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Abstract 13 

To improve the efficiency of flood early warning systems (FEWS), it is important to 14 

understand the interactions between natural and social systems. The high level of trust in 15 

authorities and experts is necessary to improve the likeliness of individuals to take 16 

preparedness actions responding to warnings. Despite a lot of efforts to develop the 17 

dynamic model of human and water in socio-hydrology, no socio-hydrological models 18 

explicitly simulate social collective trust in FEWS. Here we develop the stylized model 19 

to simulate the interactions of flood, social collective memory, social collective trust in 20 

FEWS, and preparedness actions responding to warnings by extending the existing socio-21 

hydrological model. We realistically simulate the cry wolf effect, in which many false 22 

alarms undermine the credibility of the early warning systems and make it difficult to 23 

induce preparedness actions. We found (1) considering the dynamics of social collective 24 

trust in FEWS is more important in the technological society with infrequent flood events 25 

than in the green society with frequent flood events; (2) as the natural scientific skill to 26 

predict flood events is improved, the efficiency of FEWS gets more sensitive to the 27 

behavior of social collective trust, so that forecasters need to determine their warning 28 

threshold by considering the social aspects. 29 

 30 
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 31 

1. Introduction 32 

The number of severe flood events is expected to increase in many regions due to climate 33 

change (Hirabayashi et al. 2013, 2021). Based on the advances of weather forecasting 34 

(e.g., Bauer et al. 2015; Miyoshi et al. 2016; Sawada et al. 2019) and hydrodynamic 35 

modeling (e.g., Yamazaki et al. 2011; Trigg et al. 2016), Flood Early Warning Systems 36 

(FEWS) have become the promising tool to efficiently mitigate the damage of severe 37 

floods. However, to maximize the potential of FEWS, it is crucially important to 38 

understand the interactions between flood and social systems. The likeliness of 39 

individuals to take preparedness actions responding to flood warnings strongly depends 40 

on the individual’s risk perception which is controlled by the complex interaction between 41 

natural hazards and stakeholders (Wachinger et al. 2013). 42 

 43 

In the literature of weather forecasting, the “cry wolf effect” has been intensively 44 

investigated as an important interaction between weather prediction and social systems. 45 

In Aesop’s fable, the “The Boy who Cried Wolf”, a young boy repeatedly tricks 46 

neighboring villagers into believing that a wolf is attacking the sheep. When a wolf 47 

actually appears and the young boy seriously calls for help, the villagers no longer trust 48 
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the warning and fail to protect their sheep. Many false alarms undermine the credibility 49 

of the early warning systems. The cry wolf effect on mitigation and protection actions 50 

against meteorological disasters has been investigated in economics, sociology, and 51 

psychology. Many previous studies have found and quantified the cry wolf effects in 52 

meteorological disasters. Simmons and Sutter (2009) performed econometric analysis of 53 

a disaster database and revealed that tornadoes that occurred in areas with higher false 54 

alarm ratio killed and injured more people. Ripberger et al. (2015) performed a web-based 55 

questionnaire survey and revealed that subjective perceptions of warning system’s 56 

accuracy are systematically related to trust in a weather agency and stated responses to 57 

warnings. Trainor et al. (2015) performed large-scale telephone interviews and revealed 58 

the significant relationship between actual false alarm ratio and behavioral responses to 59 

tornado warnings. Jauernic and van den Broeke (2017) revealed that the odds of students 60 

initialing sheltering decreases nearly 1% for every 1% increase in perceived false alarm 61 

ratio based on their online questionnaire survey of 640 undergraduate students. Roulston 62 

and Smith (2003) found that the warning threshold of the actual weather warning systems 63 

can be justified only if the cry wolf effects were considered. This finding implies that 64 

many forecasters believe the existence of the cry wolf effects and the design of early 65 

warning systems is affected by how the cry wolf effects are considered. It should be noted 66 
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that while these previous works supported the cry wolf effect as an important factor to be 67 

considered for the design of warning systems, some studies discussed the myth of cry 68 

wolf effects implying that they do not exist. For example, LeClerc and Joslyn (2015) 69 

performed a psychological experiment in which participants decided whether to apply 70 

salt brine to a town’s roads to prevent icing according to weather forecasting. In their 71 

experiment, the effects of false alarms are so small that they found no evidence suggesting 72 

lowering false alarm ratio significantly increases compliance with weather warnings. Lim 73 

et al. (2019) performed an online questionnaire survey and found no significant 74 

relationship between actual false alarm ratio and responses to warnings. In addition, they 75 

found that the increase of perceived false alarm ratio enhanced protective behavior, which 76 

contradicted the other works. Although Trainor et al. (2015) supported the existence of 77 

the cry wolf effects, they also found that there is a wide variation in public definition of 78 

false alarms and actual false alarm ratio does not predict perception of false alarm ratio. 79 

Although the existence of the cry wolf effect is still debatable due mainly to the lack of 80 

field data and the ambiguity of the quantification of the public perception of false alarms, 81 

the current evidence suggests the importance to understand the effect of false alarms on 82 

behavioral responses to warning in order to design efficient flood early warning systems. 83 

 84 
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Socio-hydrology is an emerging research field to contribute to understanding the 85 

interactions between flood and social systems (Sivapalan et al. 2012, 2014; Di 86 

Baldassarre et al. 2019). The primary approach of socio-hydrology is to develop the 87 

dynamic model of water and human. Many socio-hydrological models used social 88 

preparedness as a key driver of human-water interactions (e.g., Di Baldassarre et al. 2013; 89 

Viglione et al. 2014; Ciullo et al. 2017; Yu et al. 2017; Albertini et al. 2020). The 90 

pioneering work of Girons Lopez et al. (2017) revealed the effect of social preparedness 91 

on the efficiency of FEWS. Their main finding is that social preparedness is an important 92 

factor for flood loss mitigation especially when the accuracy of the forecasting system is 93 

limited. However, to our best knowledge, the existing socio-hydrological models 94 

simulated social preparedness as a function of social collective memory or personal 95 

experience of past disasters, and they considered no effect of trust in authorities and 96 

experts. Therefore, the cry wolf effect cannot be analyzed in the existing models. The 97 

systematic review of Wachinger et al (2013) indicated that both personal experience of 98 

past disasters and trust in authorities and experts have the substantial impact on risk 99 

perception. It is crucially important to include the social collective trust in FEWS in the 100 

socio-hydrological model to improve the design of FEWS considering social system 101 

dynamics. 102 
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 103 

The aim of this study is to develop the stylized model of the responses of social systems 104 

to FEWS as the simple extension of Girons Lopez et al. (2017). By modeling the 105 

dynamics of social collective trust in FEWS as a function of the recent success and failure 106 

of the forecasting system, we realistically simulate the cry wolf effect. By analyzing our 107 

newly developed model, we provide useful implication to maximize the potential of 108 

