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Abstract. Statistical learning methods offer a promising approach for low flow regionalization. We examine seven statis-

tical learning models (lasso, linear and non-linear model based boosting, sparse partial least squares, principal component

regression, random forest, and support vector regression) for the prediction of winter and summer low flow based on a hy-

drological diverse dataset of 260 catchments in Austria. In order to produce sparse models we adapt the recursive feature

elimination for variable preselection and propose to use three different variable ranking methods (conditional forest, lasso5

and linear model based boosting) for each of the prediction models. Results are evaluated for the low flow characteristic Q95

(Pr(Q>Q95) = 0.95) standardized by catchment area using a repeated nested cross validation scheme. We found a generally

high prediction accuracy for winter (R2
CV of 0.66 to 0.7) and summer (R2

CV of 0.83 to 0.86). The models perform similar or

slightly better than a Top-kriging model that constitutes the current benchmark for the study area. The best performing mod-

els are support vector regression (winter) and non-linear model based boosting (summer), but linear models exhibit similar10

prediction accuracy. The use of variable preselection can significantly reduce the complexity of all models with only a small

loss of performance. The so obtained learning models are more parsimonious, thus easier to interpret and more robust when

predicting at ungauged sites. A direct comparison of linear and non-linear models reveals that non-linear processes can be

sufficiently captured by linear learning models, so there is no need to use more complex models or to add non-linear effects.

When performing low flow regionalization in a seasonal climate, the temporal stratification into summer and winter low flows15

was shown to increase the predictive performance of all learning models, offering an alternative to catchment grouping that is

recommended otherwise.

1 Introduction

Estimating long term averages of low flow in ungauged basins are crucial for a wide range of applications, e.g. water resources

management and engineering, hydropower planing or ecological issues (Smakhtin, 2001). The two main approaches for pre-20

dicting low flow indices are either based on physical-based models (e.g. Euser et al., 2013), or statistical models. Statistical low

flow models can be further subdivided into geostatistical models (e.g. Castiglioni et al., 2009, 2011; Laaha et al., 2014) and

regression based methods (e.g. Laaha and Blöschl, 2006, 2007); an overview is given by Salinas et al. (2013). Regression meth-

ods cover a wide spectrum of models and especially in the last decade there was gaining interest in statistical learning models

in hydrology (Abrahart et al., 2012; Dawson and Wilby, 2001; Nearing et al., 2021; Solomatine and Ostfeld, 2008), with the25

terms statistical learning and machine learning being used synonymously. The applications include rainfall-runoff modeling by
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neural networks (e.g. Kratzert et al., 2019a, b), using Support Vector Machines (SVM) for prediction of karst tracers (Mewes

et al., 2020) or reference evapotranspiration (Tabari et al., 2012) and random forest for flood event classification (Oppel and

Mewes, 2020). Nevertheless, the implementation of statistical learning methods for predicting low flow is still rare.

The considered methods so far can be classified into linear and non-linear statistical learners. Linear methods include, beside30

ordinary least squares regression approaches (OLS, Kroll and Song, 2013; Zhang et al., 2018; Ferreira et al., 2021), also linear

models with a penalization parameter like elastic net (Worland et al., 2018), and linear boosting models (Tyralis et al., 2021).

Further approaches are based on dimension reduction techniques such as partial least squares regression (PLS, Kroll and Song

(2013)) or principal component regression (PCR, Kroll and Song, 2013; Nosrati et al., 2015). An example of non-linear ex-

tensions to the linear model is the Enhanced adaptive regression through hinges (Earth, Ferreira et al., 2021). Furthermore,35

various forms of tree-based methods were applied in low flow prediction, as Random Forest (RF, Ferreira et al., 2021; Zhang

et al., 2018; Worland et al., 2018), gradient boosting with tree stumps (Tyralis et al., 2021) or M5-cubist (Worland et al., 2018).

Additionally, the most comparative study of Worland et al. (2018), used an ensemble learning technique called meta M5-cubist,

a non-linear kernel extension of K-nearest neighbour (KKNN) and two variants of support vector regression (polynomial and

gaussian kernel).40

Given the large number of learning methods, it is a priori unclear which method will perform best for a particular study area.

Only few studies have conducted a comparative assessment, typically focusing on single methods or a particular group of learn-

ers (Kroll and Song, 2013; Zhang et al., 2018; Worland et al., 2018; Ferreira et al., 2021). Comparing only linear models (PLS,

PCR, OLS) Kroll and Song 2012 could not find any superior model for 130 stations in the eastern USA. Tree based methods

performed better in terms of point prediction for the CAMELS data set (Tyralis et al., 2021) or an Australian data set of 60545

stations (Zhang et al., 2018), but both studies showed good performance of less complex linear models. Ferreira et al. (2021)

showed that Earth and RF perform similar for 51 stations in Brazil and Worland et al. (2018) achieved good performance in

terms of a root mean squared error (RMSE) for the ensemble learning model analysing 224 stations in south-eastern USA. All

of these studies were conducted for different hydroclimatic settings, but none did focus on a seasonal climate, where low flows

in summer and winter are generated by different processes and should be assessed separately. Such an assessment is missing50

and will be addressed in this study.

Results of Worland et al. (2018) and Ferreira et al. (2021) indicate that more complex models seem to perform better than

more parsimonious ones, making model interpretation difficult and plausibility of parameters hard to judge. This leads to a

major criticism of statistical learning models, as they are often inferred as “black box” models (Efron, 2020; See et al., 2007),

meaning that prediction accuracy and process understanding cannot be reached at the same time (Kuhn and Johnson, 2019).55

One major approach of improving the interpretability of statistical learning models, can be summarized under the concept of

variable selection. Variable selection is a wide field of research, where we can basically identify three major approaches: (i)

model inherent variable selection as in e.g. lasso, boosting models, or tree based methods; (ii) filter based methods (Guyon

and Elisseeff, 2003), which include correlation based variable selection or univariate regression filters; and finally (iii) wrapper

based methods (Kohavi and John, 1997) such as recursive feature elimination (RFE) (Guyon et al., 2002; Granitto et al., 2006)60

or genetic algorithms (Kuhn and Johnson, 2019). Model inherent selection is a fast selection method, which main downside is
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that it is restricted to the underlying model. Filter based methods, where one advantage is usually the computation time, may

suffer from weaker predictive performance, as filtering options have no link to the final prediction model (Kuhn and Johnson,

2019; Guyon and Elisseeff, 2003). In contrast, wrapper methods have a higher computational burden, and greedy search al-

gorithms as RFE may only find a local minimum, especially if interactions are present (Kuhn and Johnson, 2019). The RFE,65

like any variable selection method, can suffer from a bias in the selection procedure (Ambroise and McLachlan, 2002), if poor

validation strategies are chosen. Nevertheless, RFE can be an efficient technique to substantially reduce the predictor set (Kuhn

and Johnson, 2019).

