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Abstract. Evapotranspiration plays an important role in the terrestrial water cycle. Reference crop evapotranspiration (ETo) 

has been widely used to estimate water transfer from vegetation surface to the atmosphere. Seasonal ETo forecasting provides 

valuable information for effective water resource management and planning. Climate forecasts from General Circulation 

Models (GCMs) have been increasingly used to produce seasonal ETo forecasts. Statistical calibration plays a critical role in 

correcting bias and dispersion errors in ETo forecasts. However, time-dependent errors, resulting from GCM’s 10 

misrepresentations of climate trends, have not been explicitly corrected in ETo forecast calibrations. We hypothesize that 

reconstructing climate trends through statistical calibration will add extra skills to seasonal ETo forecasts. To test this 

hypothesis, we calibrate raw seasonal ETo forecasts constructed with climate forecasts from the European Centre for Medium-

Range Weather Forecasts (ECMWF) SEAS5 model across Australia, using the recently developed Bayesian Joint Probability 

trend-aware (BJP-ti) model. Raw ETo forecasts demonstrate significant inconsistencies with observations in both magnitudes 15 

and spatial patterns of temporal trends, particularly at long lead times. The BJP-ti model effectively corrects misrepresented 

trends and reconstructs the observed trends in calibrated forecasts. Improving trends through statistical calibration increases 

the correlation coefficient between calibrated forecasts and observations (r) by up to 0.25 and improves the continuous ranked 

probability score (CRPS) skill score by up to 15% in regions where climate trends are misrepresented by raw forecasts. Skillful 

ETo forecasts produced in this study could be used for streamflow forecasting, modelling of soil moisture dynamics, and 20 

irrigation water management. This investigation confirms the necessity of reconstructing climate trends in GCM-based 

seasonal ETo forecasts, and provides an effective tool for addressing this need. We anticipate that future GCM-based seasonal 

ETo forecasting will benefit from correcting time-dependent errors through trend reconstruction.  

1 Introduction 

As a critical process in the terrestrial water cycle, evapotranspiration transfers a large amount of water from the land surface 25 

to the atmosphere. Reference crop evapotranspiration (ETo) measures the evaporative demand of the atmosphere and thus 

provides valuable information for understanding and simulating terrestrial hydrology. Forecasting of ETo has been used to 

support water resource management (Anderson et al., 2015; Le Page et al., 2021) and improve soil moisture modelling (Yu et 

al., 2016). In addition, ETo forecasting also helps constrain the significant uncertainties in streamflow forecasting (Greuell et 
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al., 2019; Van Osnabrugge et al., 2019). Seasonal ETo forecasts have been used to support water allocation among competing 30 

users (Chauhan and Shrivastava, 2009) and in planning farming activities (Zinyengere et al., 2011). In recent years, climate 

forecasts produced by General Circulation Models (GCMs) have been adopted for seasonal ETo forecasting, since GCMs often 

produce forecasts of all climate variables needed to estimate future ETo (Tian et al., 2014; Zhao et al., 2019a). 

Raw ETo forecasts constructed with GCM climate forecasts often inherit significant errors from the raw forecasts of climate 

variables, including temperature, solar radiation, wind speed, and vapor pressure. Due to deficiencies in GCM’s representation 35 

of physical processes of the atmosphere (Woldemeskel et al., 2014), model parameterization (O’Gorman and Dwyer, 2018), 

and data assimilation (O’kane et al., 2019), raw GCM forecasts often demonstrate systematic errors (Weisheimer and Palmer, 

2014). For example, inconsistencies with observations have been reported for the raw forecasts of all variables needed to 

construct ETo forecasts using the Food and Agriculture Organization (FAO) 56 method (Groisman et al., 2000; Slater et al., 

2017). These inconsistencies often lead to significant bias and low skills in the resultant raw ETo forecasts (Zhao et al., 2019b). 40 

Failing to correctly simulate the temporal trends of the climate system could be partially responsible for the low skills of GCM-

based raw ETo forecasts. Time-dependent errors are introduced when GCMs lack skills in modelling climate trends driven by 

rising atmospheric greenhouse gas (GHG) concentrations (Sansom et al., 2016). There is mounting evidence that climate 

change has resulted in increasing trends in temperature (Smith et al., 2007) and vapor pressure (Byrne and Gorman, 2018), but 

led to decreasing trends in solar radiation (Liepert, 2002). However, GCMs configured for seasonal climate forecasts often 45 

misrepresent these observed trends. For example, an evaluation across nine climate regions in the U.S. showed that nine of ten 

selected GCMs failed to reproduce the observed temporal trends in seasonal temperature forecasts (Bhowmik and 

Sankarasubramanian, 2020). In the Middle East, seasonal temperature forecasts by the Climate Forecast System version 2 

(CFSv2) model overestimated the warming trend in reference data by approximately 0.4° decade-1 (Alizadeh-Choobari et al., 

2019). In Australia, evaluations of the European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 model 50 

demonstrated significant discrepancies between observed and forecasted trends in temperature (Shao et al., 2020, 2021). 

Forecasts of fire weather index (calculated with forecasts of precipitation, wind speed, temperature, and humidity) based on 

the ECMWF System 4 model demonstrated significant inconsistencies with observations in temporal trends in Europe during 

1981-2010 (Bedia et al., 2018). As a result, it is unlikely that raw ETo forecasts constructed with raw forecasts of these climate 

variables would faithfully reproduce the observed climate trends. Failing to capture the observed trends inevitably introduces 55 

errors to GCM-based raw ETo forecasts.  

