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Abstract 12 

To improve the efficiency of flood early warning systems (FEWS), it is important to 13 

understand the interactions between natural and social systems. The high level of trust in 14 

authorities and experts is necessary to improve the likeliness of individuals to take 15 

preparedness actions responding to warnings. Despite a lot of efforts to develop the 16 

dynamic model of human and water in socio-hydrology, no socio-hydrological models 17 

explicitly simulate social collective trust in FEWS. Here we develop the stylized model 18 

to simulate the interactions of flood, social collective memory, social collective trust in 19 

FEWS, and preparedness actions responding to warnings by extending the existing socio-20 

hydrological model. We realistically simulate the cry wolf effect, in which many false 21 

alarms undermine the credibility of the early warning systems and make it difficult to 22 

induce preparedness actions. We found (1) considering the dynamics of social collective 23 

trust in FEWS is more important in the technological society with infrequent flood events 24 

than in the green society with frequent flood events; (2) as the natural scientific skill to 25 

predict flood events is improved, the efficiency of FEWS gets more sensitive to the 26 

behavior of social collective trust, so that forecasters need to determine their warning 27 

threshold by considering the social aspects. 28 

 29 
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 30 

1. Introduction 31 

The number of severe flood events is expected to increase in many regions due to climate 32 

change (Hirabayashi et al. 2013, 2021). Based on the advances of weather forecasting 33 

(e.g., Bauer et al. 2015; Miyoshi et al. 2016; Sawada et al. 2019) and hydrodynamic 34 

modeling (e.g., Yamazaki et al. 2011; Trigg et al. 2016), Flood Early Warning Systems 35 

(FEWS) have become the promising tool to efficiently mitigate the damage of severe 36 

floods. However, to maximize the potential of FEWS, it is crucially important to 37 

understand the interactions between flood and social systems. The likeliness of 38 

individuals to take preparedness actions responding to flood warnings strongly depends 39 

on the individual’s risk perception which is controlled by the complex interaction between 40 

natural hazards and stakeholders (Wachinger et al. 2013). 41 

 42 

In the literature of weather forecasting, the “cry wolf effect” has been intensively 43 

investigated as an important interaction between weather prediction and social systems. 44 

In Aesop’s fable, the “The Boy who Cried Wolf”, a young boy repeatedly tricks 45 

neighboring villagers into believing that a wolf is attacking the sheep. When a wolf 46 

actually appears and the young boy seriously calls for help, the villagers no longer trust 47 
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the warning and fail to protect their sheep. Many false alarms undermine the credibility 48 

of the early warning systems. The cry wolf effect on mitigation and protection actions 49 

against meteorological disasters has been investigated in economics, sociology, and 50 

psychology. Simmons and Sutter (2009) performed econometric analysis of a disaster 51 

database and revealed that tornadoes that occurred in areas with higher false alarm ratio 52 

killed and injured more people. Ripberger et al. (2015) performed a web-based 53 

questionnaire survey and revealed that subjective perceptions of warning system’s 54 

accuracy are systematically related to trust in a weather agency and stated responses to 55 

warnings. Trainor et al. (2015) performed large-scale telephone interviews and revealed 56 

the significant relationship between actual false alarm ratio and behavioral responses to 57 

tornado warnings. They also found that there is a wide variation in public definition of 58 

false alarms and actual false alarm ratio does not predict perception of false alarm ratio, 59 

which illustrated the significant complexity associated with the analysis of false alarms. 60 

Although Trainor et al. (2015) could not find the significant relationship between 61 

perceived false alarm ratio and responses to warnings, Jauernic and van den Broeke 62 

(2017) revealed that the odds of students initialing sheltering decreases nearly 1% for 63 

every 1% increase in perceived false alarm ratio based on their online questionnaire 64 

survey of 640 undergraduate students. While these previous works supported the cry wolf 65 
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effect as an important factor to be considered for the design of warning systems, many 66 

existing studies discussed the myth of cry wolf effects implying that they do not exist. 67 

For example, LeClerc and Joslyn (2015) performed a psychological experiment in which 68 

participants decided whether to apply salt brine to a town’s roads to prevent icing 69 

according to weather forecasting. In their experiment, the effects of false alarms are so 70 

small that they found no evidence suggesting lowering false alarm ratio significantly 71 

increases compliance with weather warnings. Lim et al. (2019) performed an online 72 

questionnaire survey and found no significant relationship between actual false alarm 73 

ratio and responses to warnings. In addition, they found that the increase of perceived 74 

false alarm ratio enhanced protective behavior, which contradicted the other works. 75 

Although the existence of the cry wolf effect is still debatable, the warning threshold of 76 

the actual weather warning systems can be justified only if the cry wolf effect is 77 

considered (Roulston and Smith 2003). It is crucially important to understand the effect 78 

of false alarms on behavioral responses to warnings to design efficient weather warning 79 

systems. 80 

 81 

Socio-hydrology is an emerging research field to contribute to understanding the 82 

interactions between flood and social systems (Sivapalan et al. 2012, 2014; Di 83 
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Baldassarre et al. 2019). The primary approach of socio-hydrology is to develop the 84 

dynamic model of water and human. Many socio-hydrological models used social 85 

preparedness as a key driver of human-water interactions (e.g., Di Baldassarre et al. 2013; 86 