FEWS considering social system dynamics. 109 

 110 

2. Model 111 

Here we slightly modified the model proposed by Girons Lopez et al. (2017). For brevity, 112 

the detailed explanation of equations shared with Girons Lopez et al. (2017) is omitted in 113 

this paper. See Gironz Lopez et al. (2017) and references therein for the complete 114 

description including empirical evidence which supports each equation. 115 

 116 

A synthetic time series of river discharge is generated. Following Girons Lopez et al. 117 

(2017), a simple bivariate gamma distribution, Γ, is used: 118 

𝑄~Γ(𝜅𝑐, 𝜃𝑐)  (1) 119 
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where Q is maximum annual flow [L3T-1]. The bivariate gamma distribution is 120 

characterized by shape 𝜅𝑐 and scale 𝜃𝑐.  121 

 122 

This maximum annual flow, Q, is forecasted. In our model, the ensemble flood forecasting 123 

system (e.g., Cloke and Hornberger 2009) is installed and the probabilistic forecast can 124 

be issued. The forecast probability distribution, F, is calculated by the following: 125 

𝐹~𝑁(𝑄 + 𝑁(𝜇𝑚, 𝜎𝑚
2 ), 𝑁(𝜇𝑣, 𝜎𝑣

2)) (2) 126 

where 𝑁(. ) is the Gaussian distribution, 𝑁(𝜇𝑚, 𝜎𝑚
2 ) controls the prediction accuracy, 127 

and 𝑁(𝜇𝑣, 𝜎𝑣
2)  controls the prediction precision. Negative 𝑁(𝜇𝑣, 𝜎𝑣

2)  is truncated to 128 

1.0e-6 to prevent from obtaining negative values of variance. While Girons Lopez et al. 129 

(2017) changes 𝜇𝑚  in their simulation, we set 𝜇𝑚 = 0  assuming the forecast is 130 

unbiased. While Girons Lopez et al. (2017) used the bivariate gamma distribution to 131 

model the prediction precision, we used the Gaussian distribution to make it easier to 132 

interpret results. Although this simplification of the forecasting system unrealistically 133 

assigns non-zero probability to negative values of discharge, it does not affect the process 134 

dynamics since the model evolution depends only on whether forecasted discharge is 135 

above the damage threshold, as we explain in the next paragraph. 136 

 137 
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There is a damage threshold [L3T-1], 𝛿, which is the proxy of levee height. When 𝑄 > 𝛿, 138 

flood occurs. The forecast system calculates the probability of river discharge exceeding 139 

𝛿  and issues a warning if this probability of exceedance, P, is larger than a predefined 140 

probability threshold, 𝜋. Table 1 summarizes four different outcomes of forecasting: true 141 

positive, false positive, false negative, and true negative. When forecasters choose lower 142 

𝜋, they issue many warnings with low forecasted probability of flooding, which inevitably 143 

increases false alarms. When forecasters choose higher 𝜋, they can reduce the number of 144 

false alarms by issuing the smaller number of warnings, which inevitably increases 145 

missed events. 146 

 147 

Based on these four different outcomes shown in Table 1, damages and costs are 148 

calculated. Flood damage is assumed to be negligible when river discharge is smaller than 149 

a damage threshold (i.e. 𝑄 < 𝛿 ). When 𝑄 ≥ 𝛿 , the damage function is defined as a 150 

simple exponential function, which is often used in the socio-hydrological literature (e.g., 151 

Di Baldassarre et al. 2013): 152 

𝐷𝑄 = {
0                        (𝑄 < 𝛿)

1 − 𝑒
−
𝑄−𝛿

𝛽       (𝑄 ≥ 𝛿)
 (3) 153 

where 𝐷𝑄 is damage [.], 𝛽 is a model parameter [L-3T]. If a flood event is successfully 154 

forecasted and a warning is issued (i.e. 𝑃 ≥ 𝜋), this damage is mitigated by preparedness 155 
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actions such as evacuation and safekeeping of assets. Note that preparedness actions 156 

which are not triggered by FEWS were not considered in this stylized model to focus only 157 

on the impact of social preparedness on the efficiency of FEWS. How much damage can 158 

be mitigated depends on social preparedness, 𝑃𝑟  [.]. The mitigated damage (called 159 

residual damage in Girons Lopez et al. (2017)), 𝐷𝑟 [.], is calculated by the following: 160 

𝐷𝑟 = 𝐷𝑄𝑒
−𝑃𝑟 ln(

1

𝛼0
)
   (4) 161 

where 𝛼0 is a model parameter [.] which determines the minimum possible damage. In 162 

summary, the flood damage [.], D, can be described by equation (5): 163 

𝐷 =

{
 
 

 
 

0                        (𝑄 < 𝛿)

1 − 𝑒
−
𝑄−𝛿

𝛽       (𝑄 ≥ 𝛿 𝑎𝑛𝑑 𝑃 < 𝜋)

(1 − 𝑒
−
𝑄−𝛿

𝛽 ) 𝑒
−𝑃𝑟 ln(

1

𝛼0
)
   (𝑄 ≥ 𝛿 𝑎𝑛𝑑 𝑃 ≥ 𝜋)

   (5) 164 

 165 

Whenever a warning is issued, the cost [.], 𝐶 , arises from mitigation and protection 166 

actions. Whenever a warning is issued, 𝐶 is included in the total loss. Following Girons 167 

Lopez et al. (2017), we assumed that the cost is calculated by: 168 

𝐶 = {
0      𝑃 < 𝜋  
𝜂𝑄  𝑃 ≥ 𝜋 

 (6) 169 

where 𝜂 is a parameter [L-3T]. Note that this cost has been found to be negligibly small 170 

compared with avoidable damage. For instance, Schroter et al. (2008) showed that the 171 

cost 𝐶 is approximately 2 % of avoidable damage. In previous works, this cost was often 172 
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neglected (e.g., Pappenberger et al. 2015; Hallegatte 2012). Although Gironz Lopez et al 173 

(2017) assumed there are significant costs of mitigation and protection actions, we will 174 

discuss how differently their model and our newly proposed model work with no 175 

mitigation costs (i.e. 𝜂 = 0) as well as with the original settings of Gironz Lopez et al 176 

