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Abstract. Suspended sediment plays a vital role in the regional and global cycling of carbon and nutrients by carrying carbon 25 

and nutrients from headwaters into lowland rivers and the oceans. Sediment transport through river systems is often 

fundamentally modified by human activities such as reservoir management. However, a physically based representation of 

sediment transport is still missing in most existing Earth System Models (ESMs), which are essential tools for modeling and 

predicting earth system changes. Here, we introduce a multi-process river sediment module for ESMs, which includes: 1) 

hillslope soil erosion and sediment discharge into streams; 2) sediment transport processes through river networks; 3) reservoir 30 

operation based on the inflows from upstream areas and water demand from downstream areas; and 4) sediment trapping by 

reservoirs. All model parameters are estimated a priori without calibration. We apply this new sediment modeling framework 

to the contiguous United States and validate it against historical observations of monthly streamflow and sediment discharges 

at 35 river gauges. The model reasonably well captures the long-term balance and seasonal variations of suspended sediment 

in large river systems. Furthermore, our model results show that suspended sediment discharge in managed rivers is affected 35 

more by reservoirs' direct trapping of sediment particles than by their flow regulation. This new sediment module enables 

future modeling of the transportation and transformation of carbon and nutrients carried by the fine sediment along the river-

ocean continuum to close the global carbon and nutrients cycles. 
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1. Introduction 

Fluvial suspended sediment (referred to as suspended sediment) is fine-grained particles that may be diffused throughout 

the vertical column of rivers via turbulence and transported along rivers (Garcia (Ed.), 2008). It typically consists of fine sand, 

silt, and clay, which can absorb carbon and nutrients. Recently, increasing evidence showed that suspended sediment transport 

plays a vital role in regional and global carbon and nutrient cycling (Berhe et al., 2018; Lal, 2003, 2004; Ludwig & Probst, 60 

1996; Maavara et al., 2020; Van Oost et al., 2007) by carrying carbon and nutrients from soil storage pools into rivers and 

eventually oceans or lakes. For instance, suspended sediment is a major source of carbon and nutrients sustaining coastal 

wetlands and deltas (Kirwan & Megonigal, 2013; Nienhuis et al., 2020). While understanding the global carbon and nutrient 

cycling has been one of the primary goals of Earth System Models (ESMs), few ESMs have incorporated the representation 

of suspended sediment and the associated carbon and nutrient fluxes, e.g., particulate organic and inorganic carbon, nitrogen, 65 

and phosphorous.  

In the field of Earth system modeling, there are two primary reasons for the lack of suspended sediment in current ESMs. 

First, most ESMs have been developed with a conventional assumption that the lateral carbon fluxes through the land-river-

ocean continuum are not significant, compared to the carbon dynamics within the larger carbon pool in the atmosphere, land, 

and ocean or to the vertical carbon fluxes between the atmosphere and the underlying land and ocean. This assumption has 70 

now been refuted by data-based empirical studies (Berhe et al., 2018; Lal, 2003, 2004; Ludwig & Probst, 1996; Maavara et 

al., 2020; Van Oost et al., 2007). Second, process-based representations of hydrological fluxes, such as overland flow 

generation and routing, channel routing, and reservoir operations that drive the suspended sediment fluxes, are not included in 

many ESMs. The recent development of a physically-based large-scale surface flow routing model, Model for Scale Adaptive 

River Transport (MOSART) (Li et al., 2013; Li, Leung, Getirana, et al., 2015; Li, Leung, Tesfa, et al., 2015; Voisin, Li, et al., 75 

2013; Voisin, Liu, et al., 2013) is one of the few attempts to overcome this obstacle. MOSART explicitly incorporates the 

processes of overland flow routing across hillslopes, channel routing through tributaries and main channel networks, and water 

management such as reservoir regulation and surface water withdrawal, thus providing a solid physical basis to represent 

suspended sediment dynamics in both natural and managed rivers. Therefore, building on the MOSART framework, our first 

objective is to advance Earth system modeling by introducing a new suspended sediment module in ESMs.  80 

In the field of sediment modeling, there have been several large-scale models of suspended sediment accounting for the 

spatiotemporal heterogeneity in sediment supply and transport processes (Czuba et al., 2017; Ferguson et al., 2015; Patil et al., 

2012; Pelletier, 2012; Schmitt et al., 2016, 2018; Tsuruta et al., 2018; White et al., 2014). However, few have been designed 

for regional or global applications with explicit accounting for the effects of reservoirs prevalent in most river systems (Nilsson 

et al., 2005). Among the exceptions are BQART (Syvitski et al., 2003, 2005) and WBMsed (Cohen et al., 2013, 2014; 85 

Moragoda & Cohen, 2020). In BQART, a multivariable regression relationship has been established for each basin between 

the long-term suspended sediment load (hereafter, "load" refers to sediment discharge/flux) at the basin outlet and several 

parameters accounting for the average climate, lithology, and anthropogenic conditions at the basin scale (Syvitski et al., 2003, 
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2005). WBMsed is a grid-based implementation of BQART running at the daily time step. In WBMsed, each grid is assumed 

to be the outlet of its upstream drainage area. A BQART-type regression relationship is used to simulate long-term suspended 90 

sediment load from the upstream drainage area to the downstream through the grid. A stochastic model is then used to resolve 

suspended sediment discharge at daily timescale from the long-term suspended sediment discharge (Cohen et al., 2013, 2014).  

Despite the pioneering work in developing BQART and WBMsed, these models are not ready to be incorporated into 

ESMs as their soil erosion and riverine sediment processes are lumped rather than separately represented. Moreover, the 

inherent empiricism of BQART/WBMsed limits its scalability (from large to small rivers) and, in its current formulation, the 95 

models do not explicitly account for erosion processes on the landscape and within the channel systems. This empiricism is 

thus a hurdle to studying the individual impacts of the first-order processes and their driving factors such as the various human 

activities such as land and water management. Moreover, although WBMsed includes a temporally and spatiality explicit 

sediment trapping algorithm, it does not explicitly simulate sediment movement from grid-cell to grid-cell. Compared to more 

physically-based models, this limitation will likely constrain its capabilities in sediment prediction in a changing environment. 100 

Hence our second objective is to advance large-scale sediment modeling by designing a physically-based, flexible modeling 

framework that allows for explicit and separate representation of the first-order processes and their driving factors.  

To achieve the two objectives, we propose a new process-based suspended sediment module within MOSART, denoted 

as MOSART-sediment hereafter. MOSART-sediment consists of 1) hillslope soil erosion and sediment discharge into streams; 

2) sediment transport processes through river networks; 3) reservoir effects on riverine sediment fluxes. MOSART has been 105 

adopted as the riverine component of the Energy Exascale Earth System Model (E3SM) (Caldwell et al., 2019; Golaz et al., 

2019) and the Community Earth System Model (CESM) (Lawrence et al., 2019). MOSART-sediment is thus, by design, part 

of the earth system modeling framework for applications at the regional or global scales. Importantly, MOSART-sediment is 

designed to only capture the first-order suspended sediment processes for two reasons: 1) to be consistent and compatible with 

the complexity, resolution, and computational requirement of regional or global ESMs, parsimonious parameterizations are 110 

more desirable. 2) Sediment-relevant data at the regional or larger scales has limited availability compared to those supporting 

reach-scale or watershed-scale modeling studies (Abeshu et al., 2021), hence prohibiting extensive parameter calibration that 

is often needed in modeling complex processes and their interactions.    

The MOSART-sediment development and testing reported in this study are conducted within E3SM. However, 

MOSART-sediment is designed in a modular fashion so it can be easily implemented in other ESMs. The rest of this paper is 115 

organized as follows. Section 2 provides the details of MOSART-sediment. Section 3 introduces the study area, data and 

numerical experiment design. Section 4 describes the model application, validation, and additional analysis over the contiguous 

United States (CONUS). Section 5 summarizes the conclusions and discusses the limitations and future directions.  

2. Modeling Framework 

As shown in Figure 1, MOSART-sediment is developed on top of the water module of MOSART (denoted as MOSART-120 

water). Here we provide a detailed description of MOSART-sediment, but only a summary description of MOSART-water for 
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completeness since more details of the latter can be found in our previous publications (Li et al., 2013; Li, Leung, Getirana, et 

al., 2015; Li, Leung, Tesfa, et al., 2015; Voisin, Li, et al., 2013; Voisin, Liu, et al., 2013).   

