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Abstract  

Understanding the impacts of land use changes (LUCC) on the dynamics of water quantity and quality is necessary to 

identify mitigation measures favorable for sustainable watershed management. Lowland catchments are characterized by a 

strong interaction of streamflow and near-surface groundwater that intensifies the risk of nutrient pollution. In this study, we 10 

investigated the effects of long-term changes in individual land use classes on the water and nutrient balance in the lowland 

catchment of the upper Stör in Northern Germany. To this end, the hydrological model SWAT (Soil and Water Assessment 

Tool) and partial least squares regression (PLSR) were used. SWAT model runs for three different land use maps (1987, 

2010, 2019) were conducted and the outputs were compared to derive changes in water quantity (i.e., evapotranspiration 

(ET), surface runoff (SQ), base flow (BF), and water yield (WYLD)) and quality variables (i.e., sediment yield (SED), total 15 

phosphorus (TP) and total nitrogen (TN) loads). These changes were related to land use changes at the subbasin scale using 

PLSR. The major land use changes that significantly affected water quantity and quality variables were related to a decrease 

of arable land and a respective increase of pasture and urban land during the period of 1987-2019. Changes of landscape 

indictors such as area size, shape, dominance, and aggregation of each land use class accounted for as much as 61%-88% (75% 

on average) of the respective variations in water quantity and quality variables. The aggregation, contiguity degrees, and area 20 

extent of arable land were found to be most important to control the variations in most water quantity variables. Increases of 

arable (PLANDa) and urban land percent (PLANDu) led to more TP and TN pollution, sediment export, and surface runoff. 

The cause-effect results of this study can provide a quantitative basis for targeting the most influential change in landscape 

composition and configuration to mitigate adverse impacts on water quality in the future. 

1 Introduction  25 

Good water quality and quantity are essential for enhancing ecological stability and diversity, and both of which play 

important roles in maintaining sustainable agricultural or economic development and human health (Lu et al., 2015; Singh et 

al., 2017; Antolini et al., 2020; Gleick, 2000; Srinivasan and Reddy, 2009). The water resources dynamics within a 

catchment are mainly governed by a combination of climate and land use, as other catchment characteristics (e.g., 

topography, soil, and lithology) usually do not change on a short term (Shuster et al., 2005; Farjad et al., 2017; Wagner et al., 30 

2018). Vice versa, hydrology affects land use as well (Wagner and Fohrer, 2019; Wagner and Waske, 2016). In the past 

three decades, land use changes with respective to urbanization, deforestation, and agriculture intensification have exerted 

significant effects on water quality or water balance components (Wagner et al., 2016; Shrestha et al., 2018; Kändler et al., 

2017). They can alter surface roughness, evapotranspiration, soil infiltration, and the interaction between surface and 

subsurface water (Fiener et al., 2011; Wei et al., 2007; Lei et al., 2021), and promote or hinder generation and transportation 35 

of soil particles, chemicals, or metals (Nafi'shehab et al., 2021; Taka et al., 2022; Ding et al., 2016). Given the direct and 

indirect effects of land use changes on hydrological processes and contaminant inputs, it is of great practical significance to 

identify key predictor variables, to achieve an effective catchment management of land and water resources.  
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Earlier studies have often aimed at analyzing land use change effects using lumped indicators of landscape composition, e.g., 

areal percentage of a land use class in the catchment (Kumar et al., 2022; Lei et al., 2021). However, composition indicators 40 

do not convey any details with respect to spatial settings of landscape patterns. The configuration of the spatial land use 

distribution is another fundamental element measured using landscape metrics (i.e., metrics to quantify the spatial structure 

of land use patterns within a defined geographic area). Compared to the composition indicators that refers to the abundance 

(e.g., areal percent) of land patches (i.e., homogenous areas of the landscape) (Hesselbarth et al., 2019) belonging to one 

certain class without considering their spatial characteristics, landscape configuration metrics describe spatial fragmentation 45 

or distribution of patches, e.g., the shape complexity. Landscape configuration metrics of the dominance, diversity, shape, 

aggregation, and interconnection of land patches play a critical part in determining the energy and matter fluxes of e.g., solar 

radiation, temperature, evapotranspiration, surface runoff, nutrients, and sediments from the landscape ecology perspective 

(Forman, 1995; Wu and Lu, 2021; Lei et al., 2019; Amiri and Nakane, 2009). They were found to be more important as 

descriptors of water quality than composition indicators in some case studies: E.g., Ding et al. (2016) observed that poorer 50 

water quality was not as much associated with areal percentage as with higher patch densities (PD) of cropland, orchards and 

grassland and a higher value of largest patch index (LPI) of urban land, in a low-order streams dominated catchment 

(drainage area: 35,340 km2) in southeastern China. Despite little consideration of landscape configuration in the studies of 

water quantity (Shrestha et al., 2018; Anand et al., 2018), the shape, dominance or connectivity degree of land patches is 

closely linked to the modification of the hydrological cycle. For example, more fragmented forest patches may favor 55 

funneling of precipitation (Ghimire et al., 2017); hardness and straightness of land patches of farmland, urban, and natural 

land uses influence streamflow rates at different magnitudes and directions (Riitters, 2019; Shi et al., 2013); more 

concentrated grassland patches result in greater evapotranspiration (Yu et al., 2020). Therefore, it is necessary to assess 

influences of changes in different aspects of a land use class to better understand their impacts on water resources dynamics.  

To quantify effects of land use changes on water resources, hydrological models are widely used (Gabriels et al., 2021; 60 

Idrissou et al., 2022; Wijesekara et al., 2012), e.g., SWAT (Soil and Water Assessment Tool) (Arnold et al., 1998), HSPF 

(Hydrological Simulation Program-Fortran) (Bicknell et al., 2001), or DHSVM (Distributed Hydrology-Soil Vegetation 

Model) (Wigmosta et al., 1994). Models are particularly useful to detect historic as well as future land use change impacts 

applying a scenario analysis (Aredo et al., 2021; Anand et al., 2018). As a physically-based and semi-distributed 

hydrological model, SWAT has proven its suitability for an integrated modeling of water, sediment, and nutrient dynamics in 65 

different-sized rural catchments (Aghsaei et al., 2020; Tan et al., 2021). SWAT has been applied in many catchments 

worldwide to investigate the hydrological and hydro-chemical effects (Amin et al., 2020; Boongaling et al., 2018; Anand et 

al., 2018). In lowland areas, the transport of water and nutrients is strongly influenced by flat topography and shallow 

groundwater tables in addition to the spatially heterogonous land use. The hydrological model SWAT has proven its 

suitability to model eco-hydrological consequences of spatio-temporal land use changes in lowland catchments (Guse et al., 70 

2014; Pott and Fohrer, 2017b). Particularly in several lowland catchments in northern Germany, SWAT was extensively 

tested in impact studies. E.g., Lam et al. (2012) modeled the long-term observations of daily streamflow and nitrate load in 

the Kielstau catchment and found that diffuse source pollution (dominated by agriculture) contributed dominantly (95%) to 

nitrate load; In the Upper Stör catchment, Song et al. (2015) coupled SWAT with HEC-RAS to analyze temporal dynamics 

of sediment loads in subbasins covered by heterogonous land use conditions. Despite a high feasibility of SWAT modelling 75 

water quantity and quality, previous studies illustrated that the original SWAT version sometimes performed relatively poor 

for recession limbs and low flow periods of streamflow (Guse et al., 2014; Pfannerstill et al., 2014). In lowland catchments, 

groundwater contributes significantly to low flows and thus becomes a dominant component of streamflow (Pott and Fohrer, 

2017b). To more accurately model low flows, an enhanced version of SWAT, SWAT3S, was developed in the Kielstau 

catchment, by conceptually separating the shallow groundwater aquifer of the original SWAT into a fast and slow shallow 80 

aquifer (Pfannerstill et al., 2014). SWAT3S was successfully used for modelling daily streamflow and nitrogen loads in a few 

German lowland catchments (e.g., Kielstau and Treene) by improving the representation of low flow periods (Pfannerstill et 
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al., 2014; Haas et al., 2017). Given the aforementioned strength, SWAT3S is suitable for assessing the impacts of land use 

changes on water resources in lowland areas dominated by groundwater recharge. 

While the changes in landscape composition and configuration have a great potential of influencing hydrology, soil erosion 85 

or water quality dynamics at different spatial and seasonal scales (Jones et al., 2001; Kändler et al., 2017; Haidary et al., 

2013), some landscape metrics may have a high probability for collinearity. The collinear landscape metrics carry redundant 

information and are not independent predictor variables (Hargis et al., 1998). They can therefore result in biased or even 

misleading results when using conventional multivariate regression techniques like ordinary least-square regression, 

particularly in the case of a small number of observations (Shi et al., 2013; Shawul et al., 2019). Compared to ordinary 90 

multivariate statistical methods, partial least squares regression analysis (PLSR) can overcome the limitation of multi-

collinearity and achieve a robust performance by using techniques of multivariate statistical projection (Shi et al., 2013). 

Based on the powerful technique of projecting predicted and observed variables onto a new space and estimating the 

underlying structure between projected spaces, PLSR facilitates an unbiased analysis of “cause-effect” relationships between 

land use changes and water resources components (Shi et al., 2013; Yan et al., 2013; Ferreira et al., 2017). Using an 95 

integrated approach of PLSR and hydrological modelling with SWAT, impacts of the land use changes on various water 

resources components can be effectively identified. E.g., in the Upper Du catchment, China, Yan et al., (2013) observed that 

the farmland positively influenced streamflow and sediment yield, whereas forest area showed negative correlation with 

them; besides, urban expansion would cause streamflow to increase as well. Shi et., al (2013) indicated that the landscape 

metrics e.g., Shannon’s diversity index (SHDI), aggregation index (AI), largest patch index (LPI), contagion (CONTAG), 100 

and patch cohesion index (COHESION) were important to control soil erosion and sediment yield, contributing 65% and 74% 

to their variations at subbasin level, respectively. Gashaw et al. (2018) anticipated that more shrubland would cause water 

yield and surface runoff to decrease while evapotranspiration and groundwater flow to rise, however, increased cultivated 

land would result in decreases of groundwater flow and evapotranspiration in Blue Nile Basin, Ethiopia. In summary, it has 

been demonstrated that PLSR is efficient to distinguish the complex impacts on water quantity and quality. 105 

The Stör River is the longest tributary of the Elbe River in the northernmost federal state of Germany, Schleswig-Holstein. 

Intensive agricultural activities (e.g., grazing, tillage, fertilizer, and pesticide application) are common in the catchment and 

increase the risk of water quality pollution (Monaghan et al., 2007). A variety of amelioration measures, e.g., tile drainage 

and straightening or canalizing of tributaries have been implemented in the past century to sustain agriculture productivity in 

lowland areas dominated by shallow groundwater tables and abundant groundwater recharge. These activities brought about 110 

changes in the input and transport of nutrients and in hydrological fluxes. Meanwhile, the heterogeneity of the landscape 

pattern has been intensified due to artificial disturbances (Gu et al., 2007; Goldewijk and Ramankutty, 2004). We previously 

found significant relationships between land use patterns and water quality parameters at the landscape level in the upper 

Stör Catchment based on measurements (Lei et al., 2021). A modeling approach allows to model the quantitative 

contribution of land use changes on water quality and quantity, and facilitates developing informed and practicable strategies 115 

for sustainable land and water management (Ripl et al., 1996; Pott, 2014). 