Raw ETo forecasts constructed with climate forecasts need to be calibrated to correct biases and dispersion errors. Statistical 

calibration models initially developed for other variables, such as precipitation or temperature, have been adopted to calibrate 

raw ETo forecasts (Medina and Tian, 2020; Zhao et al., 2019a). Using a quantile-mapping method, Tian and Martinez (2014) 

improved seasonal ETo forecasts based on CFSv2 outputs in Florida, the U.S. In the calibration of seasonal ETo forecasts in 60 

Australia, Zhao et al. (2019b) used the Bayesian Joint Probability (BJP) model to post-process ETo forecasts constructed with 

climate forecasts from the Australian Bureau of Meteorology’s Australian Community Climate and Earth-System Simulator-

Seasonal prediction system version 1 (ACCESS-S1) model across three weather stations. This investigation validated the BJP 
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model’s strengths in error correction and skill enhancement in ETo forecasting. However, none of these calibrations have 

explicitly dealt with time-dependent errors caused by the misrepresentation of climate trends in GCM forecasts. 65 

Statistical techniques have been developed to correct time-dependent errors in raw GCM forecasts. A commonly adopted 

method is to replace the linear trend in raw forecasts with the observed trend (Kharin et al., 2012). Using this method, Kharin 

et al. (2012) corrected trends in decadal temperature forecasts and successfully reduced the systematic residual drifts in raw 

forecasts. Meanwhile, improvements in trends effectively adjusted the long-term climate behavior in forecasts to match 

observations (Kharin et al., 2012). To correct errors associated with the representation of temporal changes and variability, 70 

Pasternack et al. (2020) adopted a time-varying mean to characterize the climate trend in the calibration of decadal temperature 

forecasts. In addition to these decadal-scale calibrations, recent studies suggested that seasonal climate forecasting could also 

benefit from correcting time-dependent errors. For example, Shao et al. (2021) improved the BJP model by adding trend-

reconstruction algorithms to deal with time-dependent errors. The new algorithm allows for the reconstruction of observed 

trends in calibrated forecasts. With this new feature, the improved BJP model (hereafter referred to as BJP-ti) demonstrates 75 

the capability of adding extra skills to seasonal temperature forecasts through reconstructing observed trends in calibrated 

forecasts. 

We hypothesize that reconstructing trends in seasonal ETo forecasts through statistical calibration will help correct time-

dependent errors and thereby improve forecast skills. To test this hypothesis, we adopt the BJP-ti model to calibrate seasonal 

ETo forecasts constructed with climate forecasts from the ECMWF SEAS5 model across Australia. This investigation aims to 80 

1) reconstruct climate trends in seasonal ETo forecasts through statistical calibration and 2) investigate how trend 

reconstruction affects the skill of calibrated ETo forecasts.   

2 Method 

2.1 Observations and forecasts 

We develop monthly ETo data (treated as observations for calibration) based on gridded monthly temperature, solar radiation, 85 

and vapor pressure data from the Australian Water Availability Project (AWAP) (Jones et al., 2007, 2014). Since the AWAP 

project does not provide wind speed data, we use a constant wind speed of 2 m s-1 in deriving the ETo observations (Allen et 

al., 1998). Based on these AWAP variables, we produce monthly ETo observations during 1990-2019 for forecast calibration. 

Seasonal climate forecasts from the latest version (SEAS5) of the ECMWF model are used to construct the raw ETo forecasts. 

The re-forecast period of SEAS5 is 1981–2016, and the ensemble size is 25 members. SEAS5 forecasts have a horizon of 90 

seven months (months 0 to 6), with a spatial resolution of 0.4°. Real-time forecasts started in 2017, with an ensemble size of 

51 members (Stockdale et al., 2017). While SEAS5 produces climate forecasts across the globe, the calibration in this study is 

performed across Australia only.  

To match ETo observations, we combine the archived re-forecasts and operational forecasts to derive raw ETo forecasts for 

the period of 1990-2019. We choose the first 25 ensemble members of the real-time forecasts (2017-2019) to match the 95 
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ensemble size of the re-forecasts (1990-2016). Next, we calculate the ensemble mean of the 25 ensemble members of ECMWF 

forecasts of temperature, solar radiation, and vapor pressure for the calculation of raw ETo forecasts. To be consistent with the 

ETo observations, we use a constant wind speed of 2 m s-1 in deriving raw ETo forecasts. Finally, we aggregate the grid spacing 

of AWAP data from 0.05° to match the ECMWF’s spatial resolution of 0.4°. 

2.2 Calculation of ETo 100 

We construct monthly raw ETo forecasts and ETo observations using the monthly ECMWF climate forecasts and AWAP data 

based on the FAO 56 ETo method (Allen, et al., 1998): 

𝐸𝐸𝑇𝑇𝑂𝑂 =
0.408𝛥𝛥(𝑅𝑅𝑛𝑛−𝐺𝐺)+𝛾𝛾 900

𝑇𝑇+273𝑢𝑢2(𝑒𝑒𝑠𝑠−𝑒𝑒𝑎𝑎)

𝛥𝛥+𝛾𝛾(1+0.34𝑢𝑢2)
                                                                                                        (1) 

where 𝐸𝐸𝑇𝑇𝑂𝑂  is the monthly reference crop evapotranspiration (mm month-1); 𝛥𝛥  is the slope of the vapor pressure curve 

(𝑘𝑘𝑘𝑘𝑘𝑘 °𝐶𝐶−1); 𝑅𝑅𝑛𝑛 is net radiation at the crop surface (𝑀𝑀𝑀𝑀 𝑚𝑚−2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ−1); 𝐺𝐺 is soil heat flux density (𝑀𝑀𝑀𝑀 𝑚𝑚−2 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ−1), which 105 

is calculated based on temperature; 𝛾𝛾 is the psychrometric constant (𝑘𝑘𝑘𝑘𝑘𝑘 °𝐶𝐶P

-1); 𝑇𝑇 is average air temperature (°𝐶𝐶); 𝑢𝑢2 is the 

wind speed at 2 m (m s-1); and 𝑒𝑒𝑠𝑠 and 𝑒𝑒𝑎𝑎 are saturated and actual vapor pressure (𝑘𝑘𝑘𝑘𝑘𝑘), respectively. 