Although there appears to be a general consensus among hydrologists that parsimonious models offer a number of advan-

tages over more complex models, including better parameter interpretability and robustness, surprisingly little effort has been70

undertaken to assess the merits of variable selection for statistical low flow regionalization. This is especially the case for sta-

tistical learning methods, which generally allow for higher complexity than regionalization approaches. Apart from stepwise

regression procedures (e.g. Laaha and Blöschl, 2007; Kroll and Song, 2013), Tyralis et al. (2021) tested the inherent variable

selection of the boosting algorithm and found the number of selected variables to be depending on the runoff characteristics

to be predicted. Another approach, which uses at least inherent variable rankings for predictor variables, is to employ variable75

importance as the decrease in accuracy criterion of RF (Worland et al., 2018). They additionally used partial dependence plots,

which they found beneficial for analysing relationships between predictors and the response. However, these approaches can be

misleading, when variables in boosting models are falsely selected (Meinshausen and Bühlmann, 2010; Hofner et al., 2015), or

variables in RF are ranked mistakenly high (Strobl et al., 2007). The most comprehensive approach was used by Ferreira et al.

(2021), who employed the RFE for three different learning methods (OLS, Earth, RF), but did not include other prospective80

learning methods. While all of these studies found variable selection or calculation of variable importance to be a crucial step,

a broader assessment is missing that sheds light on the value of variable selection for different statistical learning approaches.

Therefore, we propose to use RFE for our variable selection and suggest three different approaches for computation of the

variable ranking to disconnect the variable ranking and the final prediction model.

In this paper we perform a comparative assessment of seven statistical learning models for a comprehensive Austrian data set85

covering 260 stations. With our study, we specifically addresses the lack of research for comparing these methods in a strongly

seasonal climate with summer and winter low flow regimes. The following research questions will be addressed: (i) How well

do statistical learning models perform as compared to established models (and which of the methods perform best)? (ii) What

is the effect of different variable preselection methods on the performance of these models? (iii) What is the relative value of

non-linear learning models compared to linear ones? (iv) Which variables can be identified as the most important drivers of90

low flow for Austria? The Model performance is evaluated by a repeated nested cross validation (CV) scheme, which provides

a confident assessment of how well the models perform at ungauged sites.
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2 Data

Our study area consists of 260 gauging stations in Austria (Fig. 1). Austria can be described as physiographic and hydrological

diverse and is therefore a suitable testbed for regionalisation models. The altitude of gauges ranges from 143 to 1891 m a.s.l..95

Annual precipitation vary from 530 mm in the lowlands, up to 2223 mm in high alpine regions. Mean annual temperature

ranges from 2 to 11 °C. The 260 gauging stations were all consistently monitored between 1978 and 2013. All these stations
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Figure 1. Overview of the 260 gauging stations used in the study.

are available at the Austrian Hydrological Service (ehyd) and catchment characteristics were available from previous studies

(e.g. Laaha and Blöschl, 2006). Low flow and catchment characteristics are both based on the total upstream catchment of each

gauging station. We calculated Q95, where Q95 (Pr(Q>Q95) = 0.95) is the flow that is exceeded on 95 % of all days. Low100

flow in Austria can be separated into two major seasonal regimes, with low flows in the Alpine region occurring mainly in the

winter half-year and in the lowlands mainly in the summer half-year. To account for these different processes, we calculated

Q95 for the summer season (from May to October) and for the winter season (from November to April) and both low flows

(winter and summer) will be analyzed for the full study domain. Summer and winter Q95 was subsequently standardized by

the catchment area. The resulting specific low flow discharges q95 (l s−1km−2) were considered in the further analyzes. For105

the study area, the average winter low flow is 6.0 l s−1km−2, which is considerably lower than the summer low flow, with 8.9

l s−1km−2 on average. Figure 2 shows that summer q95 tends to have more near zero values than winter q95 and additionally

summer low flow has a higher variation (standard deviation of 3.2 in the winter and 6.7 l s−1km−2 in the summer). Summer

q95 was transformed by the square root transformation to reach a symmetric distribution. After model fitting, the predictions

were back-transformed for performance evaluation.110
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Figure 2. Absolute frequency (histogram and kernel density estimate) of summer q95 and winter q95 for all 260 stations.

2.1 Catchment characteristics

We use a set of 87 covariables as possible predictors, some of which are highly correlated. These covariables can be separated

into catchment and climate characteristics. The catchment characteristics used in this study are fully described in e.g. Laaha

and Blöschl (2005, 2006). They consist of nine land use categories, nine geological categories and information about catchment

altitude, stream network density and steepness of the slope in the catchment. An overview is given in Table 1.115

2.2 Climate characteristics

The calculation of the climate characteristics is based on the the SPARTACUS dataset for daily precipitation (Hiebl and Frei,

2018), daily minimum and maximum temperature (Hiebl and Frei, 2016). Data is available from 1961 to 2018 and the spatial

resolution is 1× 1 km. Additionally, we retrieved the HISTALP dataset of the fraction of solid precipitation (Efthymiadis

et al., 2006; Chimani et al., 2011), which has a coarse spatial resolution of 5× 5 min and a temporal range from 1801 to120

2014. The dataset was not processed for a finer resolution, as it already relies on a statistical relationship of temperature to

solid precipitation (Chimani et al., 2011). To calculate specific climatological variables for each gauging station, the nearest grid

point to the gauging station, which lies inside the catchment was used. The gridded datasets were used to calculate precipitation

sums and mean, minimum and maximum temperature. Daily precipitation was further used to estimate the number of days

without precipitation for the winter and the summer season. We defined a day without precipitation if the precipitation sum125

on this day was below 1mm. Potential evapotranspiration was calculated after Hargreaves (Hargreaves, 1994) with the SPEI

package in R (Beguería and Vicente-Serrano, 2017). Furthermore, climatic water balance, aridity and the fraction of snow were
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Table 1: Descriptions of the catchment characteristics that are used in the study. Abbreviations are further used in plots.

