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Abstract. Understanding the impacts of land use changes (LUCC) on the dynamics of water quantity and quality is 

necessary to identify suitable mitigation measures favorable that are needed for sustainable watershed management. Lowland 

catchments are characterized by a strong interaction of streamflow and near-surface groundwater that intensifies the risk of 

nutrient pollution. This studyIn this study, we aims to reveal the investigated relationship between the effects of long-term 10 

land use changes in individual land use classes and the on the water and nutrient balances in a typical lowland in the lowland 

catchment of the upper Stör catchment  in northern lowland areas, Northern Germany. , To this end,A using the hydrological 

model SWAT (Soil and Water Assessment Tool, SWAT) and partial least squares regression (PLSR) are used. SWAT model 

runs for three different land use maps (1987, 2010, 2019) were conducted and the outputs were compared to 

deriveRespective changes in  water quantity (i.e., evapotranspiration (ET), surface runoff (SQ), base flow (BF), and water 15 

yield (WYLD)) and quality variables (i.e., sediment yield (SED), total phosphorus (TP) and total nitrogen (TN) loads). These 

changes were between any two of the three simulations conducted by SWAT using land use maps in 1987, 2010, and 2019 

were found to be relatedd to to land use changes at the subbasin scale usingaccording to PLSR results. The major land use 

changes that significantly affected water quantity and quality variables were related to a decrease of arable land and a 

respective increase of pasture and urban land during the period of 1987-2019. Changes of landscape indictors such as area 20 

size, shape, dominance, and aggregation of each land use class, could accounted for as much as 61%-88% (75% on average) 

of the respective variations in water quantity and quality variables. The aggregation, contiguity degrees, and area extent of 

arable land were found to be most important to control the variations in most water quantity variables. Increases of arable 

(PLANDa) and urban land percent (PLANDu) led to morewould markedly accelerate TP and TN pollution, sediment export, 

and surface runoff.PLSR . The cause-effect results of this study can provide a quantitative basis for targeting the most 25 

influential land use change in landscape composition and configurations to mitigate adverse impacts on water quality in the 

future. 

The change in the areal percentage of arable land positively affected the dynamics of SED, TP, TN and negatively affected 

BF, indicated by a Variable Influence on Projection (VIP) > 1.16 and large absolute regression coefficients (RCs: 0.6-0.88 

for SED, TP, TN; -1.65 for BF). The change in pasture area was negatively affecting SED, TP, and TN (RCs: -0.69 - -0.12, 30 

VIPs >1) while positively affecting ET (RC: 0.09, VIP: 0.92). The change in settlement percentage had a VIP of up to 1.17 

for SQ and positively and significantly influenced it (RC: 1.16, p-value < 0.001). were used to quantify the impacts of 

different land use types on the variations in actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), and water 

yield (WYLD) as well as on sediment yield (SED), total phosphorus (TP) and total nitrogen (TN) loads. To this end, the 

model was calibrated and validated with daily streamflow data (30 years) as well as sediment and nutrient data from two 35 

water quality measurement campaigns (3 years in total). Three model runs over thirty years were performed using land use 

maps of 1987, 2010, and 2019, respectively. Land use changes between those years were used to explain the modelled 

changes in water quantity and quality on the subbasin scale applying PLSR. SWAT achieved a very good performance for 

daily streamflow values (calibration: NSE=0.79, KGE=0.88, PBIAS=0.3%; validation: NSE=0.79, KGE=0.87, 

PBIAS=7.2%), a satisfactory to very good performance for daily TN (calibration: NSE=0.64, KGE=0.71, PBIAS= -11.5%; 40 

validation: NSE=0.86, KGE=0.91, PBIAS=5%), a satisfactory performance for daily sediment load (NSE=0.54-0.65, 
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KGE=0.58-0.59, PBIAS= -22.2%-12%), and an acceptable performance for daily TP (calibration: NSE=0.56, KGE=0.65, 

PBIAS= -4.7%; validation: NSE= 0.29, KGE= 0.22, PBIAS= -46.2%) in the Stör Catchment. The variations in ET, SQ, BF, 

WYLD, SED, TP, and TN could be explained to an extent of 61%-88% by changes in the area, shape, dominance, and 

aggregation of individual land use types. They were largely correlated with the major LUCC in the study area i.e. a decrease 45 

of arable land, and a respective increase of pasture and settlement. The change in the areal percentage of arable land 

positively affected the dynamics of SED, TP, TN and negatively affected BF, indicated by a Variable Influence on 

Projection (VIP) > 1.16 and large absolute regression coefficients (RCs: 0.6-0.88 for SED, TP, TN; -1.65 for BF). The 

change in pasture area was negatively affecting SED, TP, and TN (RCs: -0.69 - -0.12, VIPs >1) while positively affecting 

ET (RC: 0.09, VIP: 0.92). The change in settlement percentage had a VIP of up to 1.17 for SQ and positively and 50 

significantly influenced it (RC: 1.16, p-value < 0.001).  

1 Introduction  

Good water quality and quantity are essential for enhancing ecological stability and diversity, and both of which play 

important roles in maintaining sustainable agricultural or economic development and human health (Antolini et al., 2020; 

Gleick, 2000; Lu et al., 2015; Singh et al., 2017; Srinivasan and Reddy, 2009). The water resources dynamics of water 55 

quality and quantity at thewithin a catchment scale are mainly governed by a combination of climate and land use, as other 

catchment characteristics (e.g., topography, soil, and lithology) usually do not change on a short term (Farjad et al., 2017; 

Shuster et al., 2005; Wagner et al., 2018). Vice versa, hydrology affects land use as well (Wagner and Fohrer, 2019; Wagner 

and Waske, 2016). So far, many In the past three decades, Many efforts have been made to study studies have found the 

influences of  land use changes with respective to urbanization, deforestation, urbanization and agriculture intensification 60 

have exerted significant effects of the change of land use area on water quality or water balance components (Kändler et al., 

2017; Shrestha et al., 2018; Wagner et al., 2016). The effects on water quality have been a concern since the 1970s (Johnson 

et al., 1997). Land use patterns changesThey can alter surface roughness, evapotranspiration, soil infiltration, and the 

interaction between surface and subsurface water (Fiener et al., 2011; Lei et al., 2021; Wei et al., 2007), and promote or 

hinder generation and transportation of  ConsequentlyCorrespondingly, the amount of water and the level of carried or 65 

transported soil particles, chemicals, or metals (Ding et al., 2016; Nafi'Shehab et al., 2021; Taka et al., 2022)transported can 

be promoted or hindered (refs), altering water quantity and quality. The effects of land use changes on catchment water 

resources are manifold, e.g., urbanization results in a significant increase in surface runoff and water yield (Ayivi and Jha, 

2018), expansion of farmland area poses increased risks to non-point source pollution of nitrogen (N) and phosphorus (P) as 

well as soil erosion (Hacisalihoglu, 2007; Jia et al., 2013; Rajaei et al., 2017; Roberts and Prince, 2010), whereas more semi-70 

natural vegetation (e.g., forest, bushland, or grassland) increases the ability of filtering pollutants and intercepting rainfall 

thus reducing water pollution and streamflow (Moreno‐Mateos et al., 2008; Yan et al., 2013). Given the diversedirect and 

indirect effects of land use changes on hydrological processes and water contaminant generation and transportationinputs, Iit 

is of great practical significance importance to identify the key predictor variablespattern of land use change s impacting 

water resources, in order to achieve an effective catchment management of water and land use   and water 75 

resourcesmanagement in a particular catchment. Changes of both the composition and spatial structure of landscape can 

exert diverse influences on catchment hydrology and ecological systems (Allan, 2004; Ding et al., 2016; Haidary et al., 2013; 

Shawul et al., 2019). It is imperative to discriminate the effects of different aspects of a certain land use class to target 

sustainable and comprehensive land and water management (Liu et al., 2012; Shi et al., 2013). 