2.3 Forecast calibration with the BJP-ti model 

In this study, ETo forecast calibration is conducted across Australia for each grid cell, each month, and lead time separately 

during 1990-2019. We employ the BJP-ti model to calibrate the raw ETo forecasts. This model was developed recently by 110 

extending the original BJP model’s capability to deal with errors resulting from the misrepresentation of climate trends. In this 

study, the calibration model is configured by month k (k = 1 to 12 corresponding to January to December) of the year. 

Calibration with the BJP-ti model involves six steps, including 1) data transformation, 2) data detrending, 3) joint probability 

modelling of the transformed, detrended forecasts and observations, 4) generation of ensemble calibrated forecast members 

conditional on the raw forecast, 5) adding the observed trend back to ensemble members, and 6) back-transforming the data to 115 

obtain the final calibrated forecasts. We further introduce these steps in detail as follows. 

The first calibration step is to transform raw forecasts and observations to approach the normal distribution. We adopt the Yeo-

Johnson transformation method (Yeo and Johnson, 2000) to transform ETo:.   

𝑥𝑥′ =

⎩
⎨

⎧(𝜆𝜆𝑥𝑥 + 1)
1
𝜆𝜆 − 1,                          (𝑥𝑥 ≥ 0, 𝜆𝜆 ≠ 0)

 
𝑒𝑒𝑥𝑥𝑒𝑒(𝑥𝑥) − 1,                                (𝑥𝑥 ≥ 0, 𝜆𝜆 = 0)

                      

                                                                                       (2) 

where 𝜆𝜆 is a transformation parameter; x refers to raw ETo forecasts or ETo observations (mm month-1); 𝑥𝑥′ is the transformed 120 

x (forecasts or observations) generated through the Yeo-Johnson transformation. The above transformation is performed by 

month of the year for raw forecasts and observations separately. The transformation parameter (λ) is inferred using the 

Bayesian Maximum a Posterior (MAP) method (Shao et al., 2020). 
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Step 2 is to generate detrended forecasts and observations in the transformed space. For each grid cell, we infer linear trends 

for transformed forecasts and observations separately. With the trend parameters (𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑜𝑜), trends in transformed forecasts 125 

and observations are removed to produce detrended data. Specifically, each transformed forecast and observation record is 

adjusted based on the middle year of the study period (1990-2019) and trend parameters using the following equations:  

 𝑧𝑧𝑓𝑓(𝑚𝑚) = 𝑦𝑦𝑓𝑓′(𝑚𝑚) − 𝛼𝛼𝑓𝑓(𝑚𝑚 − 𝑚𝑚𝑚𝑚)                                                                                                                                                            (3) 

𝑧𝑧o(𝑚𝑚) = 𝑦𝑦o′(𝑚𝑚) − 𝛼𝛼o(𝑚𝑚 − 𝑚𝑚𝑚𝑚)                                                                                                                                                             (4) 

where 𝑦𝑦𝑓𝑓′(𝑚𝑚) and 𝑦𝑦𝑜𝑜′(𝑚𝑚) refer to transformed ETo forecasts and observations for month k (k = 1 to 12 corresponding to January 130 

to December) in year t of 1990-2019; 𝛼𝛼𝑓𝑓and 𝛼𝛼𝑜𝑜 are inferred trend parameters for transformed forecasts and observations, 

respectively; 𝑚𝑚𝑚𝑚  is approximately the middle year (e.g., 2004 in this study) during 1990-2019; and 𝑧𝑧𝑓𝑓(𝑚𝑚)  and 𝑧𝑧o(𝑚𝑚)  are 

detrended ETo forecasts and observations in the transformed space, respectively. 

In step 3, we assume a bivariate joint distribution (z) between predictor 𝑧𝑧𝑓𝑓(detrended transformed raw forecasts) and predictand 

𝑧𝑧o (detrended transformed observations) 135 

𝑧𝑧 = �
𝑧𝑧𝑓𝑓
z𝑜𝑜�~ 𝑁𝑁(μ, Σ)                                                                                                                                                                                         (5) 

where μ is the mean vector, and Σ is the covariance matrix. We denote the parameters from equations 3-5 as a vector θ =

�μ, Σ,𝛼𝛼𝑓𝑓 ,𝛼𝛼o�. 

For each month of the year, model parameters are inferred with training data pairs (predictor and predictand) during the study 

period (1990-2019). The posterior distribution of the model parameters is: 140 

𝑒𝑒(θ|D) ∝ 𝑒𝑒(θ)𝑒𝑒(D|θ) = 𝑒𝑒(θ)∏ 𝑒𝑒(D|θ)𝑛𝑛
𝑡𝑡=1                                                                                                                                             (6) 

where 𝑒𝑒(θ) is the prior distribution for model parameters, and 𝑒𝑒(D|θ) is the likelihood function. D refers to all data pairs 

(𝑧𝑧𝑓𝑓(𝑚𝑚) and 𝑧𝑧𝑜𝑜(𝑚𝑚)) used for parameter inference. A Gibbs sampler is utilized to repeatedly sample the parameter sets θ from the 

conditional posterior distribution of the model parameters.  