2.1 MOSART-water  

MOSART-water is a spatially distributed model which takes surface and subsurface runoff time series generated from a 125 

land model as inputs and performs runoff routing across hillslopes (overland flow routing) and through channels (channel 

routing) (Li et al., 2013). The fundamental spatial units of MOSART-water can be regular latitude/longitude grid cells or 

watersheds, and the former is used in this study. Within each spatial unit, surface runoff is first routed across hillslopes and 

then discharged along with subsurface runoff into a "tributary sub-network" channel before entering the main channel. The 

spatial units are thus linked via routing through the main channel network, which is constructed in a scale-consistent way 130 

across different spatial resolutions based on the hierarchical river tracing method (H. Wu et al., 2011, 2012). The overland 

flow routing is modeled using the kinematic wave method, while the channel routing can be simulated using either the 

kinematic wave method or the diffusion wave method. All model parameters are physically based and available globally as 

described in our previous studies (Li et al., 2013; Li, Leung, Getirana, et al., 2015; Li, Leung, Tesfa, et al., 2015). In these 

applications of MOSART-water at the regional to global scales, no parameter calibration was conducted.   135 

MOSART-water includes a water management module applied at regional and continental scales (Li, Leung, Tesfa, et al., 

2015; Voisin, Liu, et al., 2013). The water management module represents two typical water management activities: reservoir 

regulation/operation, and local water extraction/diversion. The focus of our reservoir regulation module is not on any individual 

reservoir but on hundreds to thousands of reservoirs and their impacts on regional to global processes for Earth system 

modeling. It is almost impossible to obtain the actual operation rules of all the reservoirs. Nevertheless, some critical 140 

information of large reservoirs (e.g., storage capacity no less than 0.1km3), such as the storage capacity and primary operating 

purposes, is available in some global datasets (Lehner et al., 2011). These large reservoirs can be classified into different 

categories based on their purposes, such as irrigation, flood-control, navigation, etc. For each reservoir category, we followed 

a generic algorithm to derive an operation rule for each reservoir based on the hydroclimate conditions in the upstream areas 

and the water demand in the downstream areas (Li, Leung, Tesfa, et al., 2015; Voisin, Liu, et al., 2013). For example, for flood 145 

control purpose, reservoir release should follow a flat curve; for irrigation purpose, reservoir release should follow the seasonal 

variation of irrigation water demand.  

2.2 MOSART-sediment  

Riverine sediment load can be divided into two components: bed-material load and wash load (Biedenharn et al., 2006). 

Wash load is the fraction of the moving sediment that cannot be found in the bed material with an appropriate fraction (Einstein 150 

et al., 1940; Lane, 1947) whereas bed-material load is the part that can be found substantially in the bed material. In other 

words, the bed material load is from the bed material and controlled by the local hydrodynamics and the bed material grain 

size. Wash load follows the fluid flow well without much exchange with the bed material and is thus controlled by the upstream 
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supply. The bed-material load can be further divided into bedload and suspended part of bed-material load (suspended bed-

material load) (Garcia (Ed.), 2008). Bedload refers to the coarse particles being transported in the vicinity of the river bed. 155 

Suspended bed-material load refers to particles being transported in suspension within the vertical column of the river flow 

and they interact with river beds usually after a relatively long suspended path in the fluid flow. Wash load often refers to the 

very fine particles, i.e., grain size less than 0.062 mm (Lane, 1947), which are usually in suspension, well mixed with water, 

and rarely reside on the river bed. Therefore, total suspended load consists of suspended bed-material load and wash load. This 

study focuses on total suspended load. 160 

Because of the difference in their sources, bed-material load and wash load are modelled separately, and then the bed-

material load is further divided into suspended bed-material load and bedload. In most rivers, particularly those large rivers, 

bed-material load consists of sand and gravel particles typically sourced from riverbeds. Wash load consists of silt and clay 

particles usually sourced from surface erosion at hillslopes. The transport processes of bed-material load and wash load are 

distinct and thus can be treated separately. Bed-material load is controlled by local hydraulic conditions and sediment particle 165 

size. Wash load is not constrained by local hydraulic conditions since channel flow usually has sufficient turbulent kinetic 

energy to suspend and transport wash load particles (silt and clay) (Garcia (Ed.), 2008; Moodie et al., 2020)..  

Three primary components thus underpin MOSART-sediment: 1) a recently developed soil erosion module (Tan et al., 

2018, 2020, 2021) for wash load supplied from hillslopes driven by overland flow, 2) a new riverine sediment module that 

treats wash load and bed-material load processes separately, and 3) a new reservoir module for reservoir effects on sediment 170 

transport. Next, we briefly describe the soil erosion module and provide details for the riverine and reservoir modules.  

2.2.1 Hillslope Sediment Processes  

The soil erosion module in the E3SM land model (ELM-Erosion) deals with two major processes: 1) detachment of soil 

particles (clay, silt, and sand) from topsoil (or soil erosion) by raindrops or overland flow, and 2) delivery of the detached soil 

particles along with overland flow from its location of detachment to rivers, during which the sand particles may deposit back 175 

to soil surface due to the limited transport capacity of overland flow. Here we only provide a brief description of these two 

processes and refer to more details in Tan et al. (2018).  

The ELM-Erosion sediment yield model was developed based on the simple Morgan-Morgan-Finney (MMF) model 

(Morgan, 2001; Morgan & Duzant, 2008), which is better suited for capturing the heterogeneous sediment yield at spatial and 

temporal scales relevant to ESMs (several to hundreds of square kilometers in space and tens of minutes to hours in time) than 180 

other well-known models (Tan et al., 2018). This choice was made by applying and comparing the eight most extensively used 

sediment yield models, such as the Water Erosion Prediction Project (WEPP) model, at 454 small catchments in diverse 

environments across the United States, Canada, Puerto Rico, U.S. Virgin Islands and Guam. In our test that each sediment 

yield model was deployed at the same hydrological, vegetation and soil conditions, the MMF model outperformed the other 

models in simulating the spatial variability of sediment yield over these catchments. Our test also showed that the MMF model 185 

reproduced the observed daily sediment yield at six cropland-dominated catchments, with a relative error as low as 10% (Tan 

et al., 2018). By implementing the MMF model in ELM as ELM-Erosion and driving it by ELM simulated throughfall, leaf 



7 

 

drainage, overland flow, leaf and ground cover, canopy height, and soil cohesion, we further tested its performance at the 

continental scale. As shown in Tan et al. (2020), the model can well capture the spatial variability of soil erosion and sediment 

yield among the U.S. states and large river basins. Following Tan et al. (2020), in this study, the ELM-Erosion model is run at 190 

the 1/8-th degree spatial resolution and the 30-min time step. For each grid cell, the ELM-Erosion has three parameters for 

calibration: a scaling factor parameter for rainfall-driven erosion, a scaling factor parameter for runoff-driven erosion, and a 

scaling factor parameter for sediment transport capacity. The calibration is conducted in two steps: 1) the two erosion related 

parameters are calibrated at the state level over the conterminous U.S. using the National Resources Inventory (NRI) soil 

erosion benchmark data (the grid cells in the same state would have the same parameter values); and 2) with soil erosion 195 

constrained, the transport capability parameter is calibrated at the basin scale using the pre-dam sediment yield data of large 

river basins. 

 Following the original MMF model (Morgan, 2001), the ELM-Erosion model does not calculate sediment yield for 

different soil particle size, such as clay, silt and sand particles, as done in the revised MMF model (Morgan & Duzant, 2008). 

It is because we found that this modification did not improve the model performance over the continental scale while 200 

introducing additional complexity and computational cost (Tan et al., 2018). In this study, we assume that sediment yield to 

rivers caused by soil erosion mainly consists of silt and clay particles, or in other words in the form of wash load (Garcia (Ed.), 

2008; Patil et al., 2012). This assumption is reasonable because even through detachment could happen to either clay, silt, or 

sand soil particles, the transport capacity of overland flow for the detached soil particles across hillslopes decreases 

exponentially with increasing soil particle size (Morgan & Duzant, 2008) and a majority of detached sand particles will thus 205 

deposit back to the topsoil instead of entering the rivers. 

2.2.2 Riverine Sediment Processes  

The riverine sediment module focuses on total suspended load and simulates suspended sediment process on top of the 

hydraulic conditions simulated by MOSART-water as aforementioned. The suspended load consists of the wash load and 

suspended bed-material load, which are treated separately.  210 

Wash load is primarily carried by channel flow. For the sake of simplicity, we consider that the net sediment exchange 

between channel and floodplain is secondary as comparing to the riverine sediment discharge and thus negligible. The effects 

of reservoir processes on wash load are however nontrivial since reservoirs fundamentally slow down river flow in their 

immediate upstream channels. We detail the reservoir effects in Section 2.2.3. 

Existing sediment transport formulas derived in sedimentology are mainly applicable to bed-material load depending on 215 

the river bed conditions and do not account for wash load (Garcia (Ed.), 2008). Most rivers can be roughly classified as gravel-

bedded or sand-bedded rivers (Garcia (Ed.), 2008). Gravel-bedded rivers are usually located in mountainous headwater areas, 

where gravel and coarser material (e.g., cobbles and boulders) prevail in bed-material load and move mostly in bedload mode. 