Earlier studies have often aimed at analyzing land use change effects have generally measured relationships between land 80 

use transition and water quantity and quality, using the lumped indicators of landscape composition, e.g., land use areal 

proportion percentage of a land use class of in the catchment (Kumar et al., 2022; Lei et al., 2021). However, composition 

indicators  are rather coarse to depict the relationships, because they do not convey any details with respect to spatial settings 
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of landscape patterns. The Spatial configuration ofs in the spatial land use distribution scapes can be measured is another 

fundamental element measured byusing landscape metrics (i.e., algorithmsmetrics to quantify the spatial structure of land use 85 

patterns within a defined geographic area). Compared to the composition indicators that refers to the abundance (e.g., areal 

percent) of land patches (i.e., homogenous areas of the landscape) (Hesselbarth et al., 2019) belonging to one certain class 

without considering their spatial characteristics, landscape configuration metrics describe spatial fragmentation or 

distribution of patches, e.g., the shape complexity. such as , including the metrics of the dominance, diversity, shape, 

aggregation, and interconnection of land use patches (i.e., homogenous areas of the landscape) (Hesselbarth et al., 2019). ,  90 

Landscape configuration metrics of the dominance, diversity, shape, aggregation, and interconnection of land patches They 

play a critical part in determining the energy and matter fluxes of e.g., solar radiation, temperature, evapotranspiration, 

surface runoff, nutrients, and sediments from the landscape ecology perspective (Amiri and Nakane, 2009; Forman, 1995; 

Lei et al., 2019; Wu and Lu, 2021). They therefore affect hydrological and ecological processes. With the availability of 

advanced spatial analysis (e.g., GIS) and remote sensing techniques (RS), various landscape metrics can be acquired 95 

efficiently for an overall assessment of landscape structure, based on classified land use maps from satellite data. Landscape 

configuration metricsingConfigurationThey are  arewere found to be sometimes sometimes more important as descriptors of 

water quality than composition metricsindicators in some case studies: m(Ding et al., 2016; Gémesi et al., 2011). E.g., etrics, 

e.g., : Ding et al. (2016) observed that  found that water quality is more significantly affected by the configuration i.e. poorer 

water quality was not as much more associated with areal percentage as with the higher patch densitiesy (PD) of cropland, 100 

orchards and grassland or  and thea higher value of largest patch index (LPI) of urban land,  compared to the areal 

percentages ofthan area percent of them than by composition of the land use type in a low-order streams dominated 

catchment (drainage area: 35,340 km2) in southeastern China.  . Gémesi et al. (2011) indicated that contagion, cohesion, and 

aggregation indices are more important than composition variables with regard to the variability in TN and TP in the 

Mississippi–Atchafalaya River watershed in USA. Recent studies on land use effects on water quantity mainly focus on land 105 

use percent, rarely on landscape metricsDespite little consideration of landscape configuration in the studiesy of water 

quantity  (Anand et al., 2018; Shrestha et al., 2018), . However, metrics like landscape the shape,  dominance or, or 

connectivity degree of land patches of one certain land use type is closely linked to the intensificationmodification of 

catchmentthe hydrological cycle. scape may play critical roles in altering the hydrological cycle., For example,e.g., more 

fragmented forest patches may closely relate to the capacity of favor funneling of precipitationinfiltration and interception of 110 

rainfall (Ghimire et al., 2017); hardness and straightness of land patches of farmland, urban, and natural land uses influence 

streamflow rates at different magnitudes and directions (Riitters, 2019; Shi et al., 2013); more concentrated grassland 

patches result in greater evapotranspiration (Yu et al., 2020). Therefore, it is necessary to assess influences of changes in 

different aspects of a land use class to better understand their impacts on water resources dynamics.  

In orderT to quantify effects of land use changes on water resources within catchments, hydrological models have beenare 115 

widely implementedused (Gabriels et al., 2021; Idrissou et al., 2022; Wijesekara et al., 2012), e.g., SWAT (Soil and Water 

Assessment Tool) (Arnold et al., 1998), HSPF (Hydrological Simulation Program-Fortran) (Bicknell et al., 2001), or 

DHSVM (Distributed Hydrology-Soil Vegetation Model) (Wigmosta et al., 1994). Models are particularly useful to detect 

historic as well as future land use change impacts usingapplying a land use scenario analysis (Anand et al., 2018; Aredo et al., 

2021). As a physically-based and semi-distributed hydrological model, SWAT has proven its suitability for an integrated 120 

modeling of thewater, sediment, and nutrient dynamics in hydrological processes and in nutrients cycling in different-sized 

rural catchments (Aghsaei et al., 2020; Tan et al., 2021). even under circumstance where observation data are limited . 

Furthermore, it considers the spatial heterogeneity.  SWAT has been applied in many catchments worldwide to investigate 

the hydrological and hydro-chemical effects due to spatio-temporal changes of land use (Amin et al., 2020; Anand et al., 

2018; Boongaling et al., 2018). In lowland areas, the transport of water and nutrients is strongly influenced by flat 125 

topography and shallow groundwater tables in addition to the spatially heterogonous land use. The spatially 

distributedhydrological model SWAT is quitehas proven its suitability useful to incorporatemodel the eco-hydrological 
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consequences of spatio-temporal land use changes invariations in spatial patterns of these lowland featurescatchments (Guse 

et al., 2014; Pott and Fohrer, 2017b). Particularly in theseveral lowland catchments in northern Germany, SWAT was 

extensively proven to be a powerful modelling tooltested forin impact studies. E.g., Lam et al. (2012) using SWAT 130 

satisfactorily modeled the long-term observations of daily streamflow and nitrate load in the Kielstau catchment and 

identifiedfound that diffuse source pollution (dominated by agriculture) contributed dominantly (95%) to nitrate load; In the 

Upper Stör catchment, Song et al. (2015) using SWAT coupled SWAT with HEC-RAS to revealedanalyze temporal 

dynamics of sediment as well as different sediment loads in subbasins covered by heterogonous land use conditions. Guse et 

al. (2015) incorporated different spatial distributions of agricultural crops into SWAT and successfully assessed the impacts 135 

of land use changes on nitrate load in the Treene catchment.  Despite a high feasibility of SWAT modelling water quantity 

and quality, previous studies illustrated that the original SWAT version sometimes performed relatively poorly for recession 

limbs and low flow periods of streamflow (Guse et al., 2014; Pfannerstill et al., 2014). In lowland catchments, groundwater 

contributes significantly to low flows and thus becomes a dominant component of streamflow (Pott and Fohrer, 2017b). 

contribution from shallow groundwater affects the  of streasmflow .however the abundant groundwater recharge is it is not 140 

adequatelycompletely considereddescribed in original SWAT version. To more accurately model low flows processs, an 

enhanced version of SWAT, SWAT3Ss, was recently developed in the Kielstau catchment (a northern lowland catchment in 

Germany), by conceptually separating the shallow groundwater aquifer of the original SWAT into a fast and slow shallow 

aquifers ((Pfannerstill et al., 2014)). SWAT3Ss was previously evidenced to perform betterwas successfully used for 

modelling daily streamflow and nitrogen loads in a few German lowland catchments (e.g., Kielstau and Treene) by 145 

optimizingimproving the representation of lowland  flow periods (Haas et al., 2017; Pfannerstill et al., 2014) . Given the 

aforementioned strength of SWAT3s application, SWAT3Ss is assumed to be moremore suitable for assessing the impacts of 

land use changes on water resources in lowland areas dominated by groundwater recharge. 

While land use changes and the associated the changes in landscape metrics composition and configuration have a great 

potential of influencing hydrology, soil erosion or water quality dynamics at different spatial and seasonal scales (Haidary et 150 

al., 2013; Jones et al., 2001; Kändler et al., 2017), some landscape metrics may have a high probability for collinearity. The 

collinear landscape metrics carry redundant information and are not independent predictor variables (Hargis et al., 1998). 

They can therefore result in biased or even misleading results when using conventional multivariate regression techniques 

like ordinary least-square regression, particularly in the case of a small number of observations (Shawul et al., 2019; Shi et 

al., 2013). Compared to ordinary multivariate statistical methods which present relatively low robustness dealing with multi-155 

collinear variables, partial least squares regression analysis (PLSR) can overcome the limitation of multi-collinearity and 

achieve a robust performance by using techniques of multivariate statistical projection (Shi et al., 2013). The PLSR Based on 

has widely been used to measure the “cause-effect” relationships between land use changes and water resource, based on the 

powerful technique of projecting predicted and observed variables onto a new space and estimating the underlying structure 

between projected spaces, PLSR facilitates an unbiased analysis of “cause-effect” relationships between land use changes 160 

and water resources components  (Ferreira et al., 2017; Shi et al., 2013; Yan et al., 2013). Using an integrated approach of 

PLSR and hydrological modelling involving usingwith SWAT and PLSR, impacts of the multifactedland use changes in land 

use on various water resources components can be effectively identified. E.g., , in the Upper Du catchment, China, Yan et al., 

(2013) observed that the farmland positively influenced streamflow and sediment yield, whereas forest area showed negative 

correlation with them. as well as for sediment, whilebesides, Uurban expansion would cause streamflow to increase as well. 165 

Shi et., al (2013) indicated that the landscape metrics e.g.,  Shannon’s diversity index (SHDI), aggregation index (AI), 

largest patch index (LPI), contagion (CONTAG), and patch cohesion index (COHESION), were the important to impacts 

controlcontrolling the watershed  soil erosion and sediment yield, and they altogether could explain contributing 65% and 74% 

ofto their variations inat soil erosion and sediment yieldthem at in subbasin levels, respectively.  Gashaw et al. (2018) 

identified that more shrubland would cause water yield and surface runoff to decrease while evapotranspiration and 170 

groundwater flow to rise; However, increased cultivated land would result in decreases of groundwater flow and 
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evapotranspiration in Blue Nile Basin, Ethiopia. The sameL land use change contributes to the variations in annualaffects 

Ww differently. (e.g., evapotranspiration, base flow, and surface runoff) in different ways are related to land use changes in 

different ways (refs), .F, an increase of settlement areas would resulted in a higher proportion of surface runoff to streamflow 

whileand lower groundwater flow (Marhaento et al., 2017). Further investigation is therefore needed to achieve a more 175 

effective and accurate means of quantifying comprehensive water quality and quantity consequences of land use changes to 

optimize catchment management. In summary, it has been demonstrated that PLSR is a suitable method forefficient  to 

quantifyingdistinguish complex impacts on water quantity and quality. 

