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Abstract. This study assesses sources of variance in stochastic hydrologic modelling to support flood frequency analyses.  The 

major components of the modelling chain, including model structure, model parameter estimation, initial conditions, and 

precipitation inputs were examined across return periods from 2 to 100,000 years at two watersheds representing different 

hydro-climates across the western United States. Ten hydrologic model structures were configured, calibrated and run within 15 

the Framework for Understanding Structural Errors (FUSE) modular modelling framework for each of the two watersheds.  

Model parameters and initial conditions were derived from long-term calibrated simulations using a 100-member historical 

meteorology ensemble.  A stochastic event-based hydrologic modelling workflow was developed using the calibrated models; 

millions of flood event simulations were performed at each basin. The analysis of variance method was then used to quantify 

the relative contributions of model structure, model parameters, initial conditions, and precipitation inputs to flood magnitudes 20 

for different return periods. The attribution of the variance of flood frequencies to each component of a stochastic hydrological 

modelling framework, including several hydrological model structures, is a novel contribution to the flood modelling literature. 

Results demonstrate that different components of the modelling chain have different sensitivities for different return periods. 

Precipitation inputs contribute most to the variance of rare events, while initial conditions are most influential for the more 

frequent events. However, the hydrological model structure and structure-parameter interactions together play an equally 25 

important role in specific cases, depending on the basin characteristics and type of flood metric of interest. This study highlights 

the importance of critically assessing model underpinnings, understanding flood generation processes, and selecting 

appropriate hydrological models that are consistent with our understanding of flood generation processes. 

1 Introduction 

Understanding flood risk is important to support infrastructure design and operations.  Hydrologic hazard curves and flood 30 

hydrographs are used to evaluate hydrologic risks for a given facility (e.g., a dam).  A hydrologic hazard curve is a curve that 
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relates probability of occurrence to magnitude of a flood.  There are numerous approaches to developing these curves, including 

(1) statistical stream gauge analysis, e.g., calculating the annual exceedance probability (AEP) (National Research Council 

1988); (2) ‘design storm’ rainfall-runoff hydrologic model estimates, where the return period of the flood is equal to the return 

period of the precipitation (e.g. Packman and Kidd 1980; Boughton and Droop 2003; Reclamation 2006; Wright et al. 2020); 35 

(3)  more complex fully stochastic rainfall-runoff modelling to explicitly represent the impacts of hydrological processes on 

floods (Rahman et al. 2002; Schaefer and Barker 2002; Nathan et al. 2003; Wright et al. 2014); and (4) analysis of paleoflood 

records (England et al. 2010).  Typically, multiple methods are employed in these analyses to help understand the uncertainty 

of model results (e.g., England et al. 2014). Many of these methods rely on the assumption of AEP-neutrality, i.e., that a rainfall 

event has a similar AEP to the flood event. 40 

 

The assumption of AEP neutrality is often not verifiable or violated (e.g. Rahman et al. 2002; Kuczera et al. 2006; Small et al 

2006; Pathiraja et al. 2012; Paquet et al. 2013; Ivancic and Shaw 2015; Sharma et al. 2018). One avenue to address this is to 

perform stochastic rainfall-runoff modelling.  In stochastic rainfall-runoff modelling, flood frequency (FF) estimates are 

typically produced using stochastic event simulations using a single hydrologic model with randomly perturbed model 45 

parameters, initial conditions (ICs), and precipitation event forcing scenarios from defined precipitation frequency distributions 

(Rahman et al. 2002; Paquet et al. 2013; Wright et al. 2020).  This modelling chain permits deviations from AEP-neutrality 

and quantifies the impacts of IC, model parameter, and precipitation event forcing variability in FF estimates. 

 

However, past research on hydrologic model behaviour also emphasises the differences in model performance and responses 50 

for various event types given different model parameters and structures across hydroclimates (e.g. Clark et al. 2008; Mendoza 

et al. 2015; Markstrom et al. 2016; Newman et al. 2017; Mizukami et al. 2019), highlighting the possible need to include 

multiple model structures in stochastic flood modelling studies.  Model structure can vary widely.  For example, a model may 

simply be defined by a loss methodology where an initial and continuous losses are defined at the start of and during the event 

simulation (e.g. Boughton and Droop 2003), or can be more complex employing various methods to explicitly simulate the 55 

dominant hydrological processes (e.g., snow melt, surface runoff generation).  Additionally, most methods used to perturb 

model parameters and meteorological forcings do not allow us to identify which components are the most sensitive in an FF 

estimate.  Therefore, we systematically explored the sensitivity FF estimates to provide a better understanding of which 

components of the modelling chain have the most impact on FF estimates across example hydroclimatic regimes using basins 

within the Western United States (USA). 60 

 

To our knowledge, the systematic examination of model structure contributions to variations in flood frequencies is a novel 

contribution to the flood modelling literature.  Previous work has examined uncertainty and sensitivities in statistical methods 

(e.g. Hosking and Wallis 1986; Stedinger et al 1993; Klemes 2000; Kidson and Richards 2005; Merz and Thieken 2005, 2009; 

Hu et al. 2020), or from probabilistic hydrologic modelling systems (Hashimi et al. 2000; Franchini et al. 2000; Blazkova et 65 
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al. 2009; Arnaud et al. 2017).  Specifically, the companion papers of Hashimi et al. (2000) and Franchini et al. (2000) undertake 

a one at a time local sensitivity analysis and a full sensitivity analysis using a factorial sampling design to examine basin 

climate characteristics and hydrologic model parameters impacts on FF estimates.  Hashimi et al (2000) find that several 

parameters related to the basin climate (e.g. average rainfall, storm intermittency) along with several hydrologic model 

parameters such as the percolation rate have higher sensitivity when considering FF estimates.  They also conclude that soil 70 

moisture at event onset is the linking mechanism that explains why their particular parameters are the most sensitive.  For 

example, soil moisture states closer to saturation result in larger floods for a given event with wetter soils modulated by a 

wetter mean climate or lower percolation rates.  Franchini et al. (2000) perform a full sensitivity analysis and confirm the local 

sensitivity results.  However, model structure is not systematically varied in Hashimi et al. (2000) and Franchini et al. (2000).   