(2017). 177 

 178 

The dynamics of social preparedness, 𝑃𝑟, in this study is different from Girons Lopez et 179 

al. (2017). We assumed that the social preparedness consisted of social collective memory 180 

and social collective trust in FEWS: 181 

𝑃𝑟(𝑡) =  𝛾𝐸(𝑡) + (1 − 𝛾)𝑇(𝑡) (7) 182 

where 𝐸(𝑡) and 𝑇(𝑡) are social collective memory [.] and social collective trust [.] in 183 

FEWS at time 𝑡, respectively. 𝛾 is a model parameter [.] that weights 𝐸(𝑡) and 𝑇(𝑡). 184 

Social collective memory is shared knowledge and information about past flood disasters 185 

occurred in a community. In many socio-hydrological models, social collective memory 186 

is driven by the recency of past flood experience. Following Girons Lopez et al. (2017), 187 

the dynamics of social collective memory is described by the following: 188 

𝐸(𝑡 + 1) = {
𝐸(𝑡) − 𝜆𝐸(𝑡)        (𝐷 = 0)

𝐸(𝑡) + 𝜒𝐷             (𝐷 > 0)
  (8) 189 
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where 𝜆 and 𝜒 are model parameters [.]. When 𝐸 becomes larger than 1, it is truncated 190 

to 1. 191 

 192 

Social collective trust is defined as shared knowledge and perception of the reliability of 193 

information issued from authorities. We assumed that social collective trust in FEWS is 194 

affected by the recent accuracy of FEWS. Previous studies pointed out that the recent 195 

forecast accuracy and false alarm ratio affected the performance of preparedness actions 196 

(Simmons and Sutter 2009; Trainor et al. 2015; Ripberger et al. 2015; Jauernic and van 197 

den Broeke 2017). In the controlled experiment of LeClerc and Joslyn (2015), medium-198 

range trust ratings are increased by decreased false alarm levels. Their experiments 199 

revealed that trust ratings are based on the pattern of forecasts and observations over the 200 

previous month. It is reasonable to assume that trust in FEWS increases (decreases) when 201 

prediction succeeds (fails). We propose the following simple equation to describe the 202 

dynamics of social collective trust in FEWS: 203 

𝑇(𝑡 + 1) =

{
 

 
𝑇(𝑡)                      𝑓𝑜𝑟 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇(𝑡) + 𝜏𝑇𝑃            𝑓𝑜𝑟 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇(𝑡) − 𝜏𝐹𝑁         𝑓𝑜𝑟 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇(𝑡) − 𝜏𝐹𝑃           𝑓𝑜𝑟 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

 (9) 204 

where 𝜏𝑇𝑃, 𝜏𝐹𝑁, and 𝜏𝐹𝑃, are positive parameters [.]. When 𝑇 becomes larger than 1, 205 

it is truncated to 1. When 𝑇 becomes smaller than 0, it is truncated to 0. By changing the 206 
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value of these parameters, we can change the sensitivity of social collective trust in FEWS 207 

to the accuracy of FEWS. We will analyze the behavior of our model associated with 208 

several different combinations of these three parameters. 209 

 210 

In our equations (7-9), we can consider both social collective memory and social 211 

collective trust to analyze behavioral responses to warnings. For instance, please assume 212 

that a severe flood occurs and substantially damages a community, and this flood events 213 

cannot be predicted. In this case, social collective memory increases due to the large 214 

damage (equation (8)). This increase of social collective memory 𝐸(𝑡) contributes to 215 

increasing social preparedness towards the next severe flood events (equation (7)). 216 

However, the failure of predicting this flood events decreases social collective trust in 217 

FEWS and authorities related to warning systems (equation (9)), which negatively 218 

impacts to the capability of a community to deal with the next flood events by decreasing 219 

social preparedness (equation (7)). 220 

 221 

If social preparedness is determined only by social collective memory as Girons Lopez et 222 

al (2017) proposed, small social collective memory directly results in insufficient social 223 

preparedness actions. In our proposed model, high social collective trust in FEWS can 224 
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induce social preparedness actions even if a community loses past flood experiences to 225 

some extent (equation (7)). However, if a weather agency repeatedly issues false alarms, 226 

social collective trust in FEWS decreases (equation (9)), which negatively impacts to 227 

social preparedness (equation (7)). Therefore, the dynamics of social preparedness in our 228 

proposed model is greatly different from Girons Lopez et al. (2017). 229 

 230 

The additive form of the equation (7) implies that preparedness actions are taken even if 231 

either social collective memory 𝐸(𝑡) or social collective trust 𝑇(𝑡) goes to zero. Note 232 

that 𝐸(𝑡) ≈ 0 does not mean that a community does not know the existence of a flood 233 

event while it means most of citizens have never experienced water levels above damage 234 

thresholds by themselves. Many disasters prevention measures such as education, 235 

evaluation drills, and FEWS are designed to let people take preparedness actions even if 236 

they have no personal experiences of flood disasters. Forecasters expect that people take 237 

preparedness actions based on information from their trusted authorities even if they have 238 

never experienced damages by themselves. To evaluate the effectiveness of these 239 

measures, 𝑃𝑟(𝑡) = 0  with 𝐸(𝑡) = 0  is not an appropriate behavior of the model 240 

although the effectiveness of FEWS highly depends on 𝐸(𝑡)  as Girons Lopez et al. 241 
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(2017) found. Therefore, we chose the additive form of the equation (7) rather than the 242 

other simple alternatives such as multiplicative forms. 243 

 244 

Many of the model parameters are fixed in our analysis. Table 2 summarizes the 245 

description and values of the fixed parameters. These parameters are not focused on in 246 

our analysis, and we chose their values from the previous works. The values of 𝜅𝑐, 𝜃𝑐, 247 

𝛼0, and 𝜒 are same as Girons Lopez et al. (2017). We set 𝜇𝑚 = 0 assuming the forecast 248 

is unbiased (see also equation 2 and its description). Our specified 𝛽 is within the range 249 

proposed by Girons Lopez et al. (2017). In addition, the results of Girons Lopez et al. 250 

(2017) indicated that this parameter is not sensitive to relative loss. We set 𝜆 assuming 251 

that social collective memory has 25-year half-life which is within the range of previously 252 

quantified values (e.g., Fanta et al. 2019; Barendrecht et al. 2019). Some parameters are 253 

changed in our analysis to check their sensitivity to the performance of FEWS. Those 254 

parameters are explained in the next section. 255 

 256 

3. Experiment design 257 

3.1. Metrices 258 
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We used several metrices to evaluate the performance of FEWS. The purpose of FEWS 259 

is to reduce the total loss (𝐷 + 𝐶). We used the relative loss as Girons Lopez et al. (2017) 260 

did. The relative loss, 𝐿𝑟, is defined by equation (10): 261 

𝐿𝑟 =
𝐿𝐹𝐸𝑊𝑆

𝐿𝑛𝑜𝐹𝐸𝑊𝑆
  (10) 262 

We performed the long-term (1000-year) numerical simulation by solving equations (1-263 