Precipitation, climatic water balance, potential evapotranspiration, aridity index, snowmelt, snow fraction and temperature

variables are used on an annual, seasonal and a half-year basis. These different accumulation periods are indicated by an

extension of the indices (annual, spring, summer, autumn, winter, winter,hy and summer,hy)

Variable Description Unit

H+, H0, HM , HR maximum, minimum, mean and range of catchment altitude m

A catchment area km2

LAT, LON latitude and longitude of gauging station decimal degrees

E altitude of gauging station m

SM mean catchment slope %

SSL, SMO , SST fraction of slight, moderate and steep slope of the catchment %

D stream network density 102mkm−2

LU , LA, LC , LF , LG, LR, LW ,

LWA, LGL

fraction of urban areas, agricultural areas, permanent crop, forest, grass-

land, wasteland, wetlands, water surfaces, glacier in catchment
%

GB , GG, GT , GF , GL, GC , GGS ,

GGD , GSO

fraction of bohemian massif, quaternary sediments, tertiary sediments,

flysch, limestone, crystaline rock, shallow and deep groundwater table,

source region in catchment

%

P precipitation mm

ETP potential evapotranspiration mm

AI aridity index -

CWB climatic water balance mm

S snowmelt mm

SF snow fraction %

T+, T0, TM , TR maximum, minimum, mean and range of temperature °C

P0 average number of days without precipitation (< 1mm) days

PH average number of days with precipitation > 5 times the mean days

computed. Snowmelt is approached by a method of Walter et al. (2005), which is included in the R package EcoHydRology

(Fuka et al., 2018). All climatological variables were calculated for the period of 1978 to 2013. Our data was restricted up to the

year of 2013, as solid precipitation was only available till the end of 2013. For precipitation, climatic water balance, potential130

evapotranspiration, snowmelt, snow fraction and aridity we calculated average annual sums, and mean sums for each season

and for the winter and summer half year (November – April, May – October). Number of days without precipitation were

calculated for each half year and averaged over the whole period. Mean, minimum, maximum temperature were calculated for

the whole year, and the winter and summer period. Finally, we computed the annual temperature range. All variables related to

snow (snowmelt and snow fraction) were transformed by the square root.135
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3 Methods

This section is divided into two parts. The first part considers the seven statistical learning models used for prediction of

summer and winter q95. The second part gives a short description of the RFE algorithm and the proposed variable ranking

methods. Additionally, there will be an overview of our repeated nested cross validation scheme.

3.1 Models140

We considered seven statistical learning models that can be structured as follows. Two prediction models are using dimension

reduction: (i) principal component regression (PCR) and (ii) sparse partial least squares (sPLS). Additionally, we used two

linear models that possess an inherent variable selection method – (iii) the LASSO and (iv) a linear model based boosting

approach (GLM). If simple linear terms are not sufficient we can extent the GLM model by non-linear smoothing functions.

This results in the (v) generalized additive boosting model (GAM). A maximum likelihood estimation of a generalized additive145

model in a regional frequency approach for low flow was already adapted by Ouarda et al. (2018). Finally, we are using two

models that are popular in hydrology: (vi) Random Forest (RF, Tyralis et al. (2019)) and (vii) Support Vector regression (SVR,

Raghavendra. N and Deka (2014)).

All models can be considered as regression models where the response variable Y is a vector of length N (N = 260) catchment

observations, which can either be summer q95 or winter q95. The predictor matrix X is a N × p matrix with elements xij150

representing the values of p = 87 numeric predictors for the i-th catchment.

3.1.1 LASSO

The LASSO was originally introduced by Tibshirani (1996), where the regression coefficients βlasso can be defined as follows:

βlasso = argminβ{1/2
N∑
i=1

(yi −β0 −
p∑

j=1

xijβj)+λ

p∑
j=1

|βj |}, (1)155

with β0 as the intercept and βj as the regression coefficients. The LASSO model performs a penalized model optimization

known as L1 regularization that reduces parameters and shrinks the model. A tuning parameter lambda controls the strength

of the penalty and thus the parsimony of the model. Setting lambda to zero results in the ordinary least squares regression

estimates, whereas large values of lambda lead to a simple intercept model. In between these limits, lambda is performing a

continuous subset selection (Hastie et al., 2009). We are using the glmnet package in R for computation (Simon et al., 2011),160

where the coefficients are estimated by cyclical coordinate descent (Friedman et al., 2010). An optimal solution for lambda is

chosen by 10-fold cross validation, where we choose lambda by the 1-standard error rule. We prefer this over using lambda with

minimum error, as this results in sparser and more robust models in our case. The lasso approach can handle high correlated

data, coefficients can be shrunk to zero and correlated variables do not enter the final model (Friedman et al., 2010).
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3.1.2 Principal component regression (PCR)165

Principal component regression (PCR) is a regression method that can deal with multicollinearity and high dimensional data.

PCR projects the predictor matrix X on an orthogonal space, which ensures that the final predictors are uncorrelated. The

final dimension of our regression problem can thus be reduced from p (number of predictors) to M (number of principal

components). Using M = p would result in the least squares estimate for the full parameter space. The principal components

of X are defined as zm =Xνm, where zm are the principal components and νm are the principal directions of X. The final170

regression coefficients of the principal components (zm) can be defined by (Hastie et al., 2009):

βpcr(M) =

M∑
m=1

θmνm, (2)

where θm is θm = Cov(zm,y)/V ar(zm). As for the LASSO, X has to be standardized in PCR before estimating the regres-

sion coefficients, as the principal components are dependent on the scaling of the initial variables. The number of principal

components M is optimized by a 10-fold cross validation and the regression coefficients are estimated by ordinary least squares.175

We fit our PCR model using the pls package in R (Mevik et al., 2020).

3.1.3 Sparse partial least squares regression (sPLS)

Additionally to LASSO and PCR we propose a third dimension reduction method, partial least squares regression (PLS). PLS

uses linear combinations of X for the regression of Y, but these linear combinations are now constructed in dependence to Y

(Hastie et al., 2009). This overcomes the drawback of PCR, which can not guarantee that the first principal components of X180

are most suited to predict Y. PLS, originally developed by Wold (1966) is an iterative process that starts with centering the

response variable (U1) and the predictor variables (V1j). Next, p univariate regression models are constructed by regressing U1

against each centered predictor variable V1,j , which gives us p regression coefficients. These regression coefficients are now

used to compute the first PLS component, which is the weighted average defined as:

T1 =

p∑
j=1

wjbjV1j , (3)185

where bj are the univariate regression coefficients defined as bj = Cov(V1j ,U1)/V ar(V1j), and the weights are wi = V ar(V1j).