Viglione et al. 2014; Ciullo et al. 2017; Yu et al. 2017; Albertini et al. 2020). The 87 

pioneering work of Girons Lopez et al. (2017) revealed the effect of social preparedness 88 

on the efficiency of FEWS. Their main finding is that social preparedness is an important 89 

factor for flood loss mitigation especially when the accuracy of the forecasting system is 90 

limited. However, to our best knowledge, the existing socio-hydrological models 91 

simulated social preparedness as a function of social collective memory or personal 92 

experience of past disasters, and they considered no effect of trust in authorities and 93 

experts. Therefore, the cry wolf effect cannot be analyzed in the existing models. The 94 

systematic review of Wachinger et al (2013) indicated that both personal experience of 95 

past disasters and trust in authorities and experts have the substantial impact on risk 96 

perception. It is crucially important to include the social collective trust in FEWS in the 97 

socio-hydrological model to improve the design of FEWS considering social system 98 

dynamics. 99 

 100 
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The aim of this study is to develop the stylized model of the responses of social systems 101 

to FEWS as the simple extension of Girons Lopez et al. (2017). By modeling the 102 

dynamics of social collective trust in FEWS as a function of the recent success and failure 103 

of the forecasting system, we realistically simulate the cry wolf effect. By analyzing our 104 

newly developed model, we provide useful implication to maximize the potential of 105 

FEWS considering social system dynamics. 106 

 107 

2. Model 108 

Here we slightly modified the model proposed by Girons Lopez et al. (2017). For brevity, 109 

the detailed explanation of equations shared with Girons Lopez et al. (2017) is omitted in 110 

this paper. See Gironz Lopez et al. (2017) and references therein for the complete 111 

description. 112 

 113 

A synthetic time series of river discharge is generated. Following Girons Lopez et al. 114 

(2017), a simple bivariate gamma distribution, Γ, is used: 115 

𝑄~Γ(𝜅𝑐, 𝜃𝑐)  (1) 116 

where Q is maximum annual flow. The bivariate gamma distribution is characterized by 117 

shape 𝜅𝑐 and scale 𝜃𝑐.  118 
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 119 

This maximum annual flow, Q, is forecasted. In our model, the ensemble flood forecasting 120 

system (e.g., Cloke and Hornberger 2009) is installed and the probabilistic forecast can 121 

be issued. The forecast probability distribution, F, is calculated by the following: 122 

𝐹~𝑁(𝑄 + 𝑁(𝜇𝑚, 𝜎𝑚
2 ), 𝑁(𝜇𝑣, 𝜎𝑣

2)) (2) 123 

where 𝑁(. ) is the Gaussian distribution, 𝑁(𝜇𝑚, 𝜎𝑚
2 ) controls the prediction accuracy, 124 

and 𝑁(𝜇𝑣, 𝜎𝑣
2)  controls the prediction precision. While Girons Lopez et al. (2017) 125 

changes 𝜇𝑚  in their simulation, we set 𝜇𝑚 = 0  assuming the forecast is unbiased. 126 

While Girons Lopez et al. (2017) used the bivariate gamma distribution to model the 127 

prediction precision, we used the Gaussian distribution to make it easier to interpret 128 

results. 129 

 130 

There is a damage threshold, 𝛿, which is the proxy of levee height. When 𝑄 > 𝛿, flood 131 

occurs. The forecast system calculates the probability of river discharge exceeding 𝛿  132 

and issues a warning if this probability of exceedance, P, is larger than a predefined 133 

probability threshold, 𝜋. Table 1 summaries four different outcomes of forecasting: true 134 

positive, false positive, false negative, and true negative. When forecasters choose lower 135 

𝜋, they issue many warnings with low forecasted probability of flooding, which inevitably 136 
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increases false alarms. When forecasters choose higher 𝜋, they can reduce the number of 137 

false alarms by issuing the smaller number of warnings, which inevitably increases 138 

missed events. 139 

 140 

Based on these four different outcomes shown in Table 1, damages and costs are 141 

calculated. Flood damage is assumed to be negligible when river discharge is smaller than 142 

a damage threshold (i.e. 𝑄 < 𝛿 ). When 𝑄 ≥ 𝛿 , the damage function is defined as a 143 

simple exponential function, which is often used in the socio-hydrological literature (e.g., 144 

Di Baldassarre et al. 2013): 145 

𝐷𝑄 = {
0                        (𝑄 < 𝛿)

1 − 𝑒
−
𝑄−𝛿

𝛽       (𝑄 ≥ 𝛿)
 (3) 146 

where 𝐷𝑄 is damage, 𝛽 is a model parameter. If a flood event is successfully forecasted 147 

and a warning is issued (i.e. 𝑃 ≥ 𝜋), this damage is mitigated by preparedness actions. 148 

How much damage can be mitigated depends on social preparedness, 𝑃𝑟. The mitigated 149 

damage (called residual damage in Girons Lopez et al. (2017)), 𝐷𝑟, is calculated by the 150 

following: 151 

𝐷𝑟 = 𝐷𝑄𝑒
−𝑃𝑟 ln(

1

𝛼0
)
   (4) 152 

where 𝛼0  is a model parameter which determines the minimum possible damage. In 153 

summary, the flood damage, D, can be described by equation (5): 154 
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𝐷 =