The Stör River is the longest tributary of the Elbe River in the northernmost federal state of Germany, Schleswig-Holstein. 

Intensive agricultural activities (e.g., grazing, tillage, fertilizer, and pesticide application) are common in the catchment and 180 

increase the risk of water quality pollution (Monaghan et al., 2007). A variety of amelioration measures, e.g., tile drainage 

and straightening or canalizing of tributaries have been implemented in the past century to sustain agriculture productivity in 

lowlands dominated by shallow groundwater tables and abundant groundwater recharge. These activities brought about 

changes in the input and transport of nutrients and in hydrological fluxes. Meanwhile, the heterogeneity of the landscape 

pattern has been intensified due to artificial disturbances (Goldewijk and Ramankutty, 2004; Gu et al., 2007). We previously 185 

found significant relationships between land use patterns and water quality parameters at the landscape level in the upper 

Stör Catchment based on measurements (Lei et al., 2021). However, a A modeling approach allows for to investigating the 

analyze the dynamically and quantitativerepresent effectsmodel the quantitative contribution of land use changesthe land use 

changes (composition and structure) measured by separate land use types classes on water quality and quantity, and it is 

necessary forfacilitates developing effective informed and practicable strategies of of improving water quality and 190 

controlling soil erosionachievingfor sustainable land and -water management (Pott, 2014; Ripl et al., 1996). 

To identify the key land use changes controlling the spatial and temporal variations in water quantity and quality, 

relationships between landscape characteristics of each land use type class and water quality (represented by sediment, TP 

and TN) and quantity (represented by evapotranspiration, surface runoff, base flow, and water yield) are were explored at the 

subbasin scale in the upper Stör Catchment. To this end, the hydrological model SWAT and partial least squares regression 195 

(PLSR) are were employed. The study aims at (1) calibrating and validating a catchment model for streamflow, sediment, TP, 

and TN loads; (2) quantifying the changes of landscape characteristics and water quality and quantity variables at the 

subbasin scale; (3) investigating the relationships (depicted by the contribution and influence) between LUCC and water 

quality and quantity dynamics at the subbasin scale.  

2 Materials and methods 200 

2.1 Study area 

The rural lowland catchment of the upper Stör is the focus of this study (Figure 1). It extends from the origin of the Stör 

River in Willingrade to the gauge in Willenscharen (Figure 1Figure 1) and is free of tidal influence. The catchment has a 

drainage area of approximately 462 km², with a total length of the river network of about 221 km. Its temperate climate is 

characterized by an average annual precipitation of 850 mm and a mean temperature of 9.4 °C between 1990 and 2019, 205 

according to the records by weather stations Neumünster and Padenstedt (DWD, 2020a). The average daily streamflow 

measured at the catchment outlet in Willenscharen is 5.8 m3 s-1 between 1990 and 2019, with  low flows (mean value: 3.8 m3 

s-1) in summer (May-October) and high flows (mean value: 7.9 m3 s-1) in winter (November-April) (LKN, 2020). Discharge 

occurring in the highest flow period (December-March) contributes most (around 50%) to the total annual amount of stream 

flow. The catchment is characterized by a flat topography, descending from nearly 60 m a.s.l. in the northeast and 85 m in 210 

the western part towards 20 m in the center and to 5-10 m in the southern part. Sandy soil (Cambisol, Gley-Podsol, Podsol) 

dominates the catchment, particularly in the central lowland part, while some Gley soils are mainly distributed in the east 

and peat soils can be found in proximity to streams and near two major wetlands (Pott and Fohrer, 2017a). The catchment is 
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dominated by rural land use composed of arable land (36.1%) and pasture (31.3%), followed by forest (18.7%), urban areas 

(12.8%), and a minor fraction of water and wetland as indicated by a land use map for 2019 (Lei et al., 2021). The main 215 

cultivated crops include winter cereals (wheat, barley, and rye), corn, and rapeseed. 

 

Figure 1. Characteristics of the study area: Location of the upper Stör Catchment (a), spatial distributions of topography (b) 

(LvermA, 2008) and soil types (c) (Finnern, 1997), of subbasins, weather and gauging stations, and waste water treatment plants 

(WWTPs) (d) (Pott, 2014), as well as land use maps (e) (Lei et al., 2021; Rathjens et al., 2014; Ripl et al., 1996).  220 

2.2 Land use data and landscape metrics 

Land use maps for 1987, 2010, and 2019 have beenwere used to characterize changes in land use and landscape patterns. 

The earlier two maps (1987, 2010) have beenwere adapted from Ripl et al. (1996) and Rathjens et al. (2014), respectively, 

and are were based on Landsat TM-5 image data at 30 m resolution. The land use map for 2019 has been was derived from 

10 m resolution Sentinel-2 satellite images (Lei et al. 2021). The land use types classes are were categorized uniformly as: 1) 225 

arable land (winter cereals, corn, and winter rape, and other crops), 2) pasture (meadow, field grass, and rangeland); 3) forest 

(deciduous and coniferous forest); 4) urban (residential, commercial and industrial areas); 5) water (rivers, ponds, and lakes) 

and 6) wetland (Figure 1Figure 1). Water and wetland are not considered for further analysis, as they comprise only minor 

and mostly constant percentages.  

The area percentage of land use type class (PLAND) has beenis used as a measure of land use composition. Configuration 230 

metrics include the largest patch index (LPI), area-weighted mean shape index (AWMSI), area-weighted mean contiguity 

index (CONTIGAW), aggregation index (AI), and interspersion juxtaposition index (IJI), considering the dominance, shape, 

and interconnection of landscape (Ding et al., 2016; Gémesi et al., 2011). Composition and configuration indices of pasture, 

arable land, forest and urban have beenwere selected for subsequent analysis (Table 1Table 1). They have beenwere derived 

with the help of the software FRAGSTATS 4.2. All indices and their changes are were analyzed at subbasin scale.  235 
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Table 1. Description of the landscape metrics selected for the study. 

Attributes Metrics Unit Description Abbreviation at class level Note 

Composition Percentage of land use (PLAND)  % Areal percentage of land use typesclasses 
PLANDa, PLANDp,  
PLANDf, PLANDu 

Metrics for land use type 

class 

a (refers to arable land),  

p (refers to pasture), 

 f (refers to forest),  

u (refers to urban) 

Configuration Largest patch index (LPI) % 
Percentage of the landscape composed of the 
largest patch 

LPIa, LPIp, LPIf, LPIu 

 
Area-weighted mean shape 

index (AWMSI) 
- 

The sum of the mean shape index multiplied by the 

area weight of each patch type involving the 

corresponding class 

AWMSIa, AWMSIp,  

AWMSIf, AWMSIu 

 Aggregation index (AI) % 

Number of the same patch type being adjacent 

divided by the maximum number of adjacencies 

for the corresponding land use class 

AIa, AIp, AIf, AIu 

 
Area-weighted mean contiguity 

index (CONTIGAW) 
- 

Measure of the patch shape based on the sum of 

spatial connectedness multiplied by the area 
weight of the patch for a certain class 

CONTIGAWa, CONTIGAWp, 

CONTIGAWf, CONTIGAWu 

 
Interspersion juxtaposition index 
(IJI) 

% 
Measure of patch adjacency and interspersion or 
intermixing of patch types for a class 

IJIa, IJIp, IJIf, IJIu 

2.3 Hydrological and water quality modeling  

2.3.1 SWAT model 240 

The Soil and Water Assessment Tool (SWAT) is a process-based and semi-distributed eco-hydrological model with a 

continuous time step (Arnold et al., 1998). It is suitable for the simulation of streamflow, sediment, nutrients, and 

groundwater dynamics in catchments of different sizes (Aghsaei et al., 2020; Bieger et al., 2014; Haas et al., 2016; Tigabu et 

al., 2020). The computation of water routing, nutrient cycles and soil erosion is based on hydrologic response units (HRUs) 

characterized by the same land use, soil type, and slope in the same subbasin representing the spatial heterogeneity of the 245 

catchment (Arnold et al., 2013). The HRU-based calculations for the subbasins are routed through the rivers that connect the 

subbasins (Neitsch et al., 2011).  