To identify the key land use changes controlling the spatial and temporal variations in water quantity and quality, 

relationships between landscape characteristics of each land use class and water quality (represented by sediment, TP and 

TN) and quantity (represented by evapotranspiration, surface runoff, base flow, and water yield) were explored at the 

subbasin scale in the upper Stör Catchment. To this end, the hydrological model SWAT and partial least squares regression 120 

(PLSR) were employed. The study aims at (1) calibrating and validating a catchment model for streamflow, sediment, TP, 

and TN loads; (2) quantifying the changes of landscape characteristics and water quality and quantity variables at the 

subbasin scale; (3) investigating the relationships (depicted by the contribution and influence) between LUCC and water 

quality and quantity dynamics at the subbasin scale.  
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2 Materials and methods 125 

2.1 Study area 

The rural lowland catchment of the upper Stör is the focus of this study (Figure 1). It extends from the origin of the Stör 

River in Willingrade to the gauge in Willenscharen (Figure 1) and is free of tidal influence. The catchment has a drainage 

area of approximately 462 km², with a total length of the river network of about 221 km. Its temperate climate is 

characterized by an average annual precipitation of 850 mm and a mean temperature of 9.4 °C between 1990 and 2019, 130 

according to the records by weather stations Neumünster and Padenstedt (Dwd, 2020b). The average daily streamflow 

measured at the catchment outlet in Willenscharen is 5.8 m3 s-1 between 1990 and 2019, with low flows (mean value: 3.8 m3 

s-1) in summer (May-October) and high flows (mean value: 7.9 m3 s-1) in winter (November-April) (Lkn, 2020). Discharge 

occurring in the highest flow period (December-March) contributes most (around 50%) to the total annual amount of 

streamflow. The catchment is characterized by a flat topography, descending from nearly 60 m a.s.l. in the northeast and 85 135 

m in the western part towards 20 m in the center and to 5-10 m in the southern part. Sandy soil (Cambisol, Gley-Podsol, 

Podsol) dominates the catchment, particularly in the central lowland part, while some Gley soils are mainly distributed in the 

east and peat soils can be found in proximity to streams and near two major wetlands (Pott and Fohrer, 2017a). The 

catchment is dominated by rural land use composed of arable land (36.1%) and pasture (31.3%), followed by forest (18.7%), 

urban areas (12.8%), and a minor fraction of water and wetland as indicated by a land use map for 2019 (Lei et al., 2021). 140 

The main cultivated crops include winter cereals (wheat, barley, and rye), corn, and rapeseed. 

 

Figure 1. Characteristics of the study area: location of the upper Stör Catchment (a), spatial distributions of topography (b) 

(Lverma, 2008) and soil types (c) (Finnern, 1997), of subbasins, weather and gauging stations, and waste water treatment plants 

(WWTPs) (d) (Pott, 2014), as well as land use maps (e) (Ripl et al., 1996; Rathjens et al., 2014; Lei et al., 2021).  145 

2.2 Land use data and landscape metrics 

Land use maps for 1987, 2010, and 2019 were used to characterize changes in land use and landscape patterns. The earlier 

two maps (1987, 2010) were adapted from Ripl et al. (1996) and Rathjens et al. (2014), respectively, and were based on 
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Landsat TM-5 image data at 30 m resolution. The land use map for 2019 was derived from 10 m resolution Sentinel-2 

satellite images (Lei et al. 2021). The land use classes were categorized uniformly as: 1) arable land (winter cereals, corn, 150 

and winter rape, and other crops), 2) pasture (meadow, field grass, and rangeland); 3) forest (deciduous and coniferous 

forest); 4) urban (residential, commercial and industrial areas); 5) water (rivers, ponds, and lakes) and 6) wetland (Figure 1). 

Water and wetland are not considered for further analysis, as they comprise only minor and mostly constant percentages.  

The area percentage of land use class (PLAND) is used as a measure of land use composition. Configuration metrics include 

the largest patch index (LPI), area-weighted mean shape index (AWMSI), area-weighted mean contiguity index 155 

(CONTIGAW), aggregation index (AI), and interspersion juxtaposition index (IJI), considering the dominance, shape, and 

interconnection of landscape (Ding et al., 2016; Gémesi et al., 2011). Composition and configuration indices of pasture, 

arable land, forest and urban were selected for subsequent analysis (Table 1). They were derived with the help of the 

software FRAGSTATS 4.2. All indices and their changes were analyzed at subbasin scale.  

Table 1. Description of the landscape metrics selected for the study. 160 

Attributes Metrics Unit Description Abbreviation at class level Note 

Composition 
Percentage of land use 

(PLAND)  
% Areal percentage of land use classes 

PLANDa, PLANDp,  

PLANDf, PLANDu 

Metrics for land use class 

a (refers to arable land),  

p (refers to pasture), 

 f (refers to forest),  

u (refers to urban) 

Configuration Largest patch index (LPI) % 
Percentage of the landscape composed of the 

largest patch 
LPIa, LPIp, LPIf, LPIu 

 
Area-weighted mean shape 

index (AWMSI) 
- 

The sum of the mean shape index multiplied by 

the area weight of each patch type involving the 

corresponding class 

AWMSIa, AWMSIp,  

AWMSIf, AWMSIu 

 Aggregation index (AI) % 

Number of the same patch type being adjacent 

divided by the maximum number of adjacencies 

for the corresponding land use class 

AIa, AIp, AIf, AIu 

 
Area-weighted mean contiguity 

index (CONTIGAW) 
- 

Measure of the patch shape based on the sum of 

spatial connectedness multiplied by the area 

weight of the patch for a certain class 

CONTIGAWa, CONTIGAWp, 

CONTIGAWf, CONTIGAWu 

 
Interspersion juxtaposition 

index (IJI) 
% 

Measure of patch adjacency and interspersion or 

intermixing of patch types for a class 
IJIa, IJIp, IJIf, IJIu 

2.3 Hydrological and water quality modeling  

2.3.1 SWAT model 

The Soil and Water Assessment Tool (SWAT) is a process-based and semi-distributed hydrological model with a continuous 

time step (Arnold et al., 1998). It is suitable for the simulation of streamflow, sediment, nutrients, and groundwater dynamics 

in catchments of different sizes (Aghsaei et al., 2020; Tigabu et al., 2020; Bieger et al., 2014; Haas et al., 2016). The 165 

computation of water routing, nutrient cycles and soil erosion is based on hydrologic response units (HRUs) characterized by 

the same land use, soil type, and slope in the same subbasin representing the spatial heterogeneity of the catchment (Arnold 

et al., 2013). The HRU-based calculations for the subbasins are routed through the rivers that connect the subbasins (Neitsch 

et al., 2011).  

To accurately represent groundwater dynamics in this lowland catchment, we applied SWAT3S, an enhanced SWAT model 170 

based on SWAT 2012 Rev. 582 (Pfannerstill et al., 2014). In comparison to the standard SWAT model application that uses 

two aquifers, SWAT3S employs three aquifers by subdividing the original shallow aquifer from SWAT into a fast and a slow 

aquifer. SWAT3S was developed in the German lowland catchment of the Kielstau, to better represent low flow periods of 

streamflow and groundwater storage and flow dynamics when compared to the original SWAT version (Pfannerstill et al., 

2014). It was also successfully applied to the lowland catchment of the Treene, proving its usefulness for modelling nutrients 175 

as well (Haas et al., 2016; Haas et al., 2017).  

2.3.2 Model databases and setup 

SWAT requires topography, soil, land use, hydro-meteorological input data. Topography data was obtained from a Digital 

Elevation Model (DEM) in 5 m resolution (Lverma, 2008) and used to delineate the watershed into 21 subbasins. Soil data 

and attributes for SWAT were derived by Pott and Fohrer (2017b) from a soil type map (Finnern, 1997). The land use map 180 
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for 2019 was used to build the model. Three-year crop rotations (winter wheat/winter wheat/corn; winter rape/winter 

wheat/corn; corn/corn/corn) were adapted from Oppelt et al. (2012) and implemented for the respective land use classes. 

Agriculture management schedules and fertilization (e.g., application rates of N, P fertilizers and manure at different crop 

growth stages) were determined according to the actual guidelines of agriculture practices (Lwk, 1991 and 2011; Ktbl, 1995 

and 2008; Kühling, 2011). From the DEM a four slope classes (<1%, 1-2%, 2-5% and >5%) were defined. Slope, soil, and 185 

land use classes were combined to obtain 3618 HRUs in the catchment. The HRUs were generated without excluding any 

HRUs by thresholds for land use, soil, or slope class percentages, to allow for a better spatial representation. To accurately 

represent lowland hydrology, drainage tiles were considered based on the estimated distribution of drained areas in the 

catchment (Venohr, 2000). We adapted drainage parameter values for DEP_IMP (1200 mm), DDRAIN (875 mm), TDRAIN 

(24 h), and GDRAIN (61 h) from a previous modeling study in the catchment (Pott and Fohrer, 2017b). Waste water 190 

treatment plants (WWTP) were implemented as point sources using data from monthly measurement campaigns in 2009 and 

2010 and WWTP data vary with space and seasons (Pott, 2014). Daily values of temperature (max. and min), solar radiation, 

humidity, and wind speed are available from 1990 to 2019 for the climate station Padenstedt  (Dwd, 2020a). Precipitation 

data are available for four stations (Dwd, 2020a) (Figure 1). Daily streamflow was measured at the gauges in Padenstedt 

(PAD), Sarlhusen (SAR) and Willenscharen (WIL) from 1990 to 2019 (Lkn, 2020). Daily sediment and nutrient data were 195 

both obtained during two measurement campaigns, i.e., August 2009 - August 2011 and October 2018 - November 2019 in 

Willenscharen. Daily mixed samples were taken by an automatic and cooled sampler from a depth of 0.30 m above the river 

bed at the central section of the stream. They were analyzed according to German standard procedure for water analysis 

(DEV) (Einheitsverfahren, 1997) in the laboratory of Department of Hydrology and Water Resources Management at Kiel 

University. Total suspended sediment concentration was measured by filtering 1 l of water sample through 0.45 μm 200 

celluloseacetate filter paper and drying at 105ºC. The concentration of total phosphorus (TP) was determined by 

spectrophotometry, according to DEV H36 and DEV D11, while total nitrogen (TN) was measured by chemiluminescence 

detection according to DEV H3. Each measurement of TP or TN concentration from unfiltered samples was performed based 

on a blank comparison analysis of distilled water and triplicate analysis of subsamples. Their concentrations were 

determined by the arithmetic mean values of any two subsamples with smallest measurement differences (less than <10%). 205 

Based on the measurements of daily concentration and streamflow, the respective daily load of sediment, TP, and TN were 

calculated. 

2.3.3 Model calibration and validation 

The variables daily streamflow (1), sediment (2), TP (3), and TN (4) were calibrated separately and stepwise. The number in 

the parentheses denotes their respective calibration order, i.e., streamflow was calibrated first, followed by sediment, TP, and 210 

TN. An overview of calibration and validation details for each variable is provided in Table 2.  

Preliminary parameter ranges were selected based on experiences with the SWAT model in the Stör Catchment (Pott and 

Fohrer, 2017b) and other German lowland catchments (i.e., Kielstau and Treene catchments) (Haas et al., 2016; Lam et al., 

2012; Pfannerstill et al., 2014) as well as in relevant studies from other countries (Aghsaei et al., 2020; Boongaling et al., 

2018). The final ranges of calibration parameters (Table S1) were determined based on the sensitivity of parameters to model 215 

outputs as derived from 2000 trial runs following the method used by Guse et al. (2020), in which model simulations are 

iteratively repeated with successively constrained parameter ranges. 