{
 
 

 
 

0                        (𝑄 < 𝛿)

1 − 𝑒
−
𝑄−𝛿

𝛽       (𝑄 ≥ 𝛿 𝑎𝑛𝑑 𝑃 < 𝜋)

(1 − 𝑒
−
𝑄−𝛿

𝛽 ) 𝑒
−𝑃𝑟 ln(

1

𝛼0
)
   (𝑄 ≥ 𝛿 𝑎𝑛𝑑 𝑃 ≥ 𝜋)

   (5) 155 

 156 

Whenever a warning is issued, the cost, 𝐶, arises from mitigation and protection actions. 157 

Following Girons Lopez et al. (2017), we assumed that the cost is calculated by: 158 

𝐶 = {
0      𝑃 < 𝜋  
𝜂𝑄  𝑃 ≥ 𝜋 

 (6) 159 

where 𝜂 is a parameter. 160 

 161 

The dynamics of social preparedness, 𝑃𝑟, in this study is different from Girons Lopez et 162 

al. (2017). We assumed that the social preparedness consists of social collective memory 163 

and social collective trust in FEWS: 164 

𝑃𝑟(𝑡) =  𝛾𝐸(𝑡) + (1 − 𝛾)𝑇(𝑡) (7) 165 

where 𝐸(𝑡) and 𝑇(𝑡) are social collective memory and social collective trust in FEWS 166 

at time 𝑡, respectively. 𝛾 is a model parameter that weights 𝐸(𝑡) and 𝑇(𝑡). In many 167 

socio-hydrological models, social collective memory is driven by the recency of past 168 

flood experience. Following Girons Lopez et al. (2017), the dynamics of social collective 169 

memory is described by the following: 170 

𝐸(𝑡 + 1) = {
𝐸(𝑡) − 𝜆𝐸(𝑡)        (𝐷 = 0)

𝐸(𝑡) + 𝜒𝐷             (𝐷 > 0)
  (8) 171 
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where 𝜆 and 𝜒 are model parameters. 172 

 173 

We assumed that social collective trust in FEWS is affected by the recent accuracy of 174 

FEWS. Previous studies pointed out that the recent forecast accuracy and false alarm ratio 175 

affected the performance of preparedness actions (Simmons and Sutter 2009; Trainor et 176 

al. 2015; Ripberger et al. 2015; Jauernic and van den Broeke 2017). It is reasonable to 177 

assume that trust in FEWS increases (decreases) when prediction succeeds (fails) 178 

(Wachinger et al. 2013). We propose the following simple equation to describe the 179 

dynamics of social collective trust in FEWS: 180 

𝑇(𝑡 + 1) =

{
 

 
𝑇(𝑡)                      𝑓𝑜𝑟 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇(𝑡) + 𝜏𝑇𝑃            𝑓𝑜𝑟 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇(𝑡) − 𝜏𝐹𝑁         𝑓𝑜𝑟 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇(𝑡) − 𝜏𝐹𝑃           𝑓𝑜𝑟 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 (9) 181 

where 𝜏𝑇𝑃 , 𝜏𝐹𝑁 , and 𝜏𝐹𝑃 , are positive parameters. By changing the value of these 182 

parameters, we can change the sensitivity of social collective trust in FEWS to the 183 

accuracy of FEWS. We will analyze the behavior of our model associated with several 184 

different combinations of these three parameters. 185 

 186 

In our equations (7-9), we can consider both social collective memory and social 187 

collective trust to analyze behavioral responses to warnings. For instance, please assume 188 
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that a severe flood occurs and substantially damages a community, and this flood events 189 

cannot be predicted. In this case, social collective memory increases due to the large 190 

damage (equation (8)). This increase of social collective memory 𝐸(𝑡) contributes to 191 

increasing social preparedness towards the next severe flood events (equation (7)). 192 

However, the failure of predicting this flood events decreases social collective trust in 193 

FEWS and authorities related to warning systems (equation (9)), which negatively 194 

impacts to the capability of a community to deal with the next flood events by decreasing 195 

social preparedness (equation (7)). 196 

 197 

If social preparedness is determined only by social collective memory as Girons Lopez et 198 

al (2017) proposed, social preparedness constantly decreases and goes to 0 when no 199 

floods occur for a long while. In our proposed model, high social collective trust in FEWS 200 

can maintain the high level of social preparedness even if a community completely loses 201 

past flood experiences (equation (7)). However, if a weather agency repeatedly issues 202 

false alarms, social collective trust in FEWS decreases (equation (9)), which negatively 203 

impacts to social preparedness (equation (7)). Therefore, the dynamics of social 204 

preparedness in our proposed model is greatly different from Girons Lopez et al. (2017). 205 