To accurately represent groundwater dynamics in this lowland catchment, we applied SWAT3S, the an enhanced SWAT 

model SWAT3Ss that is based on SWAT 2012 Rev. 582 (Pfannerstill et al., 2014). In comparison to the standard SWAT 

model application that uses two aquifers, ,  SWAT3sS uses employs three groundwater aquifers by subdividingand 250 

subdivides the original shallow aquifer from SWAT into a fast and a slow aquifer. SWAT3Ss was developed in the German 

lowland catchment of the Kielstau, where toit better represented low flow periods of streamflow s and groundwater storage 

and flow dynamics when compared to the original SWAT version (Pfannerstill et al., 2014). It was already also successfully 

applied to the lowland catchment of the Treene,  proving its usefulness for modelling nutrients as well (Haas et al., 2017; 

Haas et al., 2016).  255 

2.3.2 Model databases and setup 

SWAT requires topography, soil, land use, hydro-meteorological input data. Topography data was obtained from a Digital 

Elevation Model (DEM) in 5 m resolution (LvermA, 2008) and used to delineate the watershed into 21 subbasins. Soil data 

and attributes for SWAT have beenwere derived by Pott and Fohrer (2017b) from a soil type map (Finnern, 1997). The land 

use map for 2019 is was used to build the model. Three-year crop rotations (winter wheat/winter wheat/corn; winter 260 

rape/winter wheat/corn; corn/corn/corn) are were adapted from Oppelt et al. (2012) and implemented for the respective land 

use classes. Agriculture management schedules and fertilization (e.g., application rates of N, P fertilizers and manure at 

different crop growth stages) have beenwere determined according to the actual guidelines of agriculture practices (KTBL, 

1995 and 2008; Kühling, 2011; LWK, 1991 and 2011). From the DEM a four slope classes (<1%, 1-2%, 2-5% and >5%) 

are were defined. Slope, soil, and land use classes were combined to obtain 3618 HRUs in the catchment. The HRUs were 265 

generated without excluding any HRUs by thresholds for land use, soil, or slope class percentages, to allow for a better 

spatial representation. To accurately represent lowland hydrology, drainage tiles were considered based on the estimated 

distribution of drained areas in the catchment (Venohr, 2000). We adapted drainage parameter values for DEP_IMP (1200 

mm), DDRAIN (875 mm), TDRAIN (24 h), and GDRAIN (61 h) from a previous modeling study in the catchment (Pott and 
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Fohrer, 2017b). Waste water treatment plants (WWTP) were implemented as point sources using data from monthly 270 

measurement campaigns in 2009 and 2010 and WWTP data vary with space and seasons (Pott, 2014). Daily values of 

temperature (max. and min), solar radiation, humidity, and wind speed are available from 1990 to 2019 for the climate 

station Padenstedt  (DWD, 2020b). Precipitation data are available for four stations (DWD, 2020b) (Figure 1). Daily 

streamflow is was measured at the gauges in Padenstedt (PAD), Sarlhusen (SAR) and Willenscharen (WIL) from 1990 to 

2019 (LKN, 2020). Daily sediment and nutrient data have beenwere both obtained during two measurement campaigns, i.e.,  275 

between August 2009 and - August 2011 and between October 2018 and - November 2019 in Willenscharen. Daily mixed 

samples have beenwere taken by an automatic and cooled sampler from a depth of 0.30 m above the river bed at the central 

section of the stream. They have beenwere analyzed according to German standard procedure for water analysis (DEV) 

(Einheitsverfahren, 1997) in the laboratory of Department of Hydrology and Water Resources Management at Kiel 

University. Total suspended sediment concentration has beenwas measured by filtering 1 l of water sample through 0.45 μm 280 

celluloseacetate filter paper and drying at 105ºC. The concentration of total phosphorus (TP) has beenwas determined by 

spectrophotometry, according to DEV H36 and DEV D11, while total nitrogen (TN) has beenwas measured by 

chemiluminescence detection according to DEV H3. Each measurement of TP or TN concentration from unfiltered samples 

has beenwas performed based on a blank comparison analysis of distilled water and triplicate analysis of subsamples. Their 

concentrations have beenwere determined by the arithmetic mean values of any two subsamples with smallest measurement 285 

differences (less than <10%). Based on the measurements of daily  concentration and streamflow, the respective daily loads 

of sediment, TP, and TN were calculated calcaulted, respectively. 

2.3.3 Model calibration and validation 

A step-wise calibration approach has been applied for dThe variables daily streamflow (1), sediment (2), TP (3), and TN (4) 

data were calibrated separately and stepwise. T, and the number in the parentheses right after them denotes their respective 290 

calibration order, i.e.,. This means that streamflow was firstly calibrated first, followed by sediment, and then TP, and TN. . 

RelevantAn overview of details of calibration and validation details for each variable is provided  are summarized in Table 

2. Streamflow was calibrated using a fifteen-year time period from 1990 to 1991 and from 2007 to 2019. The other available 

fifteen years (1992-2006) have been used for validation. This 

Preliminary parameter ranges (Table S1) were selected based on experiences with the SWAT model in the Stör Catchment 295 

(Pott and Fohrer, 2017b) and other German lowland catchments (i.e., Kielstau and Treene catchments) (Haas et al., 2016; 

Lam et al., 2012; Pfannerstill et al., 2014) as well as in relevant studies from other countries (Aghsaei et al., 2020; 

Boongaling et al., 2018). The final ranges of selectedcalibrationed parameters (Table S1) were determined based on the 

sensitivity of parameters to model outputs as derived from 2000 trial runs following the method used by Guse et al. (2020), 

in which model simulations are iteratively repeated with successively constrained parameter ranges. 300 

Parameter sets were generated from the derived parameter ranges using Latin Hypercube Sampling in the R-package FME 

(Soetaert and Petzoldt, 2010). For each of these 8000 (streamflow) and 5000 (sediment, TP, and TN loads) independent 

parameter sets,  model runs were conducted each involving a warm-up period (four years) respectively, and evaluated using 

multiple performance criteria to select the best parameter set. To this end,  the objective functions Nash-Sutcliffe efficiency 

(NSE), Kling-Gupta Efficiency (KGE), and Percent Bias (PBIAS), which were proposed in Guse et al. (2014) and Moriasi et 305 

al. (2007), were applied. For an accurate representation of all segments of the hydrograph (very high, high, middle, low, and 

very low periods), the additional signature measure RSR (Ratio of Root Mean Square Error to the Standard Deviation of the 

Observations) was used (Haas et al., 2016; Zambrano-Bigiarini, 2020). The definition of each objective function is provided 

in Text S1 in the supplementary materials information. 

First, streamflow was calibrated at three gauges.  The two upstream gauges Padenstedt (PAD) and Sarlhusen (SAR) were 310 

used to select the best parameter sets for the respective sub-catchments first (Figure 1). Then, the best parameter set for the 

area downstream of PAD and SAR and upstream of the outlet gauge Willenscharen (WIL) was selected. For each of the 
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three streamflow gauges, we pre-selected the parameter sets that yielded a KGE >0.75 for the streamflow calibration period. 

To accurately represent streamflow dynamics during the periods of water quality measurements (Aug. 2009 - Aug. 2011 and 

Oct. 2018 - Nov. 2019), the mean RSR for the five flow duration curve (FDC) segments  during these periods was assessed 315 

and the best 300 streamflow parameter sets indicated by a low RSR were selected. From these 300 sets, the final parameter 

set yielding the highest KGE in these periods was selected. Calibration and validation periods (Table 2) were defined based 

on an equal representation of dry, normal, and wet years according to the annual precipitation. 

Second, with the derived set of best hydrological parameters,  model runs for 5000 different sediment calibration parameter 

sets were carried out and the best model run was selected based on the highest NSE. Third, this model was run for 5000 320 

different sets of TP calibration parameters and the best model run was similarly selected using the NSE. Finally, based on the 

so far derived best parameters, another 5000 model runs for TN calibration were carried out and the best model run indicated 

by the highest NSE was selected. To accurately represent peak loads and their dynamics, the NSE was selected as single 

criterion for the water quality variables. The calibrated parameters are provided in Table S1 in the supplementary 

information. Evaluation and processing of the model data were carried out in R using the packages hydroGOF (Zambrano-325 

Bigiarini, 2020) and zoo (Zeileis and Grothendieck, 2005). 

The split of the streamflow observations were split to  data ensures an equal representation of dry, normal, and wet years in 

the calibration and validation period, according to the annual precipitation. As for the multi-gauge calibration, Ffirst, data 

from the two upstream gauges Padenstedt (PAD) and Sarlhusen (SAR) have beenwere used to calibrate parameters in the 

respective subcatchments (Figure 1). Then, the parameters for the area downstream of PAD and SAR and upstream of the 330 

outlet gauge Willenscharen (WIL) have beenwere calibrated. Sediment, TP and TN loads have been calibrated for two 

hydrologic years (sediment: 30/10/2009-07/08/2011; TP, TN: 08/08/2009-10/08/2011) using a model with the land use map 

in 2010 and validated for one hydrologic year (19/10/2018-05/11/2019) using a model with the land use map in 2019, for the 

entire catchment based on the daily data from Willenscharen. The calibration has been performed based on 8000 (stream 

flow) and 5000 (sediment, TP, and TN loads) parameter sets generated using Latin Hypercube Sampling method (Soetaert 335 

and Petzoldt, 2010). For each parameter set a model run has been performed, allowing for a warm-up period of 4 years. 

