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Abstract. Evapotranspiration plays an important role in the terrestrial water cycle. Reference crop evapotranspiration (ETo) 

has been widely used to estimate water transfer from vegetation surface to the atmosphere. Seasonal ETo forecasting provides 

valuable information for effective water resource management and planning. Climate forecasts from General Circulation 

Models (GCMs) have been increasingly used to produce seasonal ETo forecasts. Statistical calibration plays a critical role in 

correcting bias and dispersion errors in GCM-based ETo forecasts. However, time-dependent errors resulting from GCM’s 10 

misrepresentations of climate trends, have not been explicitly corrected in ETo forecast calibrations. We hypothesize that 

reconstructing climate trends through statistical calibration will add extra skills to seasonal ETo forecasts. To test this 

hypothesis, we calibrate raw seasonal ETo forecasts constructed with climate forecasts from the European Centre for Medium-

Range Weather Forecasts (ECMWF) SEAS5 model across Australia, using the recently developed Bayesian Joint Probability 

trend-aware (BJP-ti) model. Raw ETo forecasts demonstrate significant inconsistencies with observations in both magnitudes 15 

and spatial patterns of temporal trends, particularly at long lead times. The BJP-ti model effectively corrects misrepresented 

trends and reconstructs the observed trends in calibrated forecasts. Improving trends through statistical calibration increases 

the correlation coefficient between calibrated forecasts and observations (r) by up to 0.25 and improves the continuous ranked 

probability score (CRPS) skill score by up to 15 (%) in regions where climate trends are misrepresented by raw forecasts. 

Skillful ETo forecasts produced in this study could be used for streamflow forecasting, modelling of soil moisture dynamics, 20 

and irrigation water management. This investigation confirms the necessity of reconstructing climate trends in GCM-based 

seasonal ETo forecasting, and provides an effective tool for addressing this need. We anticipate that future GCM-based seasonal 

ETo forecasting will benefit from correcting time-dependent errors through trend reconstruction.  

1 Introduction 

As a critical process in the terrestrial water cycle, evapotranspiration transfers a large amount of water from the land surface 25 

to the atmosphere. Reference crop evapotranspiration (ETo) measures the evaporative demand of the atmosphere for a 

hypothetical crop of a given height, with defined surface resistance factor and albedo. It is generally computed using the 

Penman-Monteith equation following Allen et al. (1998, see section 2.1), which is known as FAO56. McMahon et al. (2013) 

provides additional information about the process. Forecasting of ETo has been used to support water resource management 
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(Anderson et al., 2015; Le Page et al., 2021) and improve soil moisture modelling (Yu et al., 2016). In addition, ETo forecasting 30 

also helps constrain the significant uncertainties in streamflow forecasting (Greuell et al., 2019; Van Osnabrugge et al., 2019). 

Seasonal ETo forecasts have been used to support water allocation among competing users (Chauhan and Shrivastava, 2009) 

and in planning farming activities (Zinyengere et al., 2011). In recent years, climate forecasts produced by General Circulation 

Models (GCMs) have been increasingly used for seasonal ETo forecasting, since GCMs often produce forecasts of all climate 

variables needed to estimate future ETo (Tian et al., 2014; Zhao et al., 2019a). 35 

Raw ETo forecasts constructed with GCM climate forecasts often inherit significant errors from the raw forecasts of climate 

variables, including temperature, solar radiation, wind speed, and vapor pressure. Due to deficiencies in GCM’s representation 

of physical processes of the atmosphere (Woldemeskel et al., 2014), model parameterization (O’Gorman and Dwyer, 2018), 

and data assimilation (O’kane et al., 2019), raw GCM forecasts often demonstrate systematic errors (Weisheimer and Palmer, 

2014). For example, inconsistencies with observations have been reported for the raw forecasts of all variables needed to 40 

construct ETo forecasts using the FAO56 method (Groisman et al., 2000; Slater et al., 2017). These inconsistencies often lead 

to significant bias and low skills in the resultant raw ETo forecasts (Zhao et al., 2019b). 

Failing to correctly simulate the temporal trends of the climate system could be partially responsible for the low skills of GCM-

based raw ETo forecasts. Time-dependent errors are introduced when GCMs lack skills in modelling climate trends driven by 

rising atmospheric greenhouse gas (GHG) concentrations (Sansom et al., 2016). There is mounting evidence that climate 45 

change has resulted in increasing trends in temperature (Smith et al., 2007) and vapor pressure (Byrne and Gorman, 2018), but 

led to decreasing trends in solar radiation (Liepert, 2002). However, GCMs configured for seasonal climate forecasts often 

misrepresent these observed trends. For example, an evaluation across nine climate regions in the U.S. showed that nine of ten 

selected GCMs failed to reproduce the observed temporal trends in seasonal temperature forecasts (Bhowmik and 

Sankarasubramanian, 2020). In the Middle East, seasonal temperature forecasts by the Climate Forecast System version 2 50 

(CFSv2) model overestimated the warming trend in reference data by approximately 0.4° decade-1 (Alizadeh-Choobari et al., 

2019). In Australia, evaluations of the European Centre for Medium-Range Weather Forecasts (ECMWF) SEAS5 model 

identified significant discrepancies between observed and forecasted trends in temperature (Shao et al., 2020, 2021a). Forecasts 

of fire weather index (calculated with forecasts of precipitation, wind speed, temperature, and humidity) based on the ECMWF 

System 4 model demonstrated significant inconsistencies with observations in temporal trends in Europe during 1981-2010 55 

(Bedia et al., 2018). As a result, it is unlikely that raw ETo forecasts constructed with raw forecasts of these climate variables 

would faithfully reproduce the observed climate trends. Failing to capture the observed trends inevitably introduces errors to 

GCM-based raw ETo forecasts.  