In the BJP-ti model, informative priors are applied to set boundaries for inferred trends to avoid extreme values for each grid 145 

cell, month, and lead time. This informative prior distribution 𝑒𝑒(𝛼𝛼𝑖𝑖) for trend parameters 𝛼𝛼𝑓𝑓  and 𝛼𝛼o is formulated as follows 

(Shao et al., 2021): 

𝑒𝑒(𝛼𝛼𝑖𝑖) ∝ 𝑁𝑁(0,𝑚𝑚𝑖𝑖
2)                                                                                                                                        (7) 

[𝛼𝛼𝑖𝑖| ⋅] = 𝑁𝑁( 𝑚𝑚𝑖𝑖
2 ∑ (𝑦𝑦𝑖𝑖

′(𝑡𝑡)−𝜇𝜇𝑖𝑖)(𝑡𝑡−𝑡𝑡𝑚𝑚)𝑛𝑛
𝑡𝑡=1

𝑚𝑚𝑖𝑖
2 ∑ (𝑡𝑡−𝑡𝑡𝑚𝑚)2+𝜎𝜎𝑖𝑖

2𝑛𝑛
𝑡𝑡=1

, 𝑚𝑚𝑖𝑖
2𝜎𝜎𝑖𝑖

2

𝑚𝑚𝑖𝑖
2 ∑ (𝑡𝑡−𝑡𝑡𝑚𝑚)2+𝜎𝜎𝑖𝑖

2𝑛𝑛
𝑡𝑡=1

)                                                                                           (8) 

where 𝑚𝑚𝑖𝑖 is the standard deviation of the prior, which is set based on trends of transformed forecasts and observations. To 150 

determine mi, we pooled the trends of all grid cells, months, and lead times for transformed forecasts, and found that 95% of 

the absolute trends are smaller than 0.43. For transformed observations, 95% of grid cells and months have absolute trends 

less than 0.49. As a result, we set 𝑚𝑚𝑖𝑖 to 0.43 and 0.49 for forecasts and observations, respectively. Equation 8 shows the 
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conditional posterior distribution of parameter 𝛼𝛼𝑖𝑖. In equation 8, 𝜇𝜇𝑖𝑖 is the mean and 𝜎𝜎𝑖𝑖 is the standard deviation for predictors 

or predictands. 155 

In step 4, once all the parameters are inferred, we draw 1000 members from a conditional distribution of the predictand (𝑧𝑧o(𝑚𝑚∗)), 

for a given new forecast (𝑧𝑧𝑓𝑓(𝑚𝑚∗)). In step 5, we add the trend from Equation 4 back to 𝑧𝑧o(𝑚𝑚∗), to produce calibrated ensemble 

forecast (𝑦𝑦o′(𝑚𝑚∗)). In step 6, we back-transform 𝑦𝑦o′(𝑚𝑚∗) to the original space to produce the calibrated ensemble forecasts.  

2.4 Evaluation of forecast calibration 

To evaluate the performance of the calibration, we adopt a leave-one-year-out cross-validation strategy for each grid cell and 160 

lead time. Specifically, for one of the 30 years during 1990-2019, we keep month k aside, and then use month k from the 

remaining 29 years to infer the BJP-ti parameters. Once the parameters are inferred, we generate a calibrated forecast for month 

k in the year held aside. This process is repeated until a calibrated forecast is obtained for month k from each of the 30 years. 

Similar processes are conducted for other months and other lead times until we obtain calibrated forecasts for all months and 

the seven lead times for each cell across Australia. 165 

To evaluate how the reconstruction of trends affects the quality of calibrated forecasts, we compare BJP-ti calibrated forecasts 

with those generated using the original BJP model, which does not reconstruct trends. The BJP model omits steps 2 (detrending) 

and 5 (retrending) in section 2.3. The comparison is conducted for months with large areas of statistically significant (at the 

95% confidence interval) temporal trends in observed ETo.  

Evaluation metrics employed to examine the performance of calibrations include correlation coefficients, skill score, bias, and 170 

reliability. The calculation of these metrics is further introduced as follows. 

2.4.1 Correlation coefficient 

We use the Pearson correlation coefficient (r) between raw/calibrated forecasts and observations in each month to examine 

their consistency in temporal dynamics: 

𝑟𝑟 = ∑ (𝑥𝑥(𝑡𝑡)−�̅�𝑥)(𝑦𝑦(𝑡𝑡)−𝑦𝑦�)𝑇𝑇
𝑡𝑡=1

�∑ (𝑥𝑥(𝑡𝑡)−�̅�𝑥)2𝑛𝑛
𝑡𝑡=1 �∑ (𝑦𝑦(𝑡𝑡)−𝑦𝑦�)2𝑛𝑛

𝑡𝑡=1

                                                                                                                                                 (9) 175 

where 𝑥𝑥(𝑚𝑚) is the ensemble mean of raw/calibrated ETo forecasts for month k in year t (mm month-1); T is the total years during 

the study period; �̅�𝑥 is the average of 𝑥𝑥(𝑚𝑚) (mm month-1); 𝑦𝑦(𝑚𝑚) is the corresponding ETo observations of the same month (mm 

month-1), and 𝑦𝑦� is the average of 𝑦𝑦(𝑚𝑚) (mm month-1).  

