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Abstract. SWAT (Soil and Water Assessment Tool) is a continuous time, semi-distributed river basin model that has been 

widely used to evaluate the effects of alternative management decisions on water resources. This study examines the 

application of SWAT model for streamflow simulation in an experimental basin with mixed-land-use characteristics (i.e., 

urban/peri-urban) using daily and hourly rainfall observations. The main objective of the present study was to investigate the 

influence of rainfall resolution on model performance in order to analyze the mechanisms governing surface runoff at the 15 

catchment scale. The model was calibrated for 2018 and validated for 2019 using the SUFI-2 algorithm in the SWAT-CUP 

program. Daily surface runoff was estimated using the Curve Number method and hourly surface runoff was estimated using 

the Green and Ampt Mein Larson method. A sensitivity analysis conducted in this study showed that the parameters related 

to groundwater flow were more sensitive for daily time intervals and channel routing parameters were more influential for 

hourly time intervals. Model performance statistics and graphical techniques indicated that the daily model performed better 20 

than the sub-daily model (daily model: NSE = 0.86, R2 = 0.87, PBIAS = 4.2%, sub-daily model: NSE = 0.6, R2 = 0.63, 

PBIAS = 11.7%). The Curve Number method produced higher discharge peaks than the Green and Ampt Mein Larson 

method and estimated better the observed values. Overall, the general agreement between observations and simulations in 

both models suggests that the SWAT model appears to be a reliable tool to predict discharge in a mixed-land-use basin with 

high complexity and spatial distribution of input data. 25 

1 Introduction 

Water resource problems, including the effects of urban development, alternative management decisions, and future climate 

oscillation on streamflow and water quality, require a deep understanding and accurate modeling of earth surface processes 

at the catchment scale to be addressed (Gassman et al., 2014). In order to understand catchment processes, it is necessary to 

obtain detailed weather data and catchment observations related to runoff, water stage, erosion, soil moisture, and water 30 

quality. Experimental catchments are properly designed and well-monitored catchments that aim to provide databases of 



2 

 

long-term historical hydrological data, which help analyze the mechanisms governing surface runoff (Goodrich et al., 2020). 

In addition, experimental catchments contribute in the development and validation of numerous watershed models and can 

be used as validation sites for satellite sensors (Tauro et al., 2018). Furthermore, experimental catchments monitor 

groundwater and river water quality with the use of tracer experiments which can estimate the residence and travel times of 35 

water in different components of the hydrological cycle  (Hrachowitz et al., 2016; Stockinger et al., 2016). Bogena et al. 

2018 presented an extensive overview of hydrological observatories that are presently operated worldwide with various 

environmental conditions. Among those, the US Department of Agriculture-Agricultural Research Service‟s (ARS) 

Experimental Watershed Network has operated over 600 watersheds in its history and currently operates more than 120 

experimental hydrological watersheds (Goodrich et al., 2020). 40 

Hydrological and water quality models have been widely used to assess water resource problems and to investigate 

hydrological processes, land use and climate change impacts and best management practices (Daggupati et al., 2015). In 

recent decades, various watershed-scale models (i.e., SWAT, APEX, HSPF, WAM, KINEROS and, MIKE-SHE) have been 

developed to operate with different levels of input data and model structure complexity (Arnold et al., 2015; Moriasi et al., 

2007). Among the above watershed-scale models, the SWAT program (Soil and Water Assessment Tool) (Arnold et al., 45 

2012) was selected for this study. SWAT is a physically based, semi-distributed, continuous time river basin model and has 

five main official versions, SWAT2000, SWAT2005, SWAT2009, SWAT2012, and SWAT+. It was selected because is an 

open source code, has a wide range of online documentation and literature database and has been applied to catchments of 

various sizes and to several temporal scales (e.g., monthly, daily and sub-daily time step) (Gassman et al., 2007, 2014; Tan et 

al., 2020).  Furthermore, it can be linked to QGIS, an also free and open-source platform, and has the ability to visualize the 50 

results, which can be helpful for the interpretation of the many SWAT outputs  (Dile et al., 2016).   

SWAT has two methods for the estimation of surface runoff; the SCS Curve Number (CN) method (Soil Conservation 

Service, 1972) for daily rainfall and the Green and Ampt Mein Larson infiltration (GAML) method (Mein and Larson, 1973) 

for sub-daily rainfall. The CN method has been used more often than the GAML method, in SWAT model applications, 

mainly due to the absence of high temporal resolution data needed for the sub-daily module (Bauwe et al., 2016; Brighenti et 55 

al., 2019; Gassman et al., 2014). The few available studies suggest that the calibrated streamflow results are more accurate 

using the CN approach when compared to the GAML approach (Bauwe et al., 2016; Cheng et al., 2016; Ficklin and Zhang, 