9) and calculated the total loss, 𝐿𝐹𝐸𝑊𝑆. We also performed the simulation without FEWS, 264 

in which flood damage is always calculated by equation (3) and D is always equal to 𝐷𝑄. 265 

The total loss of this additional simulation is defined as 𝐿𝑛𝑜𝐹𝐸𝑊𝑆 . The relative loss 266 

measures the efficiency of FEWS. 267 

 268 

In addition to relative loss, we used hit rate, false alarm ratio, and threat score to evaluate 269 

the prediction accuracy, which is not related to social system dynamics. They are defined 270 

by equations (11-13): 271 

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =  
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑁
  (11) 272 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 =  
𝑂𝐹𝑃

𝑂𝐹𝑃+𝑂𝑇𝑃
 (12) 273 

𝑡ℎ𝑟𝑒𝑎𝑡 𝑠𝑐𝑜𝑟𝑒 =  
𝑂𝑇𝑃

𝑂𝑇𝑃+𝑂𝐹𝑃+𝑂𝐹𝑁
  (13) 274 

where 𝑂𝑇𝑃, 𝑂𝐹𝑁, and 𝑂𝐹𝑃 are the total number of true positive, false negative, and false 275 

positive events, respectively. 276 
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 277 

 278 

3.2. Simulation Settings 279 

We firstly compared the original model proposed by Girons Lopez et al. (2017) with our 280 

modified model. When we set 𝛾 = 1 in equation (7), our model reduces to Girons Lopez 281 

et al. (2017) since we have no contributions of social collective trust in FEWS to social 282 

preparedness. In this paper, this original model is hereafter called the GL model. On the 283 

other hand, when we set 𝛾 = 0.5  in equation (7), our model considers both social 284 

collective memory and social collective trust in FEWS with same weights to calculate 285 

social preparedness. There is no existing knowledge about the relative importance of 286 

social collective memory and social collective trust. Assuming the same weights gives us 287 

the most straightforward interpretation of the contributions of social collective trust and 288 

memory to social preparedness and the total loss by floods since we do not need to 289 

consider asymmetric contributions of the two factors in equation (7). Therefore, 𝛾 = 0.5 290 

is appropriate to analyze the essential behavior of our proposed model. This new model 291 

with 𝛾 = 0.5 is hereafter called the SKK model. The behavior of the models with the 292 

different 𝛾 is also discussed in the supplement material. 293 

 294 
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In the experiment 1, the timeseries of state variables of the two models are compared to 295 

demonstrate how differently the SKK and GL models work. The parameter variables in 296 

the experiment 1 are shown in Table 3. The initial conditions of 𝐸 and 𝑇 are randomly 297 

chosen and set to 0.49 and 0.77, respectively. 298 

 299 

We mainly focused on the relationship between relative loss and a predefined probability 300 

threshold, 𝜋. This warning threshold is important for forecasters to determine whether 301 

they require general citizens to take preparedness actions. In the experiment 2, we used 302 

the same damage threshold, 𝛿 , as Girons Lopez et al (2017) and compared the 303 

relationship between relative loss and predefined probability thresholds in the GL model 304 

with that in the SKK model under the different prediction skills and the cost parameter 𝜂. 305 

The settings of the parameters in the experiment 2 can be found in Table 4. The prediction 306 

skill is controlled by 𝜎𝑚 , 𝜇𝑣, and 𝜎𝑣 . The greater values of these parameters provide 307 

inaccurate prediction. We prepared two sets of the parameter for relatively accurate and 308 

inaccurate prediction systems (see Table 4). Following the settings of Girons Lopez et al. 309 

(2017), we set 𝜂 = 0.1. In addition, we also performed the numerical simulation with 310 

𝜂 = 0 (i.e. negligible costs of mitigation and protection actions) which is more consistent 311 

to the published literature than the original settings (see section 2). 312 
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 313 

In the experiment 3, we also compared the GL and SKK models under different damage 314 

thresholds, 𝛿 . In socio-hydrology, previous works focused on the difference between 315 

“green” and “technological” society (Ciullo et al. 2017). In green society, risk is dealt 316 

with mainly by non-structural measures. In this society, the flood protection level is so 317 

low that many flood events occur, which increases social collective memory of flood 318 

events. In technological society, the flood protection level is so high that risk can be dealt 319 

with by structural measures as well as non-structural measures. Since flood events occur 320 

less frequently in the technological society, the high level of social collective memory 321 

cannot be maintained. By changing the damage threshold, we analyzed how differently 322 

the GL and SKK models behave in the different society. The settings of the parameters in 323 

the experiment 3 can be found in Table 5. From the original value of the damage threshold 324 

proposed by Girons Lopez et al. (2017) (i.e. 𝛿 = 0.35), we decreased and increased 𝛿 325 

to simulate the green and technological societies, respectively (see Table 5). 326 

 327 

In the experiment 4, we analyzed only the SKK model. The primary purpose of this 328 

experiment 4 is to find the optimal predefined probability threshold, which minimizes 329 

relative loss, in not only different society and prediction accuracy but also different 330 
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combinations of parameters related to the dynamics of social collective trust in FEWS 331 

(i.e.,  𝜏𝑇𝑃,   𝜏𝐹𝑁 ,  and, 𝜏𝐹𝑃  in equation (9)). The settings of the parameters in the 332 

experiment 4 can be found in Table 6. We analyzed how the optimal warning threshold is 333 

changed by changing 𝜏𝐹𝑁 and 𝜏𝐹𝑃 (see Table 6). 334 

 335 

In experiments 2–4, we performed the 250-member Monte-Carlo simulation by randomly 336 

perturbing a predefined probability threshold, 𝜋 , and the initial conditions of social 337 

collective memory and social collective trust in FEWS. We used the same random seed 338 

to generate 250-member Monte-Carlo simulation in each experiment, so that the 339 

differences between experiments do not depend on random processes. We analyzed the 340 

sensitivity of the efficiency of FEWS to predefined probability thresholds. 341 

 342 

 343 

4. Results 344 

Figure 1 shows the time series of social preparedness of the GL and SKK models in the 345 

experiment 1 (see Table 3). The purpose of Figure 1 is to demonstrate how differently the 346 