2.4.2 Forecast skills 

We use the continuous ranked probability score (CRPS) to measure the skill of the raw and calibrated forecasts (Grimit et al., 180 

2006): 

𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶(𝑚𝑚) = ∫�𝐹𝐹(𝑚𝑚, 𝑥𝑥) −𝐻𝐻�𝑥𝑥 − 𝑦𝑦(𝑚𝑚)��2𝑑𝑑𝑥𝑥                                                                                                                            (10) 

 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶������� =  1
𝑛𝑛
∑ 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶(𝑚𝑚)𝑛𝑛
𝑡𝑡=1                                                                                                                                                        (11) 
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where 𝐹𝐹(𝑚𝑚, 𝑥𝑥) is the cumulative density function of an ensemble forecast, and 𝑦𝑦(𝑚𝑚) is the observation at time 𝑚𝑚; 𝐻𝐻 is the 

Heaviside step function (𝐻𝐻 = 1 if 𝑥𝑥 − 𝑦𝑦(𝑚𝑚) ≥ 0 and 𝐻𝐻 = 0 otherwise); the overbar represents averaging across the 𝑚𝑚 months 185 

during 1/1990-12/2019. For deterministic raw forecasts, CRPS is reduced to absolute errors. 

We further calculate the CRPS skill score (𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑆𝑆𝑆𝑆) to measure the skill of raw and calibrated forecasts relative to climatology 

forecasts using the following equation: 

 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑆𝑆𝑆𝑆 = 𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟−𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑟𝑟𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠
𝐶𝐶𝑅𝑅𝑃𝑃𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟

× 100                                                                                                                       (12) 

where 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑟𝑟𝑒𝑒𝑓𝑓𝑒𝑒𝑟𝑟𝑒𝑒𝑛𝑛𝑟𝑟𝑒𝑒  is the CRPS value of climatology forecasts; and 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑓𝑓𝑜𝑜𝑟𝑟𝑒𝑒𝑟𝑟𝑎𝑎𝑠𝑠𝑡𝑡𝑠𝑠 refers to CRPS value of raw or calibrated 190 

forecasts. Positive 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑆𝑆𝑆𝑆 indicates better skill than the climatology forecasts, and vice versa. To make the CRPS skill scores 

of calibrated forecasts generated by different models (BJP vs. BJP-ti) comparable, we use the climatology forecasts from the 

BJP model as the reference in the calculation of 𝐶𝐶𝑅𝑅𝑘𝑘𝐶𝐶𝑆𝑆𝑆𝑆.  

2.4.3 Bias 

We evaluate the accuracy of the raw and calibrated forecasts using the following equation: 195 

𝐵𝐵𝐵𝐵𝑘𝑘𝐵𝐵 = 1
𝑛𝑛
∑ (𝑥𝑥(𝑚𝑚) − 𝑦𝑦(𝑚𝑚))𝑛𝑛
𝑡𝑡=1                                                                                                                                                    (13) 

where Bias refers to the bias in ETo (mm month-1); n is total months during the 30-year study period (1/1990-12/2019); 𝑥𝑥(𝑚𝑚) 

is raw or calibrated forecasts of ETo (mm month-1), and 𝑦𝑦(𝑚𝑚) is the corresponding ETo observations of the same month (mm 

month-1).  

2.4.4 Reliability 200 

To evaluate the reliability of calibrated ensemble forecasts, we calculate the probability integral transform (PIT) value using 

the following equation: 

𝜋𝜋(𝑚𝑚) = 𝐹𝐹�𝑚𝑚, 𝑥𝑥 = 𝑦𝑦(𝑚𝑚)�                                                                                                                                                            (14) 

where 𝐹𝐹(𝑚𝑚, 𝑥𝑥) is the cumulative density function of the ensemble forecast, and 𝑦𝑦(𝑚𝑚) is the observation. For reliable forecasts, 

the collection of 𝜋𝜋(𝑚𝑚) follows a standard uniform distribution. We use the alpha (𝛼𝛼) index to summarize the reliability in each 205 

grid cell with the following equation to check the overall reliability across Australia (Renard et al., 2010):  

𝛼𝛼 = 1 − 2
𝑛𝑛
∑ �𝜋𝜋∗(𝑚𝑚) − 𝑡𝑡

𝑛𝑛+1
�𝑛𝑛

𝑡𝑡=1                                                                                                                                                  (15)  

where π* (t) is the sorted π(t), t=1,2,…n in ascending order, and n is the total number of months. The 𝛼𝛼-index measures the 

total deviation of calibrated forecasts from the corresponding uniform quantile. Perfectly reliable forecasts should have an α-

index of 1, and forecasts with no reliability would have an α-index of 0. 210 

3 Results  
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3.1 Trends in observations and raw/calibrated forecasts 

We evaluate the capability of BJP-ti in reconstructing temporal trends for months with large areas of statistically significant 

trends in observed ETo. Since the trend parameters are estimated by month, we first examine the trend in ETo observations for 

each month k of the year for 1990-2019 (Figure S1). August, September, and October show larger areas with statistically 215 

significant trends than other months. As a result, the evaluation of trends in raw/calibrated forecasts is mainly conducted for 

these three months.  