Raw ETo forecasts constructed with climate forecasts need to be calibrated to correct biases and dispersion errors. Statistical 

calibration models initially developed for other variables, such as precipitation or temperature, have been adopted to calibrate 60 

raw ETo forecasts (Medina and Tian, 2020; Zhao et al., 2019a). Using a quantile-mapping method, Tian and Martinez (2014) 

improved seasonal ETo forecasts based on CFSv2 outputs in Florida, the U.S. In the calibration of seasonal ETo forecasts in 

Australia, Zhao et al. (2019b) used the Bayesian Joint Probability (BJP) model to post-process ETo forecasts constructed with 
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climate forecasts from the Australian Bureau of Meteorology’s Australian Community Climate and Earth-System Simulator-

Seasonal prediction system version 1 (ACCESS-S1) model across three weather stations. This investigation validated the BJP 65 

model’s strengths in error correction and skill enhancement in ETo forecasting. However, none of these calibrations have 

explicitly dealt with time-dependent errors caused by the misrepresentation of climate trends in GCM forecasts. 

Statistical techniques have been developed to correct time-dependent errors in raw GCM forecasts. A commonly adopted 

method is to replace the linear trend in raw forecasts with the observed trend (Kharin et al., 2012). Using this method, Kharin 

et al. (2012) corrected trends in decadal temperature forecasts and successfully reduced the systematic residual drifts in raw 70 

forecasts. Meanwhile, improvements in trends effectively adjusted the long-term climate behavior in forecasts to match 

observations (Kharin et al., 2012). To correct errors associated with the representation of temporal changes and variability, 

Pasternack et al. (2020) adopted a time-varying mean to characterize the climate trend in the calibration of decadal temperature 

forecasts. In addition to these decadal-scale calibrations, recent studies suggested that seasonal climate forecasting could also 

benefit from correcting time-dependent errors. For example, Shao et al. (2021) improved the BJP model by adding trend-75 

reconstruction algorithms to deal with time-dependent errors. The new algorithm allows for the reconstruction of observed 

trends in calibrated forecasts. With this new feature, the improved BJP model (hereafter referred to as BJP-ti) demonstrates 

the capability of adding extra skills to seasonal temperature forecasts through trend reconstruction. 

We hypothesize that reconstructing trends in seasonal ETo forecasts through statistical calibration will help correct time-

dependent errors and thereby improve forecast skills. To test this hypothesis, we adopt the BJP-ti model to calibrate seasonal 80 

ETo forecasts constructed with climate forecasts from the ECMWF SEAS5 model across Australia. This investigation aims to 

1) reconstruct climate trends in seasonal ETo forecasts through statistical calibration and 2) investigate how trend 

reconstruction affects the skill of calibrated ETo forecasts.   

2 Method 

2.1 Observations and forecasts 85 

We develop monthly ETo data (treated as observations for calibration) based on gridded monthly temperature, solar radiation, 

and vapor pressure data from the Australian Water Availability Project (AWAP) (Jones et al., 2007, 2014). Since the AWAP 

project does not provide wind speed data, we use a constant wind speed of 2 m s-1 in deriving the ETo observations (Allen et 

al., 1998). Based on these AWAP variables, we produce monthly ETo observations during 1990-2019 for forecast calibration. 

Seasonal climate forecasts from the latest version (SEAS5) of the ECMWF model are used to construct the raw ETo forecasts. 90 

The re-forecast period of SEAS5 is 1981–2016, with an ensemble size of 25 members. Real-time forecasts started in 2017, 

with an ensemble size of 51 members (Stockdale et al., 2017). SEAS5 forecasts have a horizon of seven months (Months 0 to 

6), with a spatial resolution of 0.4°. While SEAS5 produces climate forecasts across the globe, the calibration in this study is 

performed across Australia only.  
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To match ETo observations, we combine the archived re-forecasts and operational forecasts to derive raw ETo forecasts for the 95 

period of 1990-2019. ECMWF runs for re-forecasts, and operational forecasts are configured in a similar way, except for 

differences in initialization (Johnson et al., 2019). Absolute errors in raw ETo forecasts during the two periods are comparable 

(Figure S1). We choose the first 25 ensemble members of the real-time forecasts (2017-2019) to match the ensemble size of 

the re-forecasts (1990-2016). We calculate the ensemble mean of the 25 ensemble members of ECMWF forecasts of 

temperature, solar radiation, and vapor pressure for the calculation of raw ETo forecasts. To be consistent with the ETo 100 

observations, we use a constant wind speed of 2 m s-1 in deriving raw ETo forecasts. In addition, we aggregate the grid spacing 

of AWAP data from 0.05° to 0.4° to match the ECMWF’s spatial resolution. 