In a next step U2 is estimated by computing the residuals of the regression model U1 ∼ T1. Furthermore, the predictor matrix

V2j is updated by the residuals of the models V1j ∼ T1, where each predictor variable is regressed against the first PLS com-

ponent. This process is repeated until M PLS components are extracted (de Jong, 1993). As PLS yields a high variability in the

performance evaluation, we used an adapted PLS procedure, which is called sparse PLS (sPLS). This method was introduced190

by Chun and Keleş (2010) and includes a variable selection, as a L1 penalty is added to the calculation of the PLS components.

The model is tuned by 10-fold CV in the spls package in R (Chung et al., 2019).
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3.1.4 Linear and non-linear model based boosting

In this section the model based boosting algorithm is presented, which is used for fitting a simple linear model (GLM) and

a generalized additive model (GAM). Boosting refers to an ensemble learning approach that converts a set of weak models,195

termed learners, into a strong model with better model fit. A current approach is functional gradient descent boosting, a stage-

wise, additive approach, which improves a fitted model by adding, each step, a new learner that reduces the model errors. When

predictors X are entered as separate learners, so that the prediction function f is an additive estimate based on simple linear

terms fj(xj) = βjxj , the approach allows one to obtain an inherent variable selection and can penalize regression coefficients

(Mayr and Hofner, 2018). In addition, model based boosting can deal with multicollinearity and can handle e.g. linear, non-200

linear, spatial or random effects (Hofner et al., 2014).

Model based boosting, as applied in this study, aims to minimize an empirical risk

R := 1/N

N∑
i=1

ρ(yi,fi) (4)

based on the so-called loss function ρ(y,f) characterizing the inadequacy of the fitted model. For regression problems including

GLM and GAM we use the squared error loss function205

ρ(y,f) =
1

2
|y− f |2, (5)

which results in a stage-wise least-square minimization of the residuals. The boosting algorithm is an iterative process, with

the following steps (Bühlmann and Hothorn, 2007; Mayr and Hofner, 2018; Melcher et al., 2017):

1. In a first step all base learners are defined. A base learner can be an e.g. linear, non-linear, spatial or random effect.

The two models used in this study incorporate linear base learners for the linear model (GLM), and linear and non-linear210

effects for the GAM model. As shown by initial analysis, spatial effects or higher order interaction effects did not improve

the prediction performance, hence they were discarded from the analysis. Non-linear effects are modeled as P-splines

(Schmid and Hothorn, 2008), which are decomposed into an unpenalized linear base learner and a penalized non-linear

base learner, each with 1 degree of freedom. The non-linear base learner is centered by subtracting the unpenalized linear

part. This approach is proposed by Kneib et al. (2009) and Fahrmeir et al. (2004) and offers the possibility to spot the215

predictor variables that are added as linear or non-linear effects. This leads to p+1 (p predictor variables plus one term

for an intercept) linear base learners for the GLM model, and 2p+1 base learners for the GAM model.

2. In the first iteration the counter m, which is the number of boosting steps, is set to 0 and the initial function estimate is

set to f̂ [m] = f̂ [0]. The first function estimate (f̂ [0]) is determined by an offset, which is the mean of the response for our

purpose (f̂ [0] := y).220

3. The following steps are now repeated until the maximum number of boosting steps is reached, which was fixed to 1000

in this study:
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– The tuning parameter m is increased by 1.

– The negative gradient − d(ρ)
d(f) is computed and evaluated at the function estimate of the previous iteration f [m−1],

resulting in the negative gradient vector u[m].225

– Each base learner is now fitted by univariate regression against u[m] and the best fitting base learner (=: ĝ[m]) is

selected.

– The function estimate is updated by: f̂ [m] := f̂ [m−1] + νĝ[m], where ν is a value between 0 and 1 and if ν is

sufficiently low, the risk of finding only a local minimum is reduced. Therefore, ν was set to 0.1 in this study.

In each boosting step (m> 0) only one base learner is selected and can be chosen again in later iterations. The number of230

boosting steps are optimized by a 10-fold CV. Although studies indicate that repeated CV would yield more robust results

(Seibold et al., 2018), due to computational costs and the low risk of overfitting 10-fold CV seemed sufficient. The model

boosting was performed using the mboost package in R (Hothorn et al., 2021).

3.1.5 Random Forest (RF)

Random Forest (RF) is a bagging (bootstrap aggregating) method originally developed by Breiman (2001). In a RF model235

multiple regression trees are generated using bootstrap samples and their predictions are averaged to yield the RF estimate.

Bootstrapping decorrelates the individual trees and adds some randomness to the predictions. There are several packages in

R that can estimate RF models, but due to the computational burden of the study we used the fast ranger package (Wright

and Ziegler, 2017). An RF model has several hyperparameters that can be tuned. The number of trees used for bagging is one

of these parameters, but it just has to be sufficiently high, as more trees do normally not impair the prediction performance.240

In this study we used 500 trees. Another parameter that needs to be optimized is the size of each bootstrap sample. We used

a grid search from 0.7 to 0.9 for finding an optimal sample size for each bootstrap sample. Sampling was applied without

replacement. Further, the number of variables that are randomly chosen for each split needs to be set, which was determined

by p/3. We used the estimated response variance as splitting criterion because rank-based approaches or the use of extremely

randomized trees (Geurts et al., 2006) did not improve prediction accuracy.245

3.1.6 Support Vector Regression (SVR)

Support Vector Machines have their origin in classification but can be extended to regression problems. The method in its basic

form uses a training dataset to create a line (or hyperplane) that separates the data into classes. The support vectors are the data

points closest to the line or hyperplane and have the most influence on parameter estimation. In SVR, each of the predictor

variables can be transformed to a set of basis function hm(xj). Hence the regression function f(x) can be approximated by250

(Hastie et al., 2009):

f(x) =

M∑
m=1

βmhm(xj)+β0. (6)
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The number of M basis function is not limited and to estimate the coefficients β0 and βm, H(β,β0) has to be minimized:

H(β,β0) =

N∑
i=1

V (yi − f(xi))+λ/2
∑

β2
m. (7)

V can be any loss function, but in the initial idea of Vapnik (2000), it is defined by a threshold r. If the residuals are higher255

than this value, they are included in the penalization of the model, if the residuals are lower they are discarded (Worland et al.,

2018). Hence, the SVR is insensitive to outliers, as coefficients will be penalized in respect to them. The fast computation of

the coefficients is achieved by only computing the inner product of each xj . Therefore, different kernels can be used and we

decided to use the non-linear radial kernel in our study. The SVR model was estimated by the e1071 package in R (Meyer

et al., 2021).260

3.2 Variable preselection for parsimonious models

The variable selection procedure of this study is based on the recursive feature elimination (RFE) algorithm. RFE is a prospec-

tive method, that initially ranks the predictor variables after some measurements of importance and the least important variables

are removed in a backward procedure (Granitto et al., 2006). The final number of variables are determined by an error measure-

ment of an independent test set. In this part we will present our three approaches for variable ranking, the error measurement265

to define the number of variables and a short overview of the validation scheme.