2013; Kannan et al., 2007). In particular, in the study where CN improved the results, Kannan et al. (2007) identified a 

suitable combination of evapotranspiration and runoff generation methods and reported that the CN method performed better 

than the GAML method. In contrast, three studies reported that the GAML method simulated better the peak flows during 60 

the flood season  than the CN method (Li and DeLiberty, 2020; Maharjan et al., 2013; Yang et al., 2016). Some studies, have 

pointed out that both approaches have limitations and that the improvement depends on the part of the hydrograph that is 

analyzed (e.g., high, medium or low flows) and the time scale (e.g., daily, monthly or annually) (Han et al., 2012; King et al., 

1999). Furthermore, several sub-daily applications have been conducted such as land use and management impacts on flood 

events (Golmohammadi et al., 2017; Campbell et al., 2018), the use of high temporal resolution data for the improvement of 65 
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the model (Bauwe et al., 2017; Boithias et al., 2017) and modeling of rainfall-runoff events (Jeong et al., 2010; Yu et al., 

2018). The authors generally found that finer temporal resolution time steps do not always improve model performance but 

depend on the basin scale and the characteristics of the watershed. A detailed description of the model history and 

applications can be obtained in Gassman et al. (2007), Douglas-Mankin et al. (2010), Brighenti et al. (2019) and Tan et al. 

(2020). 70 

In this study, the SWAT 2012 model (rev 681) in the QSWAT interface was used to simulate streamflow in an experimental 

basin using daily and sub-daily (hourly) rainfall observations. The main objectives were to (i) calibrate and validate the 

SWAT model using streamflow data, (ii) examine which parameters are more sensitive in different time steps, (iii) estimate 

the influence of rainfall resolution on model performance, (iv) compare the Curve Number method and Green and Ampt 

Mein Larson method for runoff simulation, (v) examine the accuracy of the sub-daily model and compare the peak 75 

discharges and time of peak of the two models in selected rainfall events, and (vi) investigate the suitability of the SWAT 

model for hourly simulation in a mixed-land-use basin (i.e., blended combinations of land use, management practices and 

hydrological processes). Hence, this study will provide essential hydrological knowledge and contribute to the understanding 

of the earth surface processes of an urban/peri-urban hydrological system with complex land use in order to analyze the 

mechanisms governing surface runoff at the catchment scale. The information of the study area, methodology and data input 80 

is presented in Section 2, results and discussions are detailed in Section 3 and conclusion is provided in Section 4.  

2 Materials and methods 

2.1 Study area  

The study area includes the upper part (NW sub-basin) of the Kifissos River basin, located in Athens Greece (Fig. 1a). The 

Kifissos River basin occupies an area of 380 km2. Kifissos River route is approximately 22 km, of which at least 14 km are 85 

within an urban area. The elevation ranges from 94 m to 1399 m with plains in the south and hills in the north part of the 

basin. The mean annual temperature is 16.4 °C and the mean annual rainfall across the basin is 577.2 mm.  

The study area is characterized as an urban/sub-urban area, with residential areas, shrubland and agriculture accounting for 

34.1, 15.9 and 12.4 % of its land use coverage, respectively (Fig. 1b). It includes mainly four soil types, Cambisols, 

Regosols, Leptosols and Luvisols (Fig. 1c). The dominant soil formations are characterized by good soil permeability and 90 

high contents of clay and sand.  
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Figure 1. Geographical location of the study area (a) and spatial distribution of land use (b) and soil (c). 

2.2 Experimental Catchment of Athens Metropolitan Area 95 

The study area includes four water level monitoring stations that provide continuous recordings of the river stage at pre-

selected time-intervals (15mins time-step) (Fig. 1).  The stations were installed at the end of 2017 under the supervision of 

the School of Mining of National Technical University of Athens (NTUA). The network was developed under the EU H2020 

RIA Program SCENT (Smart Toolbox for Engaging Citizens in a People-Centric Observation Web). The station which is 

located at the outlet of the study area was selected as the most suitable for further analysis in this study, because the three 100 

upstream stations experienced some mechanical problems that affected the calibration and validation process. The 

monitoring stations are part of the Open Hydrosystem Information Network (OpenHi.net) which is a national integrated 

information infrastructure for the collection, management and free dissemination of hydrological data (OpenHi.net) in 

Greece.  
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2.3 Data sources 105 

The input data for the construction of the SWAT model include a digital elevation model (DEM), a land use map, a soil map, 

and meteorological data (i.e., rainfall, temperature, wind speed, relative humidity and solar radiation). Table 1 summarizes 

the input data along with their sources, used in this study.  