2.2 Calculation of ETo observations and forecasts 

We construct monthly raw ETo forecasts and ETo observations using the monthly ECMWF climate forecasts and AWAP data 

based on the FAO56 ETo method (Allen, et al., 1998): 105 

𝐸𝑇 =
. ( ) ( )

( . )
                                                                                                        (1) 

where 𝐸𝑇  is the monthly reference crop evapotranspiration (mm month-1); 𝛥  is the slope of the vapor pressure curve 

(𝑘𝑃𝑎 °𝐶 ); 𝑅  is net radiation at the crop surface (𝑀𝐽 𝑚  𝑚𝑜𝑛𝑡ℎ ); 𝐺 is soil heat flux density (𝑀𝐽 𝑚  𝑚𝑜𝑛𝑡ℎ ), which 

is calculated based on temperature; 𝛾 is the psychrometric constant (𝑘𝑃𝑎 °𝐶-1); 𝑇 is average air temperature (°𝐶); 𝑢  is the 

wind speed at 2 m (m s-1); 𝑒  and 𝑒  are saturated and actual vapor pressure (𝑘𝑃𝑎), respectively. 110 

2.3 Forecast calibration with the BJP-ti model 

In this study, ETo forecast calibration is conducted across Australia for each grid cell, each month, and lead time separately. 

We employ the BJP-ti model to calibrate the raw ETo forecasts. This model was developed recently by extending the original 

BJP model’s capability to deal with errors resulting from the misrepresentation of climate trends. In this study, the calibration 

model is configured by month k (k = 1 to 12 corresponding to January to December) of the year. 115 

Calibration with the BJP-ti model involves six steps, including 1) data transformation, 2) data detrending, 3) joint probability 

modelling of the transformed and detrended forecasts and observations, 4) generation of ensemble calibrated forecast members 

conditional on the raw forecast, 5) adding the observed trend back to ensemble members, and 6) back-transforming the data to 

obtain the final calibrated forecasts. We further introduce these steps in detail as follows. 

The first step is to transform raw forecasts and observations to approach the normal distribution. We adopt the Yeo-Johnson 120 

transformation method (Yeo and Johnson, 2000) to transform ETo: 

𝑥 =

⎩
⎨

⎧ (𝜆𝑥 + 1) − 1,                          (𝑥 ≥ 0, 𝜆 ≠ 0)
 

𝑒𝑥𝑝(𝑥) − 1,                                (𝑥 ≥ 0, 𝜆 = 0)
                      

                                                                                       (2) 
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where 𝜆 is a transformation parameter; x refers to raw ETo forecasts or ETo observations (mm month-1); 𝑥  is the transformed 

x (forecasts or observations) generated through the Yeo-Johnson transformation. The above transformation is performed by 

month for raw forecasts and observations separately. The transformation parameter (λ) is inferred using the Bayesian 125 

Maximum a Posterior (MAP) method (Shao et al., 2020). 

Step 2 is to generate detrended forecasts and observations in the transformed space. For each grid cell, we infer linear trends 

for transformed forecasts and observations separately. With the trend parameters (𝛼  and 𝛼 ), trends in transformed forecasts 

and observations are removed to produce detrended data. Specifically, each transformed forecast and observation record is 

adjusted based on the middle year of the study period (1990-2019) and trend parameters using the following equations:  130 

 𝑧 (𝑡) = 𝑦 (𝑡) − 𝛼 (𝑡 − 𝑡 )                                                                                                                                                            (3) 

𝑧 (𝑡) = 𝑦 (𝑡) − 𝛼 (𝑡 − 𝑡 )                                                                                                                                                             (4) 

where 𝑦 (𝑡) and 𝑦 (𝑡) refer to transformed ETo forecasts and observations for month k (k = 1 to 12 corresponding to January 

to December) in year t during 1990-2019; 𝛼 and 𝛼  are inferred trend parameters for transformed forecasts and observations, 

respectively; 𝑡  is approximately the middle year (e.g., 2004 in this study) during 1990-2019. The position of 𝑡  is empirically 135 

selected, but it will not affect the calibration if we choose a different year as 𝑡 ; and 𝑧 (𝑡) and 𝑧 (𝑡) are detrended ETo 

forecasts and observations in the transformed space, respectively. 

In step 3, we assume a bivariate joint distribution (z) between predictor 𝑧 (detrended transformed raw forecasts) and predictand 

𝑧  (detrended transformed observations) 

𝑧 =
𝑧
z ~ 𝑁(μ, Σ)                                                                                                                                                                                         (5) 140 

where μ is the mean vector, and Σ is the covariance matrix. We denote the parameters from equations 3-5 as a vector θ =

μ, Σ, 𝛼 , 𝛼 . 

For each month of the year, model parameters are inferred with training data pairs (predictor and predictand) during the study 

period (1990-2019). The posterior distribution of the model parameters is: 

𝑝(θ|D) ∝ 𝑝(θ)𝑝(D|θ) = 𝑝(θ) ∏ 𝑝(D|θ)                                                                                                                                            (6) 145 

where 𝑝(θ) is the prior distribution for model parameters, and 𝑝(D|θ) is the likelihood function. D refers to all data pairs 

(𝑧 (𝑡) and 𝑧 (𝑡)) used for parameter inference. A Gibbs sampler is utilized to repeatedly sample the parameter sets θ from the 

conditional posterior distribution of the model parameters.  

In the BJP-ti model, informative priors are applied to set boundaries for inferred trends to avoid overfitting. The priors are 

estimated for each grid cell, month, and lead time separately. This informative prior distribution 𝑝(𝛼 ) for trend parameters 150 

𝛼  and 𝛼  is formulated as follows (Shao et al., 2021a): 

𝑝(𝛼 ) ∝ 𝑁(0, 𝑚 )                                                                                                                                        (7) 
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[𝛼 | ⋅] = 𝑁(
∑ ( ( ) )( )

∑ ( )
,

∑ ( )
)                                                                                           (8) 

where 𝑚  is the standard deviation of the prior, which is set based on trends of transformed forecasts and observations; 𝜇  is 

the mean and 𝜎  is the standard deviation for predictors or predictands extracted from the diagonal of covariance matrix Σ (see 155 

equation 5). Equation 8 shows the posterior distribution of parameter 𝛼  conditional on forecasts or observations. For trends 

that are insignificant (P>0.05), we set 𝑚  to 0 to avoid overfitting trends in calibrated forecasts. For significant trends, we set 

the mi value based on trends in observations and raw forecasts during 1981-2019. Specifically, we pooled the significant trends 

of all grid cells, months, and lead times for transformed forecasts, and found that 95% of the absolute trends are smaller than 

0.47. For transformed observations, 95% of grid cells and months have absolute trends less than 0.52. As a result, we set 𝑚  160 

to 0.47 and 0.52 for forecasts and observations, respectively.  