 206 
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Many of the model parameters are fixed in our analysis. Table 2 summarizes the 207 

description and values of the fixed parameters. Some parameters are changed in our 208 

analysis to check their sensitivity to the performance of FEWS. Those parameters are 209 

explained in the next section. 210 

 211 

3. Experiment design 212 

3.1. Metrices 213 

We used several metrices to evaluate the performance of FEWS. The purpose of FEWS 214 

is to reduce the total loss (𝐷 + 𝐶). We used the relative loss as Girons Lopez et al. (2017) 215 

did. The relative loss, 𝐿𝑟, is defined by equation (10): 216 

𝐿𝑟 =
𝐿𝐹𝐸𝑊𝑆

𝐿𝑛𝑜𝐹𝐸𝑊𝑆
  (10) 217 

We performed the long-term (1000-year) numerical simulation by solving equations (1-218 

9) and calculated the total loss, 𝐿𝐹𝐸𝑊𝑆. We also performed the simulation without FEWS, 219 

in which flood damage is always calculated by equation (3) and D is always equal to 𝐷𝑄. 220 

The total loss of this additional simulation is defined as 𝐿𝑛𝑜𝐹𝐸𝑊𝑆 . The relative loss 221 

measures the efficiency of FEWS. 222 

 223 

https://doi.org/10.5194/hess-2021-497
Preprint. Discussion started: 27 October 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

In addition to relative loss, we used hit rate, false alarm ratio, and threat score to evaluate 224 

the prediction accuracy, which is not related to social system dynamics. They are defined 225 

by equations (11-13): 226 

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =  
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑁
  (11) 227 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 =  
𝑂𝐹𝑃

𝑂𝐹𝑃+𝑂𝑇𝑃
 (12) 228 

𝑡ℎ𝑟𝑒𝑎𝑡 𝑠𝑐𝑜𝑟𝑒 =  
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑃+𝑂𝐹𝑁
  (13) 229 

where 𝑂𝑇𝑃, 𝑂𝐹𝑁, and 𝑂𝐹𝑃 are the total number of true positive, false negative, and false 230 

positive events, respectively. 231 

 232 

 233 

3.2. Simulation Settings 234 

We firstly compared the original model proposed by Girons Lopez et al. (2017) with our 235 

modified model. When we set 𝛾 = 1 in equation (7), our model reduces to Girons Lopez 236 

et al. (2017) since we have no contributions of social collective trust in FEWS to social 237 

preparedness. In this paper, this original model is hereafter called the GL model. On the 238 

other hand, when we set 𝛾 = 0.5  in equation (7), our model considers both social 239 

collective memory and social collective trust in FEWS with same weights to calculate 240 

social preparedness. This new model is hereafter called the SKK model.  241 

https://doi.org/10.5194/hess-2021-497
Preprint. Discussion started: 27 October 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

 242 

In the experiment 1, the timeseries of state variables of the two models are compared to 243 

demonstrate how differently the SKK and GL models work. The parameter variables in 244 

the experiment 1 are shown in Table 3. 245 

 246 

We mainly focused on the relationship between relative loss and a predefined probability 247 

threshold, 𝜋. This warning threshold is important for forecasters to determine whether 248 

they require general citizens to take preparedness actions. In the experiment 2, we used 249 

the same damage threshold, 𝛿 , as Girons Lopez et al (2017) and compared the 250 

relationship between relative loss and predefined warning thresholds in the GL model 251 

with that in the SKK model under the different prediction skills and the cost parameter 𝜂. 252 

The settings of the parameters in the experiment 2 can be found in Table 4. 253 

 254 

In the experiment 3, we also compared the GL and SKK models under different damage 255 

thresholds, 𝛿 . In socio-hydrology, previous works focused on the difference between 256 

“green” and “technological” society (Ciullo et al. 2017). In green society, the flood 257 

protection level is so low that many flood events occur, which increases social collective 258 

memory of flood events. In technological society, the flood protection level is high. Since 259 
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flood events occur less frequently in the technological society, the high level of social 260 

collective memory cannot be maintained. By changing the damage threshold, we 261 

analyzed how differently the GL and SKK models behave in the different society. The 262 

settings of the parameters in the experiment 3 can be found in Table 5. 263 

 264 

In the experiment 4, we analyzed only the SKK model. The primary purpose of this 265 

experiment 4 is to find the optimal predefined warning threshold, which minimizes 266 

relative loss, in not only different society and prediction accuracy but also different 267 

combinations of parameters related to the dynamics of social collective trust in FEWS 268 

(i.e.,  𝜏𝑇𝑃, 𝜏𝐹𝑁 ,  and, 𝜏𝐹𝑃  in equation (9)). The settings of the parameters in the 269 

experiment 4 can be found in Table 6. 270 

 271 

In experiments 2–4, we performed the 250-member Monte-Carlo simulation by randomly 272 

perturbing a predefined probability threshold, 𝜋 , and the initial conditions of social 273 

collective memory and social collective trust in FEWS. We analyzed the sensitivity of the 274 

efficiency of FEWS to predefined warning thresholds. 275 

 276 

 277 

https://doi.org/10.5194/hess-2021-497
Preprint. Discussion started: 27 October 2021
c© Author(s) 2021. CC BY 4.0 License.