 75 

The overall goal of this study is to improve both the quality and efficiency of hydrologic risk estimates for infrastructure 

design. The specific objective is to understand which components of the modelling chain have the largest impact to FF 

estimates.  To address this objective, we ask the following question: What aspects of the modelling chain in stochastic FF 

analysis have the most sensitivity across a range of return intervals spanning 2-100,000 years?  Our null hypothesis is that for 

rare floods (floods with return periods greater than 50,000 years) the sensitivity related to the precipitation event forcing 80 

dominates the total variance of a FF estimate as sketched in Figure 1a, with variance in FF estimates arising from the 

aforementioned factors: 1) model structure, 2) model parameters, 3) initial conditions, and 4) precipitation event forcing.   We 

postulate that there may be other dominant factors contributing to FF sensitivity outside of precipitation event forcing for rare 

floods.  We explore these components of the modelling chain by: 1) using a multi-hydrologic model ensemble, 2) sampling 

model parameters across the model structures, 3) sampling model initial conditions that are internally consistent for each model 85 

structure from calibrated continuous long-term simulations, and 4) incorporating statistical uncertainty in the distributions that 

define the precipitation forcing.  Further, we explore the impact of precipitation timing using two meteorological sequences; 

in one, we force the model with a single precipitation event, in the second, we force the model with a single precipitation event 

and random historical weather after the precipitation event to drive a stochastic (ensemble) event simulation framework.  The 

two different meteorological sequence methodologies were used to mimic different United States agency methodologies 90 

(Section 3.1.6).  We use the analysis of variance (ANOVA) methodology to examine relative contributions of variance to FF 

estimates across the return periods of interest for all factors for both meteorological sequences. While the focus of this study 

was on stochastic rainfall-runoff modelling, the methods and implications discussed here may be applicable to simpler rainfall-

runoff modelling as well, such as AEP-neutral model estimates.   

2. Study Basins 95 

The Island Park Dam in Idaho and Altus Dam in Oklahoma watersheds are used as representative basins of mountainous 

snowmelt (Island Park) and semiarid high plains (Altus) hydroclimates, respectively.  These basins were selected because not 
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only are they representative of the dominant hydroclimates of the Western USA, they also have been the subject of past flood 

studies where basin delineations, observed streamflow, and precipitation frequency distributions were developed by 

Reclamation.   100 

 

Island Park (Figure 2a) is located on Henry’s Fork River approximately 56 km north of Ashton, Idaho, and water stored at 

Island Park is used locally for irrigation.  The Island Park watershed is roughly 1297 km2 and includes steep mountain slopes 

along portions of the watershed boundary to nearly level slopes around Henrys Lake.  Soils for the watershed range from low 

permeability clays in the west to permeable volcanic sand in the east.  There are areas within the watershed which are heavily 105 

forested and other areas which are barren.  Elevations within the drainage area range from 1921 m at the crest of the spillway 

to 3231 m at Sheep Point along the northern boundary of the watershed (Reclamation 2015).  Island Park has a strong seasonal 

cycle of precipitation, soil moisture, and streamflow with most of the watershed precipitation occurring as snow in October 

through May in the higher elevations.  This results in a seasonal snowpack, maximized in late spring which then melts through 

the summer, maximizing soil moisture and streamflow during late spring and early summer. 110 

 

Altus Dam is on the North Fork Red River about 27 km north of the city of Altus, OK.  The purposes of the dam and reservoir 

are to provide irrigation storage for lands in southwestern Oklahoma, flood control on the North Fork of the Red River, an 

augmented municipal water supply for the city of Altus, fish and wildlife conservation benefits, and recreation.  The watershed 

extends from Altus Dam in Oklahoma westward to Amarillo, Texas (Figure 2b).  The watershed consists of generally rolling 115 

terrain with medium to coarse textured soils and spans an elevation from about 1120 m at the western edge of the basin to 450 

m at the eastern outlet.  This area contains many topographic features known as playa lakes (closed basins with a low area in 

the center that may see water storage following heavy rainfall) and thus the total contributing area is smaller than the total area 

of the watershed.  We used the Reclamation estimated contributing area of 5051 km2.  Much of the basin above Altus Dam is 

devoted to agriculture with a majority of the land cover consisting of cultivated crops, pasture, and hay production.  The 120 

drainage basin contains no large forested areas, but there are treed riparian zones along the watercourses and trees in cultivated 

shelterbelts (Reclamation 2012).  Altus Dam is a semi-arid basin that also has a seasonal cycle to precipitation with most 

occurring in winter through summer, primarily as rainfall.  The spring and summer rainfall events are primarily convective in 

nature with sometimes very intense rainfall rates and high total accumulations over short periods of time that may coincide 

with peak basin soil moisture in the spring. 125 

3. Data and Methods 

3.1 Modelling Workflow 

Our stochastic hydrologic modelling workflow includes the Framework for Understanding Structural Errors (FUSE) 

hydrologic modelling framework, the Shuffled Complex Evolution (SCE) optimization algorithm, and precipitation frequency 
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distributions from Reclamation.  Additionally, we have used the law of total probability (e.g. Tijms 2003; Nathan et al. 2003) 130 

and the analysis of variance (ANOVA) method to compute the FF estimates and partition the variance across the workflow 

components respectively.   

 

For each basin, hydrologic models are configured and calibrated using an ensemble of historical meteorology (Newman et al. 