In step 4, once all the parameters are inferred, we draw 1000 members from a conditional distribution of the predictand (𝑧 (𝑡∗)), 

for a given new forecast (𝑧 (𝑡∗)). In step 5, we add the trend from Equation 4 back to 𝑧 (𝑡∗), to produce calibrated ensemble 

forecast (𝑦 (𝑡∗)). In step 6, we back-transform 𝑦 (𝑡∗) to the original space to produce the calibrated ensemble forecasts. Our 

analysis indicated that our trend-reconstruction strategy (detrending and retrending in the transformed space, and setting limits 165 

to inferred trends) would not introduce significant bias to the calibrated forecasts (Figure S2).  

2.4 Evaluation of forecast calibration 

To evaluate the performance of the calibration, we adopt a leave-one-year-out cross-validation strategy for each grid cell and 

lead time. Specifically, for one of the 30 years during 1990-2019, we keep month k aside, and then use month k from the 

remaining 29 years to infer the BJP-ti parameters. Once the parameters are inferred, we generate a calibrated forecast for month 170 

k in the year held aside. This process is repeated until calibrated forecasts are obtained for month k from each of the 30 years. 

Similar processes are conducted for other months and other lead times until we obtain calibrated forecasts for all months and 

the seven lead times for each grid cell across Australia. 

To evaluate how the reconstruction of trends affects the quality of calibrated forecasts, we compare BJP-ti calibrated forecasts 

with those generated using the original BJP model, which does not reconstruct trends. The BJP model omits steps 2 (detrending) 175 

and 5 (retrending) in section 2.3. We present results of the comparison in the main text for months (August, September, and 

October) with large areas (Figure S3) of statistically significant (at the 95% confidence interval) temporal trends in observed 

ETo; results for the remaining nine months are presented in the Supplementary Material. 

Evaluation metrics employed to examine the performance of calibrations include the correlation coefficient, skill score, bias, 

and reliability. The calculation of these metrics is further introduced as follows. 180 

2.4.1 Correlation coefficient 
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We use the Pearson correlation coefficient (r) between raw/calibrated forecasts and observations to examine their consistency 

in temporal dynamics: 

𝑟 =
∑ ( ( ) ̅)( ( ) )

∑ ( ( ) ̅) ∑ ( ( ) )
                                                                                                                                                 (9) 

where 𝑥(𝑡) is the ensemble mean of raw/calibrated ETo forecasts (mm month-1); T is the total years during the study period; �̅� 185 

is the average of 𝑥(𝑡) (mm month-1); 𝑦(𝑡) is the corresponding ETo observations (mm month-1), and 𝑦 is the average of 𝑦(𝑡) 

(mm month-1).  

2.4.2 Forecast skills 

We use the continuous ranked probability score (CRPS) to measure the skill of the raw and calibrated forecasts (Grimit et al., 

2006): 190 

𝐶𝑅𝑃𝑆(𝑡) = ∫ 𝐹(𝑡, 𝑥) − 𝐻 𝑥 − 𝑦(𝑡) 𝑑𝑥                                                                                                                            (10) 

 𝐶𝑅𝑃𝑆 =  ∑ 𝐶𝑅𝑃𝑆(𝑡)                                                                                                                                                       (11) 

where 𝐹(𝑡, 𝑥) is the cumulative density function of an ensemble forecast, and 𝑦(𝑡) is the observation at time 𝑡; 𝐻 is the 

Heaviside step function (𝐻 = 1 if 𝑥 − 𝑦(𝑡) ≥ 0 and 𝐻 = 0 otherwise); the overbar represents averaging across the 𝑛 months 

during 1/1990-12/2019. For deterministic raw forecasts, CRPS is reduced to absolute errors. 195 

We further calculate the CRPS skill score (𝐶𝑅𝑃𝑆 ) to measure the skill of raw and calibrated forecasts relative to climatology 

forecasts using the following equation: 

 𝐶𝑅𝑃𝑆 = × 100                                                                                                                          (12) 

where 𝐶𝑅𝑃𝑆  is the CRPS value of climatology forecasts; and 𝐶𝑅𝑃𝑆  refers to CRPS value of raw or calibrated 

forecasts. Positive 𝐶𝑅𝑃𝑆  indicates better skill than the climatology forecasts, and vice versa. To make the CRPS skill scores 200 

of calibrated forecasts generated by different models (BJP vs. BJP-ti) comparable, we use the climatology forecasts from the 

BJP model as the reference in the calculation of 𝐶𝑅𝑃𝑆 .  