Sand-bedded rivers are mostly in the lowland regions where the bed-material load is dominated by sand and finer particles, 

i.e., suspended bed-material load (Lamb & Venditti, 2016).  220 
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Since this study focuses on suspended sediment, we mainly consider sand-bedded rivers and choose the sediment transport 

formula from those more suitable for sand-bedded rivers. The classic Engelund-Hansen equation (Engelund & Hansen, 1967; 

Ma et al., 2020) is typically applicable over sand-bedded rivers and can be further extended to finer-grained rivers (Ma et al., 

2017, 2020). It is one of the simplest formulas of bed-material load (Brownlie, 1983), and is relatively easy to estimate its 

parameters a priori, which is critically important for sediment simulation in an Earth system model setting at the regional or 225 

larger scales. Despite its simplicity, the Engelund-Hansen equation is one of the most accurate sediment transport formulas 

based on extensive validation against both laboratory and field observations (Brownlie, 1983; Church & Ferguson, 2015; 

Crosato et al., 2011; Crosato & Mosselman, 2009; Darby et al., 2002; Geleynse et al., 2011; Kleinhans et al., 2008; Lee et al., 

1997; Ma et al., 2020; Mosselman, 1998; Nicholas, 2013; Schuurman et al., 2013; Simon & Darby, 1997; Van Der Wegen & 

Roelvink, 2008; Wiele et al., 1996). We therefore adopt the classic Engelund-Hansen equation as the governing equation for 230 

riverine bed-material sediment transport. Its implementation within MOSART-sediment is outlined below.  

The total bed-material rate 𝑄𝑠𝑎𝑛𝑑,𝑡𝑜𝑡𝑎𝑙 [kg/s] is given as 

                                                           𝑄𝑠𝑎𝑛𝑑,𝑡𝑜𝑡𝑎𝑙 = 𝜌𝑠𝑒𝑑𝐵𝑞𝑠,𝑡𝑜𝑡𝑎𝑙
∗ √𝑅𝑔𝐷50𝐷50                                                                  (1) 

where 𝜌𝑠𝑒𝑑 = 2650𝑘𝑔/𝑚3 is the density of sediment, 𝐵 is the channel width [m], 𝑅 is submerged specific gravity for quartz 

in water (𝑅=1.65), 𝑔 is the gravity acceleration rate [m/s2], and 𝐷50 is the median grain size of bed-material sediment particles 235 

[m]. 𝑞𝑠,𝑡𝑜𝑡𝑎𝑙
∗  is the dimensionless total sediment flux per unit width (denoted as the Einstein number) for bed-material load, 

expressed as 

                                                                           𝑞𝑠,𝑡𝑜𝑡𝑎𝑙
∗ =

0.05

𝐶𝑓
(𝜏∗)2.5                                                                                (2) 

where 𝐶𝑓 is the total resistance coefficient [-]. The Engelund-Hansen relation considers Cf as the sum of skin friction and form 

drag. One can use the hydraulic resistance relation of Engelund-Hansen to compute for water depth and then Cf, given water 240 

discharge, channel slope, and D50. However, the computational procedure will require an iterative technique such as Newton-

Raphson. More details can be found in Garcia (2008). Here we use the Manning’s friction to compute Cf in order to avoid the 

extra computational expense and keep consistency with the routing computation in MOSART-water. As such, Cf can be 

calculated from channel Manning's roughness coefficient, 𝑛𝑟 [s/m1/3], and channel hydraulic radius (in this study approximated 

as channel water depth ℎ),  245 

                                                                              𝐶𝑓 =
𝜏𝑏

𝜌𝑣2 =
𝑔𝑛𝑟

2

ℎ1/3                                                                                     (3) 

where 𝜌 is the density of water [103 kg/m3]; 𝜏𝑏 is the bed shear stress [Pa] and 𝜏𝑏 = 𝜌𝑔ℎ𝑆𝑟 in steady and uniform flows; 𝑆𝑟 is 

the local channel bed slope [-].  

𝜏∗ is the dimensionless shear stress (the Shields number), given as 

                                                                             𝜏∗ =
𝜏𝑏

𝜌𝑅𝑔𝐷50
=

𝐶𝑓𝑣2

𝑅𝑔𝐷50
                                                                              (4) 250 

where 𝑣 is the channel velocity [m/s], and is estimated using Manning's equation (Manning, 1891). 
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                                                                                    𝑣 =
ℎ2/3𝑆ℎ

1/2

𝑛𝑟
                                                                                     (5) 

where 𝑆ℎ is the slope of the energy grade line or energy gradient [-]. In the kinematic wave routing method, 𝑆ℎ is taken as the 

local channel slope 𝑆𝑟. In the diffusion wave routing method, 𝑆ℎ is estimated based on the difference in the simulated water 

surface elevations between the current and downstream channels.  255 

Note that the Engelund-Hansen equation estimates the bed-material load that is the sum of bedload and suspended bed-

material load. We adopt the transport-mode-parameter approach (Greimann et al., 2008) to separate the suspended bed-material 

load from the bed-material load computed by the Engelund-Hansen equation. The transport-mode-parameter  approach 

specifies how much of a sediment size class is transported as bedload, suspended bed-material load, or mixed load following 

the "allocation coefficient" concept (Holly & Rahuel, 1990). Using this approach, the portion of suspended sediment in the 260 

bed-material load is given as: 

                   𝑓 = 𝑚𝑖𝑛( 1,2.5𝑒−𝑍)                                                                      (6) 

where f (0 ≤ f ≤ 1) is the transport-mode-parameter, i.e., the portion of suspended sediment in the bed-material load. 𝑍 is the 

suspension parameter and can be calculated as 

                                                             𝑍 =
𝜔

𝑘𝑢𝑡
                                                                              (7) 265 

where 𝜔  is sediment settling velocity [m/s], 𝑢𝑡 = √𝑔ℎ𝑆𝑟  is the frictional shear velocity [m/s], and 𝑘  is the von Kármán 

constant (0.41) [-].  

Several formulas are available for sediment settling velocity, such as those named after Stokes (Zhang & Xie, 1993), 

Zhang (Zhang & Xie, 1993), Van Rijn  (Rijn, 1989), and Cheng (Cheng, 1997), respectively. Cheng (1997) evaluated these 

formulas and suggested that Cheng's formula has the highest degree of prediction accuracy. It applies to a wide range of 270 

Reynolds numbers from the Stokes flow to the turbulent regime (Cheng, 1997). Wu and Wang (W. Wu & Wang, 2006) 

proposed a new formula and suggested that this new formula has a highest accuracy among several formula, followed by 

Cheng’s formula. However, Cheng’s formula is mathematically much simpler than that of Wu and Wang, and more suitable 

for large-scale applications. Thus, Cheng's formula is adopted in this study. 

                                                 𝜔 =
𝜈

𝐷50
(√25 + 1.2𝑑∗

2 − 5)1.5                                                      (8) 275 

where 𝜈 is the kinematic viscosity of water at 20 ºC (=1.036×10-6 m2 s-1), and 𝑑∗ is a dimensionless particle diameter, which 

is defined as: 

                                                             𝑑∗ = (
𝑔𝑅

𝜈2 )1/3𝐷50                                                                (9)    

The Engelund-Hansen equation assumes that sediment transport is always on capacity (equilibrium transport) (An et al., 

2018, 2021; Engelund & Hansen, 1967; Naito et al., 2019) This simplification is not unreasonable for large-scale river 280 

modeling since the travel distance from one reservoir to another is typically more than 10km. Such a spatial scale enables  the 

sediment-laden flow to sufficiently interact with channel bed to reach transport capacity (An et al., 2018).  
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For comparison with the Engelund-Hansen equation, we also use another widely used formula to directly estimate the 

suspended sediment discharge rate, named after Wu (W. Wu et al., 2000) and well verified in multiple studies (Fang et al., 

2017; Rousseau et al., 2016; Su et al., 2013; Sun et al., 2015; W. Wu et al., 2005). Wu's equation is given as: 285 

                 𝑞𝑠
∗ = 0.0000262[(

𝜏∗ 

𝜏𝑐
∗ − 1)

𝑣

𝜔
]1.74   when 𝜏∗ > 𝜏𝑐

∗                                         (10) 

where 𝑞𝑠
∗ is the dimensionless sediment flux for suspended load; 𝜏𝑐

∗ is the dimensionless critical shear stress above which 

sediment is mobilized (the default value is 0.0386).  

2.2.3 Reservoir Sediment Processes   

The reservoir sediment module incorporates both direct and indirect reservoir effects on sediment. The direct effect is the 290 

trapping of sediment within the reservoirs, preventing it from moving downstream. It applies to both wash load and bed-

material load. The indirect effect is mainly through the reservoir regulation function simulated by MOSART-water, which 

modifies the hydraulic conditions, i.e., flow velocity, depth, and surface hydraulic gradient, in the downstream rivers of 

reservoirs. Therefore, it affects only bed-material load. Note that in this study we do not explicitly account for routing of water 

or suspended sediment within reservoirs for simplicity.  295 

Reservoir trapping of sediment is mainly through fundamentally slowing down of the river flow upstream of dams. The 

slowing down of river flow in the reservoir essentially sets the transport capacity of sediment to near zero, leading to the 

settling of suspended sediment in the water column. Thus, the deposition rate (trapping rate) of suspended sediment is largely 

dependent on the settling time of suspended sediment in the reservoir. To this end, Brune (1953) developed an empirical 

formula for reservoir trapping efficiency and validated it for the U.S. reservoirs. It was later adopted globally (Syvitski et al., 300 

2003, 2005; Vörösmarty et al., 2003). Here we also adopt Brune's formula to estimate individual reservoir trapping 

efficiency, 𝑒𝑡𝑟𝑎𝑝: 

                                                                                             𝑒𝑡𝑟𝑎𝑝 = 1 −
0.05

Δ𝑇𝑙𝑜𝑐𝑎𝑙
0.5                                                                (11) 

where Δ𝑇𝑙𝑜𝑐𝑎𝑙 is the increase of local water residence time due to the reservoir [years], estimated as the effective reservoir 

storage capacity divided by the mean annual inflow from the reservoir's upstream. Other empirical formulas for reservoir 305 

trapping efficiency, e.g., Lewis et al. (2013), were also proposed with more complexity but have not been tested at the regional 

or global scales. Note that the sediment trapping in the reservoir resulted from the settling of suspended sediment in a nearly-

still water body, and it is thus applied to all the suspended sediment regardless of particle size. Brune (1953) and Lewis et al. 