2015).  Then, long-term continuous simulations are made to generate spun-up initial conditions for event simulations.  Event 135 

simulations are then performed across hydrologic models, model parameters, initial conditions, and precipitation frequency 

distribution estimates for two event sequence possibilities.  For each precipitation frequency distribution, we split the 

probability density function into 50 bins and sample 25 events per bin and perform 2500 model simulations for each possible 

model-parameter-IC-precipitation frequency combination.  This follows the total probability theorem methodology used at 

Reclamation in their stochastic flood modelling.  We implemented a factorial experimental design, using all combinations of 140 

the 10 hydrologic models, 11 parameter sets, 4 initial condition sets, and 11 precipitation frequency estimates for Island Park 

Dam (3 precipitation frequency estimates for Altus Dam) for a total 4840 combinations with 2500 model simulations per 

combination resulting in 12.1 million event simulations for Island Park Dam (referred to as Island Park) and 3.3 million event 

simulations for Altus Dam (referred to as Altus).  The different precipitation frequency estimates come from the fact that this 

project leveraged previously completed studies for these data.  We do not believe this will significantly impact the results, as 145 

the ANOVA analysis takes these sampling differences into account. 

3.2 Hydrologic Model Framework 

The FUSE hydrologic modelling system is a freely available, modular modelling framework that enables developing and 

testing many conceptual hydrologic models in a single computational framework.  It incorporates multiple parameterizations 

for many hydrologic fluxes (or processes) at the individual flux level, with each equation formulated as a function of the model 150 

state, each in a separate code module.  This allows the numerical solver to be separated from the flux parameterizations so that 

every FUSE configuration relies on the exact same numerical scheme.  FUSE also incorporates a conceptual temperature index 

snow model, using elevation bands with user specified precipitation and temperature lapse rates to represent seasonal snowpack 

and changes in meteorology with elevation.  Control at the individual flux level is key to understanding how changes in process 

representation affect the modelling system behavior.  See Clark et al. (2008) and Henn et al. (2015) for more details regarding 155 

FUSE. 

 

FUSE uses several configuration files in which the user can specify the model decisions for process representation, numerical 

solver parameters, model calibration options, access to input and output data, etc. The structural modularity in FUSE is 

underpinned by one file prescribing the equations to be used for each model component. This file can be changed independently 160 

from the other model settings, enabling the user to isolate the effects of the model structure decisions on the simulations. FUSE 

contains the SCE optimization algorithm (Duan et al. 1992) to calibrate any hydrologic structure the user specifies.  SCE is a 
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robust global optimization algorithm that is widely used across the operational and research communities.  FUSE uses the 

network common data format (netCDF) for all input and output data streams (forcing meteorology, any available observations 

for calibration, calibration results, simulated states and fluxes), with the same file formats regardless of hydrologic model 165 

configuration.  Overall, the design of the FUSE system allows for easy configuration, calibration, and simulation of multiple 

hydrologic models for long term continuous simulations or short event simulations. 

 

FUSE is first used to mimic three widely used hydrologic models: Hydrologic Engineering Center-Hydrologic Modelling 

System (HEC-HMS) model (Bennett 1998), the Variable Infiltration Capacity (VIC) model (Liang et al. 1994), and the 170 

SACramento-Soil Moisture Accounting (SAC-SMA) model (e.g. Anderson 2002).  This provides a relatable base set of models 

to operational groups within the USA.  Note that the FUSE instantiations of the models only mimic the actual models cited.  

FUSE does not use the same numerical solver, some process simplifications are made (particularly for VIC where we simplify 

evapotranspiration), different parameter estimations schemes are used, and FUSE does not contain the same coding errors as 

the original models (see Clark et al. 2008 for FUSE details). As a result, when mimicking a pre-existing model using a modular 175 

framework, some significant differences between their simulations can exist (Knoben et al., 2019). We then assembled seven 

other hydrologic model structures by varying particular processes from the three base models for a total of ten structures that 

we used to compute FF estimates for both basins (see Table 1 for the full list). 

3.3 FUSE Meteorological Forcing and Calibration 

All 10 hydrologic models for both basins were calibrated using the SCE optimization algorithm.  We used KGE and RMSE as 180 

objective functions because the choice of objective function is subjective and dependent on available data and user needs.  

Additionally, recent work has highlighted that careful consideration needs to be given to the choice of objective function for 

high flow events (Mizukami et al. 2019).  Root mean squared error (RMSE) is directly related to Nash-Sutcliffe Efficiency 

(NSE).  Further, it can be shown that RMSE/NSE is made up of three component contributions to the total value: correlation 

(r), variability (𝛼), and bias (𝛽).  The Kling-Gupta Efficiency (KGE) is a reformulation of these same components, which 185 

allows the user to easily understand their individual contributions to the total KGE value (Gupta et al.  2009) and is shown in 

Equation 1. 

EDs = √[𝑠𝑟 ∙ (𝑟 − 1)]2 + [𝑠𝛼 ∙ (𝛼 − 1)]2 + [𝑠𝛽 ∙ (𝛽 − 1)]
2
       (1) 

where EDs is the scaled Euclidian distance from the ideal point and 𝑠𝑟 , 𝑠𝛼 , and 𝑠𝛽 are scale factors to adjust the weighting of 

the correlation, variability and bias terms (set to 1 typically).  The KGE is also beneficial to use because the scale factors can 190 

be adjusted to emphasize the different components of KGE.  Here we tested RMSE and KGE calibrations using daily 

streamflow, and KGE computed using annual peak flow values. We also examined modifying the KGE 𝑠𝛼  scale factor from 1 

to 5 to emphasize model flow variance in an effort to better capture flood peaks.  Inflated 𝑠𝛼  values resulted in model behavior 
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very similar to KGE using annual peak flows in agreement with Mizukami et al. (2019) and are not discussed further in Section 

4. 195 

A maximum of 40,000 model runs was allowed for the SCE calibration of each model structure and basin. Reconstructed daily 

inflow data from Reclamation was used for Island Park, while annual peak flow data developed by Reclamation was used for 

Altus due to lack of better available data for calibration at the time of this study.   The impact of these different objective 

functions and calibration data for the basins will be discussed in Section 4.  