SKK and GL models work by showing the timeseries. While Figure 1 shows the subset 347 

of the entire timeseries to clearly demonstrate the differences between two models, the 348 
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entire timeseries can be found in Figure S1 of the supplement material. In the GL model 349 

(Figure 1a), social preparedness (black line) increases when flood occurs (red and green 350 

bars) and is not affected by false alarms (blue bars). In the SKK model (Figure 1b), false 351 

alarms negatively impact social preparedness by reducing social collective trust in FEWS 352 

(pink line). From 𝑡 = 430 to 𝑡 = 440, consecutive false alarms substantially decrease 353 

social collective trust in FEWS and social preparedness, so that the damage of severe 354 

flood at 𝑡 = 452  in the SKK model is larger than that in the GL model despite the 355 

accurate warning being issued. It is the cry wolf effect. 356 

 357 

Figure 2a shows the relationship between relative loss and predefined probability 358 

thresholds simulated by the GL model in the experiment 2 (see Table 4). We firstly 359 

assumed that there is no cost of the mitigation and protection action and is the relatively 360 

accurate prediction system (the experiment 2.1; see Table 4). In this case, FEWS can 361 

minimize the relative loss with the extremely small predefined probability thresholds 362 

(blue line). When we degrade the prediction skill (the experiment 2.2; see Table 4), 363 

forecasters still maintain the same level of relative loss by setting low (or zero) predefined 364 

probability thresholds issuing many false alarms (orange line). It is apparently unrealistic. 365 

In the framework of the GL model, this unrealistic model’s behavior can be eliminated by 366 
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setting the high cost of the mitigation and protection action responding to the issued 367 

warning. When we assume the high cost of preparedness actions (the experiment 2.3; see 368 

Table 4), the small predefined probability threshold induces high relative loss (green line). 369 

Forecasters need to avoid issuing false alarms when the cost which should be paid with 370 

false alarms is large. Note that the total costs of mitigation and protection actions with 371 

𝜂 = 0.1 in the experiment 2.3 is comparable to the total flood damages. As discussed 372 

above, this high cost of mitigation and protection actions was not supported by previous 373 

works although Girons Lopez et al. (2017) used this parameter. 374 

 375 

The SKK model can give different explanation of the avoidance of false alarms. Figure 376 

2b shows the relationship between relative loss and predefined probability thresholds 377 

simulated by the SKK model in the experiment 2 (see Table 4). Although we assumed no 378 

cost and an accurate prediction system (the experiment 2.4; see Table 4), forecasters need 379 

to avoid issuing false alarms by the relatively high predefined probability thresholds to 380 

minimize relative loss (blue line). Due to the cry wolf effect found in Figure 1b, 381 

forecasters need to decrease the number of false alarms to mitigate the damage of flooding 382 

even if there were no cost of false alarms. In other words, forecasters in the SKK model 383 

need to pay “implicit cost” of false alarms because false alarms induce not only the cost 384 
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of mitigation and protection actions for nothing at the current time but also the increase 385 

of damages of the future floods by reducing the social collective trust and preparedness. 386 

Considering that the previous works indicated that the cost of mitigation and protection 387 

actions is negligibly small (i.e. it is realistic to assume 𝜂 = 0), the SKK model reproduces 388 

the relationship between warning thresholds and total losses more realistically than the 389 

GL model. When we degrade the prediction accuracy (the experiment 2.5; see Table 4), 390 

relative loss is more sensitive to predefined probability thresholds (orange line) because 391 

the selection of the threshold is more important to accurately detect flood events and 392 

reduce the number of false alarms when the prediction is more inaccurate and uncertain. 393 

When we consider the high cost of mitigation and protection actions (the experiment 2.6; 394 

see Table 4), small predefined probability thresholds further increase relative loss (green 395 

line). 396 

 397 

Figure S2 shows how 𝛾 in the equation (7) affects the relationship between relative loss 398 

and predefined probability threshold. When the contribution of social collective trust to 399 

social preparedness increases (i.e., 𝛾 gets smaller), the “implicit cost” of false alarms 400 

induced by relatively small predefined probability thresholds increases. Figure S2 also 401 

shows that moderate changes of 𝛾 from the default setting of the SKK model (i.e. 0.5) 402 
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do not qualitatively change the relationship between relative loss and predefined 403 

probability threshold. In addition, the qualitative behavior of our SKK model is robust to 404 

different discharge timeseries (Figure S3). Figure S3 reveals that the uncertainty induced 405 

by different discharge timeseries is comparable to that quantified by 250 Monte-Carlo 406 

simulations with different initial conditions and forecast outcomes. 407 

 408 

Figure 3a compares the GL and SKK models in the green society. In the previous 409 

experiments 1 and 2, the damage threshold, 𝛿, is set to 0.35, which is same as Girons 410 

Lopez et al. (2017). In the experiments 3.1 and 3.2 (see Table 5), the damage threshold is 411 

reduced to 0.20, so that the number of flood events increases. In this case, the GL and 412 

SKK models behave similarly. Figure 3c shows time-averaged social collective memory, 413 

social collective trust in FEWS, and social preparedness as functions of predefined 414 

probability thresholds. In the green society, frequent flood events make social collective 415 

memory high. In addition, it is easy to maintain the high social collective trust in FEWS 416 

since there are many opportunities to gain trust when flood frequently occurs. Therefore, 417 

both social collective memory and social collective trust in FEWS are large in the green 418 

society. Although the GL model neglect the social collective trust in FEWS to calculate 419 

social preparedness, the social preparedness of both GL and SKK models is high. 420 
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 421 

On the other hand, the GL and SKK models work more differently in the technological 422 

society than the green society. The damage threshold, 𝛿 , is increased to 0.45 in the 423 

experiments 3.3 and 3.4 (see Table 5), so that the number of flood events is smaller than 424 

Girons Lopez et al. (2017). Figure 3b indicates that the relationship between relative loss 425 

and predefined probability thresholds in the GL model is substantially different from that 426 

in the SKK model. The SKK model produces smaller relative loss than the GL model 427 

when the appropriate predefined probability threshold is chosen. The sensitivity of 428 

relative loss to predefined probability thresholds is larger in the technological society than 429 

the green society. Figure 3d indicates that it is difficult to maintain the high level of social 430 

collective memory in the technological society, so that considering social collective trust 431 

in FEWS can increase social preparedness. In addition, the choice of a predefined 432 

probability threshold is more important to maintain the high level of social collective trust 433 

in the technological society than the green society. These behaviors of the models can be 434 

found when damage threshold is further increased to 0.6, although the 1000-year averaged 435 

statistics are strongly affected by random processes due to the insufficient number of 436 

disaster events within the 1000-year computation period (not shown). 437 

 438 
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In the experiment 4, we further analyze the SKK model to discuss the optimal predefined 439 

probability threshold and to provide the useful implication for the design of FEWS in the 440 

various kind of social systems. We have three sets of parameters in equation (9) (see also 441 