3.2.1 Variable ranking methods

We test three different methods for the variable ranking of the RFE. Thus, we can differentiate between the prediction accuracy

of the prediction models and the capability of different variable ranking methods for producing more parsimonious models.

– The first variable ranking method is the lasso (lassorank), which is applied as described in Sect. 3.1.1, except that270

standardized coefficients are calculated.

– Second, we use a linear model based boosting approach (glmrank). Every model is estimated by 500 boosting steps,

since boosting shows only slow overfitting behavior (Fig.3). One disadvantage is that some non-influential variables

will be ranked, but computation time is reduced. For calculation of the standardized coefficients we apply the variable

importance function of the caret package in R (Kuhn, 2021).275

– The third method (cfrank) uses conditional forests (Hothorn et al. (2006); Strobl et al. (2007, 2009)) for variable rank-

ing, where the standardized coefficients are a sum of the main and interaction effects for each variable. Standardized

coefficients are again calculated using the variable importance function of the caret package.

Our variable ranking is computed over a bootstrap sample to improve its robustness with respect to data. Therefore, an initial

dataset D is split up into 25 bootstrap samples (B = (b1, b2, b3, ..., b25)). Sampling is performed without replacement and a280

sample size of 68.2 % is used.
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Figure 3. Prediction error for the unseen test data (left panel) and the training data (right panel). Bootstrapping was performed 100-times

where the training set consists of 70 % of the observations.

In a next step, each of the bootstrap samples is fitted to one of the variable ranking methods. For each bootstrap sample and each

method standardized coefficients denoted as βmethod
j,b are returned, where b refers to the bootstrap sample, method the variable

ranking method (lassorank,glmrank, cfrank), and j is the considered predictor. The variable importance of each bootstrap

sample for each selected coefficient is calculated by:285

varimpmethod
j,b = βmethod

j,b · 100/
p∑

j=1

βmethod
j,b . (8)

Final variable rankings are computed by averaging over all 25 bootstrap samples (Eq. 9). The variables are ranked from highest

to lowest.

varrankmethod
j = rank(1/25

b∑
i=1

varimpmethod
j,i ). (9)

Variables that were never selected in the 25 boostrap samples are not considered for the variable selection. This yields nvar290

preselected variables for each method.

3.2.2 Model specific preselection of variables

The variable rankings are now calculated for each of the seven prediction models. Each prediction model is fitted to the best l

(l = 2,3, ...,nvar) ranked variables, and for each prediction vector ŷi the root mean squared error (RMSE) as a measure of fit
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is calculated:295

RMSE =

√√√√1/N

N∑
i=1

(yi − ŷi)2 (10)

As one aim of this study is to get unbiased predictions (Solomatine and Ostfeld, 2008; Ambroise and McLachlan, 2002), we

employ a nested CV scheme (referred to as double CV in Varmuza and Filzmoser (2016)). The nested 10-fold CV consists of

two loops, where the inner loop is used for model optimization and variable selection and the outer loop is used for indepen-

dently evaluating the predictive performance of the so obtained models. In the outer loop the data is split into 10 folds, nine300

of which define the calibration data and the remaining one the test data. The calibration data are sent to the inner loop, where

again, these data are split into ten folds, 9/10 of which being used for variable rankings and parameter estimation. The left out

fold is used for estimating the RMSE for each candidate variable selection (l). The RMSEl is then simply averaged over

the 10 folds of the inner CV. The final number of variables (nfinal) of a method is then obtained from the relationship of the

RMSEl versus the number of variables l, as exemplified in Fig. 4. A common option is to use the min(RMSE) for determin-305

ing nfinal, but this would only yield to a small reduction in the number of variables. We therefore propose to use a somewhat

(+5 %) higher residual error, i.e. 1.05×min(RMSE), as reference point. This should make the models more parsimonious

with only a slight loss in performance. In a final step, we determine the specific variables that are used for predictions of the

outer loop of the nested CV. For this we use all obtained variable rankings of each of the 10 inner folds of the CV run and

average each variable ranking over these 10 folds. The best nfinal variables of these final rankings are used for prediction. The310

process is repeated ten times for the outer loop to complete the cross-validation.

The full nested CV is again repeated 10-times for summer q95 and winter q95.

3.2.3 Performance evaluation metrics

Model evaluation was performed by the root mean squared error RMSECV and the relative root mean squared error RRMSECV

of each CV repetition:315

RRMSECV =RMSECV /y, (11)

where y is the mean of all observations. We further compare our results by the cross validated R2
CV defined as:

R2
CV = 1− RMSE2

1/N
∑N

i=1(yi − y)2
. (12)

For a more focused assessment of individual catchments in terms of how CV performance depends on climate and catchment

characteristics we use the absolute normalized error ANECV of the i-th catchment:320

ANECV,i = |(ŷi − yi)|/yi. (13)
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Figure 4. Variable selection for a GAM boosting model based on RMSE graphs. The red vertical line indicates the number of variables

selected by a 5 % increase of the min(RMSE), the green line is the number of variables obtained by min(RMSE). The Black graph is

the average over 10 inner CV-folds, and coloured graphs represent individual folds.

4 Results

4.1 Model Performance without variable preselection

Figure 5 shows the performance of all models without variable preselection and Table 2 presents the performance metrics of

all models. The best performing model for winter low flow is the SVR model with a median R2
CV of 0.70 over all 10 CV-runs.325

It is followed by the GLM (0.69) and RF (0.68), and a group of similar performing models (LASSO, GAM, PCR and sPLS)

with an R2
CV of 0.66. Summer low flow is generally reaching a higher prediction accuracy, with a R2

CV of 0.86 (GAM) and

0.85 (GLM) for the two boosting approaches, and a somewhat lower performance for the LASSO, sPLS, RF, SVR (all 0.84)

and the PCR (0.83).

Additional insights can be gained by stratifying the predictions by specific low flow magnitude into three parts; the first part330

containing observations smaller than the first quartile, the second part ranging between the first and the third quartile and

the third part considering only the observations higher than the third quartile. For each of the three parts we calculated the

RRMSECV . High q95 winter values are reaching similar performances for all models with a RRMSECV of 0.24 to 0.25.