 200 

The meteorological forcing data consisted of a 100-member ensemble of gridded precipitation and temperature at 6 km 

resolution described in Newman et al. (2015).  Observations of precipitation and temperature and the process of projecting 

point measurements to grids across sometimes complex terrain are inherently uncertain.  This ensemble dataset was designed 

to estimate those uncertainties and provide many plausible historical traces for hydrologic model applications.  Each individual 

member was used to calibrate each hydrologic model, resulting in a 100-member ensemble of calibrated model parameters for 205 

each model for each basin (100 ensembles × 10 models × 2 basins).  Because of the available observational data, different spin 

up and calibration periods were used.  For Island Park, the hydrologic models were spun up for water years (WY) 1970-1979 

and calibrated on WY 1980-2014 (35 WYs), while Altus was spun up for WY 1980-1984 and calibrated on WY 1985-2011 

(27 WYs). Again, while the number of WYs for both catchments is similar, data availability meant that Altus calibration only 

relied on annual peaks, while for Island Park daily streamflow values were used.  210 

3.4 Initial Condition Specification 

Continuous simulations using the subsampled parameter sets were then performed and full model states were output each day 

for the full calibration periods for each hydrologic model and basin.  These states were sampled to determine the ICs for the 

event simulations.  Sampling initial states from continuous simulations has the advantage of providing ICs that are consistent 

with the specific hydrologic model and parameter set.  Applying random perturbations to an IC may result in unrealistic states 215 

and subsequent simulation results. 

 

For Island Park, the focus was on ICs from April through June that had minimal (> 10 mm) snow water equivalent snowpack 

to represent flood events near the end of the snowmelt season around peak climatological soil moisture storage.  For Altus, the 

focus was on late winter through mid-summer ICs (February-July) when both soil moisture and precipitation event intensity 220 

and volumes are around their climatological maximums.  For both basins and all models, four ICs were sampled in the top 10 

percent, the 90th, 94th, 97th, and 99th percentiles of total column soil moisture within all validation years and months. 

3.5 Precipitation Frequency Estimates 

Regional frequency analysis (RFA) is a useful method for extending the period of record in environmental datasets by means 

of a “space-for-time” substitution where additional information in space supplements the lack of information in time.  The 225 
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basic assumption of RFA is that extreme events recorded at stations located within a predetermined homogeneous region can 

be described by the same probability distribution.  By scaling the data by the respective at-site mean (ASM), the user assumes 

that a single probability distribution is valid for every location within the homogeneous region, while the magnitude can vary 

spatially. 

 230 

The L-moments method (Hosking and Wallis 1997) is one example of a regional frequency method.  The basis of the L-

moments algorithm is that linear combinations of moments can be used to estimate model parameters for extreme value 

distributions.  The moments of interest (also referred to as L-statistics) include L-CV, L-skewness, and L-kurtosis and are 

computed for every site utilized in an analysis.  Regional moments are developed using weighted averages of the site-specific 

moments, where the weight is proportional to period of record.  The regional L-moments are then used to define the regional 235 

growth curve (RGC), a dimensionless quantile function that represents the cumulative distribution function of the frequency 

distribution valid for all sites located within the homogenous region.  Site-specific precipitation-frequency estimates (Qi(F); 

Equation 2) are developed by scaling the RGC (q(F)) by a site-specific ASM (μi), allowing the magnitudes of precipitation-

frequency estimates to vary spatially across the region of interest. 

 240 

𝑄𝑖(𝐹) = 𝜇𝑖𝑞(𝐹),            (2) 

 

Reclamation (2015) developed median and uncertainty precipitation-frequency curves for the Island Park watershed using a 

regional L-moments approach combined with Latin hypercube resampling procedures.  More specifically, the authors used 

annual maximum two-day precipitation totals from 45 stations in a homogeneous region surrounding the Island Park watershed 245 

to estimate parameters of the four-parameter Kappa distribution.  The authors used Latin-hypercube sampling methods in R 

via the “qnorm” function to perform Monte Carlo sampling to create 300 parameter sets using variations in five parameters: 

at-site mean, regional L-Cv, regional L-skew, regional L-kurtosis, and areal-reduction factor.  Results from this analysis 

include 11 frequency distributions 5th, 14th, 23rd, 32nd, 41st, 50th, 59th, 68th, 77th, 85th, and 95th percentiles.  Kappa parameters 

from Reclamation (2015) are reproduced in Table 2.  During stochastic simulations performed here, we force two-day historical 250 

precipitation events to equal basin-average magnitudes sampled from the two-day precipitation frequency curve valid over the 

Island Park watershed, while retaining the spatial precipitation structure from the historical event.   

 

Similarly, Reclamation (2012) developed precipitation-frequency estimates including median and uncertainty bounds for the 

Altus watershed using a regional L-moments approach combined with Latin hypercube sampling procedures.  The authors 255 

focused on annual maximum one-day (or 24-hour) precipitation totals recorded at 482 stations with at least five years of data 

and used Latin hypercube sampling to produce 150 parameter sets based on variations in the same five parameters listed above: 

at-site mean, regional L-Cv, regional L-skewness, regional L-kurtosis, and areal-reduction factor.  The report provides all 

precipitation-frequency estimates in the form of fourth-order polynomials, with coefficients reproduced in Table 3.  Similar to 
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Island Park simulations, we force one-day historical precipitation events to equal basin-average magnitudes sampled from the 260 

one-day precipitation frequency curve valid over the Altus watershed, while retaining the spatial precipitation structure from 

the historical event. 