Table 6). The first set of parameters is same as the experiments 1-3. Changes in social 442 

collective trust by false negative and false positive are same (𝜏𝐹𝑁 = 𝜏𝐹𝑃). In the second 443 

set of parameters, we assume social collective trust substantially decreases by false 444 

positive (false alarms) (𝜏𝐹𝑁 < 𝜏𝐹𝑃): [𝜏𝑇𝑃, 𝜏𝐹𝑁 , 𝜏𝐹𝑃] = [0.1, 0.1, 0.8]. In the third set of 445 

parameters, we assume social collective trust substantially decreases when forecasters 446 

miss a flood event (𝜏𝐹𝑁 > 𝜏𝐹𝑃): [𝜏𝑇𝑃, 𝜏𝐹𝑁 , 𝜏𝐹𝑃] = [0.1, 0.8, 0.1]. The blue, orange, and 447 

green lines in Figures 4a-4d show that the optimal predefined probability threshold 448 

depends on how social collective trust is affected by false alarms and missed events. 449 

When social collective trust is affected by false alarms more substantially than missed 450 

events (orange lines), forecasters need to have relatively high predefined probability 451 

thresholds to maintain the high level of social collective trust (see Figures 4e-h) and 452 

minimize relative loss. Figures 4a-4d also shows that the differences of optimal 453 

predefined probability thresholds in three sets of parameters become larger as forecasts 454 

become accurate. The optimal predefined thresholds are bounded by the range in which 455 

the high threat scores can be obtained (see Figures 4i-4l).  Thus, more accurate 456 
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prediction systems make it more important to change the predefined probability threshold 457 

according to the dynamics of social collective trust. It implies that forecasters need to 458 

prioritize the meteorologically accurate forecasting by maximizing threat scores. Then, 459 

they have a room for improvement to change their warning thresholds based on the 460 

dynamics of social collective trust in FEWS. 461 

 462 

5. Discussion and conclusions 463 

In this study, we included the dynamics of social collective trust in FEWS into the existing 464 

socio-hydrological model. By formulating social preparedness as a function of social 465 

collective trust as well as social collective memory, we realistically simulate the cry wolf 466 

effect, in which many false alarms undermine the credibility of the early warning systems. 467 

Please note that the previous version of the model proposed by Girons Lopez et al. (2017) 468 

cannot do it. Although our model is simple and stylized, we can provide practically useful 469 

implication to improve the design of FEWS. First, considering the dynamics of social 470 

collective trust in FEWS is more important in the technological society with infrequent 471 

flood events than in the green society with frequent flood events. It implies that weather 472 

agencies need more efforts to be trusted by general citizens to induce their preparedness 473 

actions when a community is protected by flood protection infrastructures such as levees 474 
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and dams more heavily. Second, as the natural scientific skill to predict flood is improved, 475 

the efficiency of FEWS gets more sensitive to the behavior of social collective trust, so 476 

that forecasters need to determine their warning threshold by considering the social 477 

aspects. Considering the recent advances of the skill to predict extreme 478 

hydrometeorological events, it implies that it is becoming more important for forecasters 479 

to take social dynamics responding to weather forecasts into consideration. 480 

 481 

Although our model is the small extension of Girons Lopez et al. (2017), the implication 482 

of our study is completely different from Girons Lopez et al. (2017). Girons Lopez et al. 483 

(2017) mainly focused on the influence of the recency of flood experience on social 484 

preparedness and the efficiency of FEWS. Since their social preparedness is determined 485 

only by the flood experiences and they did not consider social collective trust in FEWS 486 

and weather agencies, the outcome of prediction did not directly influence the people’s 487 

behavior in the model of Girons Lopez et al. (2017). By formulating social preparedness 488 

as a function of both social collective memory and trust, we could evaluate the effects of 489 

missed events and false alarms on preparedness actions. We contributed to connecting the 490 

modeling approaches of system dynamics in socio-hydrology to the existing literature 491 

about complex human behaviors against disaster warnings such as cry wolf effects in 492 
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economics, sociology, and psychology (e.g., Simmons and Sutter 2009; Ripberger et al. 493 

2015; Trainor et al. 2015; LeClerc and Joslyn 2015; Jauernic and van den Broeke 2017; 494 

Lim et al. 2019). 495 

 496 

Our findings of the optimal predefined probability thresholds are similar to Roulston and 497 

Smith (2003). Roulston and Smith (2003) developed the simple model to optimize 498 

predefined probability thresholds considering the damage, cost, and imperfect 499 

compliance with forecasting (i.e., the cry wolf effect). They also revealed that it is 500 

necessary to choose high warning thresholds if intolerance of false alarms of the society 501 

is high. However, there are substantial differences between our study and the previous 502 

cost-loss analysis such as Roulston and Smith (2003). First, Roulston and Smith (2003) 503 

developed the static model in which the cry wolf effect is treated exogenously while our 504 

model is the dynamic model in which the cry wolf effect is endogenously simulated. 505 

Therefore, our model can consider the temporal change in the design and accuracy of 506 

FEWS, the flood protection level, and social systems, which may be the significant 507 

advantage to analyze the actual socio-hydrological phenomena. Second, by fully utilizing 508 

the previous achievements of Girons Lopez et al. (2017), we can also consider social 509 

collective memory of past disasters, which is not considered by Roulston and Smith 510 
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(2003). This feature of our model can reveal that the social collective memory also 511 

contributes to the optimal predefined probability thresholds. Similar to Roulston and 512 

Smith (2003), our stylized model has a potential to help forecasters determine the optimal 513 

warning threshold if it can be appropriately calibrated by empirical data. 514 

 515 

Our stylized model and findings are consistent to the previous works. In our model, the 516 

subjective perception of warning system’s accuracy controls social collective trust in a 517 

weather agency and preparedness actions, which is consistent to Ripberger et al. (2015). 518 

Our simulation results reveal that more actual false alarms hamper preparedness actions 519 

and induce more damages, which is consistent to the findings of Simmons and Sutter 520 