17 

 

4. Results 278 

Figure 1 shows the time series of social preparedness of the GL and SKK models in the 279 

experiment 1 (see Table 3). In the GL model (Figure 1a), social preparedness (black line) 280 

increases when flood occurs (red and green bars) and is not affected by false alarms (blue 281 

bars). In the SKK model (Figure 1b), false alarms negatively impact social preparedness 282 

by reducing social collective trust in FEWS (pink line). From 𝑡 = 430  to 𝑡 = 440 , 283 

consecutive false alarms substantially decrease social collective trust in FEWS and social 284 

preparedness, so that the damage of severe flood at 𝑡 = 452 in the SKK model is larger 285 

than that in the GL model despite the accurate warning being issued. It is the cry wolf 286 

effect. 287 

 288 

Figure 2a shows the relationship between relative loss and predefined warning thresholds 289 

simulated by the GL model in the experiment 2 (see Table 4). We firstly assumed that 290 

there is no cost of the mitigation and protection action and is the relatively accurate 291 

prediction system (the experiment 2.1; see Table 4). In this case, FEWS can minimize the 292 

relative loss with the extremely small predefined warning thresholds (blue line). When 293 

we degrade the prediction skill (the experiment 2.2; see Table 4), forecasters still maintain 294 

the same level of relative loss by setting low (or zero) predefined warning thresholds 295 
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issuing many false alarms (orange line). It is apparently unrealistic. In the framework of 296 

the GL model, this unrealistic model’s behavior can be eliminated by setting the high cost 297 

of the mitigation and protection action responding to the issued warning. When we 298 

assume the high cost of preparedness actions (the experiment 2.3; see Table 4), the small 299 

predefined warning threshold induces high relative loss (green line). Forecasters need to 300 

avoid issuing false alarms when the cost which should be paid with false alarms is large. 301 

 302 

The SKK model can give different explanation of the avoidance of false alarms. Figure 303 

2b shows the relationship between relative loss and predefined warning thresholds 304 

simulated by the SKK model in the experiment 2 (see Table 4). Although we assumed no 305 

cost and an accurate prediction system (the experiment 2.4; see Table 4), forecasters need 306 

to avoid issuing false alarms by the relatively high predefined warning thresholds to 307 

minimize relative loss (blue line). Due to the cry wolf effect found in Figure 1b, 308 

forecasters need to decrease the number of false alarms to mitigate the damage of flooding 309 

even if there were no cost of false alarms. In other words, forecasters in the SKK model 310 

need to pay “implicit cost” of false alarms because false alarms induce not only the cost 311 

of mitigation and protection actions for nothing at the current time but also the increase 312 

of damages of the future floods by reducing the social collective trust and preparedness. 313 
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When we degrade the prediction accuracy (the experiment 2.5; see Table 4), relative loss 314 

is more sensitive to predefined warning thresholds (orange line) because the selection of 315 

the threshold is more important to accurately detect flood events and reduce the number 316 

of false alarms when the prediction is more inaccurate and uncertain. When we consider 317 

the high cost of mitigation and protection actions (the experiment 2.6; see Table 4), small 318 

predefined warning thresholds further increase relative loss (green line). 319 

 320 

Figure 3a compares the GL and SKK models in the green society. In the previous 321 

experiments 1 and 2, the damage threshold, 𝛿, is set to 0.35, which is same as Girons 322 

Lopez et al. (2017). In the experiments 3.1 and 3.2 (see Table 5), the damage threshold is 323 

reduced to 0.20, so that the number of flood events increases. In this case, the GL and 324 

SKK models behave similarly. Figure 3c shows time-averaged social collective memory, 325 

social collective trust in FEWS, and social preparedness as functions of predefined 326 

warning thresholds. In the green society, frequent flood events make social collective 327 

memory high. In addition, it is easy to maintain the high social collective trust in FEWS 328 

since there are many opportunities to gain trust when flood frequently occurs. Therefore, 329 

both social collective memory and social collective trust in FEWS are large in the green 330 
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society. Although the GL model neglect the social collective trust in FEWS to calculate 331 

social preparedness, the social preparedness of both GL and SKK models is high 332 

 333 

On the other hand, the GL and SKK models work more differently in the technological 334 

society than the green society. The damage threshold, 𝛿 , is increased to 0.45 in the 335 

experiments 3.3 and 3.4 (see Table 5), so that the number of flood events is smaller than 336 

Girons Lopez et al. (2017). Figure 3b indicates that the relationship between relative loss 337 

and predefined warning thresholds in the GL model is substantially different from that in 338 

the SKK model. The SKK model produces smaller relative loss than the GL model when 339 

the appropriate predefined warning threshold is chosen. The sensitivity of relative loss to 340 

predefined warning thresholds is larger in the technological society than the green society. 341 

Figure 3d indicates that it is difficult to maintain the high level of social collective 342 

memory in the technological society, so that considering social collective trust in FEWS 343 

can increase social preparedness. In addition, the choice of a predefined warning 344 

threshold is more important to maintain the high level of social collective trust in the 345 

technological society than the green society.  346 

 347 
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In the experiment 4, we further analyze the SKK model to discuss the optimal predefined 348 

warning threshold and to provide the useful implication for the design of FEWS in the 349 

various kind of social systems. We have three sets of parameters in equation (9) (see also 350 