 
Figure 1. Trends in raw forecasts, BJP calibrated forecasts, and BJP-ti calibrated forecasts at the lead time of month 

0, and observed ETo in August, September, and October. 220 

Observed ETo shows increasing trends in many parts of Australia in the three selected months (Figure 1, right column). In 

August, areas with increasing trends larger than 6 mm decade-1 are mainly located in western parts of Australia. In contrast, 

central and eastern Australia demonstrates much lower trends of less than 4 mm decade-1. Observed trends are close to zero in 

Victoria and Tasmania and even become negative in parts of the Northern Territory. In September, areas with significant 

increasing trends larger than 6 mm decade-1 are located in many parts of Australia, with the exception of a narrow coastal 225 

fringe and areas around the Tropic of Capricorn. In this month, decreasing trends are observed in a small part of eastern areas 

of Western Australia, where observations are relatively poor. In October, central-eastern Australia, including the inland regions 

of Victoria, New South Wales, South Australia, and south-west Queensland, demonstrate increasing trends of up to 8 mm 

decade-1.  
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Raw ETo forecasts also demonstrate trends, but they differ from those in observations in both spatial patterns and magnitudes 230 

(left column in Figure 1). In August, raw forecasts show increasing trends (> 6 mm decade-1) in Western Australia, which 

partially match those in observations. However, in eastern parts of Australia, raw forecasts overpredict trends in observations. 

In September, raw forecasts demonstrate even larger overpredictions (>8 mm decade-1) in trends than those of August, 

particularly in Western Australia and New South Wales. In October, raw forecasts are better aligned with observations in the 

increasing trends in south-eastern Australia; however, they overpredict trends in Western Australia, and underpredict trends in 235 

Northern Australia.  

Trends in raw forecasts become weaker at longer lead times (left columns in Figures S2 and S3). For the lead time of month 

3, trends in raw ETo forecasts show similar spatial patterns to those of month 0 in August, but the trends mainly drop to less 

than 2 mm decade-1. Similarly, the magnitudes of increasing trends in the other two months are also much lower at month 3 

than those at month 0. At month 6, trends in raw forecasts of the three selected months are close to zero across Australia. 240 

Calibrated ETo forecasts produced with the original BJP model demonstrate trends similar to those of raw forecasts in spatial 

patterns, but show smaller magnitudes (second columns in Figures 1, S2, and S3). Specifically, at month 0, the BJP-calibrated 

forecasts preserve the spatial variability of trends of the raw forecasts and show higher trends in Western Australia, central 

parts of Australia, and southern regions of the country for August, September, and October, respectively, but the increasing 

trends are all less than 4 mm decade-1, lower than those in raw forecasts (Figure1). Consistencies in the spatial patterns of 245 

trends are also found between BJP-calibrated forecasts and raw forecasts at other lead times (Figures S2 and S3). Similarly, 

trends are also lower in BJP-calibrated forecasts than those of the corresponding raw forecasts at longer lead times. 

Calibration with the BJP-ti model successfully reconstructs the observed trends in the calibrated forecasts (third columns in 

Figures 1, S2, and S3). Inconsistencies between raw forecasts and observations in the spatial patterns and magnitudes of trends 

are effectively corrected through statistical calibration. In addition, the tendency that trends become weaker at longer lead 250 

times in the raw forecasts is also effectively corrected. In the BJP-ti calibrated forecasts (third columns in Figures 1, S2, and 

S3), all lead times show trends consistent with observations in both spatial patterns and magnitudes.  

3.2 Correlation coefficients between forecasts and observations 
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Fig. 2. Differences in the correlation coefficient (r) between BJP-ti calibrated forecasts and observations with that 255 

between BJP calibrated forecasts and observations for three selected months (AUG, SEP, OCT) and three lead times 

(months 0, 3, and 6) 

We further examine whether reconstructing trends improves the representation of ETo temporal dynamics by forecasts. 

Specifically, we compare the r between BJP-ti calibrated forecasts and ETo observations with that between BJP-calibrated 

forecasts and observations in August, September, and October (Figure 2). Following trend reconstruction, BJP-ti calibrated 260 

forecasts clearly present temporal patterns more consistent with observations than calibrated forecasts produced by the BJP 

model, particularly in regions where observations show significant trends (Figure S1), and for forecasts at longe lead times. 

For the lead time of month 0, increases in r of over 0.1 are mainly located in the coastal regions of Northern Australia and 

northern Queensland for all the three selected months. More significant improvements in r are found at longer lead times (3 

and 6 months), with larger areas showing increases in r (Figure 2). At month 3, in addition to the coastal areas in northern 265 

Australia, the majority of Western Australia shows increases in r by more than 0.2 in August; in September, significant 

increases in r occur in both the far north and far south of mainland Australia; in October, areas with higher r further expand in 

southern Australia, and cover much larger areas than those at month 0. Areas showing higher r continue to expand at month 6. 

In August, increases in r of over 0.2 or even 0.25 are found in western and central far northern Australia; in September, regions 

with higher r cover large areas in coastal parts of northern Australia and coastal regions across Victoria and South Australia. 270 

In October, r increases cover large areas of southern and central regions of Australia. Slight decreases in r are also found in 

regions where the observed trends are not statistically significant. 
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3.3 Skills of raw and calibrated ETo forecasts 

 
Figure 3. Differences in CRPS skill score between BJP-ti calibrated forecasts and the BJP calibrated forecasts for three 275 

selected months (AUG, SEP, OCT) and three lead times (months 0, 3, and 6) 

Reconstruction of trends results in more skillful calibrated forecasts. We compare the CRPS skill scores of BJP-ti calibrated 

forecasts with those produced with the BJP model for the three selected months (Figure 3). At month 0, the CRPS skill score 

of calibrated forecasts is increased by 5-10% in August, September, and October, when trends are reconstructed. The 

distribution of areas with increased CRPS skill scores is generally consistent with that of the improved r (Figure 2). Increases 280 

in CRPS skill score are greater at longer lead times, in both magnitude and area, than those at short lead times. At month 3, 

areas with increased CRPS skill scores expand in Western Australia in August and in northern Western Australia in September. 