3.6 Event Sequencing 

Some stochastic modelling studies at Reclamation force the rainfall-runoff model with a precipitation event (e.g., two-day 

event) followed by no precipitation for the remaining simulation time (Reclamation 2018).  The lack of additional precipitation 265 

after the primary precipitation event is not based on any physical reasoning, thus we examine both dry and historical 

meteorological sequences after the primary precipitation event (two-day at Island Park and one-day at Altus).  The forcing 

event lengths differ because of the differing meteorology driving floods in the two basins.  Again, more intense shorter duration 

convective precipitation events primarily cause flooding at Altus, while longer duration precipitation events associated with 

extratropical cyclones is the primary flood driver at Island Park.  In the dry meteorological sequence, we set precipitation to 270 

zero after the primary precipitation event.  In the historical meteorology setup, we randomly sample ensemble member 

meteorology sequences using the same start date corresponding to the sampled IC for the simulation period only.  In other 

words the ICs are taken from a continuous simulation and define the event start date, but we then randomly sample from all 

100 members to redefine the event period.  In both cases, the primary precipitation forcing (two-day and one-day) is forced to 

equal sampled values from the precipitation frequency curve.  Future work should examine event sequencing in greater detail, 275 

particularly to quantify the impacts of possible future circulation changes on FF estimates and sensitivities. 

3.7 ANOVA  

As noted above, the total probability theorem is used to compute modelled basin runoff at return periods of 2, 5, 10, 20, 50 

100, 500, 1,000, 5,000, 10,000, 50,000, and 100,000 years from the stochastic simulations for all model, parameter, IC, and 

precipitation distribution combinations, for both event sequences.  An ANOVA analysis is then performed on the runoff values 280 

for all the return periods for both event sequences and basins.  The ANOVA framework is a computationally frugal way to 

estimate individual component contributions to the total variance of a variable such as runoff by relying on a sum of squares 

decomposition. ANOVA analyses have been widely used in hydrometerology to separate the components of future climate 

changes (Hawkins and Sutton, 2009; Lehner et al., 2020) and to determine which elements of the model chain contribute most 

to the spread of the projected changes in streamflow (Bosshard et al., 2013; Addor et al. 2014; Breuer et al., 2017; Chegwidden 285 

et al., 2019). 

 

By estimating the fractional (relative) variance contributions of each factor and all two factor interactions, we identified the 

pieces of the modelling workflow which contribute most to FF sensitivity for each return period.  We used the ‘anovan’ 

MATLAB function as implemented in MATLAB version 9.8.0.1380330 (2020a) Update 2.  This function allows for N-way 290 

ANOVA computations with mixed continuous and categorical predictors, and specification of the interaction terms to be 
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estimated (https://www.mathworks.com/help/stats/anovan.html).  Here we specify model structure and parameters as 

categorial predictors and precipitation event forcing and initial conditions as continuous predictors.  Precipitation event forcing 

and initial condition values are normalized before the ANOVA analysis was performed.  Finally, we perform a subsampling 

and bootstrapping of the effects that have more samples than the effect with the fewest samples (e.g. for Island Park ICs have 295 

4 samples, precipitation frequency distributions have 11 samples) following Bosshard et al. (2013).  Disparate sample sizes 

can bias the fractional variance estimates, overestimating the contributed variance for effects with more samples.  Performing 

subsampling with bootstrapping (n=1000) alleviates the bias (Bosshard et al. 2013).  

4. Model Calibration 

When examining daily flow time series, the KGE and RMSE daily metrics produce more realistic simulations than the KGE 300 

interval metric as seen in Figure 3.  This is a somewhat expected result as the interval metric contains no time information 

(correlation) on the daily scale.  The daily KGE metric based calibration outperforms the daily RMSE based calibration, where 

the daily RMSE based calibration underestimates the flow variance (not shown) in agreement with past studies (Gupta et al. 

2009).  The KGE interval metric-based calibration represents the peak flows well (with some overrepresentation) but has large 

differences in event recession curves with overestimation of flow in the days and weeks immediately following high flow 305 

events.  This erroneous recession curve representation would result in very different volume-based floods versus daily metric-

based calibrations. 

 

Given the above calibration characteristics and the available calibration data at Island Park (daily flow) and Altus (annual peak 

flow), daily KGE was selected as the calibration metric for Island Park and interval KGE as the calibration metric for Altus.  310 

Daily KGE provides the best all-around simulation when considering daily peak flows as well as volume integrations over 

days to weeks at Island Park.  For Altus, calibrating to yearly peak flows using KGE provided a better overall peak flow 

calibration than RMSE calculated using annual peak flows, likely due to the reformulated weighting of bias and variance as 

compared to RMSE.  Again, these results agree with Mizukami et al. (2019), which examined some of the same calibration 

metrics using multiple hydrologic models and hundreds of basins across the contiguous United States.  They found that KGE 315 

outperforms RMSE (or NSE) based calibrations and that peak flow metrics do outperform KGE for peak flow simulation but 

result in much degraded daily model performance with sometimes severe modelled flow biases. 

 

Figure 4 highlights the final CDF of the calibrated KGE for all ten models for Island Park (Fig. 4a) and Altus (Fig. 4b).  It is 

not possible to make direct performance comparisons between the models at the two basins given that the KGE values are 320 

based on daily (Island Park) and annual peak runoff (Altus).  However, in a broad sense, model behavior at Island Park is much 

more constrained than Altus based on the relative ranges of calibration scores for each basin (different x-axis ranges from left 
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to right panels).  These differences informed the model parameter sampling strategies and show that the model behavior at 

Island Park is more constrained than at Altus along the model parameter dimension. 

4.1 FUSE Parameter Set Selection 325 

The 100 parameter sets available for each model and basin were subsampled for the final FF event simulations.  Because Island 

Park had more available data for calibration, the final calibrated model performance was very similar across the 100 members 

for all 10 hydrologic models.  Therefore, 11 parameter sets spanning the full range of model performance were sampled for 

each hydrologic model using the 1st, 10th, 20th, 30th, 40th, 50th, 60th, 70th 80th, 90th and 99th percentiles of the cumulative 

density function (CDF) of the calibration objective function.  For Altus, the calibrated model behavior was less constrained 330 

due to the much smaller amount of calibration data available.  Therefore, the 10 best calibrated parameter sets for each 

hydrologic model were used, which constrained model parameter induced differences in model behavior, but still not to the 

same level as Island Park.   