(2013) assumed that wash load (silt and clay particles) and the suspended bed-material load (fine sand particles) were trapped 

by reservoirs in a similar way and did not differentiate them. Here we adopt the same assumption for simplicity. 𝑒𝑡𝑟𝑎𝑝 gives 310 

the fraction of suspended load that is trapped in a reservoir, and the rest is released to downstream along with water.  

The reservoir regulation effect on sediment is mainly by regulating river discharge, e.g., reducing high flow during a wet 

season and increasing low flow during a dry season. This flow regulation will modify riverine hydraulic conditions such as 

flow velocity and channel water depth, thus changing bed-material load transport capacity. Besides reservoir regulation, 

another water management activity represented in MOSART-water is surface water withdrawal which diverts channel water 315 



11 

 

to somewhere else via artificial channels or pipes. For simplicity, we assume that surface water withdrawal reduces only water 

storage in channels but not sediment.  

3. Study Area, Data and Numerical Experiments 

3.1 Study Area  

MOSART-sediment is designed to be applicable at the regional to global scales. In this study, we apply it over CONUS 320 

for demonstration and validation, as shown in Figure 2. This study area is smaller than our previous study (Li, Leung, Tesfa, 

et al., 2015), where we applied ELM-MOSART driven by the atmospheric forcing data from the North American Land Data 

Assimilation System Data Phase 2 (NLDAS2) over central North America (Mitchell et al., 2004).  

3.2 Inputs and Parameters  

To support the MOSART-sediment application, we have derived several new parameters a priori over CONUS that are 325 

most critical to sediment transport, including sediment particle size, Manning's roughness coefficient, and channel geometry. 

These new parameters are meaningful mostly within CONUS since they have been derived based on various national databases. 

It is for this reason that our sediment modeling and analysis focus on CONUS. Note that, although the sediment modeling 

analysis focuses on CONUS, MOSART-water is still applied over the same larger domain as our previous study (Li, Leung, 

Tesfa, et al., 2015), which includes the Canadian portion of the Columbia River basin. Thus other MOSART-water parameters 330 

and inputs are adopted from this previous study. 

The median bed-material sediment particle size, 𝐷50, is the most important parameter for the Engelund-Hansen formula. 

In an earlier study (Abeshu et al., 2021), we derived a national map of the median bed-material sediment particle size (𝐷50) 

over CONUS based on: 1) the observed sediment particle size data from USGS and the U.S. Army Corps of Engineers, 2) the 

comprehensive channel and catchment attributes from the National Hydrography Dataset Plus (NHDplus) (McKay et al., 2012; 335 

Schwarz et al., 2018), and 3) a predictive model established using state-of-the-art machine learning techniques (Chen & 

Guestrin, 2016). The 𝐷50 map from Abeshu et al. (2021) is in a vector format, i.e., each flowline in NHDplus is assigned a 

value of the median bed-material sediment particle size. In this study, the vector-format map is converted to the grid-based 

format at the 1/8th-degree resolution to be consistent with the other parameters, as shown in Figure 2a.  

The channel geometry data, such as bankfull channel width and depth, are shown in Figures 2b and 2c. They are derived 340 

following a data-driven hydraulic geometry study (Bieger et al., 2015), which provided the empirical formulas for the whole 

CONUS. Manning's roughness coefficient for river bed is derived based on an empirical formula estimating Manning's 

roughness coefficient as a linear function of channel water depth distribution within a river basin (Getirana et al., 2014; Luo 

et al., 2017), as shown in Figure 2d. Channel bed slope (Figure 2e) is essentially from the medium resolution NHDplus. In 

NHDplus, each flowline represents one river segment and is provided a channel slope value (along with many other channel 345 

attributes). We convert these NHDplus channel slope values from a vector format to a grid-based format here. First, the 
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NHDplus flowlines are georeferenced to the MOSART lat/lon grids at the 1/8th-degree resolution in two steps: 1) local 

matching and 2) neighborhood matching. For the local matching, we adjust the geographic locations of the downstream ends 

of the NHDplus flowlines to the MOSART grids center. The drainage areas associated with the NHDplus flowlines (in a 

vector-based river network) are then compared against those associated with the corresponding MOSART grids (in a grid-350 

based river network). The neighborhood matching is performed only for those grids where the margin of error is significant 

(>20% of NHDplus drainage area). Neighborhood matching is to re-adjust the flowlines from the current MOSART grid cell 

to one of the 8-neighboring cells where the NHDplus-MOSART drainage area difference is minimal. Then we associate each 

MOSART-water grid with a single NHDplus flowline. Hence, in the case of multiple flowlines per grid, which is very common, 

we choose the flowline that has a drainage area closest to the MOSART grid. After the above procedure, each MOSART grid 355 

is associated with a flow line. The channel slope of each MOSART grid is then taken as the channel slope value from the 

corresponding flow line. Reservoir storage capacity (Figure 2f) is already available from our previous study (Li, Leung, Tesfa, 

et al., 2015) but also critical for sediment modeling, so we display them here for completeness.   

The observed monthly suspended sediment discharge and streamflow from the United States Geological Survey (USGS) 

river gauges are used to validate the model performance. We choose to validate the model at the monthly scale instead of finer 360 

scales due to two considerations: 1) The biases in the streamflow simulations by ESMs and even other land surface models are 

already noticeable at the monthly scale (Getirana et al., 2014, 2021; Li, Leung, Getirana, et al., 2015; Mizukami et al., 2021). 

2) The sampling of riverine sediment by USGS is not continuous like the streamflow measurement (taken automatically at an 

hourly or even shorter time step), but rather infrequently due to the required field visits and subsequent sample analysis (Groten 

& Johnson, 2018). There is thus considerable uncertainty in the daily suspended sediment data from USGS. Figure 3a shows 365 

the locations of 35 selected USGS river gauges along with the river networks (displayed in the form of accumulated upstream 

drainage area at 1/8th-degree resolution). Table 1 also provides more details of these selected gauges. These 35 USGS gauges 

are selected based on three criteria: 1) a no-more-than-20% difference between the actual upstream drainage area (reported by 

USGS) and the area represented within a grid-based river network, 2) at least five years of both monthly streamflow and 

suspended sediment observations in our study period 1990-2012 (see Section 4.1 for the reasons of choosing this period), and 370 

3) relative bias of MOSART-water streamflow simulation (using the full modeling capacity) no more than 50% in 1990-2012. 

The last criterion is to control the impacts of runoff and streamflow simulation uncertainty to a certain level. There are 63 

gauges meeting the first two criteria. When considering the third criterion, the number drops from 63 to 35, suggesting that 

there is still large uncertainty in the runoff and streamflow simulation in E3SM. In fact, the uncertainty in runoff and 

streamflow simulation remains a challenge in Earth System modeling  (Lawrence et al., 2019) and fully addressing it is beyond 375 

the scope of this study. Among the selected gauges, their upstream drainage areas vary between 1225km2 to 1850000km2, 

covering a range of spatial scales.   

Three representative USGS gauges (shown as the red stars in Figure 3b) are chosen out of the 35 gauges for more detailed 

analysis, including USGS05586100 Illinois River at Valley City in Illinois (ILV), USGS06807000 Missouri River at Nebraska 

City in Nebraska (MON), and USGS07022000 Mississippi River at Thebes in Illinois (MST). The choice of these three gauges 380 
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is based on two considerations: 1) these gauges are subject to different levels of reservoir effects, and 2) the drainage areas of 

these gauges are relatively larger than the others, hence more representing large rivers.  The upstream drainage areas for ILV, 

MON, and MST are 6.93×105km2, 1.06×106km2, and 1.85×106km2, respectively. In this study, we use Δ𝑇𝑏𝑎𝑠𝑖𝑛, the increase of 

average river water residence time due to all the reservoirs in the upstream areas of a lat/lon grid, to approximate the total 

reservoir effects including flow regulation and trapping, i.e., the larger the Δ𝑇𝑏𝑎𝑠𝑖𝑛 value, the stronger the reservoir effects. 385 

Note that Δ𝑇𝑏𝑎𝑠𝑖𝑛 is different from Δ𝑇𝑙𝑜𝑐𝑎𝑙 in Eqn. (11). For any lat/lon grid, Δ𝑇𝑏𝑎𝑠𝑖𝑛  is calculated as ratio of the sum of storage 

capacity of all the reservoirs in its upstream areas over the long-term average inflow to this grid. Δ𝑇𝑏𝑎𝑠𝑖𝑛 closely corresponds 

to the reservoir regulation index, the ratio of total upstream reservoir storage capacity to the annual streamflow volume (annual 

mean flow multiplied by the time of a year), which has been used as an indicator of reservoir flow regulation effects (Wang et 

al., 2017). As shown in Figure 3b, MON and ILV are subject to strong and weak reservoir effects, respectively. MST is 390 

downstream of MON and ILV and subject to moderate reservoir effects.  