Month 6 demonstrates further improvements, with larger areas showing increases in CRPS skill score of over 15% in coastal 

areas of northern Australia in August and September, and central Australia in October. Slight decreases in CRPS skill score 

are also found in regions where the observed trends are not statistically significant. 285 
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Figure 4. CRPS skill score in (a) raw and (b) calibrated forecasts at seven lead times during 1990-2019. 

We further evaluate the overall performance of the calibration over the whole study period by comparing CRPS skill scores of 

the raw and BJP-ti calibrated forecasts (Figure 4). Calibration with BJP-ti substantially improves the skills of the raw ETo 

forecasts. Compared with the climatology forecasts, raw ETo forecasts demonstrate much lower skills, with CRPS skill scores 290 

lower than -25% in all grid cells, even for those at short lead times. With the correction of errors, including the time-dependent 

errors, the BJP-ti calibrated forecasts demonstrate CRPS skill scores more significant than 20% at month 0 in most grid cells. 

Eastern parts of Australia, such as New South Wales and Victoria, show CRPS skill scores of up to 30%. Beyond month 0, the 

skill score decreases significantly in calibrated forecasts. Most areas of Australia show CRPS skill scores lower than 10% at 

month 1. The skill score further decreases at longer lead times, but remains above zero in many parts of Australia, even at 295 

month 6, suggesting better performances than the climatology forecasts. 

a b 
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Figure 5. Boxplot of CRPS skill score by target month in BJP-ti calibrated forecasts  

We also summarize the CRPS skill score of calibrated forecasts by target month at the seven lead times across Australia (Figure 

5). Individual boxes indicate the variability among all the grid cells across Australia for that month and lead-time. At the first 300 

lead time (month 0), all months show CRPS skill score markedly better than climatology forecasts across most grid cells, with 

the median CRPS skill score being above 20% for seven months. However, the skill score decreases quickly with lead time. 

At lead time 1, the CRPS skill score is mainly lower than 10% for all target months. Skills of calibrated forecasts vary among 

the months. For October, November, and December, the CRPS skill score is above 0 for more than 50% of grid cells, even at 

lead time 6, indicating better performance than the climatology forecasts. For other months, such as January, April, May, and 305 

June, the median CRPS skill score decreases to values slightly below 0 beyond the lead time of month 1. 

3.4 Bias in raw and BJP-ti calibrated ETo forecasts 
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Figure 6. Bias in (a) raw and (b) BJP-ti calibrated ETo forecasts at 7 lead times during 1990-2019 across Australia 

Raw monthly ETo forecasts constructed with the raw climate forecasts of the ECMWF SEAS5 model demonstrate significant 310 

overpredictions (Figure 6). Positive biases of over 15 mm month-1 occur in most parts of Australia, away from the coastal fringe 

and Tasmania (Figure 6). Small areas with negative biases are found in the coastal margins of Queensland and Tasmania. The 

spatial patterns of bias in the raw ETo forecasts are consistent across all seven lead times, demonstrating systemic errors in 

raw ETo forecasts (Figure 6). The BJP-ti calibration substantially corrects the systematic errors in the raw forecasts, resulting 

in biases close to 0 in calibrated forecasts for all lead times (Figures 6 and S4). 315 

3.5 Reliability of calibrated ETo forecasts 

a b 
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Figure 7. Alpha index of BJP-ti calibrated ensemble ETo forecasts  

In this study, we generate 1000 ensemble members for each raw forecast to quantify the uncertainties of the calibrated forecasts. 

As indicated by the α-index, calibrated ETo forecasts are highly reliable. The α-index of calibrated ensemble ETo forecasts is 320 

above 0.96 in most parts of Australia for all the seven lead times (Figures 7 and S5). The high reliability of the calibrated 

forecasts suggests reasonable representations of uncertainties in calibrated ETo forecasts, and the distributions of calibrated 

ensemble forecasts are neither too narrow nor too wide (Figure 7). 

4 Discussion 

4.1 The necessity of reconstructing climate trends in seasonal ETo forecasting 325 

This investigation confirms that the misrepresentation of climate trends is an important error source in GCM-based ETo 

forecasting. Most previous investigations on climate trends in seasonal forecasts were primarily focused on temperature 

(Krakauer, 2019) and precipitation (Alizadeh-Choobari et al., 2019), and existing ETo forecasting studies have not investigated 

trends in ETo forecasts, despite temporal trends in ETo being observed at weather stations across the globe (Djaman et al., 

2018; Kousari and Ahani, 2012). Although the ECMWF model runs have been forced with the observed greenhouse gas 330 

concentrations for our study period (Johnson et al., 2019), and have actually produced temporal trends in raw ETo forecasts 

(Figure 1), the trends show significant inconsistencies with observations. In addition, raw ETo forecasts at long lead times 
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demonstrate much weaker trends than those at short lead times. Since misrepresentations of climate trends have been reported 

for many GCMs (Dunn et al., 2017), GCM-based seasonal ETo forecasting may generally suffer from time-dependent errors. 