(2009) and Trainor et al. (2015). The behavior of the optimal warning threshold is similar 521 

to Roulston and Smith (2003). While the GL model realistically simulates the behavior 522 

of the optimal warning threshold only if unrealistically high costs of mitigation and 523 

protection actions are assumed, our stylized model needs no costs of mitigation and 524 

protection actions to realistically simulate the behavior of the optimal warning threshold. 525 

Our stylized model is more consistent to the previous works in which the costs of 526 

mitigation and protection actions responding warnings were found to be negligibly small 527 

(e.g., Schroter et al. 2008; Hallegatte 2012; Pappenberger et al. 2015). Our results justify 528 
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the optimal warning thresholds which balance false alarms with missed events and imply 529 

that forecasters believe the existence of cry wolf effects, although it does not necessarily 530 

mean that cry wolf effects exist.  531 

 532 

However, the major limitation of this study is that our modeling of social collective trust 533 

is simple and is not fully supported by empirical data. We assumed that social collective 534 

trust in FEWS is affected only by the outcome of FEWS in our stylized model, although 535 

there are many other factors which affect social collective trust in FEWS such as social 536 

activities and education. Although intuition and theory suggest that many false alarms 537 

reduce the preparedness actions responding to warnings, the existence of the cry wolf 538 

effect in the weather-related disasters is still debatable (see a comprehensive review of 539 

Lim et al. (2019)). Simmons and Sutter (2009) indicated that the recent false alarms 540 

negatively impacted the preparedness actions, so that we modeled the change in social 541 

collective trust by the recent forecast outcome. However, Ripberger et al. (2015) could 542 

not find the statistically significant short-term effect of false alarms although they found 543 

the statistically significant cry wolf effect using the long-term data. It should be noted 544 

that most of previous studies related to the cry wolf effect focused on tornado disasters 545 

and the systematic econometric analyses have not been implemented for flood disasters, 546 
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which makes it difficult to validate our proposed model. The effect of social collective 547 

memory on catastrophic disasters in the actual society is also debatable (e.g., Fanta et al. 548 

2019). As Mostert (2018) suggested, it is crucially important to perform case study 549 

analyses, obtain empirical data, and integrate those data into the dynamic model to deepen 550 

our understanding of the hypothesis of the models (e.g., Roobavannan et al. 2017; Ciullo 551 

et al. 2017; Barendrecht et al. 2019; Sawada and Hanazaki 2020). 552 

 553 

As discussed above, systematic econometric analyses and field surveys on cry wolf 554 

effects have not been implemented for flood disasters, so that it is important to design 555 

such kinds of analyses. Our modelling work provides useful implications for the design 556 

of future field analyses. First, our results show that the sensitivity of relative loss to 557 

predefined probability threshold is small around its optimal value in many cases. In many 558 

field surveys such as Simmons and Sutter (2009) and Trainor et al. (2015), pairs of false 559 

alarm ratio and damage in many regions of one country are collected and compared to 560 

show the increase of false alarm ratio increases damage. Assuming that nationwide 561 

criteria of issuing warnings are near-optimal, our study implies that the detectable signal 562 

of cry wolf effects in this approach is weak. Our modeling work implies that it is difficult 563 

to quantify cry wolf effects using time-mean performance of warnings and damages. It 564 
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may be the reason why several field surveys contradict with each other and the negative 565 

effect of false alarm ratio cannot be found in some surveys (Lim et al. 2019). We 566 

recommend analyzing the temporal change in behaviors responding to recent forecast 567 

outcomes, although this strategy is costly and time-consuming. Second, our experiment 568 

3 implies that it is better to choose technological societies as a research field because it is 569 

more difficult to distinguish the contributions of experience and trust in less protected 570 

areas. 571 

 572 

In socio-hydrology, researchers have mainly focused on the functions of land use change 573 

and water-related infrastructures such as dams, levees, and dikes in the complex social 574 

systems. Although the interactions between social systems and weather forecasting such 575 

as the cry wolf effect are interesting, the function of FEWS and weather-related disaster 576 

forecasting has not been intensively investigated in socio-hydrology. We call for the new 577 

research regime, socio-meteorology, as extension of socio-hydrology. In socio-578 

meteorology, researchers may focus on how social systems interact with water-related 579 

disaster forecasting, how the efficiency of weather forecasting is affected by the other 580 

hydrological factors such as land use and flood protection infrastructures, and how 581 

weather forecasting affects the design of land use and flood protection infrastructures. 582 
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Table 1. Summary of the outcomes of the flood early warning system. Loss by each outcome is also shown 714 

(see also Section 2). 715 

 716 

 𝑄 < 𝛿 𝑄 ≥ 𝛿 

𝑃 < 𝜋 True negative: 0 False negative: 𝐷𝑄 

𝑃 ≥ 𝜋 False positive: 𝐶 True positive: 𝐶 + 𝐷𝑟 

 717 

  718 
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Table 2. Fixed model parameters 719 

 720 

 description equation values 

𝜅𝑐 shape of the bivariate gamma distribution to generate river discharge 

timeseries 

(1) 2.5 

𝜃𝑐 scale of the bivariate gamma distribution to generate river discharge 

timeseries 

(1) 0.08 

𝜇𝑚 mean of prediction error (2) 0 

𝛽 parameter of the damage function (3) 0.2 

𝛼0 minimum residual damage fraction (4) 0.2 

𝜆 social collective memory decay rate (8) 0.028 

𝜒 psychological shock magnitude (8) 1.0 

 721 

  722 
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 723 

Table 3. Model parameters in the experiment 1. 724 

 725 

 description equation values 

𝜎𝑚  standard deviation of prediction error (2) 0.075 

𝜇𝑣 mean of prediction precision (2) 0.15 

𝜎𝑣  standard deviation of prediction precision (2) 0.075 

𝛿 Damage threshold (3,5) 0.35 

𝜋 Predefined probability threshold (5,6) 0.40 

𝜂 cost parameter (6) 0.02 

 𝛾 Parameter controlling weights of social collective memory and trust (7) 1 (GL model) 

0.5 (SKK model) 