3.3 Numerical Experiments  

The simulation period is 1979-2012 due to the availability of model inputs, particularly the monthly water demand data 

that were derived in our previous study (Li, Leung, Tesfa, et al., 2015). ELM-Erosion is applied to 1979-2012 driven by the 

NLDAS2 atmospheric forcing at the 1/8th-degree resolution to generate both daily sediment yield and daily runoff time series 395 

at each 1/8th-degree grid as the inputs for MOSART-sediment.  All the soil erosion parameters are adopted from Tan et al. ( 

2021). Note that Tan et al. (2021) accounted for both climate and land-use change impacts on soil erosion. In this study, we 

do not consider land-use change, i.e., assuming static landuse. Using the daily inputs from ELM-Erosion, we run MOSART-

sediment in 1979-2012 at a daily time step and a 1/8th-degree spatial resolution. We consider 1979-1989 as the model spin-up 

period and carry out the model validation and analysis in 1990-2012.  400 

To isolate the relative contributions of reservoir regulation and trapping processes to suspended sediment transport, three 

major numerical simulations are designed: 1) sim_nat, MOSART-sediment is run under natural river conditions only, i.e., no 

reservoir regulation or trapping; 2) sim_wm_only, MOSART-sediment is run with the water management option, but turning 

off reservoir trapping; 3) sim_wm_trapping, MOSART-sediment is run with the water management option to include both 

flow regulation and reservoir trapping effects. The individual effects of reservoir regulation and trapping can be estimated by 405 

comparing sim_nat with sim_wm_only and comparing the sim_wm_only and sim_wm_trapping, respectively. Each 

simulation is driven by the same sediment yield time series for the period of 1979-2012. Note that the suspended bed-material 

load in these three major experiments is estimated using the Engelund-Hansen equation, and main channel routing is simulated 

using the diffusion wave routing method. 

We also perform additional numerical experiments to understand the sensitivity of modeling results to the key model 410 

parameters, compare the Engelund-Hansen equation with the Wu formula, and compare the diffusion wave routing method 

with the kinematic wave routing method. More details of these additional numerical experiments will be provided later. Note 
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that in all these numerical experiments, no parameter calibration is conducted for the riverine component. All related 

parameters have been estimated a priori. 

4. Modeling Results 415 

4.1 Model Validation  

MOSART-sediment captures the significant spatial heterogeneity in total suspended load, wash load, and suspended bed-

material load, respectively, as shown in Figure 4 where the maps are generated from the sim_wm_trapping simulation results. 

The spatial patterns of total suspended load are determined by the patterns of wash load, suspended bed-material load, and 

their relative dominance at different locations. It appears that suspended bed-material load dominates in the western U.S., e.g., 420 

the Columbia and Colorado River basins. Wash load dominates in east of the Rocky Mountains, e.g., the Mississippi River 

basin, and coastal areas of northeastern U.S. We use the percentage of wash load in the total suspended load to illustrate the 

relative dominance of wash load at each lat/lon grid, as shown in Figure 4e. In this study, the model simulated spatial average 

of the wash load percentage is 62.2%, with higher values in the central and eastern U.S. and coastal western U.S. The 

dominance of wash load in the simulated suspended load is consistent with previous data-driven studies. For example, Sadeghi 425 

and Singh (2017) analyzed the observed suspended load at 24 USGS gauges distributed throughout CONUS and suggested 

that wash load dominate in the majority of these gauges, i.e., the percentage of wash load in the total suspended load is 79.085 

± 11.343% over these gauges.  

The spatial heterogeneity of simulated wash load is controlled mainly by that of sediment yield and the spatial distribution 

of reservoirs. More sediment yield can be from more humid or mountainous areas since it is triggered primarily by surface 430 

runoff and raindrops. Reservoir trapping significantly reduces the amount of wash load carried to the rivers downstream of 

reservoirs. The supply of sand sediment is mostly from the in-channel process, as a function of grain size, channel geometry, 

and hydraulic conditions such as the shear stress and channel velocity. Roughly, the sand discharge is large when the channel 

water depth is deep, the channel bed slope is steep, or Manning's roughness coefficient is small. Reservoir regulation reduces 

the high flow during the wet season and then reduces suspended bed-material load by reducing channel water depth and 435 

velocity in the rivers downstream of reservoirs. However it enhances the low flow during the dry season and increases 

suspended bed-material load in the rivers downstream of reservoirs, which is consistent with the findings reported from 

literature (Naito et al., 2019; Nittrouer & Viparelli, 2014). Reservoir trapping appears to have little effect on the simulated 

suspended bed-material load. Reservoirs prevent the upstream suspended bed-material load from going downstream. But the 

reduced suspended bed-material load is supplemented by the local channel erosion in downstream rivers. Recall the assumption 440 

underpinning the Engelund-Hansen equation that the local supply of suspended bed-material load is unlimited.  

MOSART-sediment reasonably well captures the long-term average suspended sediment discharge values across CONUS, 

as shown in Figure 5 for comparison between the model simulated and observed annual mean values in 1990-2012 at multiple 

USGS gauges. Here the comparison is also shown between the sim_nat and sim_wm_trapping simulations. The model 
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performs very well in simulating the long-term streamflow over the selected 35 gauges. The difference in streamflow between 445 

sim_nat and sim_wm_trapping is negligible, which is reasonable because 1) reservoir trapping does not affect streamflow at 

all and 2) reservoir regulation changes mostly intra-annual variability of streamflow and sometimes inter-annual variability, 

but the long-term mean streamflow is largely unaffected. For suspended sediment, the simulated annual mean values are overall 

close to those observed, as indicated by the close alignment of the dots with the 1:1 line, particularly for sim_wm_trapping. 

Fitted lines are included in Figure 5 to help visualize the overall patterns. The R2 values between the simulations and 450 

observations are 1.0 for the streamflow from both sim_nat and sim_wm_trapping, and 0.6 for the suspended sediment from 

both sim_nat and sim_wm_trapping respectively. WBMsed was validated over CONUS at 11 USGS gauges in 1997-2007  

with an overall satisfactory performance (see Fig. 7 in Cohen et al., 2013). WBMsed nevertheless overestimated the long-term 

average suspended load over the four largest gauges on the Mississippi River (here “largest” means the gauges with the largest 

suspended load observations), whilst our model seems to have less overestimation over the largest gauges, e.g., Mississippi 455 

River at Thebes (USGS ID 07022000). Comparing Fig. 7 in Cohen et al. (2013) with Fig. 5 in this study, one can infer that 

our model performance is comparable to WBMsed.  

We further use the Kling-Gupta coefficient (KGE) (Gupta et al., 2009) and the normalized-root-mean-square (NRMSE) 

to evaluate the model simulated long-term average across multiple gauges. KGE is a comprehensive metric that integrates the 

effectiveness of previous extensively used metrics such as root-mean-square-error and the Nash-Sutcliffe coefficient (NSE). 460 

It thus captures both the magnitude and timing (or phase) difference between two temporal or spatial series. KGE ranges from 

negative infinity to 1.0, with 1.0 indicating perfect model performance (Gupta et al., 2009). It has been suggested that a KGE 

value higher than -0.41 implies that a model performs better than the long-term mean benchmark, i.e., equivalent to NSE=0 

(Knoben et al., 2019). NRMSE is calculated as the ratio of RMSE over the long-term mean of a temporal or spatial series. For 

streamflow, KGE increases from 0.89 to 0.96 and NRMSE decreases from 0.24 to 0.12 by including the reservoir effects, i.e., 465 

from sim_nat to sim_wm_trapping. For suspended sediment, KGE increases from -0.40 to 0.69, and NRMSE decreases from 

2.35 to 0.74 by including the reservoir effects. Overall, Figure 5 suggests a very good model performance in capturing the 

long-term suspended sediment balance across different spatial scales. It also suggests that adding the reservoir effects improves 

the simulated long-term suspended sediment loads more significantly than the simulated long-term streamflow over the 

selected gauges.  470 

We further evaluate the model performance at the monthly scale using the KGE values between the simulated and observed 

monthly time series. We roughly classify the KGE values at the 35 gauges into three categories: Category I, KGE≤-0.41, poor 

model performance; Category II, -0.41<KGE≤0, decent model performance; Category III, KGE>0, good model performance. 