Parameter sets were generated from the derived parameter ranges using Latin Hypercube Sampling in the R-package FME 

(Soetaert and Petzoldt, 2010). For each of these 8000 (streamflow) and 5000 (sediment, TP, and TN loads) independent 

parameter sets, model runs were conducted each involving a warm-up period (four years), and evaluated using multiple 220 

performance criteria to select the best parameter set. To this end, the objective functions Nash-Sutcliffe efficiency (NSE), 

Kling-Gupta Efficiency (KGE), and Percent Bias (PBIAS), which were proposed in Guse et al. (2014) and Moriasi et al. 
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(2007), were applied. For an accurate representation of all segments of the hydrograph (very high, high, middle, low, and 

very low periods), the additional signature measure RSR (Ratio of Root Mean Square Error to the Standard Deviation of the 

Observations) was used (Haas et al., 2016; Zambrano-Bigiarini, 2020). The definition of each objective function is provided 225 

in Text S1 in the supplementary materials. 

First, streamflow was calibrated at three gauges. The two upstream gauges Padenstedt (PAD) and Sarlhusen (SAR) were 

used to select the best parameter sets for the respective sub-catchments first (Figure 1). Then, the best parameter set for the 

area downstream of PAD and SAR and upstream of the outlet gauge Willenscharen (WIL) was selected. For each of the 

three streamflow gauges, we pre-selected the parameter sets that yielded a KGE >0.75 for the streamflow calibration period. 230 

To accurately represent streamflow dynamics during the periods of water quality measurements (Aug. 2009 - Aug. 2011 and 

Oct. 2018 - Nov. 2019), the mean RSR for the five flow duration curve (FDC) segments during these periods was assessed 

and the best 300 streamflow parameter sets indicated by a low RSR were selected. From these 300 sets, the final parameter 

set yielding the highest KGE in these periods was selected. Calibration and validation periods (Table 2) were defined based 

on an equal representation of dry, normal, and wet years according to the annual precipitation. 235 

Second, with the derived set of best hydrological parameters, model runs for 5000 different sediment calibration parameter 

sets were carried out and the best model run was selected based on the highest NSE. Third, this model was run for 5000 

different sets of TP calibration parameters and the best model run was similarly selected using the NSE. Finally, based on the 

so far derived best parameters, another 5000 model runs for TN calibration were carried out and the best model run indicated 

by the highest NSE was selected. To accurately represent peak loads and their dynamics, the NSE was selected as single 240 

criterion for the water quality variables. Evaluation and processing of the model data were carried out in R using the 

packages hydroGOF (Zambrano-Bigiarini, 2020) and zoo (Zeileis and Grothendieck, 2005). 

Table 2. Overview of SWAT model calibration and validation. 

 

Calibration  Validation 

Streamflow Sediment load TP load TN load  Streamflow Sediment load TP load TN load 

Evaluation 

period  

1990-1991; 

2007-2019 

30/10/2009-

7/8/2011 

8/8/2009-

10/8/2011 

8/8/2009-

10/8/2011 
 1992-2006 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

Simulation 

period 
1986-2019 2005-2011 2005-2011 2005-2011  1986-2019 2014-2019 2014-2019 2014-2019 

Land use 

map 
2019 2010 2010 2010  2019 2019 2019 2019 

Gauges PAD/SAR/WIL WIL WIL WIL  PAD/SAR/WIL WIL WIL WIL 

Calibration 

runs 
8000 5000 5000 5000      

Performance 

criteria 

KGE>0.75 in 1990-

1991; 2007-2019 & 

best KGE among 

300 best mean RSR 

of FDC in 8/8/2009-

10/8/2011; 

19/10/2018-

5/11/2019 

NSE NSE NSE      

2.3.4 Model application  

Applying the best respective parameter sets, the model was run for three land use scenarios. Each scenario simulation was 245 

run from 1990 to 2019 using one of the three land use maps (in 1987, 2010, and 2019). As agriculture in 1987 was generally 

classified, it was split as corn (12%), rapeseed (29%), and wheat (59%) randomly distributed in the catchment in SWAT 

model, according to the statistical data from Schleswig-Holstein Statistical Office (1992-2012). For the three scenario 

simulations, all other inputs i.e. DEM, soil data, weather data, waste water quality data, management practices, and 

fertilization were kept constant, and the calibrated parameters were adapted. The respective differences in the mean annual 250 

value of each response variable (i.e., actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield 

(WYLD), sediment (SED), TP, or TN load) were obtained by comparing the results from two scenario model runs (see Text 
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S2 and S3). They can be referred to as the respective changes driven by land use changes during the corresponding periods 

of 1987-2010, 2010-2019, and 1987-2019. The modeled results were used to explore the influences of land use changes 

(LUCC) on the changes in the response variables. Furthermore, the contributions of LUCC on changes in ET, SQ, BF, and 255 

WYLD as well as in SED, TP, TN at the subbasin scale were evaluated, and key impacts from LUCC were identified. 

2.4 Partial least squares regression 

Combining the features of principal component and multiple linear regression analyses, partial least squares regression 

(PLSR) is a robust multivariate analysis method of determining the relationship between two sets of variables. It is powerful 

to deal with multi-collinear predictor variables. The principle of PLSR is to extract a few latent components from original 260 

predictor variables that carry as much variation as possible, and which are meanwhile most likely to predict the variation in 

the response variable. Detailed information on the underlying theory and algorithms of PLSR is available in Abdi (2010).  

In this study, PLSR was used to reveal the contribution of changes in land use classes on the variation in ET, SQ, BF, 

WYLD, SED, TP, and TN across three time steps (1987, 2010, and 2019). The predictor variables were the absolute changes 

in area percent (PLAND) and landscape metrics (LPI, AWMSI, AI, CONTIGAW, IJI) of four main land use classes (arable 265 

land, pasture, forest, and urban). The response variables included the absolute changes in the mean annual values of ET, SQ, 

BF, WYLD and SED, TP, and TN loads at the subbasin scale modeled under different land use conditions in 1987, 2010, and 

2019.  PLSR models for all of these response variables were constructed. The absolute change in each land use indicator was 

calculated using equation (5)-(7) while that in each response variable was calculated using equations (8)-(10) as shown in 

Text S3 in the supplementary materials. A cross-validation was performed with 50 random repetitions on 10 equal segments 270 

of the data set. It was used to determine the number of optimal components of the PLSR model to obtain a desirable balance 

between the explained variation in the response (R2) and predictive power of the model (measured as cross-validated 

goodness of the prediction: Q2). The cumulative predictive ability (cumulative goodness of prediction: Q
2 

cum) and the cross-

validated root mean squared error (RMSECV) as the difference between actual and predicted values, were determined for 

each model (Yan et al., 2013). The regression coefficients (RCs) signify the direction and extent of the effect of LUCC 275 

predictor variables. The variable importance for the projection (VIP) quantifies the importance of the predictors. According 

to the Wold’s assessment criterion, a predictor with VIP<0.8 is assessed as less important (Boongaling et al., 2018; Wold et 

al., 2001). To achieve model parsimony, the following PLSR modelling procedures were conducted: First, an initial 

simulation of PLSR is run using all predictors. Next, new PLSR models are run by iteratively excluding the predictor with 

small variable importance (VIP) until the modelling procedure resulted in acceptable variable importance or only two 280 

predictors remained. The number of components of candidate PLSR model was determined so that the Q
2 

cum is maximized 

(Shi et al., 2013). 

All the PLSR analyses were performed with the R packages pls (Mevik et al., 2020) and mdatools (Kucheryavskiy, 2020).  

3 Results and discussion 

3.1 Model performances for calibration and validation periods 285 

As shown in Table 3, for streamflow, the model obtains NSE and KGE values above 0.75, and absolute PBIAS values below 

or slightly above 10%. These values indicate a good to very good model performance for depicting daily streamflow in the 

catchment according to the criteria for model evaluation (Moriasi et al., 2007). For daily TN load, the model shows a 

satisfactory to very good performance, indicated by an NSE between 0.64 and 0.86 and absolute PBIAS values below 15%. 

For sediment load, the model achieves a satisfactory to good performance as indicated by NSE (0.54 - 0.65) and PBIAS (-290 

22.2 - 12%) values. The model simulates TP load with an unsatisfactory (validation) to satisfactory (calibration) performance, 

which is assessed by NSE below and above 0.5, respectively. The worse TP model performance may be due to the short and 

possibly different conditions during calibration and validation periods. Nevertheless, PBIAS for TP model is still within the 
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acceptable performance range (±40 ≤ PBIAS < ±70) (Moriasi et al., 2007). It should be noted that the performance ranges 

from Moriasi et al. (2007) refer to a monthly time step, whereas we used a finer temporal scale (daily step), on which it is 295 

usually harder to achieve a good model representation (Tan et al., 2021; Pfannerstill et al., 2014; Pott and Fohrer, 2017a). 

We therefore conclude that even for daily TP the model performance is acceptable, particularly with regard to the study 

purpose of analyzing long-term changes in the water and matter balance.  

Overall, modeled and measured daily values show clear consistency in their dynamics (Figure 2 and 3). Differences mainly 

appear for low flow periods in summer and particularly for a few peak flows in winter. Specifically, a few flood peaks are 300 

underestimated in winter, e.g. on 27-28/Feb/2002, 5-6/Jan/2012, and 24-25/Dec/2014. This might be related to an 

insufficient representation of snow and deficiencies in single-event flood routing in the model (Lam et al., 2012). The 

underestimation of peak streamflow in winter was also observed in other rural lowland catchments of Treene (Haas et al., 

2016) and Kielstau (Lam et al., 2010) in northern Germany. Sediment loads are overestimated during the calibration period 

and slightly underestimated during the validation period mainly for a few peak values. The incorrect estimation might be due 305 

to the fact that  river sediment load is also influenced by tile drains and bank erosion in lowland catchments (Kiesel et al., 

2009), while SWAT primarily takes into account sheet erosion. Nevertheless, some peaks e.g. in Nov, Dec 2009, and Mar 

2019 are very well depicted. A similar behavior is observed for modelling TP load, with slight overestimation of TP in 

summer (April - June of  2009 and 2019) and underestimation of a few peaks in winter (November - March). TN is generally 

well represented, except for only a few underestimations of extreme peaks in winter (e.g., early March or November 2010). 310 

Overall, the underestimation of some peak loads of sediment, TP and TN might be attributed to the underestimation of 

corresponding peak flows.  

 

Figure 2. Comparison of measured and modeled daily streamflow during the calibration and validation periods in Willenscharen. 
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Figure 3. Comparisons between measured and modeled daily loads of sediment, total phosphorus (TP), and total nitrogen (TN), 

respectively for calibration (left) and validation (right) periods 

Table 3. Performance metrics for the model calibration and validation periods. 