From experiences with the SWAT model in the Stör Catchment (Pott and Fohrer, 2017b) and other German lowland 

catchments (i.e., Kielstau and Treene catchments) (Haas et al., 2016; Lam et al., 2012; Pfannerstill et al., 2014) as well as in 

relevant studies from other countries (Aghsaei et al., 2020; Boongaling et al., 2018), the parameters most likely to affect 

hydrological and water quality processes have beenwere selected and their preliminary ranges have beenwere defined (Table 340 

2). The final ranges of selected parameters have beenwere determined based on the sensitivity of parameters to model 

outputs as derived from 2000 trial runs following the method used by Guse et al. (2020), in which model simulations are 

iteratively repeated with successively constrained parameter ranges to obtain more precise parameter identifiability and 

improve model performance.  The calibrated parameters and ranges were provided in (Table S1 in the supplementary 

informationTable 2). Calibration and validation have beenwere  carried out in R using the packages FME (Soetaert and 345 

Petzoldt, 2010), hydroGOF (Zambrano-Bigiarini, 2020) and zoo (Zeileis and Grothendieck, 2005). 

The performances for modeling streamflow and sediment, TP and TN loads have beenwere assessed using a multi-metric 

approach based on the objective functions Nash-Sutcliffe efficiency (NSE), Kling-Gupta Efficiency (KGE), and Percent Bias 

(PBIAS), which were  as proposed in Guse et al. (2014) and Moriasi et al. (2007). The definition and algorithm of each 

objective function are provided in Text S1 in the supplementary information. For an accurate representation of all phases of 350 

flow hydrograph for water quality simulation periods, the additional signature measure RSR (Ratio of Root Mean Square 

Error to the Standard Deviation of the Observations) was used to calibrate the very high, high, middle, low, and very low 

periods (Haas et al., 2016; Zambrano-Bigiarini, 2020). For each of the three streamflow gauges, we pre-selected the 

parameter sets that yielded a KGE >0.75 for the streamflow calibration period. To particularly represent runoff dynamics 

during the periods of water quality measurements (Aug. 2009 - Aug. 2011 and Oct. 2018 - Nov. 2019) well, the mean of 355 

RSR for the five flow duration segments during these periods was assessed and the best 300 streamflow parameter sets 
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indicated by a low RSR were selected. From these 300 sets, the final parameter set yielding the highest KGE in these periods 

was selected. For sediment, TP, and TN calibration the parameter set that yielded the highest NSE during the calibration 

period was selected to represent peak loads and their dynamics well, as peak loads of them are often underestimated and 

NSE relates more to the peak values. .  360 

Table 2. The descriptions ofOverview of SWAT model calibration and validation implemented in this study. 

 

Calibration  Validation 

Streamflow Sediment load TP load TN load  Streamflow Sediment load TP load TN load 

Simulation

Evaluation 

period 

period 

1990-1991; 

2007-2019 

30/10/2009-

7/8/2011 

8/8/2009-

10/8/2011 

8/8/2009-

10/8/2011 
 1992-2006 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

19/10/2018-

5/11/2019 

Simulation 
period 

1986-2019 2005-2011 2005-2011 2005-2011  1986-2019 2014-2019 2014-2019 2014-2019 

Land use 

map 
2019 2010 2010 2010  2019 2019 2019 2019 

Gauges PAD/SAL/WIL WIL WIL WIL  PAD/SAL/WIL WIL WIL WIL 

Calibration 

runs 
8000 5000 5000 5000      

Performan

ce criteria 

KGE>0.75 in 1990-

1991; 2007-2019 & 
best KGE among 300 

best mean RSR of 

FDC in 8/8/2009-

10/8/2011; 
19/10/2018-

5/11/2019 

NSE NSE NSE      

           Table 3. Parameters used to calibrate streamflow, sediment, total phosphorus and total nitrogen. 

Parameters  Definition Calibrated range  Calibrated value 

Parameters used to calibrate streamflow 

  WILL SAR PAD WILL SAR PAD 

r_SURLAG Surface runoff lag coefficient 0.1-0.6 0.1-0.6 0.1-0.5 0.13 0.13 0.13 

r_GWDELAYfsh Groundwater delay time – fast shallow aquifer (days) 48-85 40-80 65-100 83 42 71 

r_ALPHABFfsh Baseflow alpha factor – fast shallow aquifer (day-1) 0.17-0.38 0.18-0.38 0.05-0.22 0.18 0.26 0.08 

r_RCHRGssh Aquifer percolation fraction – slow shallow aquifer 0.8-0.94 0.08-0.58 0.38-0.7 0.91 0.34 0.44 

r_GWDELAYss

h 
Groundwater delay time – slow shallow aquifer (days) 68-105 58-100 80-120 80 92 87 

r_ALPHABFssh Baseflow alpha factor – slow shallow aquifer (day-1) 0.0009-0.002 0.001-0.007 0.003-0.009 0.0019 0.0036 0.0064 

r_RCHRGdp Aquifer percolation fraction inactive deep aquifer 0.02-0.15 0.015-0.14 0.1-0.45 0.14 0.03 0.15 

r_ESCO Soil evaporation compensation factor 0.85-0.98 0.93-1 0.7-0.95 0.86 0.94 0.77 

r_EPCO Plant uptake compensation factor 0.01-0.025 0.05-0.22 0.1-0.35 0.02 0.06 0.23 

as_CN2 Initial SCS runoff curve number for moisture condition II -13 - -1 -12 - -1 -12 - -2 -5.64 -3.27 -4.89 

as_SOL_AWC Available water capacity of the soil layer (mm) -0.06 - 0.02 -0.06 - -0.01 -0.04 - 0.03 -0.006 -0.020 0.001 

m_SOL_K Saturated hydraulic conductivity (mm h-1) 0.7-1.3 0.8-1.2 0.8-1.2 1.052 0.811 1.079 

 
Parameters used to calibrate sediment 

r_ADJ_PKR 
Peak rate adjustment factor for sediment 

routing in the main channel 
0.55-2 0.61 

r_CH_COV_1 Channel erodibility factor 0.1-0.5 0.41 

r_CH_COV_2 Channel cover factor 0.4-0.7 0.57 

r_USLE_P USLE support practice factor 0.5-1 0.93 

m_SLSUBBSN Average slope length (m) 0.8-1.08 0.88 

m_HRUSLP Average slope stepness (m m-1) 0.95-1.28 1.1 

r_LAT_SED Sediment concentration in lateral and groundwater flow (mg l-1) 55-140 110 

r_USLE_K Soil erodibility (K) factor  0.06-0.2 0.09 

as_SOL_Z Depth from soil surface to bottom of layer (mm) -70-20 -65 

r_USLE_C   Minimum value of USLE C factor for land cover/plant 0.08-0.43 (cropland); 0.002-0.017 (pasture) 0.192 (cropland), 0.015 (pasture) 

 
Parameters used to calibrate total phosphorus 

r_P_UPDIS Phosphorus uptake distribution parameter 30-100 73.61 

r_PPERCO Phosphorus percolation coefficient 10-16 10.3 

r_PHOSKD Phosphorus soil partitioning coefficient 115-190 181.14 

r_PSP Phosphorus sorption coefficient 0.01-0.5 0.21 

r_ERORGP Organic P enrichment ratio 0.8-4.8 2.38 

r_GWSOLP 
Concentration of soluble phosphorus in groundwater contribution to 

stream flow from the subbasin 
0.04-0.4 0.19 
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r_SOL_SOLP Soluble phosphorus concentration in the soil layer (mg kg-1) 30-90 32.1 

 
Parameters used to calibrate total nitrogen  

r_CMN Rate factor for humus mineralization of active organic nitrogen 0.001-0.003 0.002 

r_RCN Concentration of nitrogen in rainfall (mg l-1) 1.3-6 5 

r_CDN Denitrification exponential rate coefficient 0.09-0.18 0.16 

r_N_UPDIS Nitrogen uptake distribution parameter 20-90 69.05 

r_NPERCO Nitrogen percolation coefficient 0.03-0.5 0.06 

r_SDNCO Denitrification threshold water content 0.3-0.95 0.95 

r_HLIFENGWfsh Half-life of nitrate in fast shallow aquifer (days) 30-125 52 

r_HLIFENGWssh Half-life of nitrate in slow aquifer (days) 250-480 454 

r_SHALLSTNssh Initial concentration of nitrate in slow aquifer (mg l-1) 30-85 37.41 

Note: for calibration, the parameter values were varied by replacing (r), multiplication (m) or addition/subtraction (as)  

2.3.4 Model application  

Applying the best respective parameter sets, Tthe model has beenwas run for three land use scenarios. each Each scenario 365 

simulation iswas run from 1990 to 2019 using of the three one of the three land use maps (in 1987, 2010, and 2019) from 

1990 to 2019. As agriculture in 1987 was generally classified, it has beenwas split as corn (12%), rapeseed (29%), and wheat 

(59%) randomly distributed in the catchment in SWAT model, according to the statistical data from Schleswig-Holstein 

Statistical Office (1992-2012). For the three scenario simulations, All all other inputs i.e. DEM, soil data, weather data, 

waste water quality data, management practices, and fertilization have beenwere kept constant, and the calibrated parameters 370 

have beenwere adapted. Hence, each model run is performed under a different land use scenario defined by one of the three 

land use maps. The respective differences in the mean annual value of results each response water resources variable (i.e., 

actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), sediment (SED), TP, or TN load) 

arewere obtained by comparing the  results from two scenario model runs (see Text S2 and , S3) between from any thetwo se 

model runs using any two of the three land use maps. They can be referred to as the respective variationschanges driven by 375 

land use changes during the corresponding periods such asof 1987-2010, 2010-2019, and 1987-2019. The modeleded results 

have beenwere used to explore the influences of land use changes (LUCC) on the variationschanges in eachthe water 

resources response variablesactual evapotranspiration (ET), surface runoff (SQ), base flow (BF), and water yield (WYLD) as 

well as on sediment (SED), TP, and TN loads. Based on the model results,Furthermore, the contributions of LUCC on 

changes in ET, SQ, BF, and WYLD as well as in SED, TP, TN at the subbasin scale are were evaluated, and key impacts 380 

from LUCC are were identified. 