Figure 6 displays the spatial distribution of the KGE values based on the sim_wm_trapping simulation. For streamflow, 0, 1, 

and 34 of the 35 USGS gauges have KGE values in Category I, II, and III, respectively. For suspended sediment, 10, 7, and 475 

18 gauges have KGE values in Category I, II, and III, respectively. Table 1 lists the specific KGE and NRMSE values between 

the monthly simulated and observed streamflow and suspended sediment time series at each gauge based on the 

sim_wm_trapping simulation. Note that the availability of monthly observations varies between different gauges. Overall, 
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MOSART-sediment has a decent or good performance at over 25 of the 35 gauges, indicating that the model is able to capture 

reasonably well the intra-annual variability of suspended sediment in large river systems.  480 

Compared to streamflow, model biases in the suspended sediment are noticeably larger. Figure 5 suggests that MOSART-

sediment overall overestimates annual mean suspended sediment load in many gauges.  Figure 6 also suggests poor model 

performance at some gauges. There are several possible reasons for these biases: 1) We have only included ~1800 large 

reservoirs (storage capacity no less than 0.1km3) with critical information (storage capacity, location, major purposes, etc.) 

publicly available from the Global Reservoir and Dam Database (GRanD) (Lehner et al., 2011). Relatively small reservoirs in 485 

CONUS are not included in the model inputs due to a lack of necessary information, which will be addressed in future work. 

2) There are noticeable biases already in the runoff and streamflow simulation at the monthly or shorter time scales, as shown 

in Figure 7, which propagate to the suspended sediment simulations. 3) There are uncertainties in the model structure and 

model parameters such as sediment particle size, channel slope, etc., which we will discuss next. 

4.2 Uncertainty Analysis   490 

4.2.1 Model Structure Uncertainty  

MOSART-sediment simulates hillslope, riverine, and reservoir processes. Here we focus on the riverine and reservoir 

processes. Uncertainties in the hillslope process (e.g., soil erosion) were discussed in previous studies (Tan et al., 2018, 2021).  

For the simulated riverine processes, we mainly analyze the uncertainties in the sediment governing equations and routing 

methods. The accuracy of suspended sediment simulation could be affected by the choice of sediment transport equations and 495 

simulation of riverine hydraulic conditions. Many sediment transport equations, such as Engelund-Hansen and Wu's equations, 

are well-established in the laboratory or single-reach scale. The implementations of such sediment transport equations at a 

regional scale for morphology simulation purposes are also well established (Naito et al., 2019; Nittrouer et al., 2012). Their 

applications in simulating suspended sediment at the continental scale are nevertheless rarely reported. Note our previous 

major experiment, sim_wm_trapping, uses the diffusion wave routing method and Engelund-Hansen equation. To compare 500 

the performance of Engelund-Hansen and Wu's equations in combination with different routing methods, we have conducted 

three additional numerical experiments. These three additional experiments all include the reservoir regulation and trapping 

effects. One of them uses the diffusion wave routing method and Wu’s formula. The other two use the kinematic wave routing 

method, but Engelund-Hansen and Wu's formulas, respectively.  

Figure 7 shows the KGE and NRMSE values of the simulated monthly suspended sediment load over the selected gauges. 505 

Note that Figure 7a only displays the gauges with their KGE values within -1.0~1.0 for clarity. For other gauges, uncertainties 

in the governing equations and routing methods are secondary to other sources of uncertainties, i.e., in the runoff scheme, 

channel geometry and other parameters. Figure 7b includes all of the 35 gauges. Over some gauges, the Engelund-Hansen 

equation (plus the transport-mode-parameter approach) performs better than Wu’s formula, particularly as indicated by the 

significantly decreased KGE and increased NRMSE values over some gauges. The long-term KGE and NRMSE values 510 

between the simulated and observed suspended load over the selected gauges are 0.29 and 1.76 respectively when using Wu’s 
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formula and diffusion wave method, both are worse than those using the Engelund-Hansen equation and diffusion wave 

method.  Therefore, the Engelund-Hansen equation (plus the transport-mode-parameter approach) overall outperforms Wu’s 

formula.  

As for the routing methods, it appears that the difference between the sediment simulations using the diffusion wave 515 

routing method and those using the kinematic wave routing method is overall less than the difference between the Engelund-

Hansen and Wu’s formulas. The difference between the monthly streamflow simulations using different routing methods is 

even more negligible (Figure not shown). At the 35 selected stations located mostly upstream of river outlets, the backwater 

effects are likely not dominant. In flat locations such as close to the river mouths, however, the backwater effects are expected 

to be significant, and as such using the diffusion wave routing method should lead to better performance in not only the 520 

streamflow but also the sediment simulations.   

For the reservoir process, we analyze the uncertainties in the reservoir regulation and trapping processes. Figure 8 

illustrates the total impacts of the two reservoir processes by contrasting the sim_nat and sim_wm_trapping simulations results 

at the three representative gauges subject to different levels of reservoir effects. At ILV, whose upstream drainage area is 

subject to relatively small reservoir effects, there is a negligible difference between the simulated streamflow from sim_nat 525 

and sim_wm_trapping, indicating relatively minor water management activities in the upstream areas due to a relatively 

smaller number of reservoirs and low water demand. At MON, its upstream drainage area is subject to strong reservoir effects. 

The simulated streamflow is significantly reduced from sim_nat to sim_wm_trapping particularly over the high-flow periods 

in the summer, mainly due to the intensive surface water extraction in the upstream drainage area and the strong reservoir 

regulation effect. At MST, whose upstream drainage area is subject to moderate reservoir effects, the simulated streamflow is 530 

also noticeably reduced from sim_nat to sim_wm_trapping during the high-flow periods. At all these gauges, the simulated 

suspended load is significantly reduced from sim_nat to sim_wm_trapping by reservoir trapping. In the upstream area of ILV, 

there are only a few reservoirs simulated. These reservoirs, however, can still trap a large portion of suspended sediment, 

suggesting that the effects of reservoirs on suspended sediment discharge are likely more significant than those on streamflow.  

Figure 9 displays the change of KGE for the monthly streamflow and suspended load at all selected USGS gauges from 535 

sim_nat to sim_wm_trapping. After adding the reservoir effects (sim_wm_trapping), the model performance is significantly 

improved (KGE increases more than 0.05) at 5 and 23 of the 35 USGS gauges for streamflow and suspended load simulations, 

respectively, and worsened at 12 and 2 USGS gauges, respectively. For the remaining gauges, the change of model 

performance is negligible. For streamflow, the model performance is already quite good even for sim_nat in terms of the 

monthly streamflow simulation (see Fig. 5 and Table 1). The uncertainties in the runoff generation, routing structures and 540 

parameters appear to overshadow the benefits of adding water management, hence leading to worsened model performance at 

12 gauges. The improvement of sediment simulation by adding both reservoir regulation (as part of water management) and 

trapping is obviously more dominant. Figures 8 and 9 only show the combined effects of reservoir regulation and trapping, as 

interpreting their individual effects is not straightforward.  
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The net effects of reservoir regulation and trapping are further examined in Figure 10 by comparing the mean monthly 545 

streamflow and suspended sediment discharges among the sim_nat (blue lines), sim_wm_only (green lines), 

sim_wm_trapping (black lines) simulations. By comparing the blue and green lines, one can see the effects of flow regulation 

caused by water management. Overall, the net effects of reservoir operations on streamflow are to reduce the high-flow in the 

wet season (May to August) and increase the low-flow in the dry season, and these effects are relatively minor on the flow 

discharge at ILV, significant at MON, and moderate at MST. Reservoir regulation also reduces the suspended sediment 550 

discharge, but the effects are only noticeable during the high-flow period and negligible over the low-flow period when the 

sediment load is already low. By comparing the green and black lines in Figure 10, one can see the net effects of reservoir 

trapping. Reservoir trapping largely reduces the magnitude of suspended sediment discharge across all three gauges, including 

ILV where the reservoir regulation effect seems minor. After adding reservoir trapping, the simulated sediment discharge is 

much closer to the observations at all three gauges.  555 

The effect of reservoir regulation on streamflow can be propagated from one reservoir to another downstream in a 

cascading manner. This is because reservoirs do not store water in the long term but only hold it for a short period (i.e., a few 

months) and then release it downstream. The effects of reservoir trapping may propagate from upstream to downstream for 

wash load but not for suspended bed-material load. For wash load, reservoirs intercept and keep most of it without releasing it 

to the downstream reservoirs. Hence, the trapping effect propagates downstream. For suspended bed-material load, even if 560 

reservoirs trap most of it from upstream inflow, the downstream river channel beds and in-channel bars will be eroded to 

supply suspended bed-material load to maintain a dynamic equilibrium state between the in-channel erosion and deposition. 

This way, the transport rate of bed-material load in the river downstream of a reservoir is only limited by the local hydraulic 

conditions, i.e., according to the Engelund-Hansen equation.  

Although including reservoir trapping improves the simulation of suspended sediment discharge, there are still some 565 

discrepancies between the simulations and observations, such as the underestimation of sediment discharge in January-April 

(at ILV and MST) and overestimation in July-October (at all three gauges). These discrepancies between the simulated and 

observed seasonal variations in the suspended sediment discharge are likely not due to the streamflow biases. Besides possible 

uncertainties in the sediment model parameters, another probable cause of the model biases in sediment discharge is that the 

Brune formula adopted in this study estimates the long-term average reservoir trapping coefficient without explicitly 570 

accounting for the seasonal variation in the trapping efficiency (Brune, 1953).    