2.4.3 Bias 

We evaluate the accuracy of the raw and calibrated forecasts using the following equation: 

𝐵𝑖𝑎𝑠 = ∑ (𝑥(𝑡) − 𝑦(𝑡))                                                                                                                                                   (13) 205 

where Bias refers to the bias in ETo (mm month-1); n is total months during the 30-year study period (1/1990-12/2019); 𝑥(𝑡) is 

raw or calibrated forecasts of ETo (mm month-1), and 𝑦(𝑡) is the corresponding ETo observations of the same month (mm 

month-1). Raw forecasts are deterministic since they are calculated based on the ensemble mean of each input variable. For 

calibrated forecasts, we use the ensemble mean to calculate bias. 
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2.4.4 Reliability 210 

To evaluate the reliability of calibrated ensemble forecasts, we calculate the probability integral transform (PIT) value using 

the following equation: 

𝜋(𝑡) = 𝐹 𝑡, 𝑥 = 𝑦(𝑡)                                                                                                                                                             (14) 

where 𝐹(𝑡, 𝑥) is the cumulative density function of the ensemble forecast, and 𝑦(𝑡) is the observation. For reliable forecasts, 

the collection of 𝜋(𝑡) follows a standard uniform distribution. We use the alpha (𝛼) index to summarize the reliability in each 215 

grid cell with the following equation to check the overall reliability across Australia (Renard et al., 2010):  

𝛼 = 1 − ∑ 𝜋∗(𝑡) −                                                                                                                                                  (15)  

where π* (t) is the sorted π(t), t=1,2,…n in ascending order, and n is the total number of months. The 𝛼-index measures the 

total deviation of calibrated forecasts from the corresponding uniform quantile. Perfectly reliable forecasts should have an α-

index of 1, and forecasts with no reliability would have an α-index of 0. 220 

3 Results  

3.1 Trends in observations and raw/calibrated forecasts 

We evaluate the capability of BJP-ti in reconstructing temporal trends for months with large areas of statistically significant 

trends in observed ETo. Since the trend parameters are estimated by month, we first examine the trend in ETo observations for 

each month k of the year for 1990-2019 (Figure S3). August, September, and October show larger areas with statistically 225 

significant trends than other months. As a result, the evaluation of trends in raw/calibrated forecasts is mainly conducted for 

these three months.  
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Figure 1. Trends in raw forecasts, BJP calibrated forecasts, and BJP-ti calibrated forecasts at Month 0, and observed 

ETo in August, September, and October. Blue polygons show regions where observed trends are statistically 230 

significant. SD refers to standard deviation.  

Observed ETo shows increasing trends in many parts of Australia in the three selected months (Figure 1, 4th column). Compared 

with findings from previous investigations, observed trends identified in this study also demonstrate significant spatial 

variability and varying magnitudes in different months (Donohue et al., 2010; McVicar et al., 2012). We found more positive 

trends in our study period (1990-2019) than the period of 1981-2006 (Donohue et al., 2010). In August, areas with increasing 235 

trends larger than 6 mm decade-1 are mainly located in western parts of Australia. In contrast, central and eastern Australia 

demonstrates much lower trends of less than 4 mm decade-1. Observed trends are close to zero in Victoria and Tasmania and 

even become negative in parts of the Northern Territory. In September, areas with significant increasing trends larger than 6 

mm decade-1 are located in many parts of Australia, with the exception of a narrow coastal fringe and areas around the Tropic 

of Capricorn. In this month, decreasing trends are observed in a small part of eastern areas of Western Australia, where 240 

observations are relatively poor. In October, central-eastern Australia, including the inland regions of Victoria, New South 

Wales, South Australia, and south-west Queensland, demonstrate increasing trends of up to 8 mm decade-1. At the decadal 

scale, trends in ETo are comparable with the standard deviation.  

Raw ETo forecasts also demonstrate trends, but they differ from those in observations in both spatial patterns and magnitudes 

(left column in Figure 1). In August, raw forecasts show increasing trends (> 6 mm decade-1) in Western Australia, which 245 

partially match those in observations. However, in eastern parts of Australia, raw forecasts overpredict trends in observations. 

In September, raw forecasts demonstrate even larger overpredictions (>8 mm decade-1) in trends than those of August, 
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particularly in Western Australia and New South Wales. In October, raw forecasts are better aligned with observations in the 

increasing trends in south-eastern Australia; however, they overpredict trends in Western Australia, and underpredict trends in 

Northern Australia.  250 

Trends in raw forecasts become weaker at longer lead times (left columns in Figures S4 and S5). For the lead time of Month 

3, trends in raw ETo forecasts show similar spatial patterns to those of Month 0 in August, but mainly drop to less than 2 mm 

decade-1. Similarly, the magnitudes of increasing trends in the other two months are also much lower at Month 3 than those at 

Month 0. At Month 6, trends in raw forecasts of the three selected months are close to zero across Australia. 

Calibrated ETo forecasts produced with the original BJP model demonstrate trends similar to those of raw forecasts in spatial 255 

patterns, but show smaller magnitudes (second columns in Figures 1, S4, and S5). Specifically, at Month 0, the BJP-calibrated 

forecasts preserve the spatial variability of trends in the raw forecasts and show higher trends in Western Australia, central 

parts of Australia, and southern regions of the country for August, September, and October, respectively, but the increasing 

trends are all less than 4 mm decade-1, lower than those in raw forecasts (Figure 1). Consistencies in the spatial patterns of 

trends are also found between BJP-calibrated forecasts and raw forecasts at other lead times (Figures S4 and S5). Similarly, 260 

trends are also lower in BJP-calibrated forecasts than those of the corresponding raw forecasts at longer lead times. 