The digital elevation model (DEM) at 30 m spatial resolution was downloaded from the website of the US Geological 

Survey (USGS). The land use map was derived from the 100 m 2018 Corine Land Cover map (CLC, 2018) and was 110 

modified according to SWAT land use categories (Table 2). The soil map was created from data of the Food and Agriculture 

Organization (FAO) Digital Soil Map of the World (FAO et al., 2012). In addition, rainfall data, relative humidity, wind 

speed, and the minimum and maximum air temperature were obtained from National Observatory of Athens (NOA). Solar 

radiation data were simulated by WGEN, a weather generator developed by SWAT to fill the missing meteorological data by 

the use of monthly statistics. A rain gauge network consisting of 5 gauges is distributed throughout the study area as 115 

illustrated in Fig. 1. Daily and hourly (   = 1h) rainfall data were retrieved from 2017 to 2019 with coverage during the 

entire year. The daily and sub-daily observed streamflow data at the outlet of the basin (Fig. 1) from 2017 to 2019 were 

acquired from Open Hydrosystem Information Network (OpenHi.net).  

 

Table 1. SWAT model input data and sources. 120 

Data type Resolution Source Description 

DEM 30 m × 30 m  

 

Shuttle Radar Topography Mission  

https://earthexplorer.usgs.gov/ 

Digital elevation model 

Land use 100 m × 100 m Corine Land Cover  
https://land.copernicus.eu/  

Land use map 

Soil 30 arcseconds 
(1:5.000.000) 

Food and Agriculture Organization,  
http://www.fao.org/ 

Soil map 

Weather data 5 gauges National Observatory of Athens, 

https://www.meteo.gr/ 

Daily data for 2017-2019, sub-daily 

data for 2017-2019, minimum and 
maximum air temperatures, relative 
humidity, wind speed 

Observed 
streamflow 

1 gauge Open Hydrosystem Information Network, 
https://openhi.net/ 

Daily data for 2017-2019, sub-daily 
data for 2017-2019 
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https://earthexplorer.usgs.gov/
https://land.copernicus.eu/
http://www.fao.org/
https://www.meteo.gr/
https://openhi.net/
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Table 2. Land use classification of the Kifissos basin and the corresponding SWAT land use category. 

CLC code Corine description SWAT code SWAT description (%) Watershed 

121 Industrial or commercial units UCOM Commercial 11.43 

112 Discontinuous urban fabric URLD Residential-Low Density 34.11 

122 Road and rail networks and 
associated land 

UTRN Transportation 4.07 

111 Continuous urban fabric URHD Residential-High Density 1.54 

231 Pastures PAST Pasture 0.31 

243 Land principally occupied by 
agriculture, with significant areas 

of natural vegetation 

AGRL Agricultural Land-Generic 12.39 

311 Broad-leaved forest FRSD Forest-Deciduous 3.11 

312 Coniferous forest FRSE Forest-Evergreen 9.59 

313 Mixed forest FRST Forest-Mixed 7.51 

323 Sclerophyllous vegetation RNGB Range-Brush 15.94 

 

2.4 Soil Water Assessment Tool (SWAT) 

The SWAT (Soil and Water Assessment Tool) program is a semi-distributed, continuous-time, process based model (Arnold 130 

et al., 1998, 2012). The model operates on a daily time step, and it has been recently updated to sub-daily time step 

computations (Jeong et al., 2010).  SWAT has been developed to evaluate the impact of management practices on water, 

sediment, and agricultural chemical yields in large river basins over long time periods. The main components of SWAT are 

hydrology, weather, soil properties, land use, crop growth, sediments, nutrients, pesticides, bacteria and pathogens.  

In SWAT, a watershed is divided into multiple sub-basins, which are then subdivided into hydrologic response units (HRUs) 135 

based on unique soil, slope and land use attributes. Hydrologic response units (HRUs) enable the model to represent 

differences in evapotranspiration for various types of vegetation and soil. Simulation of the hydrology of a watershed can be 

separated in the land phase, which determines the loadings of water, sediment, nutrients, and pesticides to the main channel, 

and in the routing phase, which is the movement of the loadings through the streams of the subbasins to the outlets (Neitsch 

et al., 2011).  140 

Hydrological processes are simulated separately for each HRU, including canopy storage, surface runoff, partitioning of the 

precipitation, infiltration, redistribution of water within the soil profile, evapotranspiration, lateral subsurface flow from the 

soil profile, and return flow from shallow aquifers (Gassman et al., 2007). SWAT uses a single plant growth model to 

simulate all types of vegetation and is capable to differentiate between annual and perennial plants. The plant growth model 

estimates the amount of water and nutrients removed from the root zone, transpiration and biomass/yield production.  145 

The main difference between the daily and sub-daily simulation in SWAT occurs in the estimation of surface runoff. The 

SCS Curve Number (CN) method (Soil Conservation Service, 1972) is used for daily simulations and the Green and Ampt 
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Mein Larson infiltration (GAML) method (Mein and Larson, 1973) is used for sub-daily simulations. The CN method is an 

empirical model, widely used, and requires land use, soil, elevation and daily rainfall data as input. The GAML method is a 

physically based model, uses the same spatial coverages as the CN method, and requires more detailed soil information and 150 

sub-daily rainfall records as input.  More details on model theory, equations and processes can be found in Arnold et al. 

(1998), in Gassman et al. (2007) and in Neitsch et al. (2011). 

