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Abstract. Pesticides are contaminants of priority concern that continue to present a significant risk to drinking water quality. 

While pollution mitigation in catchment systems is considered a cost-effective alternative to costly drinking water treatment, 

the effectiveness of pollution mitigation measures is uncertain and needs to be able to consider local biophysical, agronomic, 

and social aspects. We developed a probabilistic decision support tool (DST) based on spatial Bayesian Belief Networks (BBN) 10 

that simulates inherent pesticide leaching risk to ground- and surface water quality to inform field-level pesticide mitigation 

strategies in a small drinking water catchment (3.1 km2) with limited observational data. The DST accounts for the spatial 

heterogeneity in soil properties, topographic connectivity, and agronomic practices; temporal variability of climatic and 

hydrological processes as well as uncertainties related to pesticide properties and the effectiveness of management 

interventions. The rate of pesticide loss via overland flow and leaching to groundwater and the resulting risk of exceeding a 15 

regulatory threshold for drinking water was simulated for five active ingredients. Risk factors included climate and hydrology 

(temperature, rainfall, evapotranspiration, overland and subsurface flow), soil properties (texture, organic matter content, 

hydrological properties), topography (slope, distance to surface water/depth to groundwater), land cover and agronomic 

practices, pesticide properties and usage. The effectiveness of mitigation measures such as delayed timing of pesticide 

application; 10%, 25% and 50% reduction in application rate; field buffers; and presence/absence of soil pan on risk reduction 20 

were evaluated. Sensitivity analysis identified the month of application, land use, presence of buffers, field slope and distance 

as the most important risk factors, alongside several additional influential variables. Pesticide pollution risk from surface water 

runoff showed clear spatial variability across the study catchment, while groundwater leaching risk was uniformly low, with 

the exception of prosulfocarb. Combined interventions of 50% reduced pesticide application rate, management of plough pan, 

delayed application timing and field buffer installation notably reduced the probability of high-risk from overland runoff and 25 

groundwater leaching, with individual measures having a smaller impact. The graphical nature of the BBN facilitated 

interactive model development and evaluation with stakeholders to build model credibility, while the ability to integrate diverse 

data sources allowed a dynamic field-scale assessment of ‘critical source areas’ of pesticide pollution in time and space in a 

data scarce catchment, with explicit representation of uncertainties. 
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1 Introduction 30 

Diffuse pesticide pollution continues to represent a significant risk to surface and drinking water quality worldwide (Villamizar 

et al., 2020). European Union legislations (Water Framework Directive (WFD) (European Commission, 2000), and the related 

Drinking Water Directive (DWD) (European Commission, 1998), and Groundwater Directive (European Commission, 2006)) 

require that concentration of individual pesticides in drinking water must not exceed 0.1 µg L−1 and the total concentration of 

all pesticides must be below 0.5 µg L−1. Article 7 of the WFD promotes a ‘prevention-led’ approach to DWD compliance, 35 

prioritising pollution prevention at source rather than costly drinking water treatment. Catchment management schemes are 

therefore now widely adopted by policy makers and water companies to mitigate diffuse pollution by pesticides (and other 

pollutants) and to improve the raw water quality prior to treatment. However, the effectiveness of such diffuse pollution 

mitigation measures is uncertain due to the heterogeneous nature of catchment systems, and hence catchment management 

needs to be targeted to consider local biophysical, agronomic, and social aspects (Okumah et al., 2018). To select and prioritise 40 

cost-effective interventions, it is essential to identify and map ‘high risk’ areas, often referred to as critical source areas (CSAs), 

i.e. those areas within a catchment that contribute disproportionately large amounts of pollutants to a given water quality 

problem (Doody et al., 2012; Reaney et al., 2019).  

 

Modelling approaches are commonly used to identify diffuse pesticide pollution risk areas and to help evaluate the 45 

effectiveness of mitigation strategies. While process-based distributed models, such as the Soil and Water Assessment Tool 

(SWAT), have been widely used to simulate transport, fate and risks of pesticides at catchment scale and to evaluate the 

effectiveness of interventions (Babaei et al., 2019; Villamizar et al., 2020; Wang et al., 2019), their application is 

computationally costly and often hindered by lack of monitoring data for model calibration and validation. Therefore, various 

spatial index models have been developed to evaluate the intrinsic vulnerability and risk from pesticide pollution at a range of 50 

scales (Kookana et al., 2005; Stenemo et al., 2007; Worrall and Kolpin, 2003). The simplest index-based methods assign scores 

and weights to a set of spatially distributed indicators (e.g., soil media, recharge rate, and depth to groundwater and contaminant 

properties), which are then combined into an overall risk index, typically within a GIS environment. An example of such 

index-based method is the DRASTIC system (Aller et al., 1985), which has been widely used for groundwater vulnerability 

mapping and for identifying areas most at risk to pollutant leaching. DRASTIC only considers geological and hydrogeological 55 

factors but ignores the specific nature of the contaminant(s), and it is therefore classed as an intrinsic vulnerability method. 

Several modifications and methods similar to DRASTIC exist in the literature, many of which aim to provide specific 

vulnerability maps, where the contaminant source and behaviour are also accounted for (Duttagupta et al., 2020; Nobre et al., 

2007; Saha and Alam, 2014). Other studies have used simplified 1D solute transport models to develop indices and rankings 

of potential pesticide leaching (Gustafson, 1989; Jury et al., 1987; Stenemo et al., 2007), while other methods such as the 60 

SCIMAP modelling framework (Lane et al., 2009; Reaney et al., 2011) use digital elevation models to derive spatial patterns 

of relative potential erosion and hydrological connectivity to identify possible critical source areas for diffuse pollution risk. 
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While index-based vulnerability methods are useful for initial screening purposes, they also have several limitations. Index-

based methods do not account for uncertainties in model parameters and complex processes, and they lack probabilistic 65 

integration of lines of evidence (Carriger et al., 2016; Carriger and Newman, 2012). In addition, the scores and weights are 

typically assigned subjectively, and different scoring-systems can therefore provide substantially different results. Finally, 

index-based methods usually do not account for actual concentration data, and poor correlation between vulnerable areas and 

field concentration measurements have been reported (Worrall and Kolpin, 2003).  

 70 

To address the first two shortcoming, we developed a probabilistic decision support tool (DST) using spatial Bayesian Belief 

Networks (BBN) to inform field-level pesticide mitigation strategies in a small drinking water catchment (3.5 km2) with limited 

observational data. BBNs are probabilistic graph-based models that allow to integrate various information sources, including 

different types of data, literature and expert opinion into a single modelling framework, thus maximising the use of both 

available knowledge and data (Carriger et al., 2016; Carriger and Newman, 2012). In BBNs, model variables and their causal 75 

relationships are represented as ‘nodes’ and ‘arcs’ in a so-called Directed Acyclic Graph (DAG) (i.e., a graph that has no 

feedback loops). The graphical nature of a BBN lends itself to collaborative model co-construction with experts and 

stakeholders and helps to build model credibility. A major advantage of the BBN approach is that it allows to carry out 

probabilistic inference based on (uncertain) evidence. Probabilistic inference is simply the task of calculating the posterior 

probability distribution of the BBN given the available observations and can be both predictive (i.e., reasoning from new 80 

observations of causes to new beliefs about the effects) and diagnostic (i.e., reasoning from observed effects to updated beliefs 

about causes).   

 

The use of BBNs has gained increasing popularity in environmental modelling and risk assessment (Aguilera et al., 2011; 

Kaikkonen et al., 2021) with examples including pesticide risk management (Carriger and Newman, 2012; Henriksen et al., 85 

2007) and probabilistic assessments of pesticide exposure and effects (Mentzel et al., 2021). While the integration of Bayesian 

networks with GIS in environmental risk assessment has also been growing steadily over recent years (Moe et al., 2021), to 

date spatial BBN has only been used for pesticide risk modelling on a single occasion  to assess pesticide runoff risk at a basin 

scale across France (Piffady et al., 2020). To our knowledge, the present study provides a first application of spatial BBN for 

probabilistic field-level assessment of intrinsic pesticide pollution risk from ‘critical source areas’ at a monthly resolution. 90 

 

The aim of this research was to examine the spatial variability of risk factors within an uncertainty framework to better inform 

field-level targeting of management interventions in a small drinking water catchment with limited available data. Specifically, 

we sought to answer the following questions: a) Can we characterise the spatial and temporal variability of pesticide pollution 

risk from groundwater leaching and overland flow in a data-sparce catchment? b) Which factors are most influential on intrinsic 95 

pesticide pollution risk? c) What is the effectiveness of available management interventions on pesticide risk reduction? 
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2 Methods 

2.1 Study site 

Jersey Island (c. 117 km2) (49.2138 °N, 2.1358 °W), the largest in the English Channel group, comprises a plateau with an 

elevation 60-120 m above sea level (Robins and Smedley, 1998). The climate on Jersey is oceanic with average temperature 100 

ranging from 6 °C in winter to 18 °C in summer and mean annual rainfall around 900 mm. A shallow, fractured bedrock aquifer 

underlies most of the island with a generally shallow depth to the water table increasing to 10-30 m beneath higher ground. 

For the most part, groundwater storage and transport is shallow and within the top 25 m of the saturated rock (Robins and 

Smedley, 1998). Bedrock is Precambrian to Cambro-Ordovician. The west-central part of the island is mostly underlain by the 

oldest rocks belonging to the Jersey Shale Formation, while a volcanic formation occupies much of the east. Superficial deposit 105 

include wind-blown sand, loess and alluvium (Robins and Smedley, 1991).  

 

 
Figure 1: Location of the Val de la Mare (VDLM) study catchment on the Island of Jersey. Fig 1a shows the three water quality 

monitoring sites (Pump, West stream, and East stream) and the land use in the catchment, while Fig 1b shows the hydrogeology. 110 
Country boundaries were taken from open source www.gadm.org and hydrogeological data was digitised from the Hydrogeological 

Map of Jersey under Open Government Licence v3.0 (Contains British Geological Survey materials © UKRI 1992)  

 

Historically, water resources across the Island of Jersey have been vulnerable to nitrate and pesticide pollution, particularly 

during the growing season when concentrations in untreated water can exceed regulatory drinking water quality levels. This 115 

can adversely affect the raw water quality within impounding reservoirs, requiring the water company to undertake a series of 

mitigation measures at the treatment works to avoid breaches in the treated water supply. The small size of the Island means 

that land-use across the island is dominated by intensive agriculture, primarily potato and dairy farming. The cultivation of the 

Jersey Royal Potato takes place during the growing season from January to May. There is very little crop rotation and 
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accordingly the potato crop is grown with the support of man-made fertilisers and pesticides (herbicides, fungicides and 120 

nematicides).  

 

This study focused on the Val de la Mare (VDLM) catchment (3.1 km2) in south-west of Jersey, which feeds into the VDLM 

Reservoir, the second largest reservoir in Jersey constructed in 1962. The reservoir holds up to 938,700 m3 of untreated water, 

enough to supply Jersey with water for approximately five weeks. Water feeds into the reservoir from within the catchment 125 

area, as well as from neighbouring catchments and a desalination plant when it is in operation. The water quality in the VDLM 

reservoir is vulnerable to pesticide pollution, with pesticide concentrations often exceeding the regulatory drinking water 

quality levels of 0.1 µg l-1 for individual pesticides and 0.5 µg l-1 for total pesticide concentration (European Commission, 

1998).  

 130 

To evaluate the spatial and temporal variability of the intrinsic pesticide pollution risk from critical source areas within the 

VDLM study catchment, we have developed a probabilistic model based on spatial Bayesian Belief Networks (BBN). The 

data and information used to inform the model development are presented in the following sections (2.2 - 2.4), while the BBN 

model itself is described in section 2.5. For the purpose of this paper, we define risk as the probability that the pesticide 

exposure (i.e., the pesticide fluxes from the fields to the reservoir) results in the regulatory drinking water standards to be 135 

exceeded.   

2.2 Pesticide detection, usage and properties 

Five active pesticide ingredients currently or recently in use in the catchment showed evidence of significant concentrations 

in the reservoir offtake for the drinking water supply. These included the herbicides glyphosate, metobromuron, pendimethalin 

and prosulfocarb, and the nematicide and insecticide ethoprophos.  Metobromuron was most frequently observed above the 140 

drinking water standard, followed by ethoprophos, prosulfocarb and pendimethalin (Table 1). Ethoprophos was not included 

in the final model, as its use has now been discontinued, instead the nematicide fluopyram was considered as it can be a 

potential replacement for ethoprophos (Table 2). Fluopyram is used at lower application rates than ethoprophos, making the 

risk of contaminating the water supply intrinsically lower, notwithstanding its relatively high mobility and greater persistence. 

 145 

Data on pesticide application rates and timing for 2016-2018 was obtained from the Jersey Royals Company, the main potato 

crop grower in the area who manage ca. 50% of the catchment area, alongside agronomic data on crop coverage and crop 

rotation for the 2010-2018 period. Pesticide usage (Table 2) was estimated assuming that the available agrochemical data was 

representative of the whole catchment. Glyphosate was mostly applied in January (mean day of application 23 rd January), 

while other pesticides were typically applied in February (mean day of application 11th to 16th February). Hence, only months 150 

January – March were represented in the model, to allow for a potential one-month delay in pesticide application. Usage of 
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pesticides on other crops in the catchment was limited to the use of glyphosate for spraying off grass prior to cultivation and 

use of pendimethalin on barley. 

 
Table 1: Summary of the pesticide monitoring data by location (P: Pump; E: East stream; W: West stream) in the VDLM catchment 155 
2016-2019. Detection data are summarised as total number of samples, number of samples above limit of detection (LOD), and 

number of samples above the drinking water standard of 0.1 µg l-1. The concentration data are summarised as mean, minimum and 

maximum observed concentration.  

 Detection (total/ >LOD/ > 0.1 µg l-1) Concentrations (µg l-1) (mean (min-max)) 

Pesticide 
P E W P E W 

Glyphosate 34/33/0 20/20/0 21/21/0 0.033 (0.004-0.083) 0.031 (0.005-0.093) 0.029 (0.006-0.10) 

Metobromuron 27/27/27 4/4/4 6/6/6 0.223 (0.1-0.4) 0.2 (0.1-0.40) 0.25 (0.2-1.7) 

Pendimethalin 258/107/0 129/42/0 245/122/5 0.01 (<0.005-0.07) 0.006 (<0.005-0.02) 0.017 (<0.005-0.28) 

Prosulfocarb 67/55/14 6/3/1 6/6/3 0.098 (<0.002-1.01) 0.048 (<0.002-0.26) 0.318 (0.001-1.25) 

Ethoprophos 181/137/15 105/36/5 101/56/11 0.033 (<0.002-0.27) 0.015 (<0.002-0.24) 0.073 (<0.002-2.43) 

 

Key pesticide properties for assessing the risk to water quality were extracted from a publicly available database (Lewis et al., 160 

2016) (Table 2). These included the Koc coefficient that represents the adsorption of the pesticide onto the organic carbon of 

soil, subsoil and vadose zone materials and the half-life (DT50) that represents the degradation rates during transport through 

each of these layers (Table 2). A third process, that of volatilisation was not considered as this is relatively minor in most cases 

and omission of this process will provide a conservative estimate for impact to groundwater. Retention of pesticides by the 

soil and subsoil materials to which it is applied depends on adsorption to organic and mineral surfaces. Soil sorption processes 165 

are complex and have been the subject of substantial research in the past. Pesticide sorption is influenced by both the chemical 

characteristics of the pesticide and soil specific properties, such as soil organic carbon (SOC) concentration, clay content, pH 

and soil moisture content. For neutral non-polar pesticides, it is well documented that pesticide retention is strongly correlated 

to SOC concentration, with other factors such as clay content, pH and aeration status playing a subsidiary role (Kah and Brown, 

2006; Wauchope et al., 2002). For weakly ionisable pesticides with ionic equilibrium constants near the range of soil pH, 170 

sorption may be highly sensitive to the pH of the sorbing soil. However, none of the pesticides considered for the modelling 

here are considered weakly ionisable, and therefore only the role of SOC content on pesticide retention was considered in the 

model by including the pesticide adsorption coefficient Koc. The degradation rate of pesticides in soil and subsoil depends 

principally on the microbiologically-mediated decomposition and as such is also strongly influenced by SOC (Jury et al., 1987; 

Kah and Brown, 2006). Some chemical degradation of pesticides on mineral surfaces can also occur, which may be more 175 

important for the subsoil and vadose zone, but in most cases, biological degradation is seen as the main pathway (Fomsgaard, 

1995). In most cases, the time for 50% disappearance (DT50) or 90% disappearance (DT90) is determined.  
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Table 2 Summary of pesticide properties considered in the model (Lewis et al. 2016) and mean application rates in the study 

catchment. AI=Active Ingredient. Koc =   pesticide adsorption coefficient on soil organic carbon. DT50 = time for 50% of pesticide 180 

to be degraded in soil. 

 

 

Type of 

pesticide 

Typical values Application 

rates 

kg AI ha-1 

Typical 

application 

timing 
Koc  

ml g-1 

DT50 (field) 

days 

Glyphosate Herbicide 1424 (884-50660) 23.8 (5.7-40.9) 0.9 January 

Metobromuron Herbicide 197 (122-199) 22.4 (5.4-64.5) 1.25 February 

Pendimethalin Herbicide 17491 (10241-36604) 100.6 (39.8-187) 0.9 February 

Prosulfocarb Herbicide 1693 (1367-2339)  9.8 (6.5-13) 3.2 February 

Fluopyram 
Fungicide/ 

Nematicide 
279 (233-400) 118.8 (93.2-144.6) 0.25 February 

2.3 Catchment characteristics 

Monthly total rainfall and mean monthly temperature data (from 1894-2019) were obtained from the Government of Jersey 

website (https://opendata.gov.je/organization/weather). Mean monthly potential evapotranspiration (PET) and actual 185 

evapotranspiration (AET) were calculated using the approach in (Pistocchi et al., 2006), see Appendix A. 

 

Spatial environmental data were processed and collated in a single GIS shape file. Visualisation, geographical analysis, and 

processing of spatial datasets were done in QGIS 3.12.2 (QGIS.org, 2021. QGIS Geographic Information System. QGIS 

Association. http://www.qgis.org), while ArcGIS 10.1 (ESRI 2011. ArcGIS Desktop: Release 10. Redlands, CA: 190 

Environmental Systems Research Institute) was used for the generation of the digital terrain model. The following data sets 

were used to inform model parameterisation. 

 

Land parcels that fell within the VDLM catchment area were selected and filtered using Feature types (i.e. cultivation) to 

identify cultivated fields. The field selection was supplemented by visual inspection using satellite imagery (Google Satellite 195 

service) to ensure that only cultivated fields were selected. This resulted in the selection of 200 fields, which were assigned a 

dominant crop type for the 2010-2018 period by spatially joining field polygons with layers containing crop type information. 

Crop operation information available for 56 fields within the catchment was used to determine the timing and pesticide 

application rates (Table 2) and to inform the prior distributions in the model. 

 200 

A 1m resolution hydrologically-corrected DTM of the VDLM catchment area was created using digital line contours at 1 meter 

interval provided by Jersey Water and the ‘Topo to Raster’ tool in ArcGIS; the DTM was used to calculate mean elevation and 
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slope (in degrees) for each field polygon within the VDLM catchment. Topographic connectivity was derived by calculating 

the horizontal distance from the polygon vertex nearest to the stream features using the Distance to nearest hub tool in QGIS.  

 205 

The overall depth of the soil column is a key characteristic of the soil that influences the attenuation of surface applied 

pesticides. Depth to groundwater was calculated for each field using a 5 m groundwater level contour map of Jersey prepared 

by the British Geological Survey and provided by the Jersey Water company (T. de Feu, pers. comm, May 20, 2020) by 

importing and georeferencing the map in QGIS, digitising the contour lines and combining them with field polygons. 

 210 

Soil water retention, conductivity, natural drainage, depth to groundwater and anthropogenic characteristics such as plough 

pans were considered in model parameterisation. There has been no systematic survey of the soils of Jersey in the traditional 

sense of classifying and grouping soils according to their pedology. Brief descriptions of ‘soil series’ were given in Jones et 

al. (1990) and the Soil Atlas of Europe (European Soil Bureau Network. Eds.: Jones et al. 2005) shows a single soil type 

Dystric Cambisols for the whole Island of Jersey at a 1:2 500 000 scale. Due to this lack of detailed soil mapping, the 215 

hydrogeological map of Jersey (Robins et al., 1991) was used to identify soil hydrological units based on the three 

hydrogeological formations identified in the VDLM catchment (Fig. 1b). These three soil hydrological units consisted of soils 

developed on loess, aeolian (blown) sand and shales, respectively. Both loess and sand are periglacial Quaternary deposits that 

are relatively common throughout northern Europe. Soil hydrological data for similar soils is contained within the HYPRES 

soil hydrological database (Wosten, et al. 1999; Wosten et al. 1998), hence this database was used to derive the soil 220 

hydrological properties necessary for the modelling of pesticide attenuation.  

 

According to the descriptions of soil series in Jones et al. (1990), the soils developed on these three hydrogeological units are 

generally well to moderately well drained with no real inhibition to the downward movement of water. Soil hydrological 

properties derived from HYPRES database supported this assumption, with mean saturated hydraulic conductivity largely 225 

greater than 10 cm day-1. Less than this would indicate the presence of a slowly permeable horizon (MAFF, 1988) with some 

degree of ponding within the soil. 

 

Local knowledge suggested that some of the soils in the catchment could have a plough pan potentially as deep as 60 cm below 

the surface. This layer is likely to restrict the downward flow of water through the soil and increase the likelihood of near 230 

surface runoff and was included as one of the soil parameters that could be manipulated within the model. In the absence of 

data in the HYPRES database on plough pans, a value of 0.02 cm day-1 was selected as a worst case estimate of plough pan 

hydraulic conductivity based on  Koszinski et al. (1995) who reported hydraulic conductivity of compacted soil of between 

0.02 and 3 cm day-1. 

 235 
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Laboratory measurements of topsoil soil organic matter (SOM) content and pH were available for 40 and 37 fields within the 

VDLM catchment, respectively, most of which were cultivated with Jersey Royal potatoes (32). Soil organic matter (SOM) 

content ranged from 1.9% to 3.8% with mean SOM at 2.5%. Median SOM was slightly greater for the six fields found on 

grassland (3%) than in the potato fields (2.3%). Soil pH ranged from 5.3 to 7.2 with a mean pH value of 6.4 and mean soil pH 

was slightly greater in the potato fields (6.4) than in grassland (6.1). However, as this information was not available for all 240 

fields and only for the topsoil, these data were not used in the model parameterisation. Instead, model sensitivity to using 

observed SOM concentrations vs. those derived from the HYPRES database was examined and was found to be negligible, 

therefore the converted HYPRES SOC values (by dividing SOM by 1.724) were used as priors in the model to ensure spatial 

consistency. 

 245 

2.4 Field attributes 

The spatial data described in 2.3 was used to inform the parameterisation of the model variables. It was found that most study 

fields within the VDLM catchment lay in relatively flat ground with 152 fields having a mean slope less than 3 degrees, while 

elevation range was also relatively small, from 67m to 99m. Loess was the dominant soil parent material in 155 fields, while 

soils derived from Jersey Shale or Blown Sand were dominant in the remaining 31 and 14 fields, respectively. Loess covered 250 

the central and northern part of the VDLM catchment, while Shale was found in the south-western part and Blown Sand in the 

south-eastern part of the catchment. Most study fields had a sandy silt loam (120) or sandy loam (59) soil texture class. Fields 

with a sandy silt loam texture were mostly underlain by the Loess hydrogeological formation (101), while fields with sandy 

loam texture were mostly underlain by the Jersey Shale formation (36) and blown sand (12).  

 255 

The horizontal distance of VDLM fields to the stream network was used to represent field connectivity to the stream network 

and the reservoir. The median horizontal distance was 119 m, with 91 fields located within 100 m of the stream network. Depth 

to groundwater within the VDLM catchment ranged from 0 to 20 m, but most of the catchment area (56%) had a shallow 

aquifer less than 5 m deep (117 fields), with further 54 fields having groundwater depths between 5 and 10m. 

 260 

2.5 Spatial Bayesian belief network risk model 

We have developed a probabilistic model, based on spatial Bayesian Belief Networks (BBN) (Appendix A), to evaluate the 

spatial and temporal variability of the intrinsic pesticide pollution risk from critical source areas within the VDLM study 

catchment. The model aims to provide a field level assessment of the relative water pollution risk characteristics of each field, 

made available as probabilistic map layers. The developed approach integrates the various information sources described above 265 

and includes causal relationships between both discrete and continuous variables in a hybrid BBN.  The general principles and 

theory of Bayesian networks have been described extensively elsewhere (Korb and Nicholson, 2010; Moe et al., 2021) and 

will not be discussed in detail here. 
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The model structure and development were informed by expert knowledge and stakeholder feedback. Hydrologically, the 270 

VDLM reservoir was assumed to be fed by the west and east streams (Fig. 1) as well as by groundwater, and the groundwater 

aquifer was assumed to be unconfined and homogenous. Thus, pesticides applied to a given field could either leach to 

groundwater or could be transported directly to the reservoir or one of the streams through surface runoff. The risk assessment 

model therefore accounted for pesticide losses via both groundwater leaching and overland flow, with the final assessment 

based on the combination of both. Both the groundwater leaching and the overland flow, pesticide losses are influenced by 275 

three key factors, namely soil and site characteristics, climate and hydrology, and land management (e.g., pesticide usage and 

properties, land use) (Fig. 3, Appendix A).  

 

In the following, the modelling of the groundwater leaching and the overland flow risk components is described. In both cases, 

we are interested in determining how much of the applied pesticide rate L0 [M L-2 T-1] may eventually reach either groundwater 280 

via leaching (Lgw [M L-2 T-1]) or surface water via overland flow (Lof [M L-2 T-1]) from a given field. To ensure mass balance, 

we assumed that for each field only a proportion fleach of the applied pesticide would be available to leaching, while the 

remaining proportion would run off to surface water. During transport to groundwater and surface water the pesticide can 

undergo attenuation with the degree of attenuation determined by attenuation factors (AFgw and AFof) (as described in the 

following sections). Overall, the pesticide fluxes that reaches groundwater via leaching and surface water via runoff from a 285 

given field was therefore given by: 

 

 𝐿𝑔𝑤 = 𝐿0 ∗ 𝐴𝐹𝑔𝑤 ∗ 𝑓𝑙𝑒𝑎𝑐ℎ                       (1) 

 

𝐿𝑜𝑓 = 𝐿0 ∗ 𝐴𝐹𝑜𝑓 ∗ (1 − 𝑓𝑙𝑒𝑎𝑐ℎ)            (2) 290 

 

Conceptually, this way of calculating pollution risk to groundwater and surface water is similar to the pesticide impact rating 

index proposed by Kookana et al. (2005) and to the InVEST nutrient delivery model (Sharp et al., 2020). For the modelling 

here, it was assumed that the fraction of the applied pesticide to land that would be available to leaching fleach equalled the ratio 

of infiltration to excess rainfall.  295 

 

The combined pesticide flux from a given field was the sum of the leaching and the overland flow component.  

This combined pesticide flux was converted to a surface water concentration to evaluate the risk to surface water as follows: 

 

𝐶𝑠𝑤 = (𝐿𝑔𝑤 + 𝐿𝑜𝑓) ∗ 𝐴𝑐/𝑉𝑟𝑒𝑠                       (3) 300 
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where Ac [L2] is the total field area in the catchment (192 ha) and Vres [L3] is the water volume in the reservoir (938,700 m3). 

Eq. 3 is a very simplified way of converting the total pesticide flux from a given field to a concentration in the reservoir (it is 

essentially assumed that the given field represents all fields in catchment), which allows a comparison to the regulatory 

standards based on which the risk can subsequently be assessed. Hence, if the total pesticide flux from a field resulted in Csw 305 

exceeding the standard of 0.1 µg l-1, this field was considered high risk (see Appendix A).   

 

2.5.1 Groundwater leaching risk assessment 

The conceptual model for the pesticide leaching to groundwater applied in this study catchment (Fig. 3) followed on from the 

screening model proposed by Jury et al. (Jury, W.A., Dennis, D.F., Farmer, 1987). The model assumes that a single pesticide 310 

mass flux is applied to the soil surface (z=0). The pesticide is assumed to dissolve in the infiltrating rainwater and move 

downward through the soil profile by leaching at a constant infiltration rate Jw [L T-1], which is here determined by the amount 

of excess rainfall and the physical properties of the soil (Appendix A). The pesticide is assumed to move downward through 

the soil by piston flow (i.e. no dispersion) while undergoing linear adsorption and first-order decay. Given these assumptions, 

the pesticide transport and fate can be described by the following mass balance equation (Jury et al. 1987): 315 

  

𝑅𝐹
𝜕𝐶

𝜕𝑡
= −

𝐽𝑤

𝜃𝑤

𝜕𝐶

𝜕𝑧
− 𝜇 ∗ 𝑅𝐹 ∗ 𝐶         (4) 

 

where C [M T-3] is the pesticide concentration in solution (the water phase), w is the volumetric water of the soil, µ [T-1] is 

the first-order degradation constant, and RF is the retardation factor given by (Jury et al. 1987):  320 

 

𝑅𝐹 = 1 +
𝜌𝑏 ∗ 𝑓𝑜𝑐 ∗ 𝐾𝑜𝑐

𝜃𝑤

                 (5) 

 

where Koc [L3 M-1] is the organic carbon partition coefficient, and b [M L-3] and foc [M M-1] are the soil bulk density and the 

organic carbon content of the soil, respectively. The retardation factor describes the velocity of the solute pesticide relative to 325 

the infiltrating water. The solution to the mass balance equation (1) for an instantaneous mass injection m0 can be written as: 

  

𝑚(𝑧) = 𝑚0 ∗ 𝐴𝐹(𝑧)                    (6) 

 

where m(z) [M L-2] is the pesticide mass contained within the pulse when it reaches depth z, and AF is the attenuation factor 330 

given by (Stenemo et al., 2007): 

 

https://doi.org/10.5194/hess-2021-477
Preprint. Discussion started: 29 September 2021
c© Author(s) 2021. CC BY 4.0 License.



12 

 

𝐴𝐹(𝑧) = exp (−
𝜇 ∗ 𝑅𝐹 ∗ 𝜃𝑤

𝐽𝑤

𝑧) = exp (−
ln(2) ∗ 𝑅𝐹 ∗ 𝜃𝑤

𝐽𝑤 ∗ 𝐷𝑇50 
∗ 𝑧)                   (7) 

 

where DT50 [T] is the half-life of the pesticide. AF expresses the fraction of the applied pesticide that will reach depth z and 335 

can take values between 0 (none of the applied pesticide will reach depth z) and 1 (all the applied pesticide will reach depth 

z). 

 

It is well-known that organic matter concentration and microbial population density decrease with depth in soil profile, hence 

both the pesticide retardation and decay rates are expected to decrease with depth (Jury et al., 1987; Kookana et al., 2005). To 340 

account for this effect, the model divided the soil profile into three regions (Fig. 2): a) the A horizon (topsoil), which was 

assumed to be 30 cm thick and to be the most microbially active region; b) the B horizon (subsoil), which was also assumed 

to be 30 cm thick; and c) the vadose zone, which extends from the bottom of the B horizon to the groundwater table and was 

assumed be microbially the least active. Furthermore, in the VDLM catchment, the presence of low-permeability soil pans was 

believed to be widespread due to intensive management. When such soil pan is present, it was assumed to be 10 cm thick and 345 

to be situated within the B horizon (Fig. 2). Each of the regions were characterised by uniform values of volumetric water 

content, soil bulk density, organic carbon content and decay rates (Appendix A).  

 

 

Figure 2:  Conceptual model for pesticide leaching from soil surface to groundwater.  350 

A horizon 

B horizon 

Vadose zone 

z = 30 cm 

z = 60 cm 

z = 0 cm 

z =  zgw 

m0    Jw 

m(z=zgw) 
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An attenuation factor can be calculated for each of the zones:  

𝐴𝐹𝑖 = exp (−
ln(2) ∗ 𝑅𝐹𝑖 ∗ 𝜏𝑤_𝑖

𝐷𝑇50𝑖  
)                   (8) 

 

where RFi and DT50i are the retardation factor and half-life in zone i, and w_i [T] is the average time it takes the infiltrating 355 

water to travel through a given zone i: 

 

𝜏𝑤_𝑖 =
𝜃𝑤_𝑖𝑑𝑖

𝐽𝑤
                                      (9) 

 

where w_i and di [L] are the effective volumetric water content and the thickness of horizon i, respectively.  360 

 

The aim of the leaching risk model is to predict the pesticide flux reaching the groundwater Lgw [M L-2 T-1] (Eq. 1). To do this, 

an effective attenuation factor AFgw is calculated by multiplying the AF for each of the three soil profile regions:  

 

𝐴𝐹𝑔𝑤 = 𝐴𝐹𝐴 ∗ 𝐴𝐹𝐵 ∗ 𝐴𝐹𝑉𝑍                 (10) 365 

 

To assess whether the calculated pesticide flux that reaches groundwater is considered high, medium or low, the flux was 

converted to a pesticide concentration in groundwater Cgw by assuming Lgw was mixed in the upper dmix = 0.1 m of the aquifer:  

 

𝐶𝑔𝑤 = 𝐿𝑔𝑤/𝑑𝑚𝑖𝑥                       (11) 370 

 

This predicted pesticide concentration in groundwater can be compared to measured concentrations (if available), detection 

limits and/or to regulatory standards. A pesticide flux to groundwater of 0.0001 kg ha-1 yr-1 or above was considered high, as 

this would result in the regulatory drinking water standard of 0.1 µg l-1 to be exceeded if mixed in the top 0.1 m of groundwater, 

whereas the threshold for low groundwater leaching fluxes was defined as being 10-fold less (Appendix A). Overall, the 375 

pesticide leaching risk assessment reflected a set of soil-specific factors (organic carbon concentration, bulk density, water 

content and thickness for each of the three layers), pesticide/management-specific factors (application rate, Koc and half-life), 

and climatic factors (rainfall and temperature from which groundwater recharge and runoff rates were estimated). 

 

2.5.2 Overland flow risk assessment 380 

The transport of pesticide from the site of application to surface water via overland flow is complex. Pesticides can leave a 

field either dissolved in runoff water or attached to eroded soil colloids. Because the amount of eroded soil lost from a field is 
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usually small compared with the runoff volume, losses via runoff are generally considered more important than losses via 

erosion for most pesticides. Only for strongly adsorbing pesticides, the erosion pathway becomes the more dominant 

(Reichenberger et al., 2007). However, in the present study, potato cropping was the dominant land use, which has been shown 385 

to be highly erosive (Vinten et al., 2014), therefore the runoff and erosion transport pathways have been lumped into one for 

the modelling of the overland flow losses. Other processes such as spray drift and volatilisation may also transport pesticides 

directly to surface water, but these were considered less important relative to the other pathways and therefore not included in 

the modelling.  

 390 

The overland flow pesticide flux Lof [M L-2 T-1] was calculated using Eq. 2 and assuming that the fraction of applied pesticide 

that will run off a given field and reach the reservoir (AFof) can be estimated as:  

 

𝐴𝐹𝑜𝑓 = exp (−
𝑡𝑟𝑜 ∗ ln(2)

𝐷𝑇50 
) ∗ 𝑓𝑠𝑙𝑜𝑝𝑒 ∗ 𝑓𝑑𝑖𝑠𝑡 ∗ 𝑓𝑏𝑢𝑓𝑓𝑒𝑟                  (12) 

 395 

where tro [T] is the time passing between pesticide application and the occurrence of a runoff event, and fslope, fdist and fbuffer are 

the slope, distance and buffer correction factors, respectively, given by:  

 

𝑓𝑠𝑙𝑜𝑝𝑒 = {

𝑆

10
  , if 𝑆 < 10 degrees  

1  , if 𝑆 ≥ 10 degrees
             (13) 400 

 

𝑓𝑑𝑖𝑠𝑡 = {

1

𝑑𝑓𝑟

  , if 𝑑𝑓𝑟 ≥ 1 m  

1  , if 𝑑𝑓𝑟 < 1 m

                        (14) 

 

𝑓𝑏𝑢𝑓𝑓𝑒𝑟 = 1 − E𝑏𝑢𝑓𝑓𝑒𝑟                                    (15) 

 

where S [degrees] is the local slope, dfr [L] is the distance from the field to the reservoir, and E [%] is a retention efficiency of 405 

a field buffer strip. The above approach for modelling overland flow attenuation follows on from REXTOX (OECD, 2000). 

In REXTOX, the time between pesticide application and the occurrence of a runoff event is assumed to be three days, whereas 

we assumed the time to depend on the month of application (see Appendix A). For simplicity and because we considered the 

contribution from both runoff and erosion, the available amount of pesticide available for run-off was not corrected for sorption 

or for plant interception. The slope correction was assumed to be a linear function up until a local slope of 10 degrees beyond 410 

which no correction took place. The buffer correction factor was informed based on a review of buffer retention efficiencies 

(Reichenberger et al., 2007). It should be noted that REXTOX only considered pesticide losses via runoff from fields adjacent 
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to surface waters and therefore did not include the effect of distance from field to water body. Here, we assumed that the 

attenuation was inversely proportional to the distance from the reservoir.  

 415 

The overland flow flux was evaluated similarly to the leaching risk (Eq. 11) to allow a comparison of the relative contribution 

of the two components to the combined risk.  

 

The above presented approach enabled us to a) asses relative pesticide loss risk from all fields in the study catchment, b) 

compare overland flow risk to groundwater leaching risk for all fields and c) evaluate optimal spatial targeting and the effect 420 

of available mitigation measures in the whole study catchment. 

 

2.5.3 Model implementation and testing 

The model was constructed in GeNIe 3.0 (www.bayesfusion.com). Prior probabilities for network variables were calculated 

from data described in section 2.2 and Appendix A. Discrete variables were assigned a number of mutually exclusive ‘states’ 425 

with conditional probabilities captured in Conditional Probability Tables (CPTs). Prior probability distributions for continuous 

nodes were fitted to available data using the 5th, 50th and 95th percentiles of the cumulative probability distribution (O’Hagan, 

2012) in the SHELF package (Oakley, 2020) in the open source statistical modelling software R (The R Project for Statistical 

Computing 4.0.1). A discretised version of the model was then exported to R and applied at field level, using the package 

bnspatial (Masante, 2017). A discretisation method selected for each node is described in Appendix A. Discretisation was 430 

based on a mix of expert opinion (e.g., soil organic carbon and hydraulic conductivity, as well as groundwater pesticide flux 

and the final surface water risk, which were discretised considering the likelihood of exceeding the drinking water standard 

concentration of 0.1 µg L-1), accepted values in literature (e.g., pesticide Koc and half-life), uniform cases (e.g., rainfall, 

temperature, and PET), and uniform interval width (e.g. depth to groundwater, distance, slope). Child nodes such as AET, 

infiltration rate and overland flow attenuation were discretised using interpolation to ensure that conditional probabilities for 435 

the combination of parent node states (low/low, medium/medium, high/high) were meaningful. Application rate discretisation 

was based on equal counts but adjusted to ensure that change in application rates would result in a shift between risk classes, 

with the number of states maximised to allow sensitivity to change, while considering model run time.  

 

Available spatial GIS layers were used as ‘hard’ evidence to set states for relevant nodes and produce spatially explicit 440 

simulations of probabilistic outcomes.  

 

Uncertainty in the simulated outcomes in the spatial implementation of the model was evaluated by calculating the Shannon 

entropy index of the target nodes. The entropy H(X) for node X is defined as: 

 445 
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𝐻(𝑋) = − ∑ 𝑃(𝑋) log2(P(X)) 

   

The entropy quantifies the information content within a node and equals 0 if X is known with certainty and is maximised when 

𝑋 is unknown (i.e. 𝑋 is given by a uniform distribution).  

 450 

Sensitivity analysis of the discretised model was undertaken in GeNIe using the algorithm of Kjærulff and van der Gaag (2000) 

that calculates a complete set of derivatives of the posterior probability distributions over the target nodes over each of the 

numerical parameters of the Bayesian network, using the two modelled risk pathways and the combined risk as target nodes. 

Euclidean distance measure, which quantifies the distance between the various conditional probability distributions over the 

child node, conditional on the states of the parent node, was used to calculate the strength of influence between variables 455 

(Koiter, 2006). Simulated surface water risk (10,000 simulated values of surface water pesticide concentration in µg L-1) were 

compared with the limited available water quality observations for four active ingredients from month January – March (see 

Section 3.4). Model credibility was furthermore evaluated using stakeholder feedback. 

 

2.6 Simulated scenarios 460 

A questionnaire was used to elicit stakeholder feedback regarding potential alterations to the management of crops/pesticides 

and mitigation strategies from steering group members representing a grower, a regulator and a drinking water supplier in the 

study catchment to develop plausible pesticide mitigation scenarios. The agreed scenarios included: 

• Baseline risk for five active ingredients 

• Delayed pesticide application by one month (January to February and February to March) 465 

• Reduced application rate by 10%, 25% and 50%  

• Additional buffering of fields to reduce overland pesticide runoff 

• Presence/absence of soil pan 

 

3. Results and Discussion 470 

A number of detailed mechanistic models have successfully simulated pesticide dynamics at plot and catchment scale (Piffady 

et al., 2020). However, detailed observational data required for the calibration and validation of detailed models is not widely 

available to managers in many drinking water catchments. In this case study, in addition to sparse water quality observations, 

process-based modelling was hindered by the complex water transfers and limited gauging at the reservoir outlet, which 

prevented the calculation of the hydrological balance due to lack of data on water transfers from neighbouring catchments and 475 

the productivity of the desalination plant. Difficulty with closing a water balance without considerable uncertainty is a known 

problem in many catchments that affects practical application of many modelling approaches (Beven et al., 2019). Therefore, 

to support decision making, we developed a probabilistic model of intrinsic vulnerability to pesticide pollution within a 
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Bayesian framework to allow the assessment of intrinsic pesticide risk and inform management. As pesticide risk assessment 

is inherently uncertain, due to many complex and poorly characterised processes, the graphical BBN model helps to improve 480 

the transparency of the risk management process (Carriger and Newman, 2012). Furthermore, the probabilistic assessment 

provided by the BBN methodology is more in line with the classical definitions of risk than the more commonly used single-

value risk quotients (Moe et al., 2021).The model represents key processes to capture combined uncertainties stemming both 

from observational data and limited knowledge (Sahlin et al., 2021). 

 485 

3.1 Can we characterise the spatial and temporal variability of pesticide pollution risk from groundwater leaching and 

overland flow using limited observational data?  

The causal structure of the hybrid BBN model designed in GeNie is shown in Figure 3. The network consists of 45 nodes and 

75 arcs. The results of the spatial simulation of the groundwater leaching pesticide flux, the overland flow pesticide flux, and 

the overall surface water risk are shown in Figures 4-6. The spatial application of the discretised model for five active 490 

ingredients has mostly shown a uniform low degree of pesticide leaching to groundwater across the 3.1 km2 study catchment, 

with the exception of prosulfocarb applied at the highest application rate (Fig. 4).  The largely low groundwater leaching risk 

is not surprising, due to the very high groundwater attenuation rates resulting from the considered pesticides being neither 

particularly mobile (all have relatively high Koc values) nor persistent (all have relatively short half-lives) (Table 2). Piffady 

et al. (2020) also found that sub-surface vulnerability was the least discriminating spatial layer, as compared to other 495 

hydrological pathways. 

  

Conversely, the overland flow pesticide fluxes showed a distinct spatial variability, with most risky fields located on the 

steepest fields closest to surface water bodies (Fig. 5). Figure 5 also suggests that more of the risky fields are located around 

the west stream, which agrees with the fact that the observed pesticide concentration levels in the west stream are generally 500 

greater than in the east stream (cf. Table 1). This can be explained by more fields being treated with pesticides in the western 

part of the catchment (i.e. more fields where the dominant land use is potato) but also by more permeable hydrogeological 

formations (i.e. blown sand) and soils located in the south east part of the catchment, and hence less runoff expected to be 

generated in this area (Fig. 1b). As the overland pesticide flux is more closely related to the final surface water risk than is the 

groundwater pesticide flux (Fig. 7, Table 3), the resulting risk maps for overland flux and surface water risk flux look similar 505 

(Figs. 5-6). 

 

Entropy calculation for overland flow pesticide fluxes (Fig. 5) and surface water risk (Fig. 6) suggests that in the baseline 

scenario, the risk assessment status class is more certain for the fields closest to the streams, while for the maximum 

intervention scenario, the uncertainty is more evenly distributed across the catchment. The assessment of groundwater leaching 510 

pesticide fluxes is generally more certain (Fig. 4). Regardless of the absolute values, the relative difference in entropy between 
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different management scenarios and risk status classes is informative for informing management interventions and 

safeguarding managers from putting too much or too little confidence in the final risk assessment (Sahlin et al., 2021). 

 

The application of continuous and hybrid networks in environmental risk assessment is rare (Kaikkonen et al., 2021). The 515 

integration of BBNs with GIS for spatial risk assessment has recently been increasing but is still limited (Carriger et al., 2021; 

Guo et al., 2020; Kaikkonen et al., 2021; Pagano et al., 2018). A major advantage of the BBN approach presented here over 

existing index methods for pesticide risk assessment is that the risk and the associated uncertainty can be determined and 

mapped, thereby allowing the confidence in the results to be directly assessed. The hybrid network allows more detailed 

characterisation of multiple processes and their uncertainty, than a typical index-based GIS method. However, the need to 520 

discretise the network for spatial application currently presents a major methodological limitation, leading to loss of 

information, and would merit further research and development. 

  

 

Figure 3: Conceptual structure of the pesticide risk model. Blue = climate/hydrological variables; orange = soil variables; pale 525 

green = site-specific variables; red = land management/pesticide-specific variables. Nodes with thick red border show discrete 

variables that can be manipulated to model management scenarios. Histograms show continuous variables included in the model.  
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Figure 4:  Spatial variability and associated uncertainty (entropy) of groundwater leaching risk under current practices for all AI 

under baseline and maximum mitigation scenarios.  530 
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Figure 5:  Spatial variability and associated uncertainty (entropy) of overland runoff pesticide fluxes under current practices for the 

five active ingredients (Gl=glyphosate; Met=metobromuron; Pen=pendimethalin; Pr=prosulfocarb; Fl=fluopyram) under baseline 

and maximum mitigation scenarios.  

 535 
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Figure 6:  Spatial variability and associated uncertainty (entropy) of surface water risk under current practices for the five active 

ingredients (Gl=glyphosate; Met=metobromuron; Pen=pendimethalin; Pr=prosulfocarb; Fl=fluopyram) under baseline and 

maximum mitigation scenarios. 540 
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3.2 Which factors are most influential on intrinsic pesticide pollution risk?  

Sensitivity analysis has identified the most influential parameters affecting the pesticide leaching and the overland flow 

pesticide fluxes. Figure 7 shows the result of sensitivity analysis graphically with nodes coloured in red being more important 

for the calculation of the posterior probability of the pesticide risk nodes. Pesticide pollution risk was particularly sensitive to 545 

crop type, time of application, overland attenuation, slope and proximity to the surface water body. Crop type directly 

determines the expected amount of pesticide applied in a given field, whereas the time of year affects expected rainfall and 

length of a dry spell following application. Alongside the soil hydraulic conductivity, the latter two influential variables 

determine the amount of infiltration and overland flow. It is apparent that not all variables in the model contributed strongly 

to the final risk assessment, hence model simplification may be possible. However, it may be advisable to test model 550 

transferability to other locations first to confirm these relationships, before omitting potentially uninfluential variables. For 

example, depth to groundwater appears to be uninfluential in this study catchment, which may be explained either by the 

relatively uniform shallow depths and uncertain hydrogeological data or by most pesticide retention and degradation taking 

place in the A and B soil horizons, with limited influence of the vadose zone. These hypotheses could be tested in a study 

catchment with a better understanding of the sub-surface. Evapotranspiration calculations also appear to have limited impact 555 

and could potentially be omitted from the model for simplification. 

 

Figure 7 shows the results of the strength of influence analysis, where the thickness of the arrows represents the strength of 

influence between two directly connected nodes based on the Euclidean distance between the probability distributions. The 

top 20 most closely related variables with Euclidean distance > 0.5 are presented in Table 3. All the relationships are intuitive 560 

and build confidence in reliable specification of the conditional probabilities and hence in model simulations.  

 

https://doi.org/10.5194/hess-2021-477
Preprint. Discussion started: 29 September 2021
c© Author(s) 2021. CC BY 4.0 License.



23 

 

 

Figure 7: Strength of Influence and sensitivity analysis (Kjærulff and van der Gaag, 2000) using  surface water risk, Groundwater 

flux and Overland flow flux as target nodes. Deeper red colouring shows the more influential variables. Thickness of arrows indicate 565 

the strength of influence between two directly connected nodes calculated as Euclidean distance  
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Table 3. Strength of Influence for top twenty most closely related variables (Euclydean distance > 0.5). RF – retardation factor, AF 

– attenuation factor, VZ – vadose zone, B – soil horizon B. 

Parent Child Average Maximum Weighted 

Temperature Potential evapotranspiration 0.95 0.99 0.95 

Rainfall Effective rainfall 0.81 1.00 0.81 

Pesticide Koc 0.80 1.00 0.80 

In field measures Buffer attenuation 0.76 0.76 0.76 

Koc RF 0.67 1.00 0.67 

Koc RF_B 0.67 1.00 0.67 

Effective rainfall Infiltration rate 0.64 0.88 0.64 

Soil hydrological unit FC_VZ 0.63 0.87 0.63 

RF_VZ AF_VZ 0.61 1.00 0.61 

Pesticide Half Life 0.59 0.98 0.59 

Overland flow attenuation Overland flux 0.59 1.00 0.59 

Koc RF_VZ 0.58 1.00 0.58 

RF_B AF_B 0.57 0.99 0.57 

Potential evapotranspiration Actual evapotranspiration 0.56 0.91 0.56 

Soil hydrological unit Organic carbon 0.56 0.79 0.56 

Groundwater attenuation Flux to groundwater 0.53 1.00 0.53 

Flux to groundwater Surface water risk 0.52 0.96 0.52 

Fraction leached Infiltration rate 0.51 0.93 0.51 

SoilPan Kunsat 0.51 0.96 0.51 

Overland flux Surface water risk 0.51 0.95 0.51 

 570 

3.3 What is the effectiveness of available management interventions on pesticide risk reduction? 

The BBN model was applied to evaluate the effectiveness of the following mitigation measures on reducing the pesticide risks: 

delayed timing of pesticide application; 10%, 25% and 50% reduction in application rate; additional field buffers; and 

presence/absence of soil pan. Figure 8-9 show the results of the simulated management scenarios on, respectively, the overland 

flow pesticide flux of metobromuron and the groudwater leaching pesticide flux of prosulfocarb (similar results for the other 575 

pesticides can be found in the Appendix B).  

 

The time between pesticide application and the first runoff event is often considered critical for the mobilisation and loss of 

pesticide via runoff, and hence, avoiding application in months with a higher probability of runoff events can potentially lead 

to a reduction in risk. The figures suggest that delaying the application of pesticide until March results in a decrease in runoff 580 

risk for metobrouron but has limited impact on the leaching of prosulfocarb to groundwater, as groundwater risk is not related 

to the length of a dry spell and associated pesticide degradation following pesticide application. 
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Reduction in application rates unsurprisingly results in a reduced risk, particularly in the groundwater leaching risk (Figure ), 

which is reduced to Low even after 10% reduction. Introduction of buffers reduces the runoff risk to a similar extent as a 50%  585 

reduction of pesticide application rates for overland flow risk and hence may be a more cost-effective mitigation intervention. 

Managing and removing potential plough pans increases the amount of infiltration into soils, thus reducing the pesticide runoff 

risk to an extent that is comparable to 10% reduction in application rates (Fig. 8). By combining all available maximum 

interventions of 50% reduction in pesticide application rate, management of plough pan, delayed application timing and 

installing additional field buffers, the probability of all types of risk is notably reduced (Figs. 4-6, 8-9). 590 

 

 

Figure 8: Example output showing most likely overland flow risk class for each field for Metobromuron under current application 

practices, 10% reduction, 25% reduction, 50% reduction, time shift of application to March, additional field buffers, no plough pan, 

combined all available mitigation measures – shifting application to March, 50% reduction in application rates, buffers and no soil 595 

pan. 
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Figure 9:  Example output showing most likely groundwater leaching risk class for each field for Prosulfocarb under current 600 

application practices, 10% reduction, 25% reduction, 50% reduction, time shift of application to March, additional field buffers, no 

plough pan, combined all available mitigation measures – shifting application to March, 50% reduction in application rates, buffers 

and no soil pan. 

 

3.4 Model validation 605 

Figure 10 shows a comparison between the probability density distributions based on 10,000 surface water risk simulations 

for each active ingredient and the limited observational data (in µg L-1) available for the months January – March between 

2016 and 2019. The model typically over-estimates the simulated risk for glyphosate and pendimethalin, albeit with low 

probability of high values. The simulated and observed distributions for prosulforcarb are comparable, whilst the model seems 

to under-estimate the risk from metobromuron. However, it has to be noted that the very few observations available for 610 

metobromuron,(N=8) seem to be higher and less accurate than for the other pesticides. It should also be noted that the 

developed model was never intended to represent the complex transport and fate processes in the catchment in detail or to 

accurately simulate the pesticide concentration levels in the reservoir, so the comparison in Figure 10 was mainly carried out 

as a sense check of the model predictions. Overall, model simulations appear conservative, which is helpful in terms of 
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informing a precautionary management approach. Further model refinement could focus on constraining the upper simulation 615 

values throughout the model.  

 

Figure 10: Violin plots showing the probability density distribution and three quartiles (25th, 50th, 75th) of simulated 

(N=10,000 iterations) vs. observed (glyphosate N=20, metobromuron N=8, pendimethaling N=73 and prosulfocarb 

N=25) concentrations for four active ingredients. 620 

 

3.5 Limitations and outlook 

A unique advantage of a BBN is the ability to inform probabilistic decisions on the basis of incomplete data (Panidhapu et al., 

2020) and address ‘what-if’ counterfactual scenarios (Gibert et al., 2018; Moe et al., 2021) as well as the ability to integrate 

data of different quality from different sources and disciplines. In machine learning, the selected mathematical approach needs 625 

to be based on the target question to be answered and be aligned with the properties of the available data (Gibert et al., 2018). 

This study presents a novel approach to pesticide risk analysis that matches the question in hand with sparce data in a poorly 

monitored drinking water catchment. We constructed a causal network, where the model structure was informed by expert 

knowledge. However, Bayesian Networks can also be used as machine-learning associative tools that are suitable for deriving 

patterns in datasets without a specific response variable. It could be argued that pesticide risk, expressed as flux or 630 

concentration of pesticide in different potential loss pathways (overland flow or groundwater leaching) is a latent variable 
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without available observational data (Piffady et al., 2020), making it difficult to calibrate or validate a risk model. Hence, 

model credibility and salience (Cash et al., 2005) need to be evaluated by experts and stakeholders. Here, we implemented a 

simple validation approach to confirm that the model predictions fall within the realms of credibility. Further validation 

approaches could be explored in future implementations. The spatial application in the R package bnspatial allows to simulate 635 

expected quantities, based on the median value of each discretisation interval. Hence, by multiplying the combined fluxes from 

each field with the field areas and summing the resulting pesticide masses over all fields in the catchment and dividing by the 

reservoir volume, a concentration in the reservoir water could be estimated for each pesticide and month, which could be 

compared to measured concentrations if available for further model validation. However, this deterministic calculation would 

be heavily reliant on the discretisation of the target node in question, and, coupled with rare extreme high values generated by 640 

the stochastic model, would make the validation uncertain. Hence, it would be best applied in combination with dynamic 

discretisation, if available, and with further model development constraining upper simulated values. 

 

The BBN model could easily be extended to consider other pesticides by changing the pesticide-specific properties, while 

greater structural changes would be needed to simulate the cumulative risk from total pesticide concentrations. However, the 645 

developed BBN also has several limitations and there are various input parameters and elements that could be refined and 

improved. The BBN focuses only on aquatic risks resulting from intentional application of pesticide in agriculture and does 

not consider potential point sources of pesticide contamination (such as misuse, accidental spillages, disposal of pesticides or 

cleaning of application equipment). Although quite detailed in process representation that is based on established mechanistic 

approaches, the modelling of pesticide leaching and runoff in the BBN is still simplified and could be extended to consider 650 

e.g. preferential flow pathways. Soil water balance and hydrology are critical for pesticide risk assessments, the details of 

which are challenging to capture with a BBN or an index-based model. Hence, future developments of the approach could 

include development of an improved probabilistic soil hydrology model linked to the pesticide risk model. 

 

Discretisation is recognised as a major limitation of BBNs (Nojavan A. et al., 2017). Whilst here we constructed a hybrid 655 

network that has largely allowed us to avoid the loss of information associated with discretisation, this advantage was lost in 

the spatial application where existing mathematical and software limitations prevent direct coupling of a hybrid network with 

GIS. We suggest that this limitation could be an interesting and fruitful avenue for further research and methodological 

development, e.g. by developing software applications that allow automated dynamic discretisation (Fenton and Neil, 2013) 

coupled with GIS. Finally, model validation would be helped by confronting with field data in a highly monitored experimental 660 

catchment, thus also allowing to evaluate the model transferability. 

 

Notwithstanding the above limitations, this modelling approach satisfies many of the requirements of an ‘ideal’ model to 

support environmental decision making, as set out by Schuwirth et al. (2019), in that it ‘can be directly linked to management 

objectives, predicts effects of management alternatives without bias, includes adequate precision and a correct estimate of 665 
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prediction uncertainty .. and is easy to understand’. We also developed the model with the final criterion of ‘easy transferability 

in space and time’ in mind, and this could be tested in future applications.  

 

4. Conclusions  

In this study we present a spatial Bayesian Belief Network (BBN) that simulates inherent pesticide risk to groundwater and 670 

surface water quality, identifies critical source areas and informs field-level pesticide mitigation strategies in a small drinking 

water catchment with limited observational data. The BBN accounted for the spatial heterogeneity of surface water risk from 

pesticides, taking into account the spatial distribution of  soil properties (texture, organic matter content, hydrological 

properties), topographic connectivity (slope, distance to surface water/depth to groundwater) and agronomic practices; 

temporal variability of climatic and hydrological processes (temperature, rainfall, evapotranspiration, overland and subsurface 675 

flow) as well as uncertainties related to pesticide properties and the effectiveness of management interventions. The risk of 

pesticide loss via overland flow and leaching to groundwater were simulated for five active ingredients. Overland pesticide 

pollution risk from overland flow showed clear spatial variability across the study catchment, while groundwater leaching risk 

was more uniform. The effectiveness of mitigation measures such as delayed timing of pesticide application, reduction in 

application rates, installation of additional field buffers; and management of soil plough pan on risk reduction were evaluated. 680 

Combined interventions of 50% reduced pesticide application rate, management of plough pan, delayed application timing and 

field buffer installation greatly reduced the probability of high-risk from overland flow. The advantages of the presented BBN 

approach over traditional index-based methods include its ability to integrate diverse data sources (both qualitative and 

quantitative) for a field-scale assessment of critical source areas of pesticide pollution in a data sparce catchment, with explicit 

representation of uncertainties. The graphical nature of the decision support tool facilitates interactive model development and 685 

evaluation with stakeholders to build model credibility; while its flexible and dynamic nature allows for performing both 

predictive and diagnostic reasoning based on observations, which can be linked to spatially explicit data, thus improving 

pesticide risk management. 

Appendix A Model description 

Table A1: Definition of model variables included in the Bayesian Belief Network. Definition of states and boundaries as well as the 690 

information and assumptions used to populate prior probabilities or conditional probability tables for each node.  

Variable (symbol) 

 [unit] 

States Boundar

ies 

Description 

Soil and site-specific variables 

Soil hydrological units 

(SHU) 

Loess  Soil hydrological units observed in the Val de la Mar catchment. The proportion 

of SHUs in the catchment is derived from the hydrogeological map of Jersey 

(Robins et al. 1991):  

Loess (68.7%), Sand (5.7%) and Shale (25.6%) 

Sand  

Shale  

Low <1.2 
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Bulk density topsoil 

(BD) 

[g cm-3] 

Medium 1.2 - 1.4 Bulk density of topsoil, subsoil and parent material [g cm-3], respectively. The 

bulk densities for each soil hydrological unit and horizon have been derived from 

HYPRES database by fitting a truncated normal distribution with mean (µ) and 

standard deviation () to the data, truncating the lower tail at the minimum value 

in the HYPRES database. Discretisation boundaries were based on expert 

opinion. 

  

Bulk density  Loess Sand Shale 

Topsoil µ=1.40; =0.11 µ=1.30; =0.10 µ=1.20; =0.17 

Subsoil µ=1.53; =0.10 µ=1.55; =0.14 µ=1.47; =0.24 

Vadose zone µ=1.48; =0.08 µ=1.64; =0.08 µ=1.52; =0.19 
 

High >1.4  

Bulk density subsoil 

 (BD_B) 

[g cm-3] 

Low < 1.2 

Medium 1.2 - 1.4 

High >1.4  

Bulk density parent 

material/vadose zone 

(BD_VZ) 

[g cm-3] 

Low <1.2 

Medium 1.2 - 1.4 

High >1.4 

Field capacity topsoil 

(FC) 

Low < 0.3 Field capacity of topsoil, subsoil and parent material, respectively. The field 

capacity for each soil hydrological unit and horizon have been derived from the 

HYPRES database and assuming field capacity is the water content at -50 cm 

pressure head. A truncated normal distribution with mean (µ) and standard 

deviation () have been fitted to the data, truncating the lower tail at the 

minimum value in the HYPRES database. Discretisation boundaries were based 

on expert opinion. 

 

Field capacity Loess Sand Shale 

Topsoil µ=0.40; =0.03 µ=0.31; =0.08 µ=0.42; =0.07 

Subsoil µ=0.37; =0.05 µ=0.28; =0.05 µ=0.35; =0.06 

Vadose zone µ=0.39; =0.03 µ=0.23; =0.02 µ=0.35; =0.05 
 

Medium 0.3 - 0.4 

High >0.4 

Field capacity subsoil 

(FC_B) 

Low < 0.3 

Medium 0.3 - 0.4 

High >0.4 

Field capacity parent 

material/vadose zone  

(FC_VZ) 

Low < 0.3 

Medium 0.3 - 0.4 

High >0.4 

Organic carbon topsoil 

(OC) 

[%] 

Low <2 Organic carbon content of topsoil, subsoil and parent material [%]. The organic 

carbon content for each soil hydrological unit and horizon is derived from 

organic matter content (OM) data in the HYPRES database and assuming that 

the organic carbon fraction of organic matter is 58%, i.e.: 𝑂𝐶 = 𝑂𝑀/1.724 

The organic carbon content is assumed to follow a normal distribution with mean 

(µ) and standard deviation (), with the normal distributions being truncated at 

the respective minimum values in the HYPRES database. Discretisation 

boundaries were based on expert opinion. 

 

Organic carbon Loess Sand Shale 

Topsoil µ=1.04; =0.25 µ=3.02; =1.33 µ=2.78; =1.04 

Subsoil µ=0.24; =0.17 µ=0.77; =0.60 µ=0.86; =0.79 

Vadose zone µ=0.23; =0.25 µ=0.21; =0.26 µ=0.38; =0.35 
 

Medium 2-4 

High >4 

Organic carbon subsoil 

(OC_B) 

[%] 

Low < 1 

Medium 1-2 

High >2 

Organic carbon vadose 

zone (OC_VZ)  

[%] 

Low <0.2 

Medium 0.2-0.5 

High > 0.5 

Soil pan (SoilPan) present 
 

The presence of a low-permeable soil pan is believed to be widespread in the 

catchment. The prior distribution is assumed as: present (80%), absent (20%), 

based on stakeholder feedback. 
absent 

 

Effective unsaturated 

hydraulic conductivity 

(Kunsat)  

Low < 0.5 The effective unsaturated hydraulic conductivity of the soil horizons (Kunsat) is 

calculated as the harmonic average of the conductivity of each horizon:  Medium 0.5 - 5 

High > 5 
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[cm day-1] 
𝐾𝑢𝑛𝑠𝑎𝑡 =

𝑑

∑ 𝑑𝑖 𝐾𝑢𝑛𝑠𝑎𝑡_𝑖⁄𝑁
𝑖=1

 

where d is the total soil profile depth of the topsoil and subsoil combined 

(assumed to be 60 cm), di and Kunsat_i are the thickness and unsaturated hydraulic 

conductivity of horizon i, respectively. The calculation can take presence of a 

soil pan into account. Soil hydrological unit and horizon specific unsaturated 

hydraulic conductivities are derived from the HYPRES database and depends on 

whether a soil pan is present (SP) or not (No SP). The hydraulic conductivity is 

assumed to follow a log-normal distribution with mean (µ) and standard 

deviation () based on values in the HYPRES database. Discretisation 

boundaries were based on expert opinion. 

 

Values of ln(Kunsat_i) [cm day-1] is given below. SP=soil pan. 

  Topsoil Subsoil Soil pan 

Thickness 

[cm] 

No SP 30 30 0 

SP 30 20 10 

ln
(K

u
n
sa

t_
i)

 [
cm

 d
ay

-1
] 

Loess No SP µ=-0.4; =1.7 µ=-0.2; =1.1   

SP µ=-1.4; =1.7 µ=-1.2; =0.9 µ=-3.9; =0 

Sand No SP µ=2.3; = µ=3.2; =  

SP µ=-0.9; = µ=0.8; = µ=-3.9; =0 

Shale No SP µ=-1.9; =0.7 µ=-1.1; =0.5   

SP µ=-4.0; =0.7 µ=-2.9; =1.3 µ=-3.9; =0 

  
Depth to groundwater 

(Depth) [m] 

Shallow ≤ 5 Depth to groundwater is derived from the hydrogeological contours for the 

VDLM catchment provided by Jersey Water based on British Geological Survey 

data.A normal distribution has been fitted to this information (µ=7.9; =3.9) 

with the lower tail truncated at 2.5 m. Discretisation boundaries were based on 

equal intervals and expert opinion. 

Medium 5 - 10 

Deep >10 

Distance [m] Very low < 50 Distance to reservoir is derived by calculating the horizontal distance to the 

stream features using the Distance to nearest hub tool in QGIS. The distance was 

calculated from the polygon edge (i.e. vertex) that was nearest to the stream 

feature. A lognormal distribution was fitted to this information (µ=4.75; 

=0.54). Discretisation boundaries were based on equal intervals and expert 

opinion. 

Low 50 -100 

Medium 100 - 150 

High 150 - 200 

Very high >200 

Slope Very low < 1.5 Slope [degrees] is derived from a hydrologically-corrected digital terrain model 

(DTM) of 1m grid resolution. A log-normal distribution has been fitted to this 

information (µ=0.65; =0.49). Discretisation boundaries were based on equal 

intervals and expert opinion. 

Low 1.5 - 2 

Medium 2 - 2.5 

High 2.5 - 3 

Very high >3 

Climatic and hydrological variables 

Month Jan, Feb, 

Mar 

  

Rainfall (Rainfall)  Low < 65 

https://doi.org/10.5194/hess-2021-477
Preprint. Discussion started: 29 September 2021
c© Author(s) 2021. CC BY 4.0 License.



32 

 

[mm month-1] Medium 65 - 100 Monthly rainfall is derived from observed rainfall data (1894-2019) from the 

Government of Jersey website (https://opendata.gov.je/). Discretisation was 

based on uniform counts. 
High >100 

Mean monthly 

temperature 

(Temperature) [C] 

Low < 6.6 Mean monthly temperature is derived from observed temperature data (1894-

2019) from the Government of Jersey website (https://opendata.gov.je/). 

Discretisation was based on uniform counts. 
Medium 6.6 - 8 

High >8 

Dry spell [days] Low ≤ 1 The time between pesticide application and the first runoff event is determined 

by the likely length of a dry spell. Probability of dry spell length is calculated 

from daily rainfall data from 2014-2019 using the method by Hills and Morgan 

(1981) and assuming days with less than 0.25 mm rainfall are dry. 

Medium 1 - 3 

High >3 

Potential 

evapotranspiration 

(PET) [mm month-1] 

Low <40 Potential evapotranspiration is calculated based on the Langbein formula 

(Pistocchi et al. 2006) :  

𝑃𝐸𝑇 = (300 + 25 ∗ 𝑇 + 0.05 ∗ 𝑇3)/12 

Equation is valid for calculating annual average PET, but it is here assumed 

applicable for calculating monthly PET based on monthly average temperature 

T. Discretisation was based on uniform counts. 

Medium 40 - 45 

High >45 

Actual 

evapotranspiration 

(AET) [mm month-1]  

Low <35 Actual evapotranspiration is calculated from PET and rainfall based on the Turc 

method (Pistocchi, A., Pilar, V., Pennington, 2006). It is assumed this equation 

is valid for calculating monthly AET based on monthly rainfall and PET. 

𝐴𝐸𝑇 = 𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 ∗ (0.9 + (
𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙

𝑃𝐸𝑇
)

2

)

−0.5

 

Discretisation was based on uniform counts and interpolation to ensure that 

conditional probabilities for combination of parent node states are meaningful. 

Medium 30-40 

High >40 

Excess rainfall (ERF) 

[mm month-1] 

Low <30 Monthly excess rainfall is the difference between rainfall and actual 

evapotranspiration and is calculated as follows:  

𝐸𝑅𝐹 = {
0,                               for Rainfall<AET

𝑅𝑎𝑖𝑛𝑓𝑎𝑙𝑙 − 𝐴𝐸𝑇, for Rainfall1AET
 

Discretisation was based on uniform counts and interpolation to ensure that 

conditional probabilities for combination of parent node states (low/low. 

medium/medium, high/high) are meaningful. 

Medium 30 – 60 

High >60 

Fraction leached (fleach) Very low < 0.2 Fraction of excess rainfall that will infiltrate to groundwater. It is assumed that 

all excess rainfall is infiltrating up to a maximum rate equal to Kunsat 

𝑓𝑙𝑒𝑎𝑐ℎ = {
1,                                      for ERF<𝐾𝑢𝑛𝑠𝑎𝑡 ∗ 30 ∗ 10
𝐾𝑢𝑛𝑠𝑎𝑡 ∗ 10 ∗ 30/𝐸𝑅𝐹 , for ERF≥𝐾𝑢𝑛𝑠𝑎𝑡 ∗ 30 ∗ 10

 

 

Discretisation was based on equal intervals. 

Low 0.2 - 0.4  

Medium 0.4 – 0.6  

High 0.6 – 0.8 

Very high >0.8 

Infiltration rate (IR) 

[mm month-1] 

Very low < 10 The infiltration rate to groundwater  

𝐼𝑅 = 𝐸𝐹𝑅 ∗ 𝑓𝑙𝑒𝑎𝑐ℎ 

Discretisation was based on interpolation to ensure that conditional probabilities 

for combination of parent node states are meaningful. 

Low 10 - 15 

Medium 15 - 30 

High 30 - 60 

Very high >60 

Pesticide, land use and land management variables 

Crop Type/ Land Use Cereals  Land use and crop types are based on agronomic data provided by Jersey Royal 

as described in Section 3.3. Grass  

Grass/ 

Silage 
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JRPotato

es 

 

NO 
 

Active Ingredient Glyphosa

te 

  

Metobro

muron 

 

Pendimet

halin 

 

Prosulfoc

arb 

 

Fluorpyra

m 

 

Koc [L/kg] Very 

mobile 

0 - 15 Koc values and state classes are based on the University of Hertfordshire 

database. See Table 2 for typical application rates and properties of the selected 

pesticides. To account for uncertainty, the Koc values for each pesticide have 

been assumed to follow a normal distribution as stated below. Discretisation 

boundaries were based on accepted values (Lewis et al., 2016).  

Active ingredient Koc 

Glyphosate µ=1420; =232 

Methobromuron µ=197; =0.86 

Pendimethalin µ=17500; =3120 

Prosulfocarb µ=1690; =140 

Flyopyram µ=279; =19.8 
 

Mobile 15 - 75 

Moderate

ly mobile 

75 - 500 

Sightly 

mobile 

500 - 

4000 

Non-

mobile 

>4000 

Half Life [days] Non-

persistent 

< 30 Half-life values and state classes are based on the University of Hertfordshire 

database. See Table 2 for typical application rates and properties of the selected 

pesticides. To account for uncertainty, the half-life values for each pesticide have 

been assumed to follow a normal distribution as stated below.  Discretisation 

boundaries were based on accepted values (Lewis et al., 2016).  

Active ingredient Half-life 

Glyphosate µ=23.8; =7.52 

Methobromuron µ=22.4; =7.31 

Pendimethalin µ=101; =26.5 

Prosulfocarb µ=9.8; =1.39 

Flyopyram µ=119; =11 
 

Moderate

ly 

persistent 

30 - 100 

Persistent 100 - 365 

Very 

persistent 

>365  

Application Applied 
 

Intermediate variable that determines if a given pesticide is applied at a given 

month and for a given crop type. This has been populated based on the details 

provided in the separate section in the report on typical application rates and 

properties of the selected pesticides. 

Not 

applied 

 

Application rate (AR)  

[kg ha-1 yr-1] 

None 0 – 1E-7 Pesticide-specific application rates. This has been populated based on the details 

provided in the separate section 2.2 on typical application rates and properties of 

the selected pesticides. The application rates are adjusted depending on 
AR1 1E-7 - 0.1 

AR2 0.1 - 0.2 
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AR3 0.2 – 0.3 ‘Application rate change’ node. Discretisation was based on equal counts but 

adjusted to ensure that change in application rates would result in a shift between 

risk classes. The number of states was maximised to allow sensitivity to change 

while considering model run time.  

AR4 0.3 – 0.5 

AR5 0.5 – 0.8 

AR6 0.8 – 1.0 

AR7 1.0 – 1.2 

AR8 1.2 – 2.0 

AR9 2.0 – 2.5 

AR10 2.5 – 3.0 

AR11 3.0 – 4.0 

Application rate change 

[%] 

Baseline 

(0%) 

 Management node 

10%  

25%  

50%  

In field measures 

(Measures) 

Baseline 0.99 Management node that allows to simulate the effect of additional buffer 

implementation to reduce overland pesticide runoff from fields. Buffers 0.01 

Buffer attenuation 

(Ebuffer) 

Very low <0.2 Proportion of pesticide delivered to water course, conditioned on Measures. 

Modelled as a beta distribution on 0-1 scale, based on Reichenberger et al. 

(2007). Zero under baseline conditions and Beta(1.77,0.869 with additional 

buffers. Discretisation was based on equal intervals. 

Low 0.2-0.4 

Medium 0.4-0.6 

High 0.6-0.8 

Very high >0.8 

Calculated variables 

RF A [unitless] Low <10 Retardation factor for the topsoil, subsoil and parent material/vadose zone. The 

retardation factor describes the velocity of the solute pesticide relative to the 

infiltrating water. Hence, a RF=1 corresponds to a solute not experiencing any 

retardation due to adsorption (e.g. a tracer), whereas a RF=4 means that the 

solute travels 4 times slower than the infiltrating water etc. For a given pesticide 

and soil horizon, the retardation factor is calculated as: 

 

𝑅𝐹 = 1 +
𝐵𝐷 ∗ 𝑂𝐶 ∗ 𝐾𝑜𝑐

𝐹𝐶
 

 

Discretisation boundaries were based on expert opinion. 

Medium 10 - 50 

High >50 

RF B Low <10 

Medium 10 - 50 

High >50 

RF VZ Low <10 

Medium 10 - 50 

High >50 

AF A [unitless] AF1  0 - 1E-5 The attenuation factor during vertical solute transport through the topsoil (AF 

A). The calculation assumes 1D plug flow transport with the infiltrating water, 

linear retardation and first-order decay (Stenemo et al., 2007): 

𝐴𝐹_𝐴 = exp (
− ln(2) ∗ 𝑅𝐹_𝐴 ∗ 𝑑𝐴 ∗ 𝐹𝐶_𝐴

𝐼𝑅
30

∗ 𝐻𝑎𝑙𝑓𝐿𝑖𝑓𝑒
∗ 1000) 

where dA is the thickness of the topsoil, assumed to be 0.3 m. AF_A is the 

fraction of the applied pesticide that will reach the bottom of the topsoil and can 

take values between 0 (none of the applied pesticide will reach the bottom of the 

horizon) and 1 (all the applied pesticide will pass through the horizon).  

Discretisation boundaries were based on expert opinion on a logarithmic scale 

to reflect the skewed distribution. 

AF2 1E-5 – 

0.0001 

AF3 0.0001 -

0.0.001 

AF4 0.001 – 

0.01 

AF5 0.01 – 0.1 

AF6 0.1 - 1 
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AF B [unitless]  AF1 0 - 1E-5 Attenuation factor during vertical solute transport through the subsoil (see details 

above).  

𝐴𝐹_𝐵 = exp (
− ln(2) ∗ 𝑅𝐹_𝐵 ∗ 𝑑𝐵 ∗ 𝐹𝐶_𝐵

𝐼𝑅
30

∗ 𝐻𝑎𝑙𝑓𝐿𝑖𝑓𝑒 ∗ 4
∗ 1000) 

where dB is the thickness of the subsoil, assumed to be 0.3 m. It is assumed that 

the half-life during transport through the B horizon is 4 times longer than in the 

topsoil. 

Discretisation boundaries were based on expert opinion; a logarithmic scale was 

used to reflect the skewed distribution.  

AF2 1E-5 – 

0.0001 

AF3 0.0001 -

0.0.001 

AF4 0.001 – 

0.01 

AF5 0.01 – 0.1 

AF6 0.1 - 1 

AF VZ AF1 0 - 1E-5 Attenuation factor during vertical solute transport through the parent 

material/vadose zone (see details above).  

𝐴𝐹_𝑉𝑍 = exp (
− ln(2) ∗ 𝑅𝐹_𝑉𝑍 ∗ 𝑚𝑎𝑥(𝐷𝑒𝑝𝑡ℎ − 𝑑𝐴 − 𝑑𝐵, 0) ∗ 𝐹𝐶_𝑉𝑍

𝐼𝑅
30

∗ 𝐻𝑎𝑙𝑓𝐿𝑖𝑓𝑒
) 

 

The thickness of the vadose zone is given by the ‘Depth to groundwater’ node 

(Depth) minus the thickness of the topsoil and subsoil. It is assumed that the half-

life during transport through the vadose zone is 1000 times longer than in the A 

horizon. 

Discretisation boundaries were based on expert opinion; a logarithmic scale was 

used to reflect the skewed distribution. 

AF2 1E-5 – 

0.0001 

AF3 0.0001 -

0.0.001 

AF4 0.001 – 

0.01 

AF5 0.01 – 0.1 

AF6 0.1 - 1 

Groundwater AF Almost 

complete  

0 - 1E-5 The combined attenuation factor for the soil horizons and the vadose zone 

describes the fraction of the pesticide applied at the surface that will eventually 

reach the groundwater: GW_𝐴𝐹 = 𝐴𝐹_𝐴 ∗ 𝐴𝐹_𝐵 ∗ 𝐴𝐹_𝑉𝑍 

 

Discretisation boundaries were based on expert opinion; a logarithmic scale was 

used to reflect the skewed distribution. 

Very high  1E-5 – 

0.0001 

High  0.0001 -

0.0.001 

Moderate  0.001 – 

0.01 

Some  0.01 – 0.1 

Limited  0.1 - 1 

Groundwater flux  

[kg ha-1 yr-1] 

Low 0-1.0E-5  The pesticide amount leaching to groundwater is calculated from the 

groundwater attenuation factor (GW_AF) and the application rate (AR): 

𝐿𝑒𝑎𝑐ℎ = 𝐴𝑅 ∗ 𝐺𝑊_𝐴𝐹 

Leaching to groundwater is considered high if the pesticide mass flux to 

groundwater exceeds 0.0001 kg ha-1 yr-1. If a mass flux of 0.0001 kg ha-1 yr-1 is 

mixed in the top 0.1 m of the groundwater, this will result in a concentration of 

0.1 µg l-1, which is the drinking water standard. 

Medium 1.0E-5 -

0.0001 

High 0.0001 - 7 

Fraction remaining 

(fdecay) 

Very high < 0.1 Fraction of pesticide that will remain following application and decay during a 

dry period before the first rainfall event. 

𝑓𝑑𝑒𝑐𝑎𝑦 = exp (−
𝑡𝑟𝑜 ∗ ln(2)

𝐷𝑇50 
) 

where tro [days] is the dry spell length. Discretisation was based on interpolation 

to ensure that conditional probabilities for combination of parent node states are 

meaningful. 

High 0.1 - 0.3 

Medium 0.3 – 0.5 

Low 0.5 – 0.8 

Very low >0.8 

Overland flow 

attenuation  

[unit less] 

Very high 0 – 1E-5 Overland flow attenuation factor. 

High 1E-5 -1E-

4 
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Medium 1E-4 – 

0.001 𝐴𝐹𝑜𝑓 = exp (−
𝑡𝑟𝑜 ∗ ln(2)

𝐷𝑇50 
) ∗ 𝑆𝑙𝑜𝑝𝑒/𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ (1 − 𝐸𝑏𝑢𝑓𝑓𝑒𝑟) 

Discretisation was based on interpolation to ensure that conditional probabilities 

for combination of parent node states are meaningful.  

Low 0.001 – 

0.005 

Very low >0.005 

Overland flow flux  

[kg ha-1 yr-1] 

Low 0-1E-5  The pesticide amount reaching the reservoir with runoff is assumed to be a 

function of the application rate (AR), the overland attenuation factor (AFof) and 

the fraction of overland flow to maintain pesticide mass balance: 

𝑂𝐿𝑅 = 𝐴𝑅 ∗ 𝐴𝐹𝑜𝑓*(1-fleach) 

The discretization is based on the same consideration as for the ’Groundwater 

flux’ node 

Medium 1E-5 -

0.0001 

High >0.0001 

Surface water risk  

[µg l-1] 

Low <0.01 Surface water risk is the sum of the groundwater and overland flow fluxes. 

Discretisation was based on predicted likely pesticide concentration in the 

reservoir. This was calculated by multiplying the combined fluxes by the total 

field area in the catchment (Ac=192 ha) and dividing by the water volume in the 

reservoir (Vres = 938,700 m3): 

𝐶𝑠𝑤 = (𝐿𝑔𝑤 + 𝐿𝑜𝑓) ∗ 𝐴𝑐/𝑉𝑟𝑒𝑠 

The risk was considered high if the resulting concentration was likely to exceed 

the drinking water standard for pesticides 0.1 µg l-1. 

Medium 0.01-0.1 

High > 0.1 
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Appendix B: Results for overland water risk for all pesticides under all scenarios. 695 

 

Figure B1: Most likely overland flow risk class for Glyphosate under current application practices, reduction in application rate by 

10%, 25% and 50%, shift of application to February, additional field buffers, no plough pan, and all mitigation measures combined. 
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 700 

Figure B2: Most likely overland flow risk class for Pendimethalin under current application practices, reduction in application rate 

by 10%, 25% and 50%, shift of application to March, additional field buffers, no plough pan, and all mitigation measures combined. 

 

Figure B3: Most likely overland flow risk class for Prosulfocarb under current application practices, reduction in application rate 

by 10%, 25% and 50%, shift of application to March, additional field buffers, no plough pan, and all mitigation measures combined. 705 
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Figure B4: Most likely overland flow risk class for Fluopyram under current application practices, reduction in application rate by 

10%, 25% and 50%,  shift of application to March, additional field buffers, no plough pan, and all mitigation measures combined. 

 710 

Code and data availability 

The code and data cannot not be made publicly available due to funder restrictions and privacy concerns. However, it may be 
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