5. Sensitivity Analysis 

The ANOVA analysis was performed using the full complement of FF estimates for both basins and precipitation event forcing 335 

sequences.  All fractional variance contributions are normalized by the total variance in the FF estimate for each return period 

such that if a component has a fractional variance of 0.5 that component contributes half of the total variance for that return 

period.  The plots represent the 2, 5, 10, 50, 100, 1,000, 10,000, 50,000, and 100,000-year return periods.  For Figures 6 through 

11, the dry meteorological sequence is always in panel a) and the historical meteorology event sequence is always in panel b), 

and the color coding follows Figure 1.  Interaction terms are a blend of the two primary components (e.g.  model structure-340 

model parameter interactions are red-orange). 

 

Normalized FF plots including all possible effect combinations for both models are shown in Figure 5.  Annual exceedances 

at Island Park in the mean follow a nearly linear trend on the semi-log X-axis plot with the range of possible values having 

relatively higher spread at larger return intervals (Fig. 5a), which is consistent with the hydrology of Island Park being a less 345 

flashy more snowmelt flow dominated basin.  The normalized FF curve at Altus is highly non-linear even with a semi log X-

axis with little flow for many small return periods (Fig. 5b).  Sharp increases in flood responses after roughly the 500 year 

return period are seen with normalized spread larger than at Island Park for the largest return periods (50-100,000 years). 

5.1 Island Park 

ANOVA results using all available model structures, sampled parameter sets, sampled ICs, and sampled precipitation 350 

frequency distributions for Island Park are shown in Figure 6.  When all model structures are included ICs dominate the 

frequent events less than about 5000 years, while the precipitation frequency distribution is the most important for rarer events.  
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Model structure consistently contributes roughly 20% of the variance and is generally the second most important effect across 

all return periods, outside of 1,000 – 10,000 year flood where ICs, precipitation frequency curves, and model structure vary in 

leading, secondary or tertiary importance depending on the dry or wet meteorological sequencing.  Model parameters and 355 

interaction terms contribute roughly 10% of the variance for less frequent events for both meteorological sequences.  For rare 

floods with return periods larger than 50,000 years, event precipitation is about twice as important as model structure and 3 

times more important than ICs for dry sequences after the event input, while for historical meteorological sequencing, the 

event forcing is only about 1.5x more important than model structure for 100,000 year floods.   

 360 

Figure 7 presents the fractional variance contributions for Island Park using the three base models: HEC-HMS, VIC, and SAC-

SMA.  Similar to all models, ICs and the precipitation frequency distribution specification are the most important for frequent 

and extreme events, respectively.  Model structure is the second most important contributor for frequent events, but for return 

periods larger than 1,000 years, model structure-parameter interactions become as or more important than model.  Again, 

moving from the dry to historical meteorological sequence decreases the variance contribution of precipitation frequency 365 

distributions, and increases the importance of model structure, model structure-parameter interactions, and ICs across all return 

periods (compare Figure 7a to 7b).  This is somewhat counter intuitive but may be related to the fact that soil states can strongly 

influence recession curve characteristics and additional non-extreme precipitation event forcing is either stored or released 

within the 14 day volume integration depending on model structure, parameters, or ICs. 

 370 

Using a different combination of the ten possible model structures results in a slightly different conclusion.  The set of 

simulations presented in Figure 8 represents the set of three hydrologic models that generates the largest flood responses to 

larger precipitation event forcing.  Overall, the precipitation frequency distribution specification is still the most important at 

extreme events, and ICs are most important for very frequent events, but model structure contributes a larger fraction of the 

total variance across all return periods and is often of similar magnitude to either ICs or precipitation frequency distribution 375 

changes (Figure 8).  Here we see that moving from the dry to historical meteorological sequence increases the importance of 

model structure (compare Figure 8a to 8b).  This is because these three model structures have more variation between each 

other given additional precipitation input than the variability in runoff changes due to ICs.  Differences in surface runoff versus 

subsurface storage and slower baseflow appear to be driving the model structure variability and is discussed more in Section 

6. 380 

  

5.2 Altus 

The ANOVA results using all available model structures, sampled parameter sets, sampled ICs, and sampled event forcings 

for Altus are shown in Figure 9.  Similarly to Island Park, ICs are most important for frequent events, while precipitation event 

forcing is most important for rarer events.  Two differences are of note here.  First, precipitation event forcing is generally 385 
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more important across return periods at Altus versus Island Park.  Second while model structure is slightly less important, 

model parameters and model structure-parameter interactions are of similar importance to model structure, such that the 

combination of model structure and parameter effects and interactions is as important as precipitation event forcing for both 

meteorological sequences.  Finally it is evident that meteorological sequencing is inconsequential at Altus, which makes 

intuitive sense given the single day peak flow metric for Altus versus the 14 day integrated volume metric at Island Park. 390 

 

The ANOVA results for Altus using the three base models show a similar picture as for Island Park.  ICs almost always 

contribute the most variance for frequent events (less than a few hundred years) and the precipitation frequency distributions 

are the most important for larger events (Figure 10).  However, the precipitation frequency distributions are even more 

important for Altus than at Island Park particularly for the historical meteorological sequence, as they contribute around 50% 395 

of the total variance for 50,000-100,000 year events as compared to around 30% at Island Park.  Model structure and model 

structure-model parameter interactions are of secondary importance across essentially all return periods.  Again, moving from 

dry to historical meteorological sequencing does not change the picture significantly at Altus (compare Fig 10a to 10b), which 

is expected as the flood metric is the single day maximum flow and generally single day maximum flow is directly related to 

the extreme precipitation flood event input and not subsequent smaller events. 400 

 

Further examination of multiple model combinations at Altus revealed that using the two most disparate model responses, 

SAC-SMA (Model #3) and the SAC-SMA/HEC-HMS combination (Model #6) models results in substantial increase in 

importance of model parameters and model structure – model parameter interactions (Figure 11).  In fact, model structure – 

model parameter interactions contribute the most variance across all return periods in this case.  Additionally, model structure 405 

and model parameter effects contribute similar variance to the precipitation frequency distributions.    Again, moving from dry 

to historical meteorological sequencing does not substantially change the message here as expected (compare Figure 11a to 

11b).  For this case the model responses are starkly different, such that it may be possible to rule out one of the model structures 

as plausible, however model structure selection work is outside the scope of this study.  