2.5 Model setup 

The latest version of the SWAT 2012 hydrological model was used in this study. The QSWAT plugin (Dile et al., 2016) 

embedded in QGIS platform was used for the setup and the parameterization of the model. The watershed delineation, 155 

stream parameterization and overlay of soil, land use and slope were automatically completed within the interface. A 

drainage area of 3.6 km2 was chosen to discretize the study area. The area was delineated into 25 sub-basins, which were 

then divided into 175 hydrological response units (HRUs).  

The SWAT models for the Kifissos basin include daily and sub-daily (hourly) rainfall observations. Potential 

evapotranspiration was calculated by the Penman-Monteith method, surface runoff was estimated using the CN method for 160 

the daily model and the GAML method for the hourly model, and the variable storage coefficient method was used to 

calculate the channel routing. The simulation period was from 2017 to 2019 and the first year was used as a warm-up period 

in order to mitigate the unknown initial conditions. The model was calibrated from 01/01/2018 to 31/12/2018 and validated 

from 01/01/2019 to 31/12/2019 for discharge, using the SUFI-2 program  in SWAT-CUP software (Abbaspour et al., 2004, 

2007).  165 

2.6 Sensitivity Analysis, Model Calibration and Validation  

Watershed models are characterized by large uncertainties related to conceptual design, input data and parameters 

(Abbaspour et al., 2015). The model calibration, validation, and uncertainty analysis were achieved with the use of the SUFI-

2 algorithm in the SWAT-CUP software (Abbaspour et al., 2004, 2007). In SUFI-2, uncertainties in parameters (e.g., 

uncertainty in input data, conceptual model, parameters and measured data) are expressed as ranges or uniform distributions. 170 

The concept behind this algorithm is to collect most of the observed data within a narrow uncertainty band. The initial ranges 

of the calibrating parameters are set, based on literature and sensitivity analyses. Then, parameter sets are generated using 

Latin hypercube sampling and the objective function is estimated for each parameter set. The uncertainties are calculated at 

the 2.5% and 97.5% levels of the cumulative distribution of all output variables, and it is referred to as the 95% prediction 

uncertainty (95PPU). The goodness of model performance and output uncertainty are assessed using the P-factor and the R-175 

factor (Abbaspour et al., 2004). The P-factor is the percentage of measured data bracketed by the 95PPU band and it ranges 

from 0 to 1, where 1 means all of the measured data are within model prediction uncertainty. The R-factor is the ratio of the 

average width of the 95PPU band and the standard deviation of the measured data. The values of R-factor range from 0 to 

infinity, where a value near 0 reflects an ideal situation.  The spatial scale of the project and the accuracy of the observed 
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data affect the values of the P-factor and the R-factor (Abbaspour et al., 2015). In this study the Nash-Sutcliffe model 180 

efficiency (NS) was used as an objective function for both daily and sub-daily calibration and validation. The sensitivities of 

the parameters were estimated using the following equation (Eq. 1) (Abbaspour et al., 2015):  

 

    ∑     
 
   ,           (1) 

 185 

where   is the goal function and     are the parameters selected for calibration. The sensitivities are calculated as average 

changes in the objective  function which result from changes in each parameter, while all other parameters are changing. A t-

test is then conducted to evaluate the significance of each parameter   . Parameters with large t-stat and small P-value were 

characterized as sensitive parameters.  

Model validation was achieved using the calibrated parameter ranges without any further changes and the model 190 

performance of the calibration period was compared to the model performance of the validation period. The year 2017 was 

set as a warm-up period, the streamflow data from the year 2018 were used for calibration and the streamflow data from the 

year 2019 were used for validation. The statistics on annual precipitation and daily discharge were calculated for each period 

to overcome biases in discharge patterns. Annual precipitation for 2018 was 566 mm and annual precipitation for 2019 was 

735 mm. Mean and standard deviation of discharge for 2018 were 1.25 and 0.46 and for 2019 were 1.42 and 0.74 195 

respectively. These statistics ensure that the selected periods represent both wet and dry conditions. In the calibration and 

validation process, 18 parameters (Table 3) were used. About 600 simulations per iteration were conducted, and up to three 

iterations, until the results of P-factor and R-factor were satisfying.  

Further evaluation of the model performance was achieved with the use of graphical and statistical techniques (Daggupati et 

al., 2015b; Harmel et al., 2014; Moriasi et al., 2007, 2015). Most commonly used statistical techniques are Nash-Sutcliffe 200 

efficiency (NSE) (Nash and Sutcliffe, 1970) coefficient of determination (R2) (Moriasi et al., 2007) and percent bias 

(PBIAS) (Gupta et al., 1999) as shown in Eqs. (2), (3), and (4). Most commonly graphical techniques are time series charts, 

scatter plots, bar charts, maps and percent exceedance probability curves. The statistics were calculated for both models and 

then their performance was discussed according to guidelines given by (Moriasi et al., 2007, 2015).  