This investigation also verifies our hypothesis that correcting time-dependent errors through trend reconstruction can add extra 335 

skills to calibrated ETo forecasts. Reconstruction of climate trends using the BJP-ti model effectively improves the consistency 

between forecasts and observations in temporal patterns and leads to more skillful calibrated forecasts, when compared with 

the calibration that does not reconstruct trends in ETo forecasts. These improvements are particularly significant in regions 

showing statistically significant observed trends, and at long lead times when trends are misrepresented most. Consequently, 

this investigation clearly indicates the necessity of correcting time-dependent errors in seasonal ETo forecasting. We 340 

recommend that future GCM-based ETo forecasting should correct time-dependent errors, since climate change has been 

projected to intensify in the future (Kharin et al., 2013), and may induce more significant temporal trends in ETo.  

4.2 Implications for improving statistical calibration models 

Climate change has posed challenges to the statistical calibration of seasonal climate forecasts. Many post-processing models, 

such as those based on the probabilistic theory (Tian et al., 2014; Wang et al., 2009), often rely on the climatology of 345 

observations to construct the probability distribution function for calibration (Wilks, 2018). However, the non-stationary 

behavior of the climate system induced by elevated greenhouse gas emissions has been increasingly reported (Haustein et al., 

2016; Lima et al., 2015). Many calibration models developed for seasonal forecasts have not considered the climate change 

impacts on the observed climatology. Although these models are proven to be effective in correcting biases in raw forecasts, 

assuming a static climatology may have hindered the utilization of predictable information in the raw forecasts. This 350 

investigation and our previous calibration of seasonal temperature forecasts (Shao et al., 2020, 2021), suggest that 

reconstructing trends in calibrated forecasts is an effective solution for capturing the non-stationary behavior of the climate 

system for more robust statistical calibrations of seasonal climate forecasts. 

This current investigation has further validated the strength of the trend-reconstruction algorithms in BJP-ti. Previously, we 

applied this model to correct seasonal temperature forecasts and achieved significant improvements in forecast skills relative 355 

to the original BJP model (Shao et al., 2020, 2021). The successful application to ETo forecasts confirms the robustness of 

trend reconstruction algorithms based on the data transformation and Bayesian inference in BJP-ti. This study further 

demonstrates the feasibility for the general application of BJP-ti to different hydroclimate variables showing temporal trends. 

We also anticipate that the BJP-ti algorithms for trend reconstruction could be adopted by other calibration models to enhance 

seasonal forecast calibration.  360 

4.3 Future work for seasonal ETo forecasting 

In this investigation, we successfully improve ETo forecast calibration by reconstructing climate trends. We also identify a 

few challenges that should be addressed in the future to further enhance GCM-based seasonal ETo forecasting.  
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Correction of lead-time-dependent errors should be further investigated in future GCM-based ETo forecasting. We found sharp 

declines in the skill of calibrated ETo forecasts from lead time month 0 to month 1. Model initialization with field observations 365 

plays a critical role in seasonal climate forecasting based on GCMs (Doblas-Reyes et al., 2013; Hazeleger et al., 2013). Short-

lead-time forecasts are more skillful since they are closer to the observed state of the climate system than those at long lead 

times. At long lead times, the predictable signal is often much smaller than the intrinsic uncertainty of GCMs. As a result, 

skills of raw forecasts often decrease quickly in the first month (Swapna et al., 2015), posing a challenge to statistical 

calibration, even for those using sophisticated calibration models (Hawthorne et al., 2013). Currently, we calibrate raw ETo 370 

forecasts of each lead time independently. Whether correcting the lead-time-dependent biases will add extra skill to calibrated 

forecasts, particularly to those at long lead times, warrants further investigation (Schaeybroeck and Vannitsem, 2018).  

Future forecast calibration should also investigate the impacts of climate change on the temporal variations of ETo. In addition 

to the increasing or decreasing trends, warming climate also induced more significant temporal variations in ETo, following 

increasing climate extremes (Wen et al., 2012). The increasing variations could pose another challenge to statistical calibration 375 

models assuming an unchanged variance of observations. This current investigation provides a remedy for dealing with the 

varying mean of ETo in statistical calibration. Future investigations should evaluate whether allowing the variance to vary with 

time in calibration models would further improve the skills of seasonal ETo forecasts. 

5 Conclusions 

ETo forecasting provides useful information for hydrological investigations and has been increasingly used to support water 380 

resource forecasting and management. Anthropogenic disturbances have induced changes in the climate system and resulted 

in trends in many climate variables. GCMs often misrepresent these climate trends and thus lead to time-dependent errors in 

seasonal climate forecasts. We have recently improved the BJP model to deal with this error source through the reconstruction 

of observed climate trends in calibrated forecasts. In this study, we apply the BJP-ti model to calibrate raw seasonal ETo 

forecasts constructed with climate forecasts from the ECMWF SEAS5 model. The BJP-ti model effectively corrects 385 

misrepresented climate trends and reconstructs observed trends in calibrated ETo forecasts. More importantly, forecast skills 

in areas showing statistically significant observed trends in observations are improved following trend reconstruction. This 

investigation highlights the necessity of correcting time-dependent errors for enhancing GCM-based seasonal ETo forecasting. 

We conclude that future ETo forecasting based on GCM climate forecasts could obtain more skillful forecasts through climate 

trend reconstruction.  390 

This investigation also provides valuable insights for improving statistical calibrations of seasonal climate forecasts in the 

future. In recent decades, climate trends have been increasingly observed. However, many calibration models for seasonal 

forecasts have not taken the non-stationary behavior of the climate system into consideration. Improved forecast skills in 

seasonal ETo forecasts through the reconstruction of temporal trends, together with our previous calibration of seasonal 
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temperature forecasts, validate the robustness and effectiveness of bias-reconstruction algorithms in the BJP-ti model. We 395 

anticipate that these algorithms would be applicable to enhance other calibration models. 
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