Table 6). The first set of parameters is same as the experiments 1-3. Changes in social 351 

collective trust by false negative and false positive are same (𝜏𝐹𝑁 = 𝜏𝐹𝑃). In the second 352 

set of parameters, we assume social collective trust substantially decreases by false 353 

positive (false alarms) (𝜏𝐹𝑁 < 𝜏𝐹𝑃): [𝜏𝑇𝑃, 𝜏𝐹𝑁 , 𝜏𝐹𝑃] = [0.1, 0.1, 0.8]. In the third set of 354 

parameters, we assume social collective trust substantially decreases when forecasters 355 

miss a flood event (𝜏𝐹𝑁 > 𝜏𝐹𝑃): [𝜏𝑇𝑃, 𝜏𝐹𝑁 , 𝜏𝐹𝑃] = [0.1, 0.8, 0.1]. The blue, orange, and 356 

green lines in Figures 4a-4d show that the optimal predefined warning threshold depends 357 

on how social collective trust is affected by false alarms and missed events. When social 358 

collective trust is affected by false alarms more substantially than missed events (orange 359 

lines), forecasters need to have relatively high predefined warning thresholds to maintain 360 

the high level of social collective trust (see Figures 4e-h) and minimize relative loss. 361 

Figures 4a-4d also shows that the differences of optimal predefined warning thresholds 362 

in three sets of parameters become larger as forecasts become accurate. The optimal 363 

predefined thresholds are bounded by the range in which the high threat scores can be 364 

obtained (see Figures 4i-4l).  Thus, more accurate prediction systems make it more 365 
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important to change the predefined warning threshold according to the dynamics of social 366 

collective trust. It implies that forecasters need to prioritize the meteorologically accurate 367 

forecasting by maximizing threat scores. Then, they have a room for improvement to 368 

change their warning thresholds based on the dynamics of social collective trust in FEWS. 369 

 370 

5. Discussion and conclusions 371 

In this study, we included the dynamics of social collective trust in FEWS into the existing 372 

socio-hydrological model. By formulating social preparedness as a function of social 373 

collective trust as well as social collective memory, we realistically simulate the cry wolf 374 

effect, in which many false alarms undermine the credibility of the early warning systems. 375 

Please note that the previous version of the model proposed by Girons Lopez et al. (2017) 376 

cannot do it. Although our model is simple and stylized, we can provide useful implication 377 

to improve the design of FEWS. First, considering the dynamics of social collective trust 378 

in FEWS is more important in the technological society with infrequent flood events than 379 

in the green society with frequent flood events. Second, as the natural scientific skill to 380 

predict flood is improved, the efficiency of FEWS gets more sensitive to the behavior of 381 

social collective trust, so that forecasters need to determine their forecasting threshold by 382 

considering the social aspects. 383 
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 384 

Although our model is the small extension of Girons Lopez et al. (2017), the implication 385 

of our study is completely different from Girons Lopez et al. (2017). Girons Lopez et al. 386 

(2017) mainly focused on the influence of the recency of flood experience on social 387 

preparedness and the efficiency of FEWS. Since their social preparedness is determined 388 

only by the flood experiences and they did not consider social collective trust in FEWS 389 

and weather agencies, the outcome of prediction did not directly influence the people’s 390 

behavior in the model of Girons Lopez et al. (2017). By formulating social preparedness 391 

as a function of both social collective memory and trust, we could evaluate the effects of 392 

missed events and false alarms on preparedness actions. We contributed to connecting the 393 

modeling approaches of system dynamics in socio-hydrology to the existing literature 394 

about complex human behaviors against disaster warnings such as cry wolf effects in 395 

economics, sociology, and psychology (e.g., Simmons and Sutter 2009; Ripberger et al. 396 

2015; Trainor et al. 2015; LeClerc and Joslyn 2015; Jauernic and van den Broeke 2017; 397 

Lim et al. 2019) 398 

 399 

Our findings of the optimal predefined warning thresholds are similar to Roulston and 400 

Smith (2003). Roulston and Smith (2003) developed the simple model to optimize 401 
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predefined warning thresholds considering the damage, cost, and imperfect compliance 402 

with forecasting (i.e., the cry wolf effect). They also revealed that it is necessary to choose 403 

high warning thresholds if intolerance of false alarms of the society is high. However, 404 

there are substantial differences between our study and the previous cost-loss analysis 405 

such as Roulston and Smith (2003). First, Roulston and Smith (2003) developed the static 406 

model in which the cry wolf effect is treated exogeneously while our model is the dynamic 407 

model in which the cry wolf effect is endogeneously simulated. Therefore, our model can 408 

consider the temporal change in the design and accuracy of FEWS, the flood protection 409 

level, and social systems, which may be the significant advantage to analyze the actual 410 

socio-hydrological phenomena. Second, by fully utilizing the previous achievements of 411 