Index 

Calibration     Validation    

Streamflow 

(PAD/SAR/WIL) 
Sediment load TP load TN load  

Streamflow 

(PAD/SAR/WIL) 
Sediment yield TP load TN load 

Period 
1990-1991; 

2007-2019 

30/10/2009-

7/8/2011 

8/8/2009-

10/8/2011 

8/8/2009-

10/8/2011 
 1992-2006 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

KGE 0.85/0.82/0.88 0.58 0.65 0.71  0.84/0.85/0.87 0.59 0.22 0.91 

NSE 0.76/0.78/0.79 0.54 0.56 0.64  0.81/0.81/0.79 0.65 0.29 0.86 

PBIAS (%) 5.6/-2.2/0.3 12 -4.7 -11.5  0.7/10.6/7.2 -22.2 -46.2 5 

3.2 Characteristics of land use change  

Land use changes between 1987 and 2019 vary across the catchment (Figure 4). This is indicated by the individual dynamics 320 

in the four main land use classes of arable land, pasture, forest, and settlement area. Arable land has been decreasing and 

primarily replaced by pasture (by 16.2% of the catchment, dark cyan in Figure 4). The decrease of arable land in the 

northeast (e.g., subbasins 3 and 9-11) is more pronounced than in the northwest (e.g., subbasins 2, 4, 6, 8) where pasture was 

sometimes converted to arable land (dark pink, Figure 4). Conversely, pasture shows an increasing trend over the period of 

observation. The increase in the east is stronger as compared to the west of the catchment (Figure 4 and 5). The change of 325 

pasture is in part associated with the stream restoration including stabilizing river shore and increasing riparian vegetation 

(Dickhaut, 2005; Gessner et al., 2010). Besides, agricultural grasses may have been included in the pasture class due to the 

classification approach. Forest also shows an increasing trend as indicated by green colors in Figure 4, with a strong increase 

in the lowlands of the middle (subbasins 6 and 13) and southern parts (subbasin 17, Figure 5). Urban area has expanded 

mainly around the city of Neumünster (subbasin 15 and 17) (Figure 5).  330 
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In addition, the subbasin-scale land use metrics varied substantially between 1987, 2010, and 2019 (Figure 6). The mean area 

percent (PLAND) per subbasin declined for arable land (PLANDa) by 16% and 3% during the periods of 1987-2010 and 

2010-2019, respectively. In contrast, subbasin-averaged pasture (PLANDp) increased for the period of 1987-2010 by 12% 

but decreased slightly from 2010 to 2019 by 0.8%. Both forest (PLANDf) and urban (PLANDu) areas have steadily 

increased from 1987 over 2010 to 2019. Similar trends are found in the metrics of the percentage of largest patch index (LPI) 335 

and the interspersion juxtaposition index (IJI). The subbasin average of LPI for arable land has decreased by 20% from 1987 

to 2019, whereas the LPI of other land use classes shows a slight and stable increase. The IJI of arable land displays an 

overall slight increase from 1987 to 2019, while the IJI values of other land uses have steadily and notably increased (with a 

net increase up to over 20%). Both the area-weighted mean contiguity (CONTIGAW) and aggregation (AI) of each land use 

class have decreased over time, whereas the area-weighted mean shape index (AWMSI) has continuously and slightly 340 

increased. Despite similar changing directions of the land use patterns in the periods of 1987-2010 and 2010-2019, land use 

has been subject to more alterations in the former period than in the latter. Additionally, CONTIGAW, AI, and IJI of arable 

land exhibit opposite trends in the two periods, with a decrease from 1987 to 2010, and a slight increase from 2010 to 2019.  

 

Figure 4. Spatial distribution of land use changes between 1987 and 2019 in the Stör Catchment. Individual land use change types 345 

are marked by different colors. The percentage of each change type calculated as percentage of the catchment area is given in the 

parentheses. The strongest change is marked in bold. 
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Figure 5. Spatial distribution patterns of the changes of each land use type between 1987, 2010, and 2019. 

 350 

Figure 6. Changes of land use metrics between 1987, 2010, and 2019 in the Stör Catchment. 

3.3 Differences of changes in water quantity and quality  

Using the results from the three different scenario model runs based on three land use maps of 1987, 2010, and 2019, we 

calculated changes in water quantity and quality. The spatial distribution of the variations in modeled subbasin-scale actual 
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evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), and loads of sediment (SED), total 355 

phosphorus (TP), and total nitrogen (TN) between 1987, 2010, and 2019 are shown in Figure 7. ET and SQ are mostly 

characterized by increases of up to 10.8 mm and 11.4 mm, respectively from 1987 to 2019, with slight decreases by up to 3.8 

mm in several subbasins between 2010 and 2019. The most significant increase in ET occurs in subbasins which show a 

larger increase in forest from 1987 to 2019, such as subbasins 8, 12 and 17 (Figure 5). SQ shows a stronger increase in the 

middle-western subbasins that experienced larger expansion of urban areas (Figure 5), with the strongest increase of SQ 360 

occurring in subbasins 15 and 17 that experienced the largest increase of urban area between 1987 and 2019. This might be 

attributed to the increased impervious surface which facilitates the generation of surface runoff and reduces confluence time 

(Anand et al., 2018; Sood et al., 2021). Contrarily, BF and WYLD have decreased by up to 20 mm and 13 mm, respectively 

in most subbasins in the periods 1987-2010 and 1987-2019. However, a few subbasins in central part of the catchment 

exhibit a slight increase in base flow, which is probably attributed to a greater contribution of shallow groundwater in the 365 

central lowland areas to low flow periods than in the steeper eastern and western steeper areas. The loads of SED, TP, and 

TN show notable decreasing trends from 1987 to 2019. Pronounced reductions of SED (7.8-18.2 t km-2) occur in the 

relatively steeper northeastern corner (e.g., subbasins 3, 9-10) and the southwestern corner (e.g., subbasins 5 and 12) and 

subbasin 17, while the decrease is weaker in the mid-west. Overall, the changes in TP and TN loads show a weak decrease in 

the (mid) west and more pronounced decreases in the east and steeper southwest of the catchment (Figure 7). The spatial 370 

differences may be related to the more intense exchange between groundwater and surface water and a higher contribution of 

nutrients from groundwater to the stream in the lowland. The most pronounced net decrease of TP and TN loads are 

observed in subbasins 12 and 17, corresponding to the largest decrease of arable land percentage (50% in subbasin 17, 30% 

in subbasin 12) between 1987 and 2019. The single subbasin that has experienced a slight increase of sediment or TP load is 

subbasin 1, which is characterized by the least reduction of arable land and minor decrease of forest. The most significant 375 

decrease in nutrients and sediment has occurred in subbasins which have experienced notable increases of pasture or forest 

and a decrease of arable land, e.g., subbasins 12 and 17 (Figure 5). Overall, variations in surface runoff, sediment, TP, and 

TN are depicted by spatially explicit patterns on the subbasin scale. It is necessary to consider this spatial heterogeneity, 

when establishing management measures in order to improve water quality. 
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Figure 7. Spatial distribution of changes in water quantity and water quality variables during the periods of 1987-2010, 2010-2019, 

and 1987-2019 at subbasin scale. 

3.4 Influences of changes in land use metrics on water quantity and quality  

3.4.1 Contributions of LUCC to changes in water quantity and quality 

A summary of the PLSR models separately constructed for ET, SQ, BF, WYLD, SED, TP and TN, is provided in Table 4. 385 

The prediction plots for the seven variables by applying the PLSR models are shown in Figure 8. The changes in water 

quantity and quality could be reasonably explained by the constructed PLSR models (0.61<R2<0.88, 0.57<Q2<0.85, Table 4). 

The comparison of the actual and predicted values (in Figure 8) illustrates the accuracy of the model calibration and cross-

validation. For the ET and WYLD models, the percentage of unexplained variation decreases with increasing number of 

components, whereas the prediction error of cross-validated observations (indicated by cross-validated root mean squared 390 

error, RMSECV) is minimal with one or two components, respectively. This indicates that adding more components does not 

improve the correlation with the residuals of the response variables (Onderka et al., 2012). Overall, 60.5% and 68.3% of the 

variations in the changes in ET and WYLD can be explained by the first component and the first two components, 

respectively. Adding other components does not strongly increase the cumulative explained variations (only by +4.2-5.4%) 

in ET and WYLD changes from 1987 to 2019 (Table 4). For SQ, two components are extracted for the PLSR model, with 395 

58.9% of variation is explained on the first component and cumulative explained variations increase to 81.3% when adding 

the second component. For all other variables, the minimum RMSECV is achieved with models using five components. For 
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base flow, 37.4% of the variation in the dynamics is explained by the first component, cumulatively 64.2% adding the 

second component, and ultimately 87.7% with a consecutive addition of third, fourth, and fifth component. For the changes 

in loads of sediment, TP, and TN, the first component of the models always explains the majority of the variation (43.7-63%, 400 

Table 4). With all water quality variables together, approximately 75% of the changes is accurately explained on average. 

Approximately 70-80% of the variations in water quantity and quality dynamics were explained by LUCC, underlining the 

importance of LUCC on catchment water resources. Better explanations (over 81%) of SQ and BF by LUCC confirmed the 

significant influences of landscape heterogeneity on surface runoff and groundwater dynamics (Xu et al., 2020; Kändler et 

al., 2017; Zhang and Schilling, 2006). Only a quarter of the variations in sediment, TP, or TN cannot be interpreted by 405 

LUCC, which demonstrates that changes of rural landscape patterns are essentially important in controlling nutrients 

pollution. The proportion and spatial arrangement of agriculture land play an important role in the generation and 

transportation of nutrient pollutants as previously reported in different catchments worldwide: e.g., Zhang et al. (2020b) 

found that agricultural cultivation on steeper hillsides intensified N and P entries in ponds in the hilly Tianmu Lake 

catchment of Eastern China. Gémesi et al. (2011) identified the cohesion and contagion of cropland were more important 410 

than other land use indicators to account for the variability in TN and TP in the relatively plain Lowa Lake catchment of the 

central US. The minor unexplained fraction may be attributed to potential changes in waste water treatment which 

sometimes remained constant in our modeling approach. Lower explanation of TP may be additionally due to the lower 

SWAT model performance for TP, the susceptibility of P to soil or geomorphology properties (Maranguit et al., 2017; Noe et 

al., 2013). More than 60% of the variations in ET and WYLD are explained by LUCC. The unexplained fraction may be 415 

attributed to the different contributions from specific crops (included in SWAT) and the lumped agriculture class as well as 

the compensating effect of subbasins (Wagner et al., 2013).  

Table 4. Summary of the PLSR models of evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), 

sediment yield (SED), total phosphorus load (TP) and total nitrogen load (TN) at subbasin scale.  