6. Discussion 410 

The results of this study demonstrate that workflow and methodological decisions impact hydrologic model behavior and the 

final variance estimates of a FF study.  This suggests that careful consideration of the various components of stochastic flood 

modelling should be undertaken. To our knowledge, the inclusion of model structure into FF estimate sensitivity analysis is a 

novel contribution to our understanding of stochastic flood modelling systems.  We reaffirm that calibration metrics only 

constrain model behavior for components of the hydrograph most related to the calibration metric (e.g. Mendoza et al.  2015, 415 

Mizukami et al.  2019).  For streamflow-based calibration, KGE is a robust metric that provides balanced model behavior 

across all components of the hydrograph because of its formulation and should be used over RMSE/NSE if possible.  
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Furthermore, calibration metrics focusing on high flow only generally result in degraded model performance for other parts of 

the hydrograph such as the recession curve, in agreement with Mizukami et al. (2019).  The implication for this work is that 

calibrated hydrologic models using RMSE/NSE may have inferior performance for longer duration volume flood metrics 420 

because of substantial biases introduced during calibration that was not designed to constrain flow volumes. 

 

The ANOVA results demonstrate that ICs contribute the most variance for frequent events and the precipitation frequency 

distribution specification contributes the most variance for extreme events.  One area for future study is the specification of 

the precipitation frequency distribution and uncertainty estimates.  Here we relied on previously published precipitation 425 

frequency results, as developing new estimates is outside the scope of this study.  However, it is possible that the specification 

of the distribution and the uncertainty estimation methodology could have an impact on subsequent analysis steps.    

Furthermore, the precipitation frequency distribution methods differ across the basins, which is an inconsistency with 

unquantified impacts.  Normalization of the precipitation inputs before the ANOVA analysis possibly mitigates these potential 

issues, but further exploration could be undertaken in future work. 430 

 

Additionally, model structure, model parameters, and model structure-parameter interactions may have important contributions 

across the return periods depending on the flood metric and basin. In this study all ten model structures are treated as equally 

plausible.  Future stochastic FF studies should consider model structure in their experimental design with thought given to 

constraining the model structure ensemble to plausible model configurations using available techniques (Jakeman and 435 

Hornberger 1993; Gupta et al. 2012).  Model parameter and model structure – model parameter interactions are more important 

at Altus, where the available calibration data limited the ability for calibration to constrain model performance.  Consideration 

of model parameter variations should be taken into account when scoping projects with little calibration data available. 

 

Differences in model total storage and subsequent runoff generation drive the different flood responses across both basins.  440 

Figure 12 shows the average model response for models #1 (HEC-HMS) and #3 (SAC-SMA) for a subset of precipitation 

event forcings for Island Park. The change in storage and cumulative runoff are normalized by the total precipitation event 

forcing to highlight storage and runoff efficiency differences between the two models.  Note the precipitation event forcing 

occurs on days 1 and 2.  Models with high event-based runoff ratios generate runoff more readily and have smaller subsurface 

storages, while models with lower event runoff ratios allow for more infiltration and storage.  Model #3 stores about 60% more 445 

of the precipitation event than model #1 and ends up generating 25% less cumulative runoff than model #1.  These differences 

are more important for basins using integrated flood metric such as Island Park here, as responsive models generate larger 

volumes while the other models store more of the precipitation event forcing and release it over longer periods of time.  This 

point should be the focus of additional study and provides one physical process comparison to identify the appropriate model 

structures for a given basin. 450 
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While the focus of this study was on stochastic rainfall-runoff modelling for FF studies, there are potentially broader 

applications to hydrologic modelling for any purpose, including planning, design, or restoration often focused on more frequent 

floods up to extreme events for risk analysis.  For example, stochastic rainfall-runoff modelling is data and labor intensive, 

thus less intensive methods are frequently used, most commonly AEP-neutral assumptions of precipitation return period being 455 

equal to flood return period.  Even in those studies, model selection, parameterization, initial conditions, calibration, and 

forcing still play an important role in model outcome.  Additionally, examining a range of return periods rather than just 

extreme floods was intentional to help inform a broader range of applications beyond those focused on risk for large dams 

where only extreme events are relevant.  Understanding of sensitivity in rainfall-runoff modelling, whether stochastic or not, 

is important for flood studies.  The results of this study can help guide model selection and development and provide a better 460 

understanding of variance in a variety of flood studies.  

7 Conclusions 

The key generalizable conclusions are:  

1) ICs and precipitation frequency distributions contribute the most variance in the stochastic flood modelling chain for 

frequent and extreme events respectively. 465 

2) Hydrological model structure can be equally important, particularly for multi-day volume flood metrics. This 

highlights the need to critically assess assumptions underpinning models, understand basin flood generation processes 

and develop methods to select appropriate models. This includes the re-examination of the AEP neutral assumption 

and shifting to model process parameterizations that are most plausible for the study catchment. 

3) Model parameter and model structure-parameter interactions can be important if the model parameter space is not 470 

well constrained during calibration. 

4) Confirming many other studies (e.g. Gupta et al. 2009, Mizukami et al. 2019), the Kling-Gupta Efficiency (KGE) 

results in better hydrologic model performance than NSE (or RMSE) for calibration of extreme events and volume 

integrated flood metrics, and is more flexible for application specific uses through the use of user specified component 

weights. 475 
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Table 1. FUSE hydrologic processes (far left column) and the various selected process representations for the ten hydrologic 

models. 