Girons Lopez et al. (2017), we can also consider social collective memory of past 412 

disasters, which is not considered by Roulston and Smith (2003). This feature of our 413 

model can reveal that the social collective memory also contributes to the optimal 414 

predefined warning thresholds. 415 

 416 

The major limitation of this study is that our modeling of social collective trust is simple 417 

and is not fully supported by empirical data. Although intuition and theory suggest that 418 

many false alarms reduce the preparedness actions responding to warnings, the existence 419 
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of the cry wolf effect in the weather-related disasters is still debatable (see a 420 

comprehensive review of Lim et al. (2019)). Simmons and Sutter (2009) indicated that 421 

the recent false alarms negatively impacted the preparedness actions, so that we modeled 422 

the change in social collective trust by the recent forecast outcome. However, Ripberger 423 

et al. (2015) could not find the statistically significant short-term effect of false alarms 424 

although they found the statistically significant cry wolf effect using the long-term data. 425 

It should be noted that most of previous studies related to the cry wolf effect focused on 426 

tornado disasters and the systematic econometric analyses have not been implemented for 427 

flood disasters. The effect of social collective memory on catastrophic disasters in the 428 

actual society is also debatable (e.g., Fanta et al. 2019). As Mostert (2018) suggested, it 429 

is crucially important to perform case study analyses, obtain empirical data, and integrate 430 

those data into the dynamic model to deepen our understanding of the hypothesis of the 431 

models (e.g., Roobavannan et al. 2017; Ciullo et al. 2017; Barendrecht et al. 2019; 432 

Sawada and Hanazaki 2020). 433 

 434 

In socio-hydrology, researchers have mainly focused on the functions of land use change 435 

and water-related infrastructures such as dams, levees, and dikes in the complex social 436 

systems. Although the interactions between social systems and weather forecasting such 437 
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as the cry wolf effect are interesting, the function of FEWS and weather-related disaster 438 

forecasting has not been intensively investigated in socio-hydrology. We call for the new 439 

research regime, socio-meteorology, as extension of socio-hydrology. In socio-440 

meteorology, researchers may focus on how social systems interact with water-related 441 

disaster forecasting, how the efficiency of weather forecasting is affected by the other 442 

hydrological factors such as land use and flood protection infrastructures, and how 443 

weather forecasting affects the design of land use and flood protection infrastructures. 444 

  445 
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Table 1. Summary of the outcomes of the flood early warning system. Loss by each outcome is also shown 559 

(see also Section 2). 560 

 561 

 𝑄 < 𝛿 𝑄 ≥ 𝛿 

𝑃 < 𝜋 True negative: 0 False negative: 𝐷𝑄 

𝑃 ≥ 𝜋 False positive: 𝐶 True positive: 𝐶 + 𝐷𝑟 

 562 

  563 
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Table 2. Fixed model parameters 564 

 565 

 description equation values 

𝜅𝑐 shape of the bivariate gamma distribution to generate river discharge 

timeseries 

(1) 2.5 

𝜃𝑐 scale of the bivariate gamma distribution to generate river discharge 

timeseries 

(1) 0.08 

𝜇𝑚 mean of prediction error (2) 0 

𝛽 parameter of the damage function (3) 0.2 

𝛼0 minimum residual damage fraction (4) 0.2 

𝜆 social collective memory decay rate (8) 0.028 

𝜒 psychological shock magnitude (8) 1.0 

 566 

  567 
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 568 

Table 3. Model parameters in the experiment 1. 569 

 570 

 description equation values 

𝜎𝑚  standard deviation of prediction error (2) 0.075 

𝜇𝑣 mean of prediction precision (2) 0.15 

𝜎𝑣  standard deviation of prediction precision (2) 0.075 

𝛿 Damage threshold (3,5) 0.35 

𝜂 cost parameter (6) 0.02 

 𝛾 Parameter controlling weights of social collective memory and trust (7) 1 (GL model) 

0.5 (SKK model) 

𝜏𝑇𝑃 Increment of trust for true positive (9) 0.1 

𝜏𝐹𝑁 Increment of trust for false negative (9) 0.1 

𝜏𝐹𝑃 Increment of trust for false positive (9) 0.1 

 571 

  572 
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 573 

Table 4. Model parameters in the experiment 2 574 

 575 

 description equation values 

   exp2.1 exp2.2 exp2.3 exp2.4 exp2.5 exp2.6 

𝜎𝑚  standard 

deviation of 

prediction error 

(2) 0.05 0.075 0.05 0.05 0.075 0.05 

𝜇𝑣 mean of 

prediction 

precision 

(2) 0.05 0.15 0.05 0.05 0.15 0.05 

𝜎𝑣  standard 

deviation of 

prediction 

precision 

(2) 0.025 0.075 0.025 0.05 0.075 0.025 

𝛿 Damage 

threshold 

(3,5) 0.35 0.35 0.35 0.35 0.35 0.35 

𝜂 cost parameter (6) 0 0 0.1 0 0 0.1 

 𝛾 Parameter 

controlling 

weights of social 

collective 

memory and 

trust 

(7) 1 (GL 

model) 

 

1 (GL 

model) 

 

1 (GL 

model) 

 

0.5 (SKK 

model) 

 

0.5 (SKK 

model) 

 

0.5 (SKK 

model) 

 

𝜏𝑇𝑃 Increment of 

trust for true 

positive 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

𝜏𝐹𝑁 Increment of 

trust for false 

negative 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

𝜏𝐹𝑃 Increment of 

trust for false 

positive 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

 576 
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Table 5. Model parameters in the experiment 3 578 