Calibration with the BJP-ti model successfully reconstructs the observed trends in the calibrated forecasts (third columns in 

Figures 1, S4, and S5). Inconsistencies between raw forecasts and observations in the spatial patterns and magnitudes of trends 

are effectively corrected through the calibration, particularly for regions that demonstrate significant observed trends. In 

addition, the tendency that trends become weaker at longer lead times in the raw forecasts is also effectively corrected. In the 265 

BJP-ti calibrated forecasts (third columns in Figures 1, S4, and S5), all lead times show trends consistent with observations in 

both spatial patterns and magnitudes.  

3.2 Correlation coefficients between forecasts and observations 
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Figure 2. Differences in the correlation coefficient (r) between BJP-ti calibrated forecasts and observations with that 270 

between BJP calibrated forecasts and observations for three selected months (AUG, SEP, OCT) and three lead times 

(Months 0, 3, and 6). Red polygons show regions with significant observed trends. 

We further examine whether reconstructing trends improves the representation of ETo temporal dynamics by forecasts. 

Specifically, we compare the r between BJP-ti calibrated forecasts and ETo observations with that between BJP-calibrated 

forecasts and observations in August, September, and October (Figure 2). Following trend reconstruction, BJP-ti calibrated 275 

forecasts clearly present temporal patterns more consistent with observations than calibrated forecasts produced by the BJP 

model, particularly in regions where observations show significant trends (Figure S3), and for forecasts at longe lead times. 

For the lead time of Month 0, increases in r of over 0.1 are mainly located in the coastal regions of Northern Australia and 

northern Queensland for all the three selected months. More significant improvements in r are found at longer lead times 

(Months 3 and 6), with larger areas showing increases in r (Figure 2). At Month 3, in addition to the coastal areas in northern 280 

Australia, the majority of Western Australia shows increases in r by more than 0.2 in August; in September, significant 

increases in r occur in both the far north and far south of mainland Australia; in October, areas with higher r further expand in 

southern Australia, and cover much larger areas than those at Month 0. Areas showing higher r continue to expand at Month 

6. In August, increases in r of over 0.2 or even 0.25 are found in western and central far northern Australia; in September, 

regions with higher r cover large areas in coastal parts of northern Australia and coastal regions across Victoria and South 285 

Australia. In October, r increases cover large areas of southern and central regions of Australia. Similar improvements are also 

found in the remaining nine months (Figure S6).  

3.3 Skills of raw and calibrated ETo forecasts 
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Figure 3. Differences in CRPS skill score between BJP-ti calibrated forecasts and the BJP calibrated forecasts for three 290 

selected months (AUG, SEP, OCT) and three lead times (Months 0, 3, and 6). Red polygons show regions with 

significant observed trends. 
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Figure 4. Differences in CRPS skill score between BJP-ti calibrated forecasts and the BJP calibrated forecasts over 

1990-2019. 295 

Reconstruction of trends results in more skillful calibrated forecasts. We compare the CRPS skill scores of BJP-ti calibrated 

forecasts with those produced with the BJP model for the three selected months (Figure 3). At Month 0, the CRPS skill score 

of calibrated forecasts is increased by 5-10% in August, September, and October, when trends are reconstructed. The 

distribution of areas with increased CRPS skill scores is generally consistent with that of the improved r (Figure 2). Increases 

in CRPS skill score are greater at longer lead times, in both magnitude and area, than those at short lead times. At Month 3, 300 

areas with increased CRPS skill scores expand in Western Australia in August and in northern Western Australia in September. 

Month 6 demonstrates further improvements, with larger areas showing increases in CRPS skill score of over 15% in coastal 

areas of northern Australia in August and September, and central Australia in October. The other nine months also demonstrate 

similar improvements in the CRPS skill score in regions with significant trends (Figure S7). In addition, comparison for all 

months together also demonstrates improved skill scores following trend reconstruction (Figure 4).  305 

 

        

Figure 5. CRPS skill score in (a) raw and (b) calibrated forecasts at seven lead times during 1990-2019. 

We further evaluate the overall performance of the calibration over the whole study period by comparing CRPS skill scores of 

the raw and BJP-ti calibrated forecasts (Figure 5). Calibration with the BJP-ti model substantially improves the skills of the 310 

raw ETo forecasts. Compared with the climatology forecasts, raw ETo forecasts demonstrate much lower skills, with CRPS 

skill scores lower than -25% in all grid cells, even for those at short lead times.  

a b 
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We need to point out that simple bias-correction is often applied to raw ECMWF forecasts before they are used. We applied 

quantile mapping to the raw ETo forecasts and were able to improve forecast skills (Figure S8). However, the bias-corrected 

forecasts still demonstrate skills much worse than climatology forecasts, particularly at long lead times.  315 

With the correction of errors, including the time-dependent errors, the BJP-ti calibrated forecasts demonstrate CRPS skill 

scores larger than 20 (%) at Month 0 in most grid cells (Figure 5). Eastern parts of Australia, such as New South Wales and 

Victoria, show CRPS skill scores of up to 30 (%). Beyond Month 0, the skill score decreases significantly in calibrated forecasts. 

Most areas of Australia show CRPS skill scores lower than 10 (%) at Month 1. The skill score further decreases at longer lead 

times, but remains above zero in many parts of Australia, even at Month 6, suggesting better performances than the climatology 320 

forecasts. 

 

Figure 6. Boxplot of CRPS skill score by target month in BJP-ti calibrated forecasts  

We also summarize the CRPS skill score of calibrated forecasts by target month at the seven lead times across Australia (Figure 

6). Individual boxes indicate the variability among all the grid cells across Australia for that month and lead-time. At the first 325 

lead time (Month 0), all months show CRPS skill score markedly better than climatology forecasts across most grid cells, with 

the median CRPS skill score being above 20 (%) for seven months. However, the skill score decreases quickly with lead time. 