Middle ranged values are best approximated by the LASSO model (RMSErel = 0.24), followed by the RF and the SVR (both

0.25) and slightly worse performances by the two boosting models (0.26) and sPLS and PCR (0.27). The main differences335

between the model predictions can be observed for the lowest observation class, where the SVR model with a RRMSECV of

0.58 performs substantially better than the other models. The next best model in this class is the GLM (0.66), and models such

as RF (0.75) and GAM (0.78) have less prediction accuracy.

14



0.625

0.650

0.675

0.700

0.725

0.750

G
A

M

G
LM

LA
S

S
O

P
C

R

R
F

sP
LS

S
V

R

Prediction model

R
C

V
2

(a) Winter

0.82

0.83

0.84

0.85

0.86

G
A

M

G
LM

LA
S

S
O

P
C

R

R
F

sP
LS

S
V

R

Prediction model

R
C

V
2

(b) Summer

Figure 5. Performance of 10 CV-runs of statistical learning models without variable preselection. Horizontal lines display the median of the

CV-runs.

For summer low flow, low q95 values again have a higher relative error than medium or high q95 values. For the lowest obser-

vation quartile, the GLM shows the best performance (RRMSECV of 0.49), compared to most other models (RRMSECV340

between 0.54 and 0.56). The sPLS (0.62) and the RF (0.71) show a much lower prediction accuracy in this class. Differences

for moderate summer q95 values are only marginal with a range of 0.3 (SVR) to 0.32 (PCR). High summer q95 values are

somewhat better approached by the GAM (0.2), with a slightly higher RRMSECV of all other models ranging from 0.21 to

0.23.

4.2 Effect of variable preselection345

The use of variable preselection can significantly reduce the complexity of all models with only a small loss of performance

(Fig. 6). For winter low flow, variable selection leads to a median R2
CV decrease of 5.1 % (cfrank), 5.8 % (glmrank) and 7.1

% (lassorank) over all models. The spread in performance across models is a bit higher for the lassorank with an interquartile

range (IQR) of 4.1 %, compared to an IQR of 3 % for cfrank and 2.8 % for glmrank. Although cfrank yields a slightly better

performance than glmrank and lassorank, the conditional forest approach requires 35 variables, where glmrank and lassorank350

are only using 12 and 14 variables for winter q95. The glmrank and lassorank are therefore much more effective. The number

of variables for the three variable ranking methods have almost no dispersion, with a IQR of 1 (glmrank), 2 (cfrank) and

3.5 (lassorank). Interestingly, the highest performance loss is observed with the linear boosting model (GLM) for all three

variable ranking methods. This is due to the nature of boosting methods, whose main strength is efficient parameter estimation
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Table 2: Overview of the prediction performance of all models. The median and standard deviation (sd) are calculated over the

10 CV-runs for each model.

Winter Summer

Model
Variable

ranking

median

RMSE

sd

RMSE

median

R2
CV

median

RMSE

sd

RMSE

median

R2
CV

GAM cfrank 1.95 0.024 0.622 2.65 0.022 0.844

GAM glmrank 1.94 0.041 0.626 2.67 0.068 0.842

GAM lassorank 1.99 0.033 0.603 2.67 0.052 0.842

GAM none 1.84 0.109 0.661 2.53 0.041 0.857

GLM cfrank 1.90 0.033 0.639 2.78 0.038 0.828

GLM glmrank 1.93 0.021 0.637 2.78 0.067 0.828

GLM lassorank 1.98 0.024 0.609 2.77 0.043 0.829

GLM none 1.79 0.328 0.69 2.62 0.216 0.847

LASSO cfrank 1.95 0.024 0.621 2.76 0.023 0.832

LASSO glmrank 1.97 0.02 0.611 2.73 0.033 0.835

LASSO lassorank 1.97 0.015 0.613 2.76 0.027 0.832

LASSO none 1.85 0.107 0.657 2.71 0.036 0.837

PCR cfrank 1.93 0.03 0.627 2.85 0.045 0.819

PCR glmrank 1.93 0.026 0.629 2.8 0.075 0.825

PCR lassorank 1.96 0.021 0.616 2.8 0.04 0.826

PCR none 1.85 0.748 0.659 2.79 0.563 0.826

sPLS cfrank 1.9 0.038 0.641 2.81 0.037 0.825

sPLS glmrank 1.94 0.026 0.625 2.8 0.8 0.825

sPLS lassorank 1.96 0.023 0.615 2.79 0.31 0.826

sPLS none 1.84 0.024 0.664 2.66 0.067 0.842

RF cfrank 1.86 0.04 0.656 2.69 0.044 0.839

RF glmrank 1.89 0.032 0.642 2.73 0.022 0.835

RF lassorank 1.85 0.03 0.657 2.73 0.054 0.834

RF none 1.8 0.026 0.678 2.68 0.25 0.841

SVR cfrank 1.75 0.048 0.694 2.67 0.04 0.842

SVR glmrank 1.86 0.034 0.654 2.7 0.037 0.839

SVR lassorank 1.85 0.05 0.659 2.7 0.033 0.839

SVR none 1.73 0.029 0.702 2.69 0.043 0.84
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for high-dimensional multicollinear data sets. Clearly, variable preselection affects the performance of the method.355

In contrast to winter low flow, where the performance loss corresponds well with the +5 % residual error specification, variable
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Figure 6. Reduction of R2
CV is computed in respect to the model performance without any variable preselection. Each point is the median

number of variables of one CV-run and one prediction model and the related R2
CV . Each line shows (horizontal = Number of variables,

vertical = Reduction in R2
CV ) the upper and lower quartile for a variable ranking method. Colours can be found in Ram and Wickham (2018)

selection for summer low flow only leads to a minor loss in performance (Fig. 6b). Here, the median R2
CV decrease is only 1

% for cfrank and lassorank, and 0.8 % for the glmrank. Also the differences between models are very small. Again, cfrank

yields a substantially higher number of variables (22), than the glmrank method (8 variables) and the lassorank (9 variables).