 579 

 description equation values 

   exp3.1 exp3.2 exp3.3 exp3.4 

𝜎𝑚  standard 

deviation of 

prediction error 

(2) 0.05 0.05 0.05 0.05 

𝜇𝑣 mean of 

prediction 

precision 

(2) 0.05 0.05 0.05 0.05 

𝜎𝑣  standard 

deviation of 

prediction 

precision 

(2) 0.025 0.025 0.025 0.025 

𝛿 Damage 

threshold 

(3,5) 0.20 0.20 0.45 0.45 

𝜂 cost parameter (6) 0.02 0.02 0.02 0.02 

 𝛾 Parameter 

controlling 

weights of social 

collective 

memory and 

trust 

(7) 1 (GL 

model) 

 

0.5 (SKK 

model) 

 

1 (GL 

model) 

 

0.5 (SKK 

model) 

 

𝜏𝑇𝑃 Increment of 

trust for true 

positive 

(9) 0.1 0.1 0.1 0.1 

𝜏𝐹𝑁 Increment of 

trust for false 

negative 

(9) 0.1 0.1 0.1 0.1 

𝜏𝐹𝑃 Increment of 

trust for false 

positive 

(9) 0.1 0.1 0.1 0.1 

 580 
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Table 6. Model parameters in the experiment 4. 582 

 583 

 description equation values 

𝜎𝑚  standard deviation of 

prediction error 

(2) 0.05 (accurate forecast) 

0.075 (inaccurate forecast) 

𝜇𝑣 mean of prediction precision (2) 0.05 (accurate forecast) 

0.15 (inaccurate forecast) 

𝜎𝑣  standard deviation of 

prediction precision 

(2) 0.025 (accurate forecast) 

0.075 (inaccurate forecast) 

𝛿 Damage threshold (3,5) 0.20 (green society) 

0.45 (technological society) 

𝜂 cost parameter (6) 0.02 

 𝛾 Parameter controlling weights 

of social collective memory 

and trust 

(7) 1 (GL model) 

 

[𝜏𝑇𝑃 , 𝜏𝐹𝑁 , 𝜏𝐹𝑃]  Increment of trust for true 

positive, false negative, and 

false positive 

(9) [0.1, 0.1, 0.1] (blue lines in Figures 4a-4h) 

[0.1, 0.1, 0.8] (orange lines in Figures 4a-4h) 

[0.1, 0.8, 0.1] (green lines in Figures 4a-4h) 

 584 
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 586 

 587 

Figure 1. Timeseries of (a) the GL model and (b) the SKK model of the experiment 1 (see section 3 and Table 588 

2 for model parameters). Black, purple, and pink lines are social preparedness, half of social collective memory, 589 

and half of social collective trust in FEWS, respectively. Since social preparedness is identical to social 590 

collective memory and social collective trust is not considered in the GL model, there are no purple and pink 591 

lines in (a). Blue, red, and green bars show total loss by the outcomes of false positive, false negative, and true 592 

positive, respectively. 593 

 594 
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 596 

Figure 2. The relationship between relative loss and predefined warning thresholds in (a) the GL model and 597 

(b) the SKK model in the experiment 2. In (a), blue, orange, and green lines show the results of the 598 

experiments 2.1, 2.2, 2.3, respectively. In (b), blue, orange, and green lines show the results of the 599 

experiments 2.4, 2.5, 2.6, respectively. Each dot shows the result of the individual Monte-Carlo simulation 600 

and we smoothed them by Gaussian process regression. See also Table 4 for detailed parameter settings. 601 
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 603 

Figure 3. (a-b) The relationship between relative loss and predefined warning thresholds in (a) the green 604 

society and (b) the technological society. In (a), blue and green lines show the results of the experiments 3.1 605 

and 3.2, respectively. In (b), blue and green lines show the results of the experiments 3.3 and 3.4, 606 

respectively. (c-d) The relationship between time-averaged social preparedness and predefined warning 607 

thresholds in (c) the green society and (d) the technological society. Black, purple, and pink lines show time-608 
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averaged social preparedness, social collective memory, and social collective trust in FEWS. Each dot shows 609 

the result of the individual Monte-Carlo simulation and we smoothed them by Gaussian process regression. 610 
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 612 

 613 

Figure 4. Results of the experiment 4. (a-d) The relationship between relative loss and predefined warning 614 

thresholds in (a) the green society with accurate forecasts, (b) the green society with inaccurate forecasts, (c) 615 

the technological society with accurate forecasts, (d) the technological society with inaccurate forecasts. 616 

Increments of trust for true positive, false negative, and false positive are set to 0.1, 0.1, and 0.1 (blue lines), 617 

0.1, 0.1, and 0.8 (orange lines), and 0.1, 0.8, and 0.1 (green lines). See Table 6 for detailed model 618 

parameters’ settings. (e-f) Same as (a-d) but for time-averaged social collective trust in FEWS. (i-l) Same as 619 

(a-d) but for threat score (black lines), hit rate (purple lines), and false alarm ratio (pink lines). Each dot 620 
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shows the result of individual Monte-Carlo simulation and we smoothed them by Gaussian process 621 

regression. 622 

 623 
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