2.4 Partial least squares regression 

Combining the features of principal component and multiple linear regression analyses, partial least squares regression 

(PLSR) is a robust multivariate analysis method of determining the relationship between two sets of variables. It is powerful 

to even when dealing with multi-collinear predictor variables. The principle of PLSR is to extract a few latent components 385 

from original predictor variables that carry as much variation as possible, and which are meanwhile most likely to predict the 

variation in the response variable. Detailed information on the underlying theory and algorithms of PLSR is available in 

Abdi (2010).  

In this study, PLSR is was used to reveal the contribution of changes in land use types classes on the variation in ET, SQ, 

BF, WYLD, SED, TP, and TN across three time steps (1987, 2010, and 2019). The predictor variables are were the absolute 390 

changes in area percent (PLAND) and landscape metrics (LPI, AWMSI, AI, CONTIGAW, IJI) of four main land use types 

classes (arable land, pasture, forest, and urban). . The response variables included the respective absolute changes in the 

mean annual values of ET, SQ, BF, WYLD and SED, TP, and TN loads at the subbasin scale modelled under different land 

use betweenconditions  conditions in 1987, 2010, and 2019.  PLSR models for all of these response variables were 

constructed. The absolute change in each land use indicator iwas calculated using equation (5)-(7) while that in each of water 395 

resourcesresponse variable iwas calculated using equations (8)-(10) as shown in Text S3 in the supplementary 

informationmaterials. A cross-validation is was performed with 50 random repetitions on 10 equal segments of the data set. 
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It is was used to determine the number of optimal components of the PLSR model to obtain a desirable balance between the 

explained variation in the response (R2) and predictive power of the model (measured as cross-validated goodness of the 

prediction: Q2). The cumulative predictive ability (cumulative goodness of prediction: Q2 

cum) and the cross-validated root 400 

mean squared error (RMSECV) as the difference between actual and predicted values, are were determined for each model 

(Yan et al., 2013). The regression coefficients (RCs) signify the direction and extent of the effect of LUCC predictor 

variables. The variable importance for the projection (VIP) quantifies the importance of the predictors. By According to the 

Wold’s assessment criterion, a predictor with VIP<0.8 is assessed as less important (Boongaling et al., 2018; Wold et al., 

2001). To achieve model parsimony, the following PLSR modelling procedures has beenwere conducted: First, an initial 405 

simulation of PLSR is run using all predictors. Next, new PLSR models are run by iteratively excluding the predictor with 

small variable importance (VIP) until the modelling procedure resulted in acceptable variable importance or only two 

predictors remained. The number of components of candidate PLSR model was determined so that the Q2 

cum is maximized 

(Shi et al., 2013). 

All the PLSR analyses were performed with the R packages pls (Mevik et al., 2020) and mdatools (Kucheryavskiy, 2020).  410 

3 Results and discussion 

3.1 Model performances for Ccalibration and validation periods 

The simulated and measured daily values of streamflow (Figure 2) and water quality (Figure 3) data are visually compared 

for the calibration and validation periods, and the statistical performance of the models is assessed (Table 3). As shown in 

Table 3, for streamflow, the The model obtains a NSE and KGE values both above of 0.76-0.810.75 and, a KGE and 415 

absolute PBIAS values below or nearlyslightly above 10%.,-of 0.82-0.85 for  streamflow at the two upstream gauges 

Padenstedt and Sarlhusen, and a slightly higher NSE (calibration: 0.79, validation: 0.79) and KGE (calibration: 0.88, 

validation: 0.87) for streamflow at the outlet in Willenscharen. The PBIAS values are within the range of -2.2% - 10.6%.  

These values indicates a good to very good model performance for depicting daily streamflow in the catchment according to 

the assessment criteria for model evaluationof SWAT model performance criteria  (Moriasi et al., 2007). For daily TN 420 

loadLikewise, the model shows a nearly goodsatisfactory to very good performance for daily TN load,  indicated by an NSE 

withinbetween 0.64 and 0.86 of 0.64 for calibration and of 0.86 for validation and by a KGE ≥ 0.71 (for calibration: 0.71; for 

validation: 0.91), while absolute values of PBIAS values are below 15%. For sediment and TP the model shows a lower 

performance. For Ssediment load, the model achieves a satisfactory to good performance as indicated by NSE (0.54 - 0.65) 

and PBIAS (-22.2 -  – 12%) values. during calibration (NSE = 0.54, KGE = 0.58, PBIAS = 12%) and a good performance 425 

during the validation period (NSE = 0.65, KGE = 0.59, PBIAS = -22.2%). For TP The model simulates TP load with an 

unsatisfactory (validation) to satisfactory (calibration) performance, which is assessed by NSE below and above 0.5, 

respectively. the model obtains a satisfactory performance for calibration (NSE =0.56) but an unsatisfactory performance 

(NSE =0.29) for validation. The worse TP model performance may be due to the short and possibly different conditions 

during calibration and validation periods. Nevertheless, PBIAS for TP model is still within the acceptable performance range 430 

(±40 ≤ PBIAS < ±70) (Moriasi et al., 2007). It should be noted that the performance ranges from Moriasi et al. (2007) refer 

to a monthly time step, whereas we used a daily time step, a finer temporal scale (daily step), on which it is usually harder to 

achieve a good model representation (Pfannerstill et al., 2014; Tan et al., 2021). We therefore conclude that even for daily 

TP the model performance is acceptable, particularly with regard to the study purpose of analyzing long-term changes in the 

water and matter balance.  435 

According to a detailed model performance assessment using multiple metrics (shown in Text S2 in supplementary 

information), the model depicts long-term dynamics of daily streamflow observations with a very good performance and TN 

load with nearly good performance, sediment with satisfactory performance. However, the model simulates TP load with a 

relatively lower performance which is still considered acceptable. 
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Overall, modeled and measured daily values show clear consistency in their dynamics (Figure 2Figure 2 and 3). Differences 440 

mainly appear for low flow periods in summer and particularly for a few peak flows in winter. or low flow periods in 

summer. As already indicated by the goodness of fit measures (Table 3), the modeled streamflow matches the measured 

values most of the time from 1990 to 2019. HoweverSpecifically, a few single flood peaks are underestimated in winter, e.g. 

on 27-28/Feb/2002, 5-6/Jan/2012, and 24-25/Dec/2014. This might be related to an insufficient representation of snow in the 

model, or  and deficiencies in single-event flood routing in the model (Lam et al., 2012). The underestimation of peak 445 

streamflow in winter was also observed in other rural lowland catchments of Treene (Haas et al., 2016) and Kielstau (Lam et 

al., 2010) in northern Germany. Sediment loads are overestimated during the calibration period and slightly underestimated 

during the validation period mainly for a few peak values. The incorrect estimation might be due to the fact that  river 

sediment load is also influenced by tile drains and bank erosion in lowland catchments (Kiesel et al., 2009), while SWAT 

primarily takes into account sheet erosion. A few sediment peaks in early March 2010, mid-Jan 2011 and mid-Feb 2019 are 450 

underestimated butNevertheless,  othersome peaks e.g. in Nov, Dec 2009, and Mar 2019 are very well depicted. A similar 

behavior can be is observed for modelling TP load during the calibration and validation periods, with slight overestimation 

of TP in summer (April - June of 2009 and 2019) and underestimation of a few peaks in winter (between November -and 

March). TN is generally well represented, except for only a few underestimations of extreme peaks in winter (e.g., early 

March or November 2010), mid-March 2019). Overall, the underestimation of some peak loads of sediment, TP and TN 455 

might be attributed to the underestimation of corresponding peak flows.  

 

 

 
Figure 2. Comparison of measured and modeled daily streamflow during the calibration and validation periods in Willenscharen. 460 
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Figure 3. Comparisons between measured and modeled daily loads of sediment, total phosphorus (TP), and total nitrogen (TN), 

respectively for calibration (left) and validation (right) periods 465 

Table 3. Performance metrics for the model calibration and validation periods. 