4.2.2 Model Parameter Uncertainty  

Here we present model parameter uncertainty analysis focusing on three important and representative parameters: median 

bed-material sediment particle size, 𝐷50 , channel slope, 𝑆𝑟 , and Manning's Roughness coefficient for channels, 𝑛𝑟 . 𝐷  is 

involved in multiple riverine sediment processes (e.g., Eqn. (1), (4), (8), and (9)). 𝑆𝑟 and 𝑛𝑟 affect the sediment processes both 575 

directly and indirectly (e.g., Eqn. (3)-(5)). Other parameters are not included here for simplicity.   

Figure 11 shows the changes in the simulated long-term average suspended load in 1990-2012 (based on 

sim_wm_trapping) after increasing or decreasing 𝐷, 𝑆𝑟, and 𝑛𝑟 by 10% respectively. The spatial patterns of these changes are 
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largely controlled by the spatial patterns of the simulated wash load and suspended bed-material load (see Figure 4). 𝐷, 𝑆𝑟, 

and 𝑛𝑟 are mostly affecting the riverine hydraulic conditions and not much wash load transport. The changes in the total 580 

suspended load are thus only significant over places dominated by the suspended bed-material load. For places dominated by 

wash load, the changes in the total suspended load are overall small or even negligible. In fact, the median percentage changes 

in the suspended load are mainly in the range of -2%~2% for all three parameters (Figure 13). Comparing among the three 

parameters, the simulation of the suspended bed-material load is most sensitive to the changes in 𝑆𝑟, followed by 𝐷, and least 

sensitive to the changes in 𝑛𝑟.  585 

4.3 Impacts of reservoirs on suspended sediment discharge to the coasts 

Despite the uncertainties, MOSART-sediment is a useful tool to shed light on some interesting questions. For example, 

how will reservoirs affect fresh water and suspended sediment discharges to the coasts? Figure 13 shows the model-simulated 

impacts of water management on freshwater discharge (Figure 13a) and the effects of reservoirs on suspended sediment 

discharge (Figure 13b) to the coasts. Note that in Figure 13b, we focus on wash load only instead of total suspended load, i.e., 590 

excluding the suspended bed-material load. There are three reasons: 1) Wash load consists of very fine particles and is a major 

carrier of carbon and nutrients from land into rivers and then to the coasts. 2) Wash load is dominant in most rivers. 3) Wash 

load is subject to the impacts of both upstream drainage areas (e.g., land use change, water management, precipitation) and 

local channel conditions (e.g., channel slope and 𝐷50), whilst suspended bed-material load is mostly dominated by the local 

channel conditions.   595 

According to our simulations, water management moderately reduces the freshwater discharge to the coasts, particularly 

for the smaller rivers on the southwest coasts (Figure 13a). The major cause of reduction in freshwater discharge is surface 

water extraction (which is mainly controlled by water demand intensity) since reservoir regulation normally does not reduce 

streamflow on a decadal scale (e.g., in the period of 1990-2012). The reduction of freshwater discharge to the southwest coasts 

is thus consistent with the high irrigation water demand over the western U.S., e.g., in the Colorado River basin.  600 

The delivery of suspended sediment from the continental U.S. to the coasts is reduced more significantly than streamflow 

(Figure 13b). According to our simulation results, the reduction of suspended load by reservoirs is high (e.g., over 95%) in 

some river basins such as Colorado and Brazos River but medium or low in other rivers such as the Mississippi and Columbia 

River. The former rivers have a large proportion of wash load relative to the total suspended load (indicated by the colors of 

the circles). As such, the reservoir trapping effect plays a vital role. In many small rivers close to the coasts but not subject to 605 

reservoir effects, most of their suspended sediment discharge is delivered to the coasts without being trapped during the 

transport. We do not find any notable relationship between the percentage reductions in streamflow vs. those in suspended 

sediment discharge at the river mouths. For the former, surface water extraction is the major cause; whilst for the latter, 

reservoir trapping is the major cause. These two major causes do not directly interact with each other, suggesting that the 

reduction of suspended sediment discharge may not be closely linked to the reduction of streamflow. These inferences, 610 

however, are made based on the simulation results, and further investigations using more comprehensive observational datasets 
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and modeling approaches are needed in the future. Moreover, we caution that the wash load estimates (with sim_wm_trapping) 

do not account for the effects of small reservoirs, and are likely higher than the real conditions.  

Nevertheless, our estimates of wash load from large rivers to the coasts are comparable with previously reported numbers. 

Within the conterminous United States, the greatest amount of sediment is transported by rivers within the Gulf of Mexico 615 

drainage system. Meade and Moody (2010) reported that in 1987-2003, the Mississippi River system on average discharged 

172 Million-tons/year total suspended load to the coast, which is moderately less than our wash load estimation of 228.23 

Million-tons/year from sim_wm_trapping (used in all the comparisons below unless stated otherwise). Holeman (1968) 

estimated that the Columbia River discharged about 9 Million tons of total suspended load per year to the Pacific Ocean, and 

15 years later, this magnitude was reported to be reduced to 8 Million tons/year (Meade & Milliman, 1983). Wise et al. (2007) 620 

also estimated 5.1 Million tons of suspended sediment delivery during an average water year. Our wash load estimate for the 

period 1990-2012 is 6.34 Million-tons/year from the Columbia River to the Pacific coast. For other river systems, our estimates 

for the period of 1990-2012 are less than the reported suspended load estimates which were made decades ago. For the Brazos 

River, one of the largest rivers after the Mississippi River in terms of sediment load delivered to the Gulf of Mexico, Holeman 

(1968) estimated 32 Million tons/year of the total suspended load. A decade later, Milliman and Meade (1983) estimated it to 625 

be 16 Million-tons/year, a much-reduced value. Our wash load estimate is 1.55 Million-tons/year, even further reduced, which 

is possible given that there has been a decreasing trend of suspended sediment discharge in the U.S. river systems over the past 

few decades due to improved soil erosion controls (Meade & Moody, 2010).   

5. Summary and Conclusion 

In this study, a new large-scale suspended sediment module has been developed on top of MOSART within E3SM. Both 630 

reservoir trapping and regulation mechanisms have been incorporated. Validation of the model simulations against the 

observations from 35 USGS gauges located across the contiguous United States shows reasonable skill in simulating the long-

term average suspended sediment discharge (KGE=0.69, NRMSE=0.74) and monthly suspended load (KGE>0 in 18 of the 35 

gauges). We show that adding the reservoir effects improves the model simulations, particularly at the annual and monthly 

scales. As such, our model performance is comparable to WBMsed without any calibration. We carry out the model uncertainty 635 

analysis in terms of the model structure and parameter uncertainties. We further show that reservoir trapping exerts dominant 

effects (over reservoir regulation) on suspended sediment discharge through large river systems to the coasts.  

The analyses help identify several opportunities to further advance large-scale suspended sediment modeling, including 

but not limited to: (1) improving the runoff and streamflow simulation within the Earth system modeling framework; (2) 

effectively accounting for the intra- or inter-annual variations in the reservoir trapping efficiency over multiple reservoirs at 640 

the regional or global scales; (3) accounting for more realistic reservoir stage-volume relationships and their impacts on 

reservoir trapping; (4) including the effects of small or navigational reservoirs on streamflow and sediment simulations; (5) 

improving the accuracy of channel bed slope estimation; (6) accounting for sediment exchanges between channel and 

floodplain more realistically. Moreover, our separate treatment of wash load and bed-material load will make it easier to isolate 
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various climate and human impacts on riverine sediment. For instance, water management such as local channel water 645 

withdrawal and reservoir operation will primarily affect bed-material load by modifying hydraulic conditions. Land 

management such as land-use change and farming activities will affect wash load by changing topsoil erosional conditions. 

Lastly, for the sediment particle size, we have developed adopted a spatial map of median bed-material sediment particle size 

to support the parameterization of the sediment governing equations but there is still room to enhance the accuracy and 

availability of the sediment particle data through improved understanding and more data collection.  Each of these opportunities 650 

above requires a chain of efforts to achieve and is thus beyond the scope of this work. 

While future opportunities exist to further improve MOSART-sediment, this study presents a new process-based sediment 

modeling framework from a coupled Earth-human system perspective. It has the potential to enable investigations that were 

not possible on the suspended sediment delivery to the coasts under various disturbances induced by variability and changes 

in climate and human activities. For example, the models can be used to explore how extreme events such as floods and 655 

droughts and their long term changes may influence sediment delivery to the coast and hence the biogeochemistry of the 

coastal ecosystem, and the role of soil erosion and sediment transport in atmospheric CO2 through changes in the terrestrial, 

riverine, and ocean biogeochemistry. Finally and importantly, the new sediment module lays the foundation for modeling 

transportation and transformation of particulate C, N, and P through the river-ocean continuum to help close the global C, N, 

and P cycles within Earth system models.    660 
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List of Tables 960 

Table 1. List of selected USGS gauges and model performance 

  USGS ID 
Area 

(km2) 