𝜏𝑇𝑃 Increment of trust for true positive (9) 0.1 

𝜏𝐹𝑁 Increment of trust for false negative (9) 0.1 

𝜏𝐹𝑃 Increment of trust for false positive (9) 0.1 

 726 

  727 
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 728 

Table 4. Model parameters in the experiment 2 729 

 730 

 description equation values 

   exp2.1 exp2.2 exp2.3 exp2.4 exp2.5 exp2.6 

𝜎𝑚  standard 

deviation of 

prediction error 

(2) 0.05 0.075 0.05 0.05 0.075 0.05 

𝜇𝑣 mean of 

prediction 

precision 

(2) 0.05 0.15 0.05 0.05 0.15 0.05 

𝜎𝑣  standard 

deviation of 

prediction 

precision 

(2) 0.025 0.075 0.025 0.05 0.075 0.025 

𝛿 Damage 

threshold 

(3,5) 0.35 0.35 0.35 0.35 0.35 0.35 

𝜂 cost parameter (6) 0 0 0.1 0 0 0.1 

 𝛾 Parameter 

controlling 

weights of social 

collective 

memory and 

trust 

(7) 1 (GL 

model) 

 

1 (GL 

model) 

 

1 (GL 

model) 

 

0.5 (SKK 

model) 

 

0.5 (SKK 

model) 

 

0.5 (SKK 

model) 

 

𝜏𝑇𝑃 Increment of 

trust for true 

positive 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

𝜏𝐹𝑁 Increment of 

trust for false 

negative 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

𝜏𝐹𝑃 Increment of 

trust for false 

positive 

(9) 0.1 0.1 0.1 0.1 0.1 0.1 

 731 

  732 
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Table 5. Model parameters in the experiment 3 733 

 734 

 description equation values 

   exp3.1 exp3.2 exp3.3 exp3.4 

𝜎𝑚  standard 

deviation of 

prediction error 

(2) 0.05 0.05 0.05 0.05 

𝜇𝑣 mean of 

prediction 

precision 

(2) 0.05 0.05 0.05 0.05 

𝜎𝑣  standard 

deviation of 

prediction 

precision 

(2) 0.025 0.025 0.025 0.025 

𝛿 Damage 

threshold 

(3,5) 0.20 0.20 0.45 0.45 

𝜂 cost parameter (6) 0.02 0.02 0.02 0.02 

 𝛾 Parameter 

controlling 

weights of social 

collective 

memory and 

trust 

(7) 1 (GL 

model) 

 

0.5 (SKK 

model) 

 

1 (GL 

model) 

 

0.5 (SKK 

model) 

 

𝜏𝑇𝑃 Increment of 

trust for true 

positive 

(9) 0.1 0.1 0.1 0.1 

𝜏𝐹𝑁 Increment of 

trust for false 

negative 

(9) 0.1 0.1 0.1 0.1 

𝜏𝐹𝑃 Increment of 

trust for false 

positive 

(9) 0.1 0.1 0.1 0.1 

 735 

  736 
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Table 6. Model parameters in the experiment 4. 737 

 738 

 description equation values 

𝜎𝑚  standard deviation of 

prediction error 

(2) 0.05 (accurate forecast) 

0.075 (inaccurate forecast) 

𝜇𝑣 mean of prediction precision (2) 0.05 (accurate forecast) 

0.15 (inaccurate forecast) 

𝜎𝑣  standard deviation of 

prediction precision 

(2) 0.025 (accurate forecast) 

0.075 (inaccurate forecast) 

𝛿 Damage threshold (3,5) 0.20 (green society) 

0.45 (technological society) 

𝜂 cost parameter (6) 0.02 

 𝛾 Parameter controlling weights 

of social collective memory 

and trust 

(7) 1 (GL model) 

 

[𝜏𝑇𝑃 , 𝜏𝐹𝑁 , 𝜏𝐹𝑃]  Increment of trust for true 

positive, false negative, and 

false positive 

(9) [0.1, 0.1, 0.1] (blue lines in Figures 4a-4h) 

[0.1, 0.1, 0.8] (orange lines in Figures 4a-4h) 

[0.1, 0.8, 0.1] (green lines in Figures 4a-4h) 

 739 

  740 
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 741 

 742 

Figure 1. Timeseries of (a) the GL model and (b) the SKK model of the experiment 1 (see section 3 and Table 743 

2 for model parameters). Black, purple, and pink lines are social preparedness, half of social collective memory, 744 

and half of social collective trust in FEWS, respectively. Since social preparedness is identical to social 745 

collective memory and social collective trust is not considered in the GL model, there are no purple and pink 746 

lines in (a). Note that the sum of half of social collective memory and half of social collective trust in FEWS 747 

is social preparedness in (b). Blue, red, and green bars show total loss by the outcomes of false positive, false 748 

negative, and true positive, respectively (see Table 2). 749 

 750 

 751 
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 752 

Figure 2. The relationship between relative loss and predefined probability thresholds in (a) the GL model 753 

and (b) the SKK model in the experiment 2. In (a), blue, orange, and green lines show the results of the 754 

experiments 2.1, 2.2, 2.3, respectively. In (b), blue, orange, and green lines show the results of the 755 

experiments 2.4, 2.5, 2.6, respectively. Each dot shows the result of the individual Monte-Carlo simulation 756 

and we smoothed them by Gaussian process regression. See also Table 4 for detailed parameter settings. 757 

  758 
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 759 

Figure 3. (a-b) The relationship between relative loss and predefined probability thresholds in (a) the green 760 

society and (b) the technological society. In (a), blue and green lines show the results of the experiments 3.1 761 

and 3.2, respectively. In (b), blue and green lines show the results of the experiments 3.3 and 3.4, 762 

respectively. (c-d) The relationship between time-averaged social preparedness and predefined probability 763 

thresholds in (c) the green society and (d) the technological society. Black, purple, and pink lines show time-764 
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averaged social preparedness, social collective memory, and social collective trust in FEWS. Each dot shows 765 

the result of the individual Monte-Carlo simulation and we smoothed them by Gaussian process regression. 766 

  767 
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 768 

 769 

Figure 4. Results of the experiment 4. (a-d) The relationship between relative loss and predefined 770 

probability thresholds in (a) the green society with accurate forecasts, (b) the green society with inaccurate 771 

forecasts, (c) the technological society with accurate forecasts, (d) the technological society with inaccurate 772 

forecasts. Increments of trust for true positive, false negative, and false positive are set to 0.1, 0.1, and 0.1 773 

(blue lines), 0.1, 0.1, and 0.8 (orange lines), and 0.1, 0.8, and 0.1 (green lines). See Table 6 for detailed 774 

model parameters’ settings. (e-f) Same as (a-d) but for time-averaged social collective trust in FEWS. (i-l) 775 

Same as (a-d) but for threat score (black lines), hit rate (purple lines), and false alarm ratio (pink lines). Each 776 
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dot shows the result of individual Monte-Carlo simulation and we smoothed them by Gaussian process 777 

regression. 778 

 779 