Index 

Calibration     Validation    

Streamflow 

(PAD/SAR/WIL) 
Sediment load TP load TN load  

Streamflow 

(PAD/SAR/WIL) 
Sediment yield TP load TN load 

Period 
1990-1991; 
2007-2019 

30/10/2009-
7/8/2011 

8/8/2009-
10/8/2011 

8/8/2009-
10/8/2011 

 1992-2006 
19/10/2018-
5/11/2019 

19/10/2018-
5/11/2019 

19/10/2018-
5/11/2019 

KGE 0.85/0.82/0.88 0.58 0.65 0.71  0.84/0.85/0.87 0.59 0.22 0.91 

NSE 0.76/0.78/0.79 0.54 0.56 0.64  0.81/0.81/0.79 0.65 0.29 0.86 

PBIAS (%) 5.6/-2.2/0.3 12 -4.7 -11.5  0.7/10.6/7.2 -22.2 -46.2 5 

3.2 Characteristics of land use change  

Land use changes between 1987 and 2019 vary across the catchment (Figure 4Figure 4). This is indicated by the individual 

dynamics in the four main land use types classes of arable land, pasture, forest, and settlement area. Arable land has been 

decreasing and primarily replaced by pasture (by 16.2% of the catchment, dark cyan in Figure 4Figure 4). The decrease of 470 

arable land is more pronounced in the northeast (e.g., subbasins 3 and 9-11) is more pronounced than in the northwestern 

part (e.g., subbasins 2, 4, 6, 8) where pasture was sometimes converted to arable land (dark pink, Figure 4Figure 4). 

Conversely, pasture shows an increasing trend over the period of observation. The increase is stronger in the east is stronger 

as compared to the west of the catchment (Figure 4Figure 4 and 5). The change of pasture is in part associated with the 

stream restoration including stabilizing river shore and increasing riparian vegetation (Dickhaut, 2005; Gessner et al., 2010). 475 

Besides, agricultural grasses may have been included in the pasture class due to the classification approach. Forest also 

shows an increasing trend as indicated by green colors in Figure 4, with a strong increase in the lowlands of the middle 

(subbasins 6 and 13) and southern parts (subbasin 17, Figure 5Figure 5). Urban area has expanded mainly around the city of 

Neumünster (subbasin 15 and 17) (Figure 5Figure 5).  

In addition, the subbasin-scale land use metrics varied substantially between 1987, 2010, and 2019 (Figure 6Figure 6). The 480 

mean area percent (PLAND) per subbasin declined for arable land (APLANDa) by 16% and 3% during the periods of 1987-

2010 and 2010-2019, respectively. In contrast, subbasin-averaged pasture (PPLANDp) increased for the period of 1987-2010 
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by 12% but decreased slightly from 2010 to 2019 by 0.8%. Both forest (FPLANDf) and urban (UPLANDu) areas have 

steadily increased from 1987 over 2010 to 2019. Similar trends are found in the metrics of the percentage of largest patch 

index (LPI) and the interspersion juxtaposition index (IJI). The subbasin average of LPI for arable land has decreased by 485 

20% from 1987 to 2019, whereas the LPIs of other land use types classes shows a slight and stable increase. The IJI of arable 

land displays an overall slight increase from 1987 to 2019, while the IJI values of other land uses have steadily and notably 

increased (with a net increase up to over 20%). Both the area-weighted mean contiguity (CONTIGAW) and aggregation (AI) 

of each land use type class have decreased over time, whereas the area-weighted mean shape index (AWMSI) has 

continuously and slightly increased. Despite similar changing directions of the land use patterns in the periods of 1987-2010 490 

and 2010-2019, land use has been subject to more alterations in the former period than in the latter. Additionally, 

CONTIGAW, AI, and IJI of arable land exhibited opposite trends in the two periods, with a decrease from 1987 to 2010, and 

a slight increase from 2010 to 2019.  

 

Figure 4. Spatial distribution of land use changes between 1987 and 2019 in the Stör Catchment. Individual land use change types 495 
are marked by different colors. The percentage of each change type calculated as percentage of the catchment area is given in the 

parentheses. The strongest change is marked in bold. 

 

Figure 5. Spatial distribution patterns of the changes of each land use type between 1987, 2010, and 2019. 
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 500 

 

 

Figure 6. Changes of land use metrics between 1987, 2010, and 2019 in the Stör Catchment. 

3.3 Differences of changes in water quantity and quality  

Using the results from the three different scenario model runs based on three land use maps of 1987, 2010, and 2019, we 505 

calculated changes in water quantity and quality. The spatial distribution of the variations in modeled subbasin-scale actual 
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evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), and loads of sediment (SED), total 

phosphorus (TP), and total nitrogen (TN) between 1987, 2010, and 2019 are shown in Figure 7Figure 7. ET and SQ are 

mostly characterized by increases of up to 10.8 mm and 11.4 mm, respectively from 1987 to 2019, with slight decreases by 

up to 3.8 mm in several subbasins between 2010 and 2019. The most significant increase in ET occurs in subbasins which 510 

show a larger increase in forest from 1987 to 2019, such as subbasins 8, 12 and 17 (Figure 5Figure 5). SQ shows a stronger 

increase in the middle-western subbasins whichsubbasins that , which experienced larger expansion of urban areas (Figure 

5Figure 5), with the strongest increase of SQ occurring in subbasins 15 and 17 that experienced the largest increase of urban 

area between 1987 and 2019. This might be attributed to the increased surface sealingimpervious surface which facilitates 

the generation of surface runoff and reduces confluence time (Anand et al., 2018; Sood et al., 2021). Contrarily, BF and 515 

WYLD have decreased by up to 20 mm and 13 mm, respectively in most subbasins in the periods 1987-2010 and 1987-2019. 

However, the slight increase in a few subbasins in central part of the catchment exhibit a slight increase in base flow, which 

is probably attributed to a greater contribution of shallow groundwater in the central lowland areas to low flow periods than 

in the steeper eastern and western steeper areasexplains the higher possibility of groundwater recharge to low flow 

proportions of streamflow there as compared to thethan surrounding steeper areas.   The loads of SED, TP, and TN show 520 

notable decreasing trends from 1987 to 2019. Pronounced reductions of SED (7.8-18.2 t km-2) occur in the relatively steeper 

northeastern corner (e.g., subbasins 3, 9-10) and the southwestern corner (e.g., subbasins 5 and 12) and subbasin 17, while 

the decrease is weaker in the mid-west. Overall, the changes in TP and TN loads show a weak decrease in the (mid) west and 

more pronounced decreases in the east and steeper southwest of the catchment (Figure 7Figure 7). The spatial differences 

illustrate that the decrease of SED, TP, and TN is stronger in steeper subbasins decrease to a greater extent than in lowland 525 

subbasins due to land use changes, may be related to the more intense exchange between groundwater and surface water and 

a higher contribution of nutrients from groundwater to stream in lowlands. which is partly explained by a higher fraction of 

contribution from groundwater to soil particles and nutrients of streamflow in middle lowland areas.  The most pronounced 

net decrease of TP and TN loads are observed in subbasins 12 and 17, corresponding to the largest decrease of arable land 

percentage (50% in subbasin 17, 30% in subbasin 12) between 1987 and 2019. The single subbasin that has experienced a 530 

slight increase of sediment or TP load is subbasin 1, which is characterized by the least reduction of arable land and minor 

decrease of forest. The most significant decrease in nutrients and sediment has occurred in subbasins which have 

experienced notable increases of pasture or forest and a decrease of arable land, e.g., subbasins 12 and 17 (Figure 5Figure 5). 

Overall, variations in surface runoff, sediment, TP, and TN are depicted by spatially explicit patterns on the subbasin scale. It 

is necessary to consider this spatial heterogeneity, when establishing management measures in order to improve water 535 

quality. 
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Figure 7. Spatial distribution of variations changes in water quantity and water quality variables during the periods of 1987-2010, 

2010-2019, and 1987-2019 at subbasin scale. 

3.4 Influences of changes in land use metrics on water quantity and quality  540 

3.4.1 Contributions of LUCC to variations changes in water quantity and quality 

A summary of the PLSR models separately constructed for ET, SQ, BF, WYLD, SED, TP and TN, is provided in Table 

4Table 4. The prediction plots for the seven variables by applying the PLSR models are shown in Figure 8. The changes in 

water quantity and quality could be reasonably explained by the constructed PLSR models (0.61<R2<0.88, 0.57<Q2<0.85, 

Table 4). The comparison of the actual and predicted values (in Figure 8) illustrates the accuracy of the model calibration 545 

and cross-validation. For the ET and WYLD models, the percentage of unexplained variation decreases with increasing 

number of components, whereas the prediction error of cross-validated observations (indicated by cross-validated root mean 

squared error, RMSECV) is minimal with one or two components, respectively. This indicates that adding more components 

does not improve the correlation with the residuals of the response variables (Onderka et al., 2012). Overall, 60.5% and 

68.3% of the variations in the changes in ET and WYLD can be explained by the first component and the first two 550 

components, respectively. Adding other components does not strongly increase the cumulative explained variations (only by 

+4.2-5.4%) in ET and WYLD changes from 1987 to 2019 (Table 4Table 4). For SQ, two components are extracted for the 

PLSR model, with 58.9% of variation is explained on the first component and cumulative explained variations increase to 

81.3% when adding the second component. For all other variables, the minimum RMSECV is achieved with models using 
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five components. For base flow, 37.4% of the variation in the dynamics is explained by the first component, cumulatively 555 

64.2% adding the second component, and ultimately 87.7% with a consecutive addition of third, fourth, and fifth component. 