 205 
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where      is the observed discharge,      is the simulated discharge on day i,      is the mean of observed discharge and 210 

     is the mean of simulated discharge. R2 is a measure of how well the variance of measured data is replicated by the 

model. R2 can range from 0 to 1, where 0 means no correlation and 1 indicates perfect correlation and less error variance. 

NSE is a measure of how well the simulated values match the observed values. NSE can range from -∞ to 1, where values ≤ 

0 show that the observed data mean is a more accurate predictor than the simulated values and 1 is a perfect fit between 

simulated and observed values. PBIAS, measures the average tendency of the simulated values to be larger or smaller than 215 

the observed values. The optimum value is 0, positive values show model underestimation and negative values show model 

overestimation. More information about the strengths, weaknesses, and usage of the commonly used measures is presented 

in Moriasi et al. (2015). The SWAT-CUP software is designed mainly for daily, monthly or annually time step. In order to 

calibrate the sub-daily model, the SUFI-2 files required minor modifications.  

Table 3. Daily and sub-daily SWAT calibrated parameters. The method “r” indicates that the parameter value is multiplied by (1 220 
+ a given value), the method “v” indicates that the parameter value is going to be replaced and the method “a” indicates that the 

parameter is to be added by a given value (Abbaspour et al., 2007). 
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3 Results and Discussion 

3.1 Parameter’s sensitivity analysis and calibration  

 

The most sensitive parameters obtained in daily and hourly simulation are presented in Table 4. Sensitive parameters are 

characterized by large t-Test and small p-Value. The parameters were characterized as significantly sensitive when the p-230 

value was less than 0.03. In the daily model, the most sensitive parameters were deep aquifer percolation fraction 

(RCHRG_DP), groundwater delay time (GW_DELAY), lateral flow travel time (LAT_TTIME), average slope steepness 

(HRU_SLP) and moist bulk density (SOL_BD). These parameters were connected to groundwater flow, runoff generation 

and channel routing. In the sub-daily model, the significantly sensitive parameters were average slope steepness 

(HRU_SLP), Manning‟s “n” value for the main channel (CH_N2), effective hydraulic conductivity in main channel alluvium 235 

(CH_K2) and lateral flow travel time (LAT_TTIME). These were all related to channel routing.   

 
 

Parameter File Ext Method Description 

Surface runoff CN2 .mgt r Relative Curve number 

 SURLAG .bsn v Replace Surface runoff lag time 

Groundwater/Baseflow ALPHA_BF .gw v Replace Baseflow alpha factor 

 GW_DELAY .gw a Absolute Groundwater delay 

 RCHRG_DP .gw v Replace Deep aquifer percolation fraction  

 REVAPMN .gw v Replace Threshold depth of water in the shallow aquifer for „„revap‟‟ to 

occur 
 GW_REVAP  .gw v Replace Groundwater „„revap‟‟ coefficient 

 GWQMN  .gw v Replace Threshold depth of water in the shallow aquifer required for 
return flow to occur 

Lateral flow LAT_TTIME .hru v Replace Lateral flow travel time 

 HRU_SLP .hru r Relative Average slope steepness 

Channel OV_N .hru r Relative Manning's "n" value for overland flow  

 SLSUBBSN .hru r Relative Average slope length 

 CH_N2 .rte v Replace Manning‟s „„n‟‟ value for the main channel 

 CH_K2 .rte v Replace Effective hydraulic conductivity in main channel alluvium 

Soil ESCO .bsn v Replace Soil evaporation compensation factor 

 SOL_K .sol r Relative Saturated hydraulic conductivity of the soil layer 

 SOL_BD .sol r Relative Moist bulk density 

 SOL_AWC .sol r Relative Available water capacity of the soil layer 
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The differences in the sensitivity of the calibrated parameters of the two models reflect the impact of the operational time 

step on model performance (Boithias et al., 2017; Jeong et al., 2010). In particular, the hourly model is characterized by 

larger GWQMN and GW_REVAP values than the daily model. GWQMN is the threshold depth of water in the shallow 

aquifer required for return flow to occur and GW_REVAP controls the water movement from the shallow aquifer into the 240 

overlying unsaturated soil layers. As these parameters increase, the rate of evaporation increases up to the rate of potential 

evapotranspiration, resulting in a corresponding decrease of the baseflow. Furthermore, the fitted value of CH_N2 in the 

hourly simulation was 0.11(   
 ⁄  ) and was larger than 0.08 (   

 ⁄  ) in the daily simulation. The CH_N2 parameter 

affects the rate and the velocity of flow (Boithias et al., 2017). Therefore, the larger CH_N2 value was connected to smaller 

flow velocity. According to Boithias et al. (2017), the CH_N2 parameter is more sensitive at the hourly time step rather than 245 

the daily time step, because at the daily time step the flow peak is influenced by other processes decreasing the sensitivity of 

the CH_N2. In addition, the value range for CN2 was smaller for the sub-daily model, leading thereby to lower peak flows. 