Response 

Variable Y 
R2 Q2 Component 

Explained variability in Y 

(%) 

Cumulative explained variability in 

Y (%) 
RMSECV  Qcum

2  

ET 
0.61 0.57 1 60.5 60.5 2.32 (mm) 0.568 

  2 2.4 62.9 2.35 (mm) 0.558 

   3 1.2 64.1 2.44 (mm) 0.524 

   4 0.2 64.3 2.41 (mm) 0.535 

   5 0.4 64.7 2.41 (mm) 0.534 

        
SQ 0.81 0.78 1 58.9 58.9 1.70 (mm) 0.561 

   2 22.4 81.3 1.20 (mm) 0.783 

        
BF 0.88 0.85 1 37.4 37.4 4.61 (mm) 0.230 

   2 26.8 64.2 3.92 (mm) 0.442 

   3 9.7 73.9 3.15 (mm) 0.640 

   4 8.8 82.7 2.59 (mm) 0.757 

   5 5.0 87.7 2.05 (mm) 0.847 

        
WYLD  0.68 0.61 1 64.6 64.6 2.43 (mm) 0.611 

   2 3.7 68.3 2.43 (mm) 0.614 

   3 0.9 69.2 2.46 (mm) 0.602 

   4 0.4 69.6 2.47 (mm) 0.598 

   5 0.4 70.0 2.49 (mm) 0.592 

        
SED  

 

0.77 0.67 1 43.7 43.7 2.76 (t km-2) 0.382 

  2 19.2 62.9 2.50 (t km-2) 0.493 

   3 11.1 74.0 2.13 (t km-2) 0.630 

   4 1.6 75.6 2.08 (t km-2) 0.650 

   5 1.0 76.6 2.03 (t km-2) 0.667 

        
TP  0.76 0.65 1 51.5 51.5 12.03 (kg km-2) 0.468 

  2 10.7 62.2 11.14 (kg km-2) 0.544 

   3 10.4 72.6 10.32 (kg km-2) 0.608 

   4 3.0 75.6 

 
9.80 (kg km-2) 0.647 

   5 0.7 76.3 9.71 (kg km-2) 0.653 

        
TN  0.73 0.68 1 63.0 63.0 43.04 (kg km-2) 0.597 

  2 5.8 68.8 40.56 (kg km-2) 0.643 

   3 3.1 72.1 39.20 (kg km-2) 0.666 

   4 0.5 72.6 38.90 (kg km-2) 0.671 

   5 0.7 73.3 38.51 (kg km-2) 0.678 

Note: R2 indicates the goodness of fit of the model; Q2 indicates the cross-validated goodness of prediction; RMSECV indicates cross-validated root mean squared error; Qcum
2  420 

indicates the cumulative cross-validated goodness of predication over all the selected PLSR components; the components selected for each model are highlighted in bold. 
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Figure 8. Comparison of subbasin-scale changes in evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield 

(WYLD), sediment (SED), total phosphorus (TP), and total nitrogen (TN) as derived from the SWAT model and the predicted 425 

values from the PLSR models. The changes were obtained based on land use changes between 1987 and 2010, 2010 and 2019, and 

between 1987 and 2019, respectively. Cal indicates calibration. CV indicates cross validation. 

3.4.2 Effects of LUCC predictors on water quantity and quality 

According to the PLSR results, each category of the landscape indices including percentage (PLAND), largest patch (LPI), 

shape (AWMSI), contiguity (CONTIGAW), aggregation (AI), or interspersion (IJI), plays an essential role in influencing as 430 

least one water quantity or quality variable (Table 5). The effects on the changes in ET, SQ, BF, WYLD, SED, TP, and TN 

are measured using weights, regression coefficients (RCs), and VIP values in the PLSR models. VIPs for predictors included 

into the models are greater than 0.8. For the ET model, the highest VIPs are obtained in predictors aggregation index for 

arable land (AIa) and contiguity index for arable land (CONTIGAWa) (VIP = 1.25, RCs = -0.122), followed by PLANDa 

(VIP = 1.037, RC = -0.101) and AIu (VIP = 1.03, RC = -0.1). ET tends to decrease with larger aggregation (AIa) and 435 

contiguity (CONTIGAWa) indices, and arable land percent (PLANDa) (negative RCs), whereas it increases with more 

pasture (PLANDp) (positive RC). In the case of surface runoff, the first and second components of the model are dominated 

by PLANDu on the positive side, with minor positive effect from PLANDa on the second component (Table 5). The urban 

area percent (PLANDu) obtains largest VIP of 1.173, and are identified as most important influencing the change in surface 

runoff. Surface runoff increases with an increase in arable (PLANDa) and urban areas (PLANDu) (RCs=0.403, 1.161, 440 

respectively). For base flow, in addition to arable land, pasture plays a key role in explaining its variation. Arable land 

(PLANDa), pasture (PLANDp) percent and area-weighted shape index of pasture (AWMSIp) obtain the largest VIPs of 

1.259, 1.03, and 1.063, respectively. All show negative correlations with base flow. AIa and CONTIGAMa are important 

predictors for water yield with large VIPs of 1.226 and 1.218, respectively. Their higher values result in an increase of water 

yield. For sediment, TP or TN models, the selected components are dominated by areal percentages of arable land and 445 

pasture, in addition to the landscape metrics of arable land. The models obtain the largest regression coefficients or VIPs for 

PLANDa, LPIa, or PLANDp. They have VIPs of 1.0113-1.173 for sediment, 1.089-1.305 for TP, 1.005-1.232 for TN, 

respectively. Inferred by the RCs, an increase in sediment, TP, or TN occurs with increasing arable land (RCs: 0.602-0.884), 

while a decrease may occur with higher percentage of arable land in largest patches (LPIa) (RCs: -0.74 - -0.225), or with 

more pasture area (RCs: -0.693 - -0.122).  450 

LPIa, AIa and CONTIGAWa are the most important landscape structure indicators affecting water quantity or quality (VIP 

≥1 most of the time, Table 5). AIa and CONTIGAWa have positive impacts on WYLD while negative impacts on ET. By 

definition, AIa and CONTIGAWa would increase, respectively, when arable landscape patches are more clumped and 

contiguous (Shi et al., 2013; Uuemaa et al., 2009). Agriculture in more clumped and connected land patches with fewer 

edges has been proven to show a higher capability of reducing the infiltration, compared to small scattered patches 455 
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(Boongaling et al., 2018), which may result in the increase of the water yield. Our results also corroborate with Ayivi and 

Jha (2018) who reported that increased water yield and base flow occur with increasing cohesive and aggregated agriculture 

in a moderate-altitude catchment (i.e., Reedy Fork-Buffalo Creek catchment, USA). Negative impacts on ET may be 

explained by the interactive changes between arable and pasture, i.e., arable land has been increased at the cost of losing 

pasture, and vice versa. Likewise, Shawul et al. (2019) observed that reduction in pasture would result in a decrease of ET in 460 

an agriculture-dominated and moderate-altitude catchment (the Upper Awash Catchment, Ethiopia). The negative effect of 

AWMSIp on base flow implies that the coarse grass landscape has a higher capacity of absorbing and intercepting rainfall 

thereby resulting in lower base flow. Though landscape metrics are more often used to explain water quantity than quality 

variables (Table 5), the negative influences of LPIa on sediment and nutrients, and positive influences of AWMSIa on 

sediment and TP cannot be overlooked. Similar finding were observed in hilly catchments, where scattered and complicated 465 

agriculture patches are susceptible to soil erosion and thus water quality deterioration (Yan et al., 2013; Nafi'shehab et al., 

2021).  

The change in the percentage of arable land is most responsible for water quantity and quality dynamics, with VIP values 

greater than 1 for all response variables but WYLD. This may be explained by the fact that the decrease in arable land is the 

strongest. The negative correlations between PLANDa and evapotranspiration (ET) and base flow (BF) imply that 470 

conversion of arable land to e.g., pasture or forest would result in increased ET and BF, due to higher capability of plant 

evapotranspiration and slower water transmission, which is in agreement with previous findings that perennial vegetation is 

more likely to increase ET (Peel et al., 2010; Li et al., 2017) and the decrease in agriculture leads to increased annual base 

flow (Basuki et al., 2019). Less interception by crops and additional surface runoff resulting from implementation of tillage 

practices (e.g., tractor road) can result in increased surface runoff (SQ). The lower ET amount of crops compared to pasture 475 

and forest is in part responsible for the increase in WYLD. Soil erosion might be accelerated due to uncovered and fragile 

soil by tillage practices implemented in cultivated areas as well as the increased surface runoff. N and P pollution is prone to 

occur in arable areas, which have a high risk of generating nutrient pollutants from excessive fertilizer or manure and eroded 

soil particles. The positive relationships between arable land percent and SQ, WYLD, SED TP, and TN loads are found in 

other studies around the world as well (Sood et al., 2021; Wang et al., 2019; Wagner et al., 2013; Mirghaed et al., 2018; 480 

Zhang et al., 2020a). Pasture shows a positive influence on ET and negative influences on sediment, TP, and TN. This also 

illustrates that more grassland (or rangeland) would increase plant evapotranspiration process. Pasture can improve water 

quality due to reduced soil erosion and nutrient transportation rate, as well as the high uptake and infiltration of nutrients by 

vegetation cover. Relevant studies (Li et al., 2008; Hatano et al., 2005; Ding et al., 2016; Zhang et al., 2020a) have often 

observed that semi-natural vegetation (e.g., forest, bushland or grassland) is beneficial for good water quality in river- or 485 

lake-dominated catchments, due to higher capability of filtering contaminants and reducing their inputs as well as decreasing 

surface runoff. 

By applying the quantitative results that the increases in arable or pasture areas most significantly intensify or reduce the risk 

of soil erosion and nutrient pollution, respectively, individual subbasins can be identified as nutrient pollution “source” or 

“sink”. Based on these results, it is possible to develop a set of more targeted strategies to effectively control diffuse 490 

pollution at a spatial scale. At the same time, best management practices such as proper fertilization, abate of traditional 

tillage, crop rotation, vegetation buffer, are important to improve water quality in rural catchments (Haas et al., 2017; Pott 

and Fohrer, 2017a). Urban expansion is most important influencing surface runoff, the increase in urban area percent results 

in an increase of it (regression coefficient value > 1.16, Table 5). Similar results have been found, e.g., by Shi et al. (2007) 

who discovered that increased urbanized land led to increased surface runoff, by increasing flood peaks and decreasing 495 

surface runoff confluence time, in a typical urbanized region (Shenzhen) in China. Unlike previous findings (Yan et al., 2013; 

Wang et al., 2018), forest properties have not exerted significant influences, probably due to only minor temporal changes in 

some landscape metrics, e.g., area percent (PLAND), dominance (LPI), and shape (AWMSI) of forest (Figure 6).  
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Table 5. Regression coefficients (RCs), VIP and weight values of each PLSR model. 

Predictors 

ET   SQ    BF       WYLD       

RC VIP W*[1] RC VIP W*[1] W*[2] RC VIP W*[1] W*[2] W* [3] W* [4] W* [5] RC VIP W*[1] W*[2]    

PLANDa -0.101 1.037 -0.017 0.403 0.790 -0.048 0.189 -1.654 1.259 -0.001 -0.128 -0.135 -0.208 -0.201 0.043 0.882 0.017 -0.042    

PLANDp 0.089 0.918 0.015     -1.474 1.030 -0.034 0.024 -0.117 -0.304 -0.256 0.011 0.866 -0.015 0.072    

PLANDf        -0.575 0.915 -0.035 -0.074 -0.072 -0.045 0.092        

PLANDu 0.080 0.818 0.013 1.161 1.173 0.090 0.173               

LPIa -0.088 0.906 -0.015                   

AWMSIp        -0.143 1.063 -0.052 -0.058 0.059 0.093 -0.013        

AWMSIf 0.085 0.870 0.014            -0.039 0.837 -0.016 0.041    

AIa -0.122 1.254 -0.020            0.187 1.226 0.024 0.025    

AIP -0.094 0.961 -0.016            0.100 0.924 0.018 -0.009    

AIu -0.100 1.030 -0.017            0.212 1.068 0.020 0.058    

CONTIGAWa -0.122 1.251 -0.020            0.184 1.218 0.024 0.024    

CONTIGAWP -0.087 0.891 -0.015            0.112 0.880 0.018 0.004    

CONTIGAWu -0.094 0.959 -0.016     0.281 0.805 0.040 0.029 -0.078 0.064 0.011 0.198 1.007 0.019 0.054    

IJIa        0.038 0.859 0.040 0.024 0.098 -0.142 -0.091        

Predictors 

SED       TP       TN       

RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] 

PLANDa 0.602 1.165 0.027 0.038 0.106 0.037 0.040 0.755 1.305 0.029 0.031 0.117 0.142 0.059 0.884 1.232 0.033 0.103 0.133 0.166 0.333 

PLANDp -0.693 1.173 -0.026 -0.022 -0.124 -0.096 -0.099 -0.499 1.089 -0.025 -0.007 -0.099 -0.074 0.002 -0.122 1.005 -0.030 -0.054 -0.049 0.031 0.324 

PLANDu 0.013 0.908 -0.022 -0.033 0.020 0.097 0.116 -0.045 1.038 -0.025 -0.033 0.005 0.057 0.137 0.028 1.013 -0.024 -0.032 0.052 0.197 0.093 

PLANDf        -0.009 0.821 -0.016 -0.053 0.061 0.047 0.004        

LPIa -0.632 1.113 0.015 -0.095 -0.117 -0.037 -0.070 -0.740 1.205 0.017 -0.064 -0.208 -0.091 -0.057 -0.225 0.945 0.023 -0.054 -0.209 0.028 0.019 

LPIp 0.397 0.819 -0.009 0.075 0.086 -0.043 0.020               

AWMSIa 0.472 0.902 0.007 0.103 -0.017 0.073 0.080 0.492 0.817 0.008 0.087 0.020 0.093 0.085        

AWMSIp -0.445 1.087 -0.023 -0.077 -0.050 -0.022 0.107 -0.152 0.872 -0.019 -0.031 -0.057 0.127 -0.001        

CONTIGAWa 0.039 0.877 0.023 -0.001 -0.042 -0.024 0.075 0.079 0.864 0.021 -0.027 -0.013 0.015 0.069 0.114 0.840 0.022 -0.072 0.037 0.019 0.077 

AIa -0.053 0.876 0.022 -0.006 -0.055 -0.039 0.041 0.008 0.856 0.021 -0.030 -0.025 0.000 0.052 -0.034 0.833 0.022 -0.081 0.015 -0.024 -0.038 

Note: VIP values greater than 1 were marked in bold; the absolute weights greater than 0.1 were marked in Italic. 500 

4 Conclusion 

In this study, the separate contributions of changes in land use on the dynamics of seven water quantity and quality variables, 

i.e., actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), sediment (SED), total 

phosphorus (TP), and total nitrogen (TN) loads were quantified by applying an integrated approach of hydrological 

modelling (SWAT) and partial least squares regression (PLSR). The influences of the changes in individual land use 505 

indicators on changes in water quantity and quality were measured and identified using a scenario analysis for three different 

land use maps of the past.  

The modelling analysis of the effects of past land use changes showed that water quality and quantity variables varied in 

different ways on the subbasin scale. SED, TP, and TN decreased more strongly in the eastern and western parts than in the 

middle lowlands, implying that a higher contribution of nutrients by groundwater can mediate the influences of land use 510 

change. Based on a PLSR analysis, about 75% of the modeled variations in water quality and quantity variables can be 

accurately explained by land use indicators. The change of arable land is inferred to be most important for water quality and 

quantity dynamics, as arable land indicators mostly showed a greater importance (measured by VIP>1) for more response 

variables compared to other indicators. Looking at the most significant impacts, expansion of arable land (PLANDa) caused 

BF to decrease and urbanization expansion resulted in increased SQ. More aggregated and connected arable land patches led 515 

to a decrease of ET and an increase of WYLD. Arable land expansion exacerbated soil erosion and P and N pollution, 

whereas an increase of pasture helped to relieve nutrient pollution problems. These results underline that water quality and 
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quantity variables are affected by land use changes in different ways. To achieve good water quality, the dynamics in the 

extent and the spatial configuration of arable land require special attention. The spatial assessment of changes in water 

quantity and quality variables in this study provides a basis for an informed and location-specific management of land and 520 

water resources. 

Code availability  

SWAT is an open-source hydrological model. The source code of is freely available via https://swat.tamu.edu/software/swat-

executables/. SWAT3s is an adapted version of SWAT and the code of it was compiled by Dr. Matthias Pfannerstill 

(Pfannerstill et al., 2014). The code of PLSR used in this study may be available upon request to the corresponding author. 525 

Data availability 

Meteorological data can be obtained from Deutscher Wetterdienst (DWD) platform: https://opendata.dwd.de/climate_enviro

nment/CDC/. The streamflow data can be obtained from Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Sc

hleswig-Holstein (LKN) website: http://www.umweltdaten.landsh.de. Land use data are proprietary data: land use map in 19

87 were adapted from Ripl et al., 1996; land use map in 2010 and in 2019 was interpreted by Kiel University. Water quality 530 

data were collected via measurements in field and the lab of Department of Hydrology and Water Resources Management at 

Kiel University and may be available upon request to the corresponding author. 

Supplement 

 

Author contributions 535 

Chaogui Lei, Paul D. Wagner, and Nicola Fohrer designed the experiments and Chaogui Lei carried them out. Chaogui Lei 

and Paul D. Wagner developed the model codes. Chaogui Lei performed the simulations with the supervision by co-authors. 

Chaogui Lei worked out the results and prepared the manuscript with contributions from all co-authors.  

Competing interests  

The authors declare that they have no conflict of interest. 540 

Disclaimer 

Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and 

institutional affiliations. 

Acknowledgments 

We gratefully acknowledge the funding from the China Scholarship Council (CSC) for the first author. We deeply appreciate 545 

the assistance with the field sampling and lab analysis by lab technicians Bettina Hollmann, Falko Torreck, Monika 

Westphal, and Imke Meyer. Special thanks go to Cristiano Andre Pott for collecting water quality data for 2009-2011 and to 

our students Anne-Kathrin Wendell, Henrike Risch, Jia Yuan, Josephine Loeck, Lisa Jensen, Marian Scheffler, and Tanja 

Boehlke for supporting the water quality measurement campaigns in 2018-2019. 



  20  

 

Financial support 550 

This research has been supported by China Scholarship Council (grant no: 201606190222). 

Review statement 

This paper was edited by Yi He and reviewed by three anonymous referees. 

References 

Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS Regression), Wiley Interdiscip. Rev. Comput. 555 

Stat., 2, 97-106, http://doi.org/10.1002/wics.51,  2010. 

Aghsaei, H., Dinan, N. M., Moridi, A., Asadolahi, Z., Delavar, M., Fohrer, N., and Wagner, P. D.: Effects of dynamic land use/land cover 

change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran, Sci. Total Environ., 712, 136449, https://do

i.org/10.1016/j.scitotenv.2019.136449,  2020. 

Amin, M. M., Veith, T. L., Shortle, J. S., Karsten, H. D., and Kleinman, P. J.: Addressing the spatial disconnect between national-scale tot560 

al maximum daily loads and localized land management decisions, J Environ Qual, 49, 613,   http://doi.org/10.1002/jeq2.20051, 2020. 

Amiri, B. J. and Nakane, K.: Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan, Wa

ter. Resor. Manag., 23, 931-956, http://doi.org/10.1007/s11269-008-9307-z , 2009. 

Anand, J., Gosain, A. K., and Khosa, R.: Prediction of land use changes based on Land Change Modeler and attribution of changes in the 

water balance of Ganga basin to land use change using the SWAT model, Sci. Total Environ., 644, 503-519, https://doi.org/10.1016/j.sc565 

itotenv.2018.07.017, 2018. 

Antolini, F., Tate, E., Dalzell, B., Young, N., Johnson, K., and Hawthorne, P. L.: Flood risk reduction from agricultural best management p

ractices, J. Am. Water Resour. Assoc., 56, 161-179, https://doi.org/10.1111/1752-1688.12812, 2020. 

Aredo, M. R., Hatiye, S. D., and Pingale, S. M.: Impact of land use/land cover change on stream flow in the Shaya catchment of Ethiopia u

sing the MIKE SHE model, Arab. J. Geosci., 14, 1-15, http://doi.org/10.1007/s12517-021-06447-2, 2021. 570 

Arnold, J., Kiniry, J., Srinivasan, R., Williams, J., Haney, E., and Neitsch, S.: SWAT 2012 input/output documentation, Texas Water Reso

urces Institute, 2013. 

Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model developme

nt 1, J. Am. Water Resour. Assoc., 34, 73-89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 

Ayivi, F. and Jha, M. K.: Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek Watershed in North Carolina using575 

 SWAT, Int. Soil Water Conserv. Res., 6, 203-213, https://doi.org/10.1016/j.iswcr.2018.03.007, 2018. 

Basuki, T. M., Nugrahanto, E. B., Pramono, I. B., and Wijaya, W. W.: Baseflow and lowflow of catchments covered by various old teak fo

rest areas, J. Degrad. Min. Lands Manag, 6, 1609, https://doi.org/10.15243/JDMLM.2019.062.1609, 2019. 

Bicknell, B., Imhoff, J., Kittle, J., Donigian, A., and Johanson, R. C.: Hydrological simulation program–Fortran (HSPF): User’s manual for

 release 12, US Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA, 2001. 580 

Bieger, K., Hörmann, G., and Fohrer, N.: Simulation of streamflow and sediment with the soil and water assessment tool in a data scarce c

atchment in the three gorges region, China, J. Environ. Qual., 43, 37-45, https://doi.org/10.2134/jeq2011.0383, 2014. 

Boongaling, C. G. K., Faustino-Eslava, D. V., and Lansigan, F. P.: Modeling land use change impacts on hydrology and the use of landsca

pe metrics as tools for watershed management: The case of an ungauged catchment in the Philippines, Land use policy, 72, 116-128, htt

ps://doi.org/10.1016/j.landusepol.2017.12.042, 2018. 585 

Dickhaut, W.: Fließgewässerrenaturierung Heute–Forschung zu Effizienz und Umsetzungspraxis–Abschlussbericht, Hochschule für angew

andte, 2005. 

Ding, J., Jiang, Y., Liu, Q., Hou, Z., Liao, J., Fu, L., and Peng, Q.: Influences of the land use pattern on water quality in low-order streams 

of the Dongjiang River basin, China: a multi-scale analysis, Sci. Total Environ., 551, 205-216, https://doi.org/10.1016/j.scitotenv.2016.

01.162, 2016. 590 

DWD: Deutscher Wetterdienst. Precipitation data 1990–2019, Precipitation stations Haale, Padenstedt, Nettelsee and Itzehoe, Climate data

 1990-2019, Climate station Pony Padenstedt., https://opendata.dwd.de/climate_environment/CDC/. Accessed in July 2020., 2020a. 

DWD: Deutscher Wetterdienst. Climate data 1990–2019, Climate station Pony Padenstedt., https://opendata.dwd.de/climate_environment/

CDC/. Accessed in July 2020., 2020b. 

Einheitsverfahren, D.: Selected Methods of Water Analysis, Bd. I, II. VEB Gustav Fisher, Jena (in German), 1997. 595 

Farjad, B., Pooyandeh, M., Gupta, A., Motamedi, M., and Marceau, D.: Modelling interactions between land use, climate, and hydrology a

long with stakeholders’ negotiation for water resources management, Sustainability, 9, 2022, https://doi.org/10.3390/su9112022, 2017. 

Ferreira, A., Fernandes, L. S., Cortes, R., and Pacheco, F.: Assessing anthropogenic impacts on riverine ecosystems using nested partial lea

st squares regression, Sci. Total Environ., 583, 466-477, https://doi.org/10.1016/j.scitotenv.2017.01.106, 2017. 

Fiener, P., Auerswald, K., and Van Oost, K.: Spatio-temporal patterns in land use and management affecting surface runoff response of agr600 

icultural catchments—A review, Earth-Sci. Rev., 106, 92-104, https://doi.org/10.1016/j.earscirev.2011.01.004, 2011. 

Finnern, J.: Böden und Leitbodengesellschaften des Störeinzugsgebietes in Schleswig-Holstein: Vergesellschaftung und Stoffaustragsprog

nose (K, Ca, Mg) mittels GIS. , Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde der Universität Kiel, Kiel., 1997. 

Forman, R. T.: Some general principles of landscape and regional ecology, Landsc. Ecol., 10, 133-142, https://doi.org/10.1007/BF0013302

7, 1995. 605 

Gabriels, K., Willems, P., and Van Orshoven, J.: Performance evaluation of spatially distributed, CN-based rainfall-runoff model configur

ations for implementation in spatial land use optimization analyses, J. Hydrol., 602, 126872, https://doi.org/10.1016/j.jhydrol.2021.126

872, 2021. 

Gashaw, T., Tulu, T., Argaw, M., and Worqlul, A. W.: Modeling the hydrological impacts of land use/land cover changes in the Andassa 

watershed, Blue Nile Basin, Ethiopia, Sci. Total Environ., 619, 1394-1408, https://doi.org/10.1016/j.scitotenv.2017.11.191, 2018. 610 

Gémesi, Z., Downing, J. A., Cruse, R. M., and Anderson, P. F.: Effects of watershed configuration and composition on downstream lake w

ater quality, J. Environ. Qual., 40, 517-527, https://doi.org/10.2134/jeq2010.0133, 2011. 



  21  

 

Gessner, J., Spratte, S., and Kirschbaum, F.: Störe für die Stör–Wem hilft ein lebendes Fossil, Steinburger Jahrbuch, 54, 247-273, 2010. 

Ghimire, C. P., Bruijnzeel, L. A., Lubczynski, M. W., Ravelona, M., Zwartendijk, B. W., and van Meerveld, H. I.: Measurement and mode

ling of rainfall interception by two differently aged secondary forests in upland eastern Madagascar, J. Hydrol., 545, 212-225, https://do615 

i.org/10.1016/j.jhydrol.2016.10.032, 2017. 

Gleick, P. H.: A look at twenty-first century water resources development, Water Int., 25, 127-138, https://doi.org/10.1080/025080600086

86804, 2000. 

Goldewijk, K. K. and Ramankutty, N.: Land cover change over the last three centuries due to human activities: The availability of new glo

bal data sets, GeoJournal, 61, 335-344, https://doi.org/10.1007/s10708-004-5050-z , 2004. 620 

Gu, D., Zhang, Y., Fu, J., and Zhang, X.: The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of hu

man activities, Environ. Monit. Assess., 124, 361-370, https://doi.org/10.1007/s10661-006-9232-7, 2007. 

Guse, B., Reusser, D. E., and Fohrer, N.: How to improve the representation of hydrological processes in SWAT for a lowland catchment–

temporal analysis of parameter sensitivity and model performance, Hydrol. Process., 28, 2651-2670, https://doi.org/10.1002/hyp.9777, 

2014. 625 

Haas, M. B., Guse, B., and Fohrer, N.: Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominat

ed lowland catchment considering environmental protection versus economic development, J. Environ. Manage., 196, 347-364, https://

doi.org/10.1016/j.jenvman.2017.02.060, 2017. 

Haas, M. B., Guse, B., Pfannerstill, M., and Fohrer, N.: A joined multi-metric calibration of river discharge and nitrate loads with different

 performance measures, J. Hydrol., 536, 534-545,  https://doi.org/10.1016/j.jhydrol.2016.03.001, 2016. 630 

Haidary, A., Amiri, B. J., Adamowski, J., Fohrer, N., and Nakane, K.: Assessing the impacts of four land use types on the water quality of 

wetlands in Japan, Water Resour. Manag., 27, 2217-2229, https://doi.org/10.1007/s11269-013-0284-5, 2013. 

Hargis, C. D., Bissonette, J. A., and David, J. L.: The behavior of landscape metrics commonly used in the study of habitat fragmentation, 

Landsc. Ecol., 13, 167-186, 1998. 

Hatano, R., Nagumo, T., Hata, H., and Kuramochi, K.: Impact of nitrogen cycling on stream water quality in a basin associated with forest,635 

 grassland, and animal husbandry, Hokkaido, Japan, Ecol. Eng., 24, 509-515, https://doi.org/10.1016/j.ecoleng.2005.01.011, 2005. 

Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K., and Nowosad, J.: landscapemetrics: An open-source R tool to calculate landsca

pe metrics, Ecography, 42, 1648-1657, https://doi.org/10.1111/ecog.04617, 2019. 

Idrissou, M., Diekkrüger, B., Tischbein, B., Op de Hipt, F., Näschen, K., Poméon, T., Yira, Y., and Ibrahim, B.: Modeling the Impact of Cl

imate and Land Use/Land Cover Change on Water Availability in an Inland Valley Catchment in Burkina Faso, Hydrology, 9, 12, https:640 

//doi.org/10.3390/hydrology9010012, 2022. 

Jones, K. B., Neale, A. C., Nash, M. S., Van Remortel, R. D., Wickham, J. D., Riitters, K. H., and O'neill, R. V.: Predicting nutrient and se

diment loadings to streams from landscape metrics: a multiple watershed study from the United States Mid-Atlantic Region, Landsc. Ec

ol., 16, 301-312, https://doi.org/10.1023/A:1011175013278, 2001. 

Kändler, M., Blechinger, K., Seidler, C., Pavlů, V., Šanda, M., Dostál, T., Krása, J., Vitvar, T., and Štich, M.: Impact of land use on water 645 

quality in the upper Nisa catchment in the Czech Republic and in Germany, Sci. Total Environ., 586, 1316-1325, https://doi.org/10.101

6/j.scitotenv.2016.10.221, 2017. 

Kiesel, J., Schmalz, B., and Fohrer, N.: SEPAL–a simple GIS-based tool to estimate sediment pathways in lowland catchments,  Adv. Ge

osci., 21, 25-32, https://doi.org/10.5194/adgeo-21-25-2009, 2009. 

KTBL: Kuratorium für Technik und Bauwesen in der Landwirtschaft. Betriebsplanung Landwirtschaft 1995/1996 and 2008/2009, 14.Ed a650 

nd 21. Ed. Darmstadt: KTBL, 1995 and 2008. 

Kucheryavskiy, S.: mdatools–R package for chemometrics, Chemom. Intell. Lab. Syst., 198, 103937, https://doi.org/10.1016/j.chemolab.2

020.103937, 2020. 

Kühling, I.: Modellierung und räumliche Analyse der Phosphateintragspfade im Einzugsgebiet eines norddeutschen Tieflandbaches, Maste

r thesis, Christian-Albrechts-University Kiel, 2011. 655 

Kumar, S., Getirana, A., Libonati, R., Hain, C., Mahanama, S., and Andela, N.: Changes in land use enhance the sensitivity of tropical eco

systems to fire-climate extremes, Sci. Rep., 12, 1-11, https://doi.org/10.1038/s41598-022-05130-0, 2022. 

Lam, Q., Schmalz, B., and Fohrer, N.: Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWA

T model, Agric. Water Manag., 97, 317-325, https://doi.org/10.1016/j.agwat.2009.10.004, 2010. 

Lam, Q., Schmalz, B., and Fohrer, N.: Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany, 660 

J. Hydrol., 438, 137-147, https://doi.org/10.1016/j.jhydrol.2012.03.01, 2012. 

Lei, C., Wagner, P. D., and Fohrer, N.: Identifying the most important spatially distributed variables for explaining land use patterns in a ru

ral lowland catchment in Germany, J. Geogr. Sci., 29, 1788-1806, https://doi.org/10.1007/s11442-019-1690-2, 2019. 

Lei, C., Wagner, P. D., and Fohrer, N.: Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal 

scales in a German lowland catchment, Ecol. Indic., 120, 106940, https://doi.org/10.1016/j.ecolind.2020.106940, 2021. 665 

Li, G., Zhang, F., Jing, Y., Liu, Y., and Sun, G.: Response of evapotranspiration to changes in land use and land cover and climate in Chin

a during 2001–2013, Sci. Total Environ., 596, 256-265, https://doi.org/10.1016/j.scitotenv.2017.04.080, 2017. 

Li, S., Gu, S., Liu, W., Han, H., and Zhang, Q.: Water quality in relation to land use and land cover in the upper Han River Basin, China, C

atena, 75, 216-222, https://doi.org/10.1016/j.catena.2008.06.005, 2008. 

LKN: Landesbetrieb für Küstenschutz, Nationalpark und Meeresschutz Schleswig-Holstein, Discharge data from gauges Padenstedt, Sarlh670 

usen and Willenscharen, 2020. 

Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., and Luo, W.: Impacts of soil and water p

ollution on food safety and health risks in China, Environ. Int., 77, 5-15, https://doi.org/10.1016/j.envint.2014.12.010, 2015. 

LvermA: Digitales Geländenmodell (ATKIS-DGM LiDAR), Gitterweite 5 x 5 m, 2008. 

LWK: Landwirtschaftskammer Schleswig-Holstein. Richtwerte für die Düngung 1991 and 2011, 13 Ed and 21 Ed . Rendsburg: LWK, 199675 

1 and 2011. 

Maranguit, D., Guillaume, T., and Kuzyakov, Y.: Land-use change affects phosphorus fractions in highly weathered tropical soils, Catena, 

149, 385-393, https://doi.org/10.1016/j.catena.2016.10.010, 2017. 

Mevik, B.-H., Wehrens, R., and Liland, K. H.: pls: Partial least squares and principal component regression, R package version, 2, 2020. 

Mirghaed, F. A., Souri, B., Mohammadzadeh, M., Salmanmahiny, A., and Mirkarimi, S. H.: Evaluation of the relationship between soil er680 

osion and landscape metrics across Gorgan Watershed in northern Iran, Environ. Monit. Assess., 190, 1-14, https://doi.org/10.1007/s10

661-018-7040-5, 2018. 

Monaghan, R., Wilcock, R., Smith, L., Tikkisetty, B., Thorrold, B., and Costall, D.: Linkages between land management activities and wat

er quality in an intensively farmed catchment in southern New Zealand, Agric. Ecosyst. Environ., 118, 211-222, https://doi.org/10.1016

/j.agee.2006.05.016, 2007. 685 



  22  

 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation guidelines for systemati

c quantification of accuracy in watershed simulations, Trans. ASABE, 50, 885-900, https://doi.org/10.13031/2013.23153, 2007. 

Nafi'Shehab, Z., Jamil, N. R., Aris, A. Z., and Shafie, N. S.: Spatial variation impact of landscape patterns and land use on water quality ac

ross an urbanized watershed in Bentong, Malaysia, Ecol. Indic., 122, 107254, https://doi.org/10.1016/j.ecolind.2020.107254, 2021. 

Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R.: Soil and water assessment tool theoretical documentation version 2009, Tex690 

as Water Resources Institute, 2011. 

Noe, G. B., Hupp, C. R., and Rybicki, N. B.: Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain w

etlands, Ecosystems, 16, 75-94, https://doi.org/10.1007/s10021-012-9597-0, 2013. 

Federal Statistical Office.: Statistisches Jahrbuch für die Bundesrepublik Deutschland, Wiesbaden, Statistisches Bundesamt, 1992-2012. 

Onderka, M., Wrede, S., Rodný, M., Pfister, L., Hoffmann, L., and Krein, A.: Hydrogeologic and landscape controls of dissolved inorgani695 

c nitrogen (DIN) and dissolved silica (DSi) fluxes in heterogeneous catchments, J. Hydrol., 450, 36-47, https://doi.org/10.1016/j.jhydrol.

2012.05.035, 2012. 

Oppelt, N., Rathjens, H., and Dörnhöfer, K.: Integration of land cover data into the open source model SWAT, First Sentinel-2 Preparatory

 Symposium, Frascati, Italy, pp. 23-27, 2012.  

Peel, M. C., McMahon, T. A., and Finlayson, B. L.: Vegetation impact on mean annual evapotranspiration at a global catchment scale, Wa700 

ter Resour. Res., 46, https://doi.org/10.1029/2009WR008233, 2010. 

Pfannerstill, M., Guse, B., and Fohrer, N.: A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater

 dynamics in lowland catchments, Hydrol. Process., 28, 5599-5612,  https://doi.org/10.1002/hyp.10062, 2014. 

Pott, C. A.: Integrated monitoring, assessment and modeling of nitrogen and phosphorus pollution in a lowland catchment in Germany: a l

ong-term study on water quality, Christian-Albrechts Universität Kiel, 2014. 705 

Pott, C. A. and Fohrer, N.: Best management practices to reduce nitrate pollution in a rural watershed in Germany, Rev. Ambiente Agua, 1

2, 888-901, https://doi.org/10.4136/ambi-agua.2099, 2017a. 

Pott, C. A. and Fohrer, N.: Hydrological modeling in a rural catchment in Germany, Appl. Res. Agrotech., 10, 07-16, https://doi.org/10.59

35/PAeT.V10.N1.01, 2017b. 

Rathjens, H., Dörnhöfer, K., and Oppelt, N.: IRSeL—An approach to enhance continuity and accuracy of remotely sensed land cover data,710 

 Int. J. Appl. Earth Obs. Geoinf, 31, 1-12, https://doi.org/10.1016/j.jag.2014.02.010, 2014. 

Riitters, K.: Pattern metrics for a transdisciplinary landscape ecology,  Landsc. Ecol., 34, 2057–2063, https://doi.org/10.1007/s10980-018-

0755-4, 2019. 

Ripl, W., Janssen, T., Hildmann, C., and Otto, I.: Entwicklung eines Land-Gewässer Bewirtschaftungskonzeptes zur Senkung von Stoffver

lusten an Gewässer (Stör-Projekt I und II), Forschungsbericht, TU Berlin, 1996. 715 

Shawul, A. A., Chakma, S., and Melesse, A. M.: The response of water balance components to land cover change based on hydrologic mo

deling and partial least squares regression (PLSR) analysis in the Upper Awash Basin, J. Hydrol.: Reg. Stud, 26, 100640, https://doi.org

/10.1016/j.ejrh.2019.100640, 2019. 

Shi, P.-J., Yuan, Y., Zheng, J., Wang, J.-A., Ge, Y., and Qiu, G.-Y.: The effect of land use/cover change on surface runoff in Shenzhen reg

ion, China, Catena, 69, 31-35, https://doi.org/10.1016/j.catena.2006.04.015, 2007. 720 

Shi, Z., Ai, L., Li, X., Huang, X., Wu, G., and Liao, W.: Partial least-squares regression for linking land-cover patterns to soil erosion and 

sediment yield in watersheds, J. Hydrol., 498, 165-176, https://doi.org/10.1016/j.jhydrol.2013.06.031, 2013. 

Shrestha, S., Bhatta, B., Shrestha, M., and Shrestha, P. K.: Integrated assessment of the climate and landuse change impact on hydrology a

nd water quality in the Songkhram River Basin, Thailand, Sci. Total Environ., 643, 1610-1622, https://doi.org/10.1016/j.scitotenv.2018.

06.306, 2018. 725 

Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., and Smith, D.: Impacts of impervious surface on watershed hydrology: A revie

w, Urban Water J., 2, 263-275, https://doi.org/10.1080/15730620500386529, 2005. 

Singh, H., Singh, D., Singh, S. K., and Shukla, D.: Assessment of river water quality and ecological diversity through multivariate statistic

al techniques, and earth observation dataset of rivers Ghaghara and Gandak, India, Int. J. River Basin Manag., 15, 347-360, https://doi.o

rg/10.1080/15715124.2017.1300159, 2017. 730 

Song, S., Schmalz, B., and Fohrer, N.: Simulation, quantification and comparison of in-channel and floodplain sediment processes in a low

land area–A case study of the Upper Stör catchment in northern Germany, Ecol. Indic, 57, 118-127, https://doi.org/10.1016/j.ecolind.20

15.03.030, 2015. 

Sood, A., Ghosh, S., and Upadhyay, P.: Impact of land cover change on surface runoff, Advances in Remote Sensing for Natural Resource 

Monitoring, 150-169, https://doi.org/10.1002/9781119616016.ch10, 2021. 735 

Srinivasan, J. T. and Reddy, V. R.: Impact of irrigation water quality on human health: A case study in India, Ecol. Econ., 68, 2800-2807, 

https://doi.org/10.1016/j.ecolecon.2009.04.019, 2009. 

Taka, M., Sillanpää, N., Niemi, T., Warsta, L., Kokkonen, T., and Setälä, H.: Heavy metals from heavy land use? Spatio-temporal patterns 

of urban runoff metal loads, Sci. Total Environ., 817, 152855, https://doi.org/10.1016/j.scitotenv.2021.152855, 2022. 

Tan, M. L., Gassman, P. W., Liang, J., and Haywood, J. M.: A review of alternative climate products for SWAT modelling: Sources, asses740 

sment and future directions, Sci. Total Environ., 795, 148915, https://doi.org/10.1016/j.scitotenv.2021.148915, 2021. 

Tigabu, T. B., Wagner, P. D., Hörmann, G., and Fohrer, N.: Modeling the spatio-temporal flow dynamics of groundwater-surface water int

eractions of the Lake Tana Basin, Upper Blue Nile, Ethiopia, Hydrol. Res., 51, 1537-1559, https://doi.org/10.2166/nh.2020.046, 2020. 

Uuemaa, E., Antrop, M., Roosaare, J., Marja, R., and Mander, Ü.: Landscape metrics and indices: an overview of their use in landscape res

earch, Living Rev. Landscape Res., 3, 1-28, http://www.livingreviews.org/lrlr-2009-1, 2009. 745 

Venohr, M.: Einträge und Abbau von Nährstoffen in Fließgewässern der oberen Stör, Diplomarbeit im Fach Geographie, Christian-Albrec

hts-Universität Kiel, 2000. 

Wagner, P., Kumar, S., and Schneider, K.: An assessment of land use change impacts on the water resources of the Mula and Mutha River

s catchment upstream of Pune, India, Hydrol. Earth Syst. Sci., 17, 2233-2246, https://doi.org/10.5194/hess-17-2233-2013, 2013. 

Wagner, P. D. and Fohrer, N.: Gaining prediction accuracy in land use modeling by integrating modeled hydrologic variables, Environ Mo750 

del Softw., 115, 155-163, https://doi.org/10.1016/j.envsoft.2019.02.011, 2019. 

Wagner, P. D. and Waske, B.: Importance of spatially distributed hydrologic variables for land use change modeling, Environ Model Soft

w., 83, 245-254, https://doi.org/10.1016/j.envsoft.2016.06.005, 2016. 

Wagner, P. D., Hoermann, G., Schmalz, B., and Fohrer, N.: Characterisation of the water and nutrient balance in the rural lowland catchme

nt of the Kielstau, Hydrol. Wasserbewirtsch., 62, 145-158, 2018. 755 

Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kantakumar, L. N., Sudheer, K., Kumar, S., Schneider, K., and Fiener, P.: Dynamic int

egration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment, Sci. Total Environ., 539, 153-164,  h

ttps://doi.org/10.1016/j.scitotenv.2015.08.148, 2016. 



  23  

 

Wang, Q., Xu, Y., Xu, Y., Wu, L., Wang, Y., and Han, L.: Spatial hydrological responses to land use and land cover changes in a typical c

atchment of the Yangtze River Delta region, Catena, 170, 305-315, https://doi.org/10.1016/j.catena.2018.06.022, 2018. 760 

Wang, W., Wu, X., Yin, C., and Xie, X.: Nutrition loss through surface runoff from slope lands and its implications for agricultural manag

ement, Agric. Water Manag., 212, 226-231, https://doi.org/10.1016/j.agwat.2018.09.007, 2019. 

Wei, W., Chen, L., Fu, B., Huang, Z., Wu, D., and Gui, L.: The effect of land uses and rainfall regimes on runoff and soil erosion in the se

mi-arid loess hilly area, China, J. Hydrol., 335, 247-258, https://doi.org/10.1016/j.jhydrol.2006.11.016, 2007. 

Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P.: A distributed hydrology-vegetation model for complex terrain, Water Resour. Res., 765 

30, 1665-1679, https://doi.org/10.1029/94WR00436, 1994. 

Wijesekara, G., Gupta, A., Valeo, C., Hasbani, J.-G., Qiao, Y., Delaney, P., and Marceau, D.: Assessing the impact of future land-use chan

ges on hydrological processes in the Elbow River watershed in southern Alberta, Canada, J. Hydrol., 412, 220-232, https://doi.org/10.1

016/j.jhydrol.2011.04.018, 2012. 

Wold, S., Sjöström, M., and Eriksson, L.: PLS-regression: a basic tool of chemometrics, Chemom. Intell. Lab. Syst., 58, 109-130, https://d770 

oi.org/10.1016/S0169-7439(01)00155-1, 2001. 

Wu, J. and Lu, J.: Spatial scale effects of landscape metrics on stream water quality and their seasonal changes, Water Res., 116811, https:/

/doi.org/10.1016/j.watres.2021.116811, 2021. 

Xu, S., Li, S.-L., Zhong, J., and Li, C.: Spatial scale effects of the variable relationships between landscape pattern and water quality: Exa

mple from an agricultural karst river basin, Southwestern China, Agric. Ecosyst. Environ., 300, 106999, https://doi.org/10.1016/j.agee.2775 

020.106999, 2020. 

Yan, B., Fang, N., Zhang, P., and Shi, Z.: Impacts of land use change on watershed streamflow and sediment yield: An assessment using h

ydrologic modelling and partial least squares regression, J. Hydrol., 484, 26-37, https://doi.org/10.1016/j.jhydrol.2013.01.008, 2013. 

Yu, D., Li, X., Cao, Q., Hao, R., and Qiao, J.: Impacts of climate variability and landscape pattern change on evapotranspiration in a grassl

and landscape mosaic, Hydrol. Process., 34, 1035-1051, https://doi.org/10.1002/hyp.13642, 2020. 780 

Zhang, W., Li, H., Hyndman, D. W., Diao, Y., Geng, J., and Pueppke, S. G.: Water quality trends under rapid agricultural expansion and e

nhanced in-stream interception in a hilly watershed of Eastern China, Environ. Res. Lett., 15, 084030, https://doi.org/10.10881/1748-93

26/ab8981, 2020a. 

Zhang, W., Li, H., Pueppke, S. G., Diao, Y., Nie, X., Geng, J., Chen, D., and Pang, J.: Nutrient loss is sensitive to land cover changes and s

lope gradients of agricultural hillsides: evidence from four contrasting pond systems in a hilly catchment, Agric. Water Manag., 237, 10785 

6165, https://doi.org/10.1016/j.agwat.2020.106165, 2020b. 

Zhang, Y.-K. and Schilling, K.: Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change, J. Hy

drol., 324, 412-422, https://doi.org/10.1016/j.jhydrol.2005.09.033, 2006. 

 