For the changes in loads of sediment, TP, and TN, the first component of the models always explains the majority of the 

variation (43.7-63%, Table 4Table 4). With all water quality variables together, approximately 75% of the variation 

changesc is accurately explained on average. 

Approximately 70-80% of the variations in water quantity and quality dynamics were explained by LUCC, underlining the 560 

importance of LUCC on catchment water resources. Better explanations (over 81%) of SQ and BF by LUCC confirmed the 

significant influences of landscape heterogeneity on surface runoff and groundwater dynamics (Kändler et al., 2017; Xu et 

al., 2020; Zhang and Schilling, 2006). Only a quarter of the variations in sediment, TP, or TN cannot be interpreted by 

LUCC, which demonstrates that changes of rural landscape patterns are essentially important in controlling nutrients 

pollution. The proportion and spatial arrangement of agriculture land play an important role in the generation and 565 

transportation of nutrient pollutants as previously reported in different catchments worldwide: e.g., Zhang et al. (2020b) 

found that agricultural cultivation on steeper hillsides intensified N and P entries in ponds in the hilly Tianmu Lake 

catchment of Eastern China. Gémesi et al. (2011) identified the cohesion and contagion of cropland were more important 

than other land use indicators to account for the variability in TN and TP in the relatively plain Lowa Lake catchment of the 

central USA.  The minor unexplained fraction may be attributed to potential changes in waste water treatment which 570 

sometimes remained constant in our modeling approach. Lower explanation of TP may be additionally due to the lower 

SWAT model performance for TP, the susceptibility of P to soil or geomorphology properties (Maranguit et al., 2017; Noe et 

al., 2013). More than 60% of the variations in ET and WYLD are explained by LUCC. The unexplained fraction may be 

attributed to the different contributions from specific crops (included in SWAT) and the lumped agriculture land use class as 

well as the compensating effect of subbasins (Wagner et al., 2013).  575 

Table 4. Summary of the PLSR models of evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), 

sediment yield (SED), total phosphorus load (TP) and total nitrogen load (TN) at subbasin scale.  

Response 

Variable Y 
R2 Q2 Component 

Explained variability in Y 

(%) 

Cumulative explained variability in Y 

(%) 
RMSECV  Qcum

2  

ET 
0.61 0.57 1 60.5 60.5 2.32 (mm) 0.568 

  2 2.4 62.9 2.35 (mm) 0.558 

   3 1.2 64.1 2.44 (mm) 0.524 

   4 0.2 64.3 2.41 (mm) 0.535 

   5 0.4 64.7 2.41 (mm) 0.534 

        
SQ 0.81 0.78 1 58.9 58.9 1.70 (mm) 0.561 

   2 22.4 81.3 1.20 (mm) 0.783 

        
BF 0.88 0.85 1 37.4 37.4 4.61 (mm) 0.230 

   2 26.8 64.2 3.92 (mm) 0.442 

   3 9.7 73.9 3.15 (mm) 0.640 

   4 8.8 82.7 2.59 (mm) 0.757 

   5 5.0 87.7 2.05 (mm) 0.847 

        
WYLD  0.68 0.61 1 64.6 64.6 2.43 (mm) 0.611 

   2 3.7 68.3 2.43 (mm) 0.614 

   3 0.9 69.2 2.46 (mm) 0.602 

   4 0.4 69.6 2.47 (mm) 0.598 

   5 0.4 70.0 2.49 (mm) 0.592 

        
SED  
 

0.77 0.67 1 43.7 43.7 2.76 (t km-2) 0.382 

  2 19.2 62.9 2.50 (t km-2) 0.493 

   3 11.1 74.0 2.13 (t km-2) 0.630 

   4 1.6 75.6 2.08 (t km-2) 0.650 

   5 1.0 76.6 2.03 (t km-2) 0.667 

        
TP  0.76 0.65 1 51.5 51.5 12.03 (kg km-2) 0.468 

  2 10.7 62.2 11.14 (kg km-2) 0.544 

   3 10.4 72.6 10.32 (kg km-2) 0.608 

   4 3.0 75.6 

 
9.80 (kg km-2) 0.647 

   5 0.7 76.3 9.71 (kg km-2) 0.653 

        
TN  0.73 0.68 1 63.0 63.0 43.04 (kg km-2) 0.597 

  2 5.8 68.8 40.56 (kg km-2) 0.643 

   3 3.1 72.1 39.20 (kg km-2) 0.666 

   4 0.5 72.6 38.90 (kg km-2) 0.671 

   5 0.7 73.3 38.51 (kg km-2) 0.678 
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Figure 8. Comparison of subbasin-scale changes in evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield 

(WYLD), sediment (SED), total phosphorus (TP), and total nitrogen (TN) as derived from the SWAT model and the predicted 580 
values from the PLSR models. The changes were obtained based on land use changes between 1987 and 2010, 2010 and 2019, and 

between 1987 and 2019, respectively.  Cal indicates calibration. CV indicates cross validation. 

3.4.2 Effects of LUCC predictors on water quantity and quality 

According to the PLSR results, each category of the landscape indices including percentage (PLAND), largest patch (LPI), 

shape (AWMSI), contiguity (CONTIGAW), aggregation (AI), or interspersion (IJI), plays an essential role in influencing as 585 

least one water quantity or quality variable (Table 5Table 5). The effects on the changes in ET, SQ, BF, WYLD, SED, TP, 

and TN are measured using weights, regression coefficients (RCs), and VIP values in the PLSR models. VIPs for predictors 

included into the models are greater than 0.8. For the ET model, the highest VIPs are obtained in predictors aggregation 

index for arable land (AIa) and contiguity index for arable land (CONTIGAWa) (VIP = 1.25, RCs = -0.122), followed by 

PLANDa (VIP = 1.037, RC = -0.101) and AIu (VIP = 1.03, RC = -0.1). ET tends to decrease with larger aggregation (AIa) 590 

and contiguity (CONTIGAWa) indices, and arable land percent (PLANDa) (negative RCs), whereas it increases with more 

pasture (PLANDp) (positive RC). In the case of surface runoff, the first and second components of the model are dominated 

by PLANDu on the positive side, with minor positive effect from PLANDa on the second component (Table 5). The urban 

area percent (PLANDu) obtains largest VIP of 1.173, and are identified as most important influencing the change in surface 

runoff. Surface runoff increases with an increase in arable (PLANDa) and urban areas (PLANDu) (RCs=0.403, 1.161, 595 

respectively). For base flow, in addition to arable land, pasture plays a key role in explaining its variation. Arable land 

(PLANDa), pasture (PLANDp) percent and area-weighted shape index of pasture (AWMSIp) obtain the largest VIPs of 

1.259, 1.03, and 1.063, respectively. All show negative correlations with base flow. AIa and CONTIGAMa are important 

predictors for water yield with large VIPs of 1.226 and 1.218, respectively. Their higher values result in an increase of water 

yield. For sediment, TP or TN models, the selected components are dominated by areal percentages of arable land and 600 

pasture, in addition to the landscape metrics of arable land. The models obtain the largest regression coefficients or VIPs for 

PLANDa, LPIa, or PLANDp. They have VIPs of 1.0113-1.173 for sediment, 1.089-1.305 for TP, 1.005-1.232 for TN, 

respectively. Inferred by the RCs, an increase in sediment, TP, or TN occurs with increasing arable land (RCs: 0.602-0.884), 

while a decrease may occur with higher percentage of arable land in largest patches (LPIa) (RCs: -0.74 - -0.225), or with 

more pasture area (RCs: -0.693 - -0.122).   605 

 LPIa, AIa and CONTIGAWa are the most important landscape structure indicators affecting water quantity or quality (VIP 

≥1 most of the time, Table 5). AIa and CONTIGAWa have positive impacts on WYLD while negative impacts on ET. By 

Note: R2 indicates the goodness of fit of the model; Q2 indicates the cross-validated goodness of prediction; RMSECV indicates cross-validated root mean squared error; Qcum
2  

indicates the cumulative cross-validated goodness of predication over all the selected PLSR components; the components selected for each model are highlighted in bold. 
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definition, AIa and CONTIGAWa would increase, respectively, when arable landscape patches are more clumped and 

contiguous (Shi et al., 2013; Uuemaa et al., 2009). Clumped and connected aