

(
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)} + ∆𝜕𝜕

4
∙323 

{𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

[
𝑠𝑠1𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕1𝑗𝑗(𝑠𝑠+1)−𝜕𝜕1𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠1𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕1𝑗𝑗(𝑠𝑠)−𝜕𝜕1𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−

(
𝑠𝑠1𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+324 

(
𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠1𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕1𝑗𝑗(𝑠𝑠+1)−𝜕𝜕1𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)}                       (A.2)  325 

𝑠𝑠3𝑗𝑗(𝑠𝑠) = 𝑠𝑠2𝑗𝑗 + −∆𝜕𝜕
12

∙ {𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐
𝑛𝑛2

[
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕0𝑗𝑗(𝑠𝑠)−𝜕𝜕0𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−326 

(
𝑠𝑠0𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠0𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠0𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕0𝑗𝑗(𝑠𝑠+1)−𝜕𝜕0𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)} −327 

∆𝜕𝜕
12
∙ {𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐

𝑛𝑛2
[
𝑠𝑠1𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕1𝑗𝑗(𝑠𝑠+1)−𝜕𝜕1𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠1𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕1𝑗𝑗(𝑠𝑠)−𝜕𝜕1𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−328 

(
𝑠𝑠1𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠1𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠1𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕1𝑗𝑗(𝑠𝑠+1)−𝜕𝜕1𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)} +329 

2∆𝜕𝜕
3
∙ {𝑘𝑘𝑝𝑝𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐

𝑛𝑛2
[
𝑠𝑠2𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠2𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2∆𝜕𝜕
𝜕𝜕2𝑗𝑗(𝑠𝑠+1)−𝜕𝜕2𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
−

𝑠𝑠2𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠2𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)

2∆𝜕𝜕
𝜕𝜕2𝑗𝑗(𝑠𝑠)−𝜕𝜕2𝑗𝑗(𝑠𝑠−1)

∆𝜕𝜕
−330 

(
𝑠𝑠2𝑗𝑗(𝑖𝑖+1)
𝑤𝑤(𝑖𝑖+1) +

𝑠𝑠2𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖)

2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠+1)−𝑛𝑛(𝑠𝑠)

∆𝜕𝜕
+

(
𝑠𝑠2𝑗𝑗(𝑖𝑖)
𝑤𝑤(𝑖𝑖) +

𝑠𝑠2𝑗𝑗(𝑖𝑖−1)
𝑤𝑤(𝑖𝑖−1)
2 )2

∆𝜕𝜕
𝑛𝑛(𝑠𝑠)−𝑛𝑛(𝑠𝑠−1)

∆𝜕𝜕
] + 𝑘𝑘𝑝𝑝

𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 𝜕𝜕2𝑗𝑗(𝑠𝑠+1)−𝜕𝜕2𝑗𝑗(𝑠𝑠)

∆𝜕𝜕
+ 𝑅𝑅𝑗𝑗𝑅𝑅(𝑠𝑠)   331 
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Fig. 1. Schematic of this study. 
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Fig. 2. Schematic of mesh for numerical method. 
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Fig. 3. Verification of the present solutions of groundwater levels for (a) 

convergent (b) uniform, and (c) divergent hillslopes. 
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   (a) convergent hillslope 

 

 (b) uniform hillslope 

 

 (c) divergent hillslope 

Fig. 4. Verification of the present solutions of outflow hydrograph for three 

hillslope types. 
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Fig. 5. Comparison of spatial variation of relative storage between the present 

solutions and previous numerical solutions for γ = 0.4m, and R = 0. 
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Fig. 6. Comparison of spatial variation of relative storage between the present 
solutions and previous numerical solutions for γ = 0, and R = 10mmd-1. 
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(a) 1day 

 
(b) 15 days 

 
(c) 30 days 

Fig. 7. Comparison of relative storage for convergent hillslope between analytical 

solutions and numerical solutions (R = 50mmd-1). 
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(a) 1 day 

 

 

(b) 15 days 

 

(c) 30 days 

Fig. 8. Comparison of relative storage for convergent hillslope between analytical 

solutions and numerical solutions (R = 25mmd-1). 
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(a) 1 day 

 

(b) 15 days 

 

(c) 30 days 

Fig. 9. Comparison of relative storage for convergent hillslope between analytical 

solutions and numerical solutions (R = 10mmd-1). 
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(a) 1 day 

 
(b) 15 days                         (c) 30 days 

Fig. 10. Comparison of relative storage for uniform hillslope between analytical 
solutions and numerical solutions (R=50mmd-1, 𝜃𝜃=5%). 
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(a) 1 day 

 

(b) 15 days 

 

(c) 30 days 

Fig. 11. Comparison of relative storage for uniform hillslope between analytical 
solutions and numerical solutions (R=25mmd-1, 𝜃𝜃=5%). 
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(a) 1 day 

 
(b) 15 days 

 
(c) 30 days 

Fig. 12. Comparison of relative storage for uniform hillslope between analytical 
solutions and numerical solutions (R=10mmd-1, 𝜃𝜃=5%). 
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(a) 1day 

 
(b) 15days 

 
(c) 30days 

Fig. 13. Comparison of relative storage for divergent hillslope between analytical 
solutions and numerical solutions (R=50mmd-1, 𝜃𝜃=5%). 
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(a) 1day 

 
(b) 15days 

 
(c) 30days 

Fig. 14. Comparison of relative storage for divergent hillslope between analytical 
solutions and numerical solutions (R=25mmd-1, 𝜃𝜃=5%). 
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(a) 1day 

 
(b) 15days 

 
(c) 30days 

Fig. 15. Comparison of relative storage for divergent hillslope between analytical 
solutions and numerical solutions (R=10mmd-1, 𝜃𝜃=5%). 
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(a) 1 day 

 
(b) 15 days 

 
(c) 30 days 

Fig. 16. Variation of the ratio of storage to initial storage at different durations for 

convergent hillslope. 
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(a) 1 day 

 
(b) 15 days 

 
(c) 30 days 

Fig. 17. Variation of the ratio of storage to initial storage at different durations for 

uniform hillslope. 
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(a) 1 day 

 

(b) 15 days 

 

(c) 30 days 

Fig. 18. Variation of the ratio of storage to initial storage at different durations for 

divergent hillslope. 
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(a) peak at the first quarter section 

 

 
(b) peak at center 

 

 
(c) peak at the third quarter section 

 
Fig. 19. Presumed patterns of temporally various distributed recharge rates. 
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(a) peak at the first quarter section 

 

 
(b) peak at center 

 

 
(c) peak at the third quarter section 

 
 

Fig. 20. Variation of water table for three patterns of recharge distribution for 
convergent hillslope. 
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    (a) convergent hillslope 

 

     (b) uniform hillslope 

 
       (c) divergent hillslope 

Fig. 21. Hydrograph of outflow for three different hillslopes under six types of 
recharge distribution. 
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