Number of 

months with 

observations 

Sim_nat Sim_wm_trapping 

Streamflow 

Suspended 

sediment Streamflow 

Suspended 

sediment 

KGE nrmse KGE nrmse KGE nrmse KGE nrmse 

07022000 1850000 276 0.79 0.36 -0.22 1.73 0.81 0.26 0.45 1.06 

07020500 1840000 275 0.79 0.35 0.06 1.48 0.82 0.25 0.46 1.00 

07010000 1810000 275 0.80 0.34 0.05 1.53 0.82 0.24 0.47 1.03 

06807000 1060000 255 -0.20 0.98 -0.98 2.48 0.36 0.64 0.62 0.88 

06610000 836000 194 0.16 0.80 -0.97 2.32 0.19 0.68 0.50 0.84 

06486000 815000 218 0.00 1.04 -5.46 7.30 0.11 0.83 -0.92 2.43 

05587455 444000 183 0.77 0.33 -1.44 2.83 0.71 0.34 -0.69 2.12 

05389500 175000 176 0.82 0.34 -18.46 19.09 0.76 0.35 -14.83 15.61 

05586100 69264 260 0.69 0.41 0.28 1.18 0.64 0.44 0.35 0.99 

05288500 49469 80 0.74 0.40 -5.27 7.30 0.64 0.38 -3.51 5.42 

05325000 38591 276 0.64 0.63 0.58 1.40 0.55 0.68 0.54 1.23 

05465500 32375 224 0.85 0.39 0.29 1.58 0.81 0.40 0.52 1.30 

06452000 25680 276 0.41 1.24 -0.36 1.78 0.51 1.14 -0.34 1.77 

05543500 21391 79 0.44 0.57 0.25 1.52 0.39 0.61 0.46 1.21 

04193500 16395 164 0.36 0.77 -0.33 1.51 0.35 0.77 -0.35 1.52 

12340500 15594 269 0.66 0.73 -24.85 47.98 0.71 0.68 -22.33 43.86 

05481650 15128 176 0.60 0.67 -2.92 6.25 0.57 0.68 -2.25 5.21 

06918070 14012 96 0.58 0.73 -0.44 1.87 0.50 0.78 0.07 1.39 

05594100 11378 92 0.69 0.62 -0.04 1.49 0.59 0.66 0.58 0.97 

05474000 11168 276 0.69 0.81 0.00 1.68 0.69 0.78 0.01 1.67 

01331095 9772 135 0.62 0.51 -541.42 773.46 0.56 0.40 -232.26 284.84 

12334550 9472 272 0.03 1.11 -9.73 18.44 0.15 0.99 -6.91 14.03 

01357500 8936 99 0.82 0.39 -39.38 44.14 0.75 0.39 -33.69 37.95 

05552500 6843 78 0.66 0.63 0.21 1.85 0.67 0.61 0.27 1.78 

12340000 5923 156 0.47 1.02 0.26 2.62 0.48 1.01 0.28 2.61 

05599500 5618 92 0.37 1.15 -1.92 3.53 0.38 0.92 -0.25 1.81 

05570000 4237 153 0.63 0.75 0.17 1.49 0.63 0.73 0.15 1.49 

06921760 3289 96 0.51 1.02 0.03 1.91 0.49 1.03 0.33 1.60 

04198000 3240 152 0.37 0.82 -0.26 1.40 0.37 0.82 -0.26 1.40 
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04208000 1831 152 0.43 0.55 -0.09 1.18 0.33 0.61 -0.25 1.28 

07036100 1720 80 0.29 0.91 0.28 1.53 0.29 0.91 0.28 1.53 

05532500 1632 120 0.77 0.46 -0.31 1.71 0.67 0.51 -0.30 1.71 

03230500 1383 69 0.33 0.75 -0.31 2.32 -0.04 0.95 0.33 1.36 

14242580 1285 275 0.80 0.32 -0.38 2.73 0.84 0.33 -0.43 2.78 

05591200 1225 92 0.50 0.88 -0.16 2.09 0.51 0.87 -0.16 2.09 
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List of Figures 

Fig. 1 Modeling framework of MOSART-sediment.  

Fig. 2 Important parameters over the study domain. 

Figure 3: a. River network displayed using upstream drainage area and 35 selected USGS stations (black stars) along the river 

networks (approximated). b. change of channel water residence time due to upstream reservoirs and 3 representative stations 995 

(red stars).     

Fig. 4 Spatial maps of simulated streamflow, total suspended load, wash load and suspended bed-material load averaged in 

1990-2012.  

Fig. 5 Simulated versus observed annual mean discharge of water and total suspended load in 1990-2012. Each dot represents 

one USGS gauge.  1000 

Fig. 6 Evaluation of simulated monthly streamflow and suspended sediment at the selected USGS stations in 1990-2012. The 

river network is displayed as a background in terms of the accumulated upstream drainage areas at each grid (in different 

tones of blue).   

Fig. 7 Comparison of model structure in terms of KGE and NRMSE between the simulated and observed monthly time 

series at different USGS gauges. EH and Wu stand for the Engelund-Hansen and Wu’s formulas respectively. DW and KW 1005 

stand for the diffusion and kinematic wave routing methods respectively.    

Fig. 8 Simulated and observed monthly streamflow and suspended sediment discharge at three USGS gauges representative 

of different levels of flow regulation. For clarity, only the sim_nat and sim_wm_trapping results are displayed here.  

Fig. 9 Change of KGE from sim_nat to sim_wm_trapping for monthly streamflow and suspended sediment at the selected 

USGS stations in 1990-2012. The river network is displayed as a background in terms of the accumulated upstream drainage 1010 

areas at each grid (in different tones of blue).   

Fig. 10 Simulated and observed mean monthly streamflow (left) and suspended sediment discharge (right) at three USGS 

gauges representative of different levels of flow regulation.  

Fig. 11 Spatial patterns of sensitivity of median bed-material size (d50) (a, b), channel slope (rslp) (c, d), and Manning’s 

roughness for channels (nr) (e, f).  At each grid, the percentage change of suspended load is calculated as 100%*(S1-S0)/S0, 1015 

where S1 and S0 are the average suspended load 1990-2012 simulated with the parameter changing by 10%, and the average 

suspended load simulated with the original parameters, respectively.  

Fig. 12 Boxplot of the changes in total suspended load when changing the parameters. 

Fig. 13 Impacts of reservoirs on (a) streamflow and (b) wash load to the coasts. Each dot represents the lat/lon grid at the river 

mouth of a river system. The larger the dot size, the larger the freshwater or suspended sediment discharge simulated with 1020 

Sim_wm_trapping. The color of each dot represents the percentage of freshwater or suspended sediment discharge that is 

reduced by water management or reservoirs, i.e., (sim_nat –Sim_wm_trapping)/sim_nat. 
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Figure 1: Modeling framework of MOSART-sediment.  
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Figure 2:  Important parameters over the study domain. 1035 
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Figure 3: a. River network displayed using upstream drainage area and 35 selected USGS stations (black stars) along 

the river networks (approximated). b. change of channel water residence time due to upstream reservoirs and 3 

representative stations (red stars).   
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Figure 4: Spatial maps of simulated streamflow, total suspended load, wash load and suspended bed-

material load averaged in 1990-2012.  
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 1055 
Figure 5:  Simulated versus observed annual mean discharge of water and total suspended load in 1990-2012. Each 

dot represents one USGS station.  
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Figure 6:  Evaluation of simulated monthly streamflow and suspended sediment at the selected USGS stations in 

1990-2012. The river network is displayed as a background in terms of the accumulated upstream drainage areas at 

each grid (in different tones of blue).   
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Figure 7:  Comparison of model structure in terms of KGE and NRMSE between the simulated and observed 

monthly time series at different USGS gauges. EH and Wu stand for the Engelund-Hansen and Wu’s formulas 

respectively. DW and KW stand for the diffusion and kinematic wave routing methods respectively.    
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a. Simulated and observed monthly streamflow   

 
b. Simulated and observed monthly sediment discharge  

 1080 
 

Figure 8:  Simulated and observed monthly streamflow and suspended sediment discharge at three USGS gauges 

representative of different levels of flow regulation. For clarity, only the sim_nat and sim_wm_trapping results are 

displayed here.  
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Figure 9:  Change of KGE from sim_nat to sim_wm_trapping for monthly streamflow and suspended sediment at the 

selected USGS stations in 1990-2012. The river network is displayed as a background in terms of the accumulated 

upstream drainage areas at each grid (in different tones of blue).   
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Figure 10:  Simulated and observed mean monthly streamflow (left) and suspended sediment discharge (right) at 1095 

three USGS gauges representative of different levels of flow regulation.  
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Figure 11:  Spatial patterns of sensitivity of median bed-material size (d50) (a, b), channel slope (rslp) (c, d), and 

Manning’s roughness for channels (nr) (e, f).  At each grid, the percentage change of suspended load is calculated as 

100%*(S1-S0)/S0, where S1 and S0 are the average suspended load 1990-2012 simulated with the parameter changing 1115 

by 10%, and the average suspended load simulated with the original parameters, respectively.  
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Figure 12:  Boxplot of the changes in total suspended load when changing the parameters.  
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Figure 13:  Impacts of reservoirs on (a) streamflow and (b) wash load to the coasts. Each dot represents the lat/lon 

grid at the river mouth of a river system. The larger the dot size, the larger the freshwater or suspended sediment 1140 

discharge simulated with Sim_wm_trapping. The color of each dot represents the percentage of freshwater or 

suspended sediment discharge that is reduced by water management or reservoirs, i.e., (sim_nat –

Sim_wm_trapping)/sim_nat.  
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