Other differences were average slope steepness (HRU_SLP), average slope length (SLSUBBSN), groundwater delay time 

(GW_DELAY) and Manning's "n" value for overland flow (OV_N). Their values were all smaller in sub-daily simulation. 

Overall, the differences between the two models lay mostly in the different runoff estimation methods used by the two 250 

models. 

It is worth noting that the observations, procedures and assumptions made for this study may affect the results of this study. 

The values of the calibrated parameters and their sensitivities are influenced by the type and quality of input data, the 

conceptual model, the choice of the objective function and inaccuracies in measured input data used for calibration and 

validation (Abbaspour et al., 2015; Arnold et al., 2012; Polanco et al., 2017).   255 

 

Table 4.  Daily and sub-daily SWAT calibrated parameters and their sensitivities.  

Parameters Initial ranges Daily model Sub-Daily model 

t-Test p-Value Calibrated ranges t-Test p-Value Calibrated ranges 

Min Max Min Max Min Max 

CN2 -0.10 0.10 0.38 0.70 -0.04 0.10 -0.09 0.93 0.00 0.10 

SURLAG 0.00 10.00 0.40 0.69 0.00 10.00 -0.36 0.72 4.00 9.00 

ALPHA_BF 0.00 1.00 -0.15 0.88 0.05 0.69 -0.23 0.82 0.50 1.00 

GW_DELAY -30.00 90.00 4.78 0.00 10.00 95.00 0.51 0.61 10.00 80.00 

RCHRG_DP 0.00 0.50 3.44 0.00 0.00 0.50 0.14 0.89 0.11 0.40 

REVAPMN 1000.00 2000.00 1.51 0.13 990.00 1800.00 0.49 0.62 800.00 1800.00 

GW_REVAP  0.02 0.20 -1.37 0.17 0.02 0.20 -0.16 0.87 0.06 0.21 

GWQMN  0.00 500.00 0.69 0.49 100.00 500.00 0.38 0.71 150.00 500.00 

LAT_TTIME 0.00 180.00 15.23 0.00 0.00 170.00 14.59 0.00 0.00 170.00 

HRU_SLP -0.50 3.00 -3.87 0.00 -0.01 3.00 -3.71 0.00 0.20 2.30 

OV_N -0.50 3.00 -0.94 0.35 -0.30 3.00 -0.73 0.47 -0.05 2.00 
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SLSUBBSN -0.20 0.20 2.11 0.04 -0.10 0.20 0.89 0.37 -0.06 0.20 

CH_N2 0.01 0.30 0.09 0.93 0.01 0.20 6.52 0.00 0.03 0.20 

CH_K2 0.00 127.00 -0.83 0.41 0.00 80.00 3.52 0.00 0.00 50.00 

ESCO 0.50 0.95 -0.43 0.67 0.50 0.95 -1.35 0.18 0.50 0.95 

SOL_K -0.80 0.80 -0.94 0.35 -0.20 0.80 -1.98 0.05 -0.10 0.68 

SOL_BD -0.30 0.30 -5.69 0.00 -0.10 0.30 -1.31 0.19 -0.01 0.27 

SOL_AWC -0.05 0.05 -1.53 0.13 -0.03 0.03 -0.90 0.37 -0.03 0.02 

 

3.2 Daily and sub-daily model performances 

Quantitative statistics and criteria recommended by Moriasi et al. (2007, 2015) were used to evaluate the model 260 

performance. In order to investigate the influence of rainfall on model performance and compare daily outputs to hourly 

outputs, the hourly outputs were aggregated to daily averages. Figure 2 shows the temporal dynamics of the hydrographs 

reproduced by both infiltration methods. The high flow season is observed during winter and spring.  The low flow season is 

observed in summer and early fall due to high evapotranspiration. Figure 3 shows the observed versus the simulated daily 

discharge aggregated from hourly outputs during the calibration and validation processes. Figure 4 presents the flow duration 265 

curves of the models, indicating good agreement between observed and simulated values. Generally, in the sub-daily model, 

the simulated discharge peaks did not always match the observed values and were sometimes considerably lower. 

The performance statistics are illustrated in Table 5 and indicate reasonable calibrated models for both infiltration 

approaches. Model performance using the CN method showed better results than the GAML method. In particular, the NSE 

and R2 indices for the daily model were 0.84 and 0.79 for the calibration period and 0.87 and 0.86 for the validation period. 270 

For the sub-daily model the NSE and R2 indices were 0.53 and 0.49 for the calibration period and 0.63 and 0.6 for the 

validation period respectively. In addition, when the hourly outputs were aggregated to daily averages the NSE was 

improved comparing the NSE of the sub-daily model (e.g., sub-daily model: NSEcalibration = 0.49 and NSEvalidation = 0.6, daily 

averages: NSEcalibration = 0.66 and NSEvalidation = 0.78). However, the daily model outperformed the daily aggregated discharge 

during both calibration and validation periods. Furthermore, the daily model showed smaller modeling uncertainties with P-275 

factor 0.79 and R-factor 1.58 (compared to 0.83 and 1.71 respectively for the sub-daily model). 