At lead time 1, the CRPS skill score is mainly lower than 10 (%) for all target months. Skills of calibrated forecasts vary among 

the months. For October, November, and December, the CRPS skill score is above 0 for more than 50% of grid cells, even at 

lead time 6, indicating better performance than the climatology forecasts. For other months, such as January, April, May, and 330 

June, the median CRPS skill score decreases to values slightly below 0 beyond the first lead time (Month 0). 

3.4 Bias in raw and BJP-ti calibrated ETo forecasts 
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Figure 7. Bias in (a) raw and (b) BJP-ti calibrated ETo forecasts  

Raw monthly ETo forecasts constructed with the raw climate forecasts of the ECMWF SEAS5 model demonstrate significant 335 

overpredictions (Figure 7). Positive biases of over 15 mm month-1 occur in most parts of Australia, away from the coastal fringe 

and Tasmania. Small areas with negative biases are found in the coastal margins of Queensland and Tasmania. The spatial 

patterns of bias in the raw ETo forecasts are consistent across all seven lead times, demonstrating systemic errors in raw ETo 

forecasts. The BJP-ti calibration substantially corrects the systematic errors in the raw forecasts, resulting in biases close to 0 

in calibrated forecasts for all lead times (Figures 7 and S9). 340 

3.5 Correlation between raw/calibrated forecasts and observations 

a b 
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Figure 8. (a) Correlation coefficients between BJP-ti calibrated forecasts and observations, and (b) improvements in 

correlation coefficients through the calibration with the BJP-ti model relative to those between raw forecasts and 

observations. 345 

 

The calibration based on the BJP-ti model also improves correlation coefficients between forecasts and observations. Raw 

forecasts are able to capture the high seasonality in ETo and thus demonstrate high correlation coefficients with observations 

(Figure S10). The r values are generally over 0.9 across most parts of central and southern Australia. Lower r values are mainly 

distributed in coastal regions of northern Australia. Calibration with the BJP-ti model further improved the representation of 350 

ETo temporal dynamics (Figure 8). The r values for calibrated forecasts are over 0.9 in most parts of Australia. Improvements 

in r are more pronounced in northern Australia, where raw forecasts show lower correlations with observations.  

3.6 Reliability of calibrated ETo forecasts 

a b 
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Figure 9. Alpha index of BJP-ti calibrated ensemble ETo forecasts  355 

In this study, we generate 1000 ensemble members for each raw forecast to quantify the uncertainties of the calibrated forecasts. 

As indicated by the α-index, calibrated ETo forecasts are highly reliable. The α-index of calibrated ensemble ETo forecasts is 

above 0.96 in most parts of Australia for all the seven lead times (Figures 9 and S11). The high reliability of the calibrated 

forecasts suggests reasonable representations of uncertainties in calibrated ETo forecasts, and the distributions of calibrated 

ensemble forecasts are neither too narrow nor too wide (Figure 9). 360 

4 Discussion 

4.1 The necessity of reconstructing climate trends in seasonal ETo forecasting 

This investigation confirms that the misrepresentation of climate trends is an important error source in GCM-based ETo 

forecasting. Most previous investigations on climate trends in seasonal forecasts were primarily focused on temperature 

(Krakauer, 2019) and precipitation (Alizadeh-Choobari et al., 2019), and existing ETo forecasting studies have not investigated 365 

trends in ETo forecasts, despite temporal trends in ETo being observed at weather stations across the globe (Djaman et al., 

2018; Kousari and Ahani, 2012). Although the ECMWF model runs have been forced with the observed greenhouse gas 

concentrations for our study period (Johnson et al., 2019), and have actually produced temporal trends in raw ETo forecasts 

(Figure 1), the trends show significant inconsistencies with observations. In addition, raw ETo forecasts at long lead times 
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demonstrate much weaker trends than those at short lead times. Since misrepresentations of climate trends have been reported 370 

for many GCMs (Dunn et al., 2017), GCM-based seasonal ETo forecasting may generally suffer from time-dependent errors. 

This investigation also verifies our hypothesis that correcting time-dependent errors through trend reconstruction can add extra 

skills to calibrated ETo forecasts. Reconstruction of climate trends using the BJP-ti model effectively improves the consistency 

between forecasts and observations in temporal patterns and leads to more skillful calibrated forecasts, when compared with 

the calibration that does not reconstruct trends in ETo forecasts. These improvements are particularly significant in regions 375 

showing statistically significant observed trends, and at long lead times when trends are misrepresented most. Consequently, 

this investigation clearly indicates the necessity of correcting time-dependent errors in GCM-based seasonal ETo forecasting. 

Although it may take decades for climate change to substantially alter the magnitude of ETo (Figures S11 and 12), we 

recommend that future GCM-based ETo forecasting should still correct time-dependent errors. More frequent extreme weather 

events in recent years support model projections that climate change will intensify in the future (Kharin et al., 201), and may 380 

induce more significant temporal trends in ETo. 

4.2 Implications for improving statistical calibration models 

Climate change has posed challenges to the statistical calibration of seasonal climate forecasts. Many post-processing models, 

such as those based on the probabilistic theory (Tian et al., 2014; Wang et al., 2009), often rely on the climatology of 

observations to construct the probability distribution function for calibration (Wilks, 2018). However, the non-stationary 385 

behavior of the climate system induced by elevated greenhouse gas emissions has been increasingly reported (Haustein et al., 

2016; Lima et al., 2015). Many calibration models developed for seasonal forecasts have not considered the climate change 

impacts on the observed climatology. Although these models are proven to be effective in correcting biases in raw forecasts, 

assuming a static climatology may have hindered the utilization of predictable information in the raw forecasts. This 

investigation and our previous calibration of seasonal temperature forecasts (Shao et al., 2020, 2021a), suggest that 390 

reconstructing trends in calibrated forecasts is an effective solution for capturing the non-stationary behavior of the climate 

system for more robust statistical calibrations of seasonal climate forecasts. 