FUSE Config. HECHMS VIC SACSMA MODEL4 MODEL5 MODEL6 MODEL7 MODEL8 MODEL9 MODEL10 

rainfall error multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e multiplc_e 

upper-layer 

architecture 
tension1_1 onestate_1 tension1_1 tension2_1 onestate_1 tension2_1 onestate_1 tension1_1 onestate_1 tension1_1 

lower-layer 

architecture 

and baseflow 

unlimfrc_2 fixedsiz_2 tens2pll_2 unlimfrc_2 unlimfrc_2 unlimpow_2 tens2pll_2 tens2pll_2 tens2pll_2 unlimfrc_2 

surface runoff arno_x_vic arno_x_vic prms_varnt arno_x_vic arno_x_vic prms_varnt prms_varnt prms_varnt prms_varnt arno_x_vic 

percolation perc_f2sat perc_w2sat perc_lower perc_f2sat perc_f2sat perc_lower perc_lower perc_f2sat perc_w2sat perc_lower 

evaporation sequential rootweight sequential sequential sequential sequential sequential sequential rootweight sequential 

interflow intflwnone intflwnone intflwsome intflwnone intflwnone intflwsome intflwsome intflwnone intflwnone intflwsome 

time delay in 

runoff 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

rout_ 

gamma 

snow model temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index temp_index 
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Table 2. Parameters used to define the four-parameter Kappa distribution.  Table reproduced from Table 4.5 in Reclamation 

(2015). 680 

Sim Percentile xi alpha K H Basin Mean 

1 95th 0.8059 0.02842 -0.068 0.1374 1.66 

2 85th 0.8083 0.2827 -0.0635 0.1235 1.64 

3 77th 0.8108 0.2812 -0.0590 0.1095 1.63 

4 68th 0.8132 0.2798 -0.0546 0.0956 1.61 

5 59th 0.8157 0.2783 -0.0501 0.0816 1.6 

6 50th 0.818 0.2768 -0.0456 0.0676 1.58 

7 41st 0.8188 0.2768 -0.0395 0.0634 1.57 

8 32nd 0.8195 0.2768 -0.0334 0.0592 1.55 

9 23rd 0.8203 0.2767 -0.0272 0.0549 1.54 

10 14th 0.821 0.2767 -0.0211 0.0507 1.52 

11 5th 0.8217 0.2767 -0.0430 0.0463 1.51 
 

 

Table 3. Polynomial coefficients (fourth-order) that describe the lower, median, and upper precipitation-frequency curves for 

Altus.  Table reproduced from Table 5.7 in Reclamation (2012). 

 A0 A1 A2 A3 A4 

Lower Estimate (5%) 0.906821 0.359010 0.031004 0.009728 -0.000563 

Median Estimate (50%) 0.999012 0.391658 0.033909 0.013662 -0.000692 

Upper Estimate (95%) 1.082307 0.426903 0.04651 0.017021 -0.000828 
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Figure 1.  Conceptual contribution of relative variance contribution from initial conditions (blue), model parameters (red), model 

structure (orange), and precipitation event forcing (green) across return periods (larger return periods towards right) for a) the 

base case and b) one possible alternative where model structure has similar importance to precipitation event forcing for extreme 690 
events. 

 

 

Figure 2. a) Island Park and b) Altus watershed locations. Base layers © esri (Environmental Systems Research Institute) 

 695 
 

 

 

https://doi.org/10.5194/hess-2021-49
Preprint. Discussion started: 3 March 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

 
Figure 3.  Island Park calibration period runoff for water year (WY) 1993 with RMSE using daily flow, KGE using daily flow, and 700 
KGE using annual maximum flow. 

 

 

 
Figure 4. a) Island Park daily flow calibrated KGE distributions for all 10 models and b) Altus yearly peak flow calibrated KGE 705 
distribution for all ten models. 
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Figure 5. Normalized (by maximum possible flood runoff) FF curves with the median in red, and the interquartile range (25th-

75th percentiles) in dark gray, 10th-90th percentile spread in medium gray, and the minimum to maximum spread in light gray 710 
for a) Island Park and b) Altus. 

 

 
Figure 6. Island Park fractional variance contributions using all ten model structures for the a) dry meteorological sequence and 

b) historical meteorological sequence.  Only interaction terms that contribute significant variance are shown in Figures 6 through 715 
11. 
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Figure 7. Island Park fractional variance contributions using the three base models: HEC-HMS (Model #1), VIC (Model #2), SAC-

SMA (Model #3), for the a) dry meteorological sequence and b) historical meteorological sequence. 720 
 

 
Figure 8. Island Park fractional variance contributions for the three most responsive model structures (i.e. structures associated 

with the largest runoff/precipitation ratio): HEC-HMS (Model #1), HEC variant (Model #4), and a SAC-SMA/HEC-HMS 

combination (Model #6), for the a) dry meteorological sequence and b) historical meteorological sequence. 725 
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Figure 9. Altus fractional variance contributions using all ten model structures for the a) dry meteorological sequence and b) 

historical meteorological sequence. 

 730 

 
Figure 10. Altus fractional variance contributions using the three base models: HEC-HMS, VIC, SAC-SMA, for the a) dry 

meteorological sequence and b) historical meteorological sequence. 
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Figure 11.  Altus fractional variance contributions for the two most disparate flood responses: SAC-SMA (Model #3), and a SAC-

SMA/HEC-HMS combination (Model #6), for the a) dry metorological sequence and b) historical meteorological sequence. 

 

 740 

 
Figure 12. Change in storage (black lines) and cumulative runoff (red lines) normalized by flood event precipitation input for 

Model 1 (solid) and Model 3 (dashed) at Island Park for one precipitation frequency distribution bin using the median (50th 

percentile) precipitation frequency distribution. 
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