Overall, the general agreement between the observed and the simulated values during the calibration and the validation 

period indicate that the choice of the calibration and validation periods was relevant. According to Moriasi et al. (2015) 

model performance can be evaluated as “satisfactory” for flow simulations  if daily, monthly, or annual R2 > 0.60, NSE > 

0.50, and PBIAS ≤ ±15% for watershed-scale models. These ratings should be modified to be more or less strict based on 280 

evaluation time step. Typically, model simulations are poorer for shorter time steps than for longer time steps (e.g., daily 

versus monthly or yearly) (Engel et al., 2007). Considering these guidelines, the daily and sub-daily models showed 

satisfactory performance for both calibration and validation periods.”  
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Figure 2. Observed and simulated discharge (m3 s-1) at the daily time step (a, b) and at the hourly time step (c, d). 
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Figure 3. Observed and simulated daily discharge (m3 s-1) aggregated from hourly outputs: calibration period (a) and validation 290 
period (b). 

 



15 

 

 

Figure 4. Observed and simulated flow duration curves (m3 s-1) at the daily time step (a), at the hourly time step (b), and at the 
daily discharge aggregated from hourly outputs time step (c). 295 

 

Table 5. Model evaluation statistics of the daily, sub-daily and daily aggregated from hourly outputs SWAT models for the 
calibration and validation periods. 

Time-step Period p-Factor r-Factor R
2 NSE PBIAS(%) 

Daily 
Calibration 0.74 1.41 0.84 0.79 6.4 

Validation 0.79 1.58 0.87 0.86 4.2 

Sub-Daily 
Calibration 0.72 1.33 0.53 0.49 16.9 

Validation 0.83 1.71 0.63 0.6 11.7 

Daily averages Calibration - - 0.76 0.66 16.8 

 Validation - - 0.82 0.78 11.6 

 

3.3 Comparison of selected rainfall events  300 

Figure 5 shows the hydrographs of selected high rainfall events that occurred in the years 2018 and 2019 (Tatoi station, 

Lagouvardos et al., 2017). According to intensity-duration-frequency (IDF) curves of the study area the approximate return 

period of the selected episodes was ten years (T=10 years). These events were investigated in order to examine the accuracy 

of the sub-daily model and to compare the peak discharges and time of peak of the two models. Table 6 displays the rainfall 

characteristics of each event (i.e., peak discharge, time of peak and average discharge).  305 

Generally, the hourly model underestimated the peak flows with values much lower than the observations for the majority of 

the events. These results confirm that the CN method estimated better the observed values than the GAML method and was 

able to estimate with greater accuracy the peak discharge in most of the events. The better performance of the CN method in 

comparison to the GAML method in this study is consistent with the results of other studies (Bauwe et al., 2016; Ficklin and 

Zhang, 2013; Kannan et al., 2007; King et al., 1999). Bauwe et al. (2016) evaluated both CN and GAML methods and 310 
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highlighted that the CN method performed slightly better than the GAML method. Ficklin and Zhang (2013) generally 

suggested that for daily simulations the CN method predicted more accurately streamflow as compared to the GAML model. 

Kannan et al. (2007) identified a suitable combination of ET runoff generation methods and reported that the CN method 

performed better than the GAML method. Kannan et al. (2007) conducted a sensitivity analysis to identify the best 

combination of evapotranspiration and runoff method for hydrological modeling and concluded that the CN method 315 

performed better than the GAML method for streamflow because the GAML method tends to hold more water in the soil 

profile and predict a lower peak runoff rate. King et al. (1999) concluded that the GAML method appeared to have more 

limitations in accounting for seasonal variability than the CN method.  

In this study, the daily model produced higher discharge peaks than the hourly model and generally estimated better the 

observed values.  These results could be due to drawbacks of the GAML method, such as the requirement for detailed soil 320 

information and high resolution rainfall data in a sub-daily time step (King et al., 1999). The GAML method assumes that 

the soil profile is characterized by homogeneity and that the previous soil moisture is distributed uniformly in the soil profile 

(Jeong et al., 2010). Therefore, the uncertainty in the resolution of the rainfall data, the heterogeneity of the soil formations 

and the upcoming difficulty in determining the parameters' values for parameterization could affect the method's efficiency. 

The selection of sub-daily precipitation input time step as well as the resolution of the precipitation data have a great impact 325 

on model results when using the GAML method and it should be based on the scale and characteristics of the watershed 

(Bauwe et al., 2016; Jeong et al., 2010; Kannan et al., 2007). Furthermore, observational errors in the model input data (i.e., 

weather, soil and land use data) include inaccuracies in the estimation of channel and hillslope velocities and channel 

geometry, in the nature of the sensor, environmental conditions and data collection (Guzman et al., 2015). These errors can 

generate variability, lead to undesired trends, and influence the model calibration and validation results (Kamali et al., 2017). 330 

In addition, the complex land use characteristics and processes of an urban/peri-urban environment and assumptions made 

during the model structure/parameterization process (e.g., selection of parameters for calibration, objective function, and 

conceptual simplifications) increase the uncertainty of the results. 

 

 335 
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Figure 5. Observed and simulated hourly discharge (m
3
 s

-1
) for the heavy rainfall events that occurred in 2018 and 2019: (a) event 

from 12/01-14/01/2018; (b) event from 05/05-07/05/2018; (c) event from 29/09-01/10/2018; (d) event from 05/02-07/02/2019; (e) 
event from 12/11-14/11/2019; (f) event from 29/12-31/12/2019. 

 340 

Table 6. Rainfall characteristics of selected events for the years 2018 and 2019. 

Events Observed Simulated 

Average 
discharge (m3/s) 

Peak discharge 
(m3/s) 

Time of peak 
(UTC) 

Average 
discharge (m3/s) 

Peak discharge 
(m3/s) 

Time of peak 
(UTC) 

12/01-14/01/2018 2.6 10.7 6:00 2.2 7.1 5:00 

05/05-07/05/2018 2.2 11.1 20:00 2.1 6.6 21:00 

29/09-01/10/2018 5.7 17.2 18:00 5.2 8.9 18:00 

05/02-07/02/2019 3.6 16.2 1:00 2.9 6.2 00:00 

12/11-14/11/2019 2.9 12.3 3:00 2.4 3.5 3:00 

29/12-31/12/2019 4.9 14.8 21:00 3.6 6.9 21:00 
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4 Conclusions 

Experimental catchments provide long term time series of hydrological data which are essential for improved application of 

best management practices and the development and validation of watershed models.  In this study, discharge was monitored 345 

for three years (2017-2019) in an experimental basin with mixed-land-use characteristics (i.e., urban/peri-urban), located in 

Athens, Greece. Discharge simulation, calibration and validation were achieved with the application of SWAT model, which 

has been increasingly used to support decisions on various environmental issues and policy directions. Daily and hourly 

rainfall observations were used as inputs to investigate the influence of rainfall resolution on model performance in order to 

analyze the mechanisms governing surface runoff at the catchment scale. Surface runoff was estimated using the CN method 350 

for the daily model and the GAML method for the hourly model. 

A sensitivity analysis conducted in this study showed that the parameters related to groundwater flow were more sensitive 

for daily time intervals and channel routing parameters were more influential for hourly time intervals. These findings 

indicate that the model operational time step affect parameters‟ sensitivity to the model output, thus demonstrating the need 

for different model strategy for the simulation of sub-daily hydrological processes.  355 

Quantitative statistics of the observed and the simulated records indicate that the calibration and validation processes 

produced acceptable results for both infiltration methods. Additionally, graphical techniques at the outlet station show that 

both models succeed in capturing majority of seasonality and peak discharge. Generally, the daily model performed better 

than the sub-daily model in simulating runoff. The CN method produced higher discharge peaks than the GAML method and 

estimated better the observed values. The differences in the calibrated values of the two models lay mostly in the different 360 

runoff estimation methods used by the two models. In addition, errors in the quality of input data, the complex land use 

characteristics of an urban/peri-urban environment and assumptions made during the model structure/calibration process 

may increase the uncertainty of the outputs.  

Overall, the general agreement between observations and simulations in both models suggests that the SWAT model appears 

to be a reliable tool to predict discharge in a mixed-land-use basin with high complexity and spatial distribution of input 365 

data. Furthermore, this study contributed to the understanding of the mechanisms controlling surface runoff and the 

parameters than influence the hydrological processes that take place in an urban/peri-urban hydrological environment. It 

should be noted that several factors such as data limitation, observational errors in input data, complexities of spatial and 

temporal scales, and inaccuracies in model structure may lead to uncertainty in model outputs. In the future, emphasis will be 

placed in the quantification of the parameter uncertainty by including more observed variables in the calibration process such 370 

as evapotranspiration and soil moisture satellite data. 

 

Code availability. The source codes of the SWAT model are available at the website http://swat.tamu.edu/ (USDA Agricultural Research 

Service and Texas A&M AgriLife Research) 

 375 

http://swat.tamu.edu/
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Data availability. The DEM data were downloaded from the website https://earthexplorer.usgs.gov/ (Shuttle Radar Topography Mission, 

SRTM). The land use data were downloaded from the website https://land.copernicus.eu/ (Corine Land Cover, CLC 2018). The soil data 

were downloaded from the website http://www.fao.org/ (Food and Agriculture Organization, FAO). The weather data were downloaded 

from the website https://www.meteo.gr/ (National Observatory of Athens, NOA). The discharge data were downloaded from the website 

https://openhi.net/ (Open Hydrosystem Information Network). 380 
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