This current investigation has further validated the strength of the trend-reconstruction algorithms in BJP-ti. Previously, we 

applied this model to correct seasonal temperature forecasts and achieved significant improvements in forecast skills relative 

to the original BJP model (Shao et al., 2020, 2021a). This study further demonstrates the feasibility for the general application 395 

of BJP-ti to different hydroclimate variables showing temporal trends (Shao et al., 2021b, 2021c). The successful application 

to ETo forecasts confirms the robustness of trend reconstruction algorithms based on the data transformation, Bayesian 

inference, and using statistical significance of observed trends to deal with overfitting of trend parameters in the BJP-ti model. 

We also anticipate that the BJP-ti algorithms for trend reconstruction could be adopted by other calibration models to enhance 

seasonal forecast calibration.  400 

4.3 Future work 
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In this investigation, we successfully improve ETo forecast calibration by reconstructing climate trends. We also identify a few 

challenges that should be addressed in the future to further enhance GCM-based seasonal ETo forecasting.  

First of all, more sophisticated cross-validation methods should be developed for the inference of trend parameters. The current 

leave-one-out method has been proven to be effective in the inference of the mean vector and covariance matrix (Shao et al., 405 

2020). However, this strategy may not guarantee the independence between the left-out data and data used for the inference of 

trend parameters. We decided not to implement the data-splitting method for cross-validation because of the risk of introducing 

sampling errors. Future investigations should take this challenge into consideration and develop more robust cross-validation 

methods for the inference of trend parameters. 

In this study, we directly use the raw forecasts of individual input variables (e.g., temperature, solar radiation, and vapor 410 

pressure) to construct the raw ETo forecasts. However, trends in these variables have been reported in previous investigations. 

Whether correcting errors, including time-dependent errors in the raw forecasts of each input variable, will lead to more skillful 

calibrated ETo forecasts, warrants further investigation. 

Correction of lead-time-dependent errors should be further investigated in future GCM-based ETo forecasting. We found sharp 

declines in the skill of calibrated ETo forecasts from lead time Month 0 to Month 1. Model initialization with field observations 415 

plays a critical role in seasonal climate forecasting based on GCMs (Doblas-Reyes et al., 2013; Hazeleger et al., 2013). Short-

lead-time forecasts are more skillful since they are closer to the observed state of the climate system than those at long lead 

times. At long lead times, the predictable signal is often much smaller than the intrinsic uncertainty of GCMs. As a result, 

skills of raw forecasts often decrease quickly in the first month (Swapna et al., 2015), posing a challenge to statistical 

calibration, even for those using sophisticated calibration models (Hawthorne et al., 2013). Currently, we calibrate raw ETo 420 

forecasts of each lead time independently. Whether correcting the lead-time-dependent biases will add extra skills to calibrated 

forecasts, particularly to those at long lead times, warrants further investigation (Schaeybroeck and Vannitsem, 2018).  

Future forecast calibration should also investigate the impacts of climate change on the temporal variations of ETo. In addition 

to the increasing or decreasing trends, warming climate also induced more significant temporal variations in ETo, following 

increasing climate extremes (Wen et al., 2012). The increasing variations could pose another challenge to statistical calibration 425 

models assuming an unchanged variance of observations. This current investigation provides a remedy for dealing with the 

varying mean of ETo in statistical calibration. Future investigations should evaluate whether allowing the variance to vary with 

time in calibration models would further improve the skills of seasonal ETo forecasts. 

5 Conclusions 

ETo forecasting provides useful information for hydrological investigations and has been increasingly used to support water 430 

resource forecasting and management. Anthropogenic disturbances have induced changes in the climate system and resulted 

in trends in many climate variables. GCMs often misrepresent these climate trends and thus lead to time-dependent errors in 

seasonal climate forecasts. We have recently improved the BJP model to deal with this error source through the reconstruction 



20 
 

of observed climate trends in calibrated forecasts. In this study, we apply the BJP-ti model to calibrate raw seasonal ETo 

forecasts constructed with climate forecasts from the ECMWF SEAS5 model. The BJP-ti model effectively corrects 435 

misrepresented climate trends and reconstructs observed trends in calibrated ETo forecasts. More importantly, forecast skills 

in areas showing statistically significant observed trends in observations are improved following trend reconstruction. This 

investigation highlights the necessity of correcting time-dependent errors for enhancing GCM-based seasonal ETo forecasting. 

We conclude that future ETo forecasting based on GCM climate forecasts could improve forecast skills through reconstructing 

climate trends in forecasts.  440 

This investigation also provides valuable insights for improving statistical calibrations of seasonal climate forecasts in the 

future. In recent decades, climate trends have been increasingly observed. However, many calibration models for seasonal 

forecasts have not taken the non-stationary behavior of the climate system into consideration. Improved forecast skills in 

seasonal ETo forecasts through the reconstruction of temporal trends, together with our previous calibration of seasonal 

temperature forecasts, validate the robustness and effectiveness of trend-reconstruction algorithms in the BJP-ti model. We 445 

anticipate that these algorithms would be applicable to enhance other calibration models. 
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