Furthermore, the IQR of the number of variables shows that the selected number of variables is about the same in all models for360

lassorank (IQR = 3) and glmrank (IQR = 2), but greatly differs between the models based on cfrank (IQR = 23). This spread

reflects a much lower parameter-reduction efficiency of cfrank for the linear models (22 predictors for PCR, 35 for LASSO,

42 for sPLS, 50 for GLM) than for the non-linear models (12 predictors for RF, 17 for SVR, 18 for GAM). Among all models,
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the RF provides the model with the lowest amount of variables for summer low flows. It consists (on median) of only three

variables when lassorank and glmrank are used for variable selection, and has a performance loss of less than 1 %.365

4.3 Importance of predictors (from variable rankings)

We performed variable rankings for each of the three ranking methods 1000 times inside the CV runs. In this section we discuss

the 10 best ranked variables for each variable ranking method, defined by the average rank over all 1000 repetitions. We focus

on the two linear ranking methods, as the non-linear method cfrank did not perform well.370

Figure 7 gives an overview of the rank counts for winter low flow and shows that the catchment altitude is on average the high-

est ranked variable. Meteorological based variables appear four (glmrank) and five (lassorank) times under the ten best ranked

variables. Predictors rated by both methods are aridity and snowmelt in the winter months. The glmrank lists preconditions

as precipitation or dry days in the summer as important variables. However, lassorank found dry days in winter and over the

whole year to be more important. Geological variables as percentage of Quaternary sediments or limestone enter the models as375

indicator for catchment processes. Finally, land use characteristics as proportion of agriculture area and wasteland rocks were

found for the glmrank, where only the fraction of grassland is rated by lassorank. Both are correlated with the proportion of

lowland/high mountain areas and can be interpreted as topological characteristics as well.

A slightly different picture emerges from the assessment of summer low flow (Fig. 8), where the three highest ranked variables

are maximum catchment altitude, mean catchment slope and dry days in summer for both variable ranking methods. Topolog-380

ical descriptors play a somewhat more dominant role for summer low flow, as four (glmrank) and five (lassorank) variables

are highly ranked. Apart from mean catchment slope and maximum catchment altitude, difference in catchment altitude and

stream network density are also found for both variable ranking methods. Two meteorological variables - aridity in winter (both

methods) or autumn (lassorank) and the annual temperature range (lassorank) - are found by each of the methods for summer

q95 additionally to the dry days in summer. Finally, geological features as the proportion of Flysch, or land use variables as the385

fraction of grassland are highly ranked for both approaches.

5 Discussion

5.1 Predictive performance and benchmarking

We showed that statistical learning models can yield high prediction accuracy. It is now interesting to assess how the models fit

into the picture of existing national and international studies. We first assess the performance relative to low flow regionalization390

studies for the Austrian study area. Laaha and Blöschl (2006) fitted a multiple regression model to annual low flow q95 on 325

(sub-)catchments. They reported a performance of R2
CV = 0.70 when the study area was subdivided into regions that exhibit

similar seasonal characteristics of low flow. In a subsequent study, Laaha et al. (2014) showed that Top-Kriging can outperform

regional regression, especially when interpolating between gauges at the larger rivers. Top-kriging (TK, Skøien et al., 2006)
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Figure 7. Count of all variable rankings of all 1000-iterations on a log-scale for winter low flow. The ten best variables are listed after their

averaged rank.

is a geostatistical method that uses stream-network distance for low flow prediction and was shown to be more adequate than395

ordinary kriging approaches. For comparison of our results with the current benchmark (TK), we used the same 10-fold CV

runs as for our statistical learning models. TK yields a median R2
CV of 0.68 for winter low flow, which is slightly below the

SVR and the GLM model and equivalent to the RF model. TK is performing similar to most models for summer q95 with

a median R2
CV of 0.84, and performs quite similar as the two boosting approaches. Hence, we show that statistical learning

models can perform as good or even better as the current benchmark TK for summer and winter low flow in the Austria study400

area.

It is also interesting to compare our findings to existing studies that assess statistical learning methods for low flow estimation.
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Figure 8. Count of all variable rankings of all 1000-iterations on a log-scale for summer low flow. The ten best variables are listed after their

averaged rank.

However, comparison of performance metrics across studies is not straightforward. Worland et al. (2018) and Ferreira et al.

(2021) assessed their prediction models to low flow characteristics such as Q95 and a quite similar characteristic 7Q10, but

these were not standardized by catchment area as in our study. This can lead to superior performance metrics, particularly if405

there are significant variations in catchment size within the sample. Worland et al. (2018) reported a NSE (which is equivalent to

the R2
CV in this study) of 0.92 for the meta cubist model, and Ferreira et al. (2021) reported a NSE value of almost 1. However,

the scatterplots of the studies suggest that errors are still considerable, especially for the low observation values. Although

the studies are not directly comparable to our study in terms of performance, a qualitative comparison is still warranted. Both

studies found tree based methods, including the meta cubist model (Worland et al., 2018), the RF (Zhang et al., 2018), and410
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tree based boosting (Tyralis et al., 2021) having a higher prediction accuracy than the other models. Our study complements

existing studies by examining additional learning models. Our results suggest that the SVR and the GAM boosting model can

outperform tree-based models for the Austrian setting. However, differences in performance are rather small, so that other

methods (e.g. GLM, LASSO, and tree-based RF) can also be considered well suited.

One major research gap addressed by this study is the separate evaluation of statistical learning models for seasonal low flow415

processes. All statistical learning models of this paper can be classified as global models, as all gauges are considered in the

same model without catchment grouping. Earlier studies showed that regional regression can increase the prediction accuracy

compared to global regression (Laaha and Blöschl, 2006, 2007) as different low flow generation processes apply to summer

and winter regions. Here we pursue a different strategy in which we separate summer and winter processes by a temporal

stratification into summer and winter low flows. We found that analysing winter and summer low flow indices individually420

leads to increased prediction accuracy, especially for summer q95. This emphasizes that prediction accuracy of a specific

model is influenced by the underlying hydrological process, and different models can be suitable for different applications

(Worland et al., 2018). For comparison, preliminary results without consideration of the seasonal regime of our study area has

led to a prediction accuracy of a median (R2
CV ) of 0.66 to 0.74 which is very similar to the earlier studies on annual low flow

(TK 0.75).425

5.2 Predictive performance as a function of catchment characteristics

In a comparative assessment on low flow studies based on the PUB assessment report (Blöschl et al., 2013), Salinas et al.

(2013), showed that prediction accuracy is not only a function of model selection, but of the specific setting of the study area.

The assessment did not contain statistical learning models, so we want to embed our results in their findings. Figure 9, which

is equivalent to Fig. 5 of Salinas et al. (2013), shows the ANECV as a function of the aridity index, the catchment area and the430

catchment altitude. Our study confirms the finding of the PUB assessment report that the prediction accuracy decreases as the

aridity of the study area increases (Salinas et al., 2013). Although stations with an aridity index over one are missing, the trend

is clearly evident. No trend is evident for the winter low flows, which are more driven by freezing processes than by a climatic

water balance deficit. Decreasing performance in arid regions for drought detection was also found by Haslinger et al. (2014).

This effect may be additionally intensified because in arid regions the mean of observations can be near zero.435

Another hypotheses of Salinas et al. (2013) is that a higher elevation increases the prediction accuracy. In this context we

found remarkably divergent results for summer and winter low flow. Whereas our findings for summer low flow are in line

with Salinas et al. (2013), we could not identify a clear tendency for winter low flow. Catchments located in lowlands and

mountainous areas have a somewhat larger ANECV than catchments with an elevation between 450 and 1500 meters. This

suggests that winter low flows are better predictable in colder mid-mountain catchments than in warmer lowland catchments,440

where occurrence of frost events varies from year to year. Finally, we can show that prediction accuracy is increasing with

catchment size, which is fully consistent with Salinas et al. (2013).

Another finding of (Salinas et al., 2013) that is not captured by Fig. 9 is that predictions of low flows in cold climates are

reaching a lower prediction accuracy than in humid, thus warmer climates. A comparable effect can be observed when com-
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paring the results for winter low flow and summer low flow, where the best performing model in winter has a R2
CV of 0.70 and445

in summer 0.86. This divergence can be explained by the more complex hydrological processes of winter low flows (Salinas

et al., 2013). It is shown here that this performance gap applies to seasonal climates with a warm season and a frost period in

the same way as between cold and humid climates.
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Figure 9. ANECV for summer and winter q95 as a function of the aridity index (a), elevation (b), and catchment area (c). Only the best

performing models are shown (winter SVR, summer GAM, both without variable preselection). The boxplots summarize the ANECV

averaged over all 10 CV-runs for each of the 260 stations.

5.3 Linear vs. non-linear models

All studies that conducted a comparative assessment of statistical learning models for low flow estimation highlighted that450

non-linear models are superior in respect to linear approaches (e.g. Worland et al., 2018; Ferreira et al., 2021; Zhang et al.,

2018; Tyralis et al., 2021). In principle this is consistent with our findings, where winter low flow is best predicted by the SVR

model, and summer q95 is best approached by the GAM model. However, we showed that linear statistical learning models

such as GLM or sPLS perform almost as well in our study. To shed more light on this issue we assessed the relative value

of the GAM over the GLM boosting model in more detail. Both models are equivalent in case of linear relationships, but the455

GAM offers the possibility to extend the GLM with non-linear relationships if these improve the model. The comparison yields

that the GAM is selecting additional non-linear effects to increase the goodness-of-fit. However, the additional effects do not

increase the predictive performance of model. In fact, the R2
CV of the GAM is only 1 % higher for summer but 3 % lower for

winter low flow when using the model without variable preselection. This suggests that non-linear processes, which are to be

expected in such a heterogeneous study area as Austria, can be sufficiently captured by the superposition of linear terms, so460

there is no need to add non-linear effects or or to use a non-linear model. This is additionally supported by the performance of

the three variable ranking methods. The non-linear approach of conditional forest leads only to a small reduction of the set of

predictors, with performance similar (winter q95) or worse (summer q95) than the two linear ranking methods.
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6 Conclusions

In this study we investigated a broad range of statistical learning methods for a comprehensive dataset of 260 catchments in465

Austria. The results showed that all statistical learning models perform well and are therefore well suited for low flow re-

gionalization. Performance is particularly high for summer low flow (R2
CV = 0.86), but still leads to satisfactory results for

winter low flow (R2
CV = 0.70). The best performing models are support vector regression (winter) and non-linear model based

boosting (summer), but linear models exhibit similar prediction accuracy. No superior model could be found for both low flow

processes, as relative differences between learning methods are actually small. The models perform similar or slightly better470

than a Top-kriging model that constitutes the current benchmark for the study area.

Variable preselection is shown on average to reduce the predictor set (on median) from 87 variables to 12 for winter and 8 for

summer low flow. This is achieved by a small loss in performance, which is about 5 % for winter low flow, and only 1 % for

summer low flow. The results suggest that variable preselection can help to create parsimonious learning models that are easier

to interpret and more robust when predicting at ungauged sites. The RF (summer) provides the model with the smallest number475

of predictors, which consists of only three variables and has a performance loss of less than 1 %.

Linear prediction models such as the linear model based boosting reveal high prediction accuracy. Non-linear terms were

shown to increase the goodness-of-fit of the models, but did not improve predictions at ungauged sites. Our results suggest that

non-linear low flow relationships can be sufficiently captured by linear learning models, so there is no need to use more com-

plex models or to add non-liner effects. This finding is confirmed by our variable ranking methods, where linear approaches480

seem to be sufficient for our estimation problem.

Variable rankings allow some conclusions about the importance of predictor variables. Topographic variables representing al-

titude and slope are under the most highly ranked predictors for summer and winter low flows. Specific low flow is mainly

increasing with topographic predictors, except the percentage of slight slope in the catchment has a decreasing effect. Among

meteorological predictors, characteristics representing snowmelt, aridity, and dry spells appear more important than precipita-485

tion characteristics. The aridity and number of dry days reduce specific low flow, whereas snowmelt has an increasing effect.

The best rated geological characteristics are the area fractions of limestone, Flysch and Quaternary sediments. Limestone and

Quaternary sediments, both lead to higher low flows, whereas Flysch has a decreasing effect. Overall, topological, meteoro-

logical and catchment characteristics appear similar important for low flow regionalization. However, the interpretation of the

variable ranking should be considered with caution as substituting top ranked variables in highly correlated data can lead to490

similar performance.

Finally, the study shows that when performing low flow regionalization in a seasonal climate with a cold winter season, the

temporal stratification into summer and winter low flows increases the predictive performance of all learning models. This

suggests that conducting separate analyses of winter and summer low flows provides a data-efficient alternative to catchment

grouping that is recommended otherwise.495
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Appendix A
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Figure A1. Error bars showing the range of predictions of the 10 CV-runs for each model without variable preselection. Two outliers are not

shown for the summer PCR model, and the winter GLM, PCR, LASSO and GAM models to improve visual clarity.
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Figure A2. Boxplots of the number of variables selected in each CV-fold (100-times).
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Figure A3. Count of all variable rankings of all 1000-iterations on a log-scale for summer low flow. The ten best variables are listed after

their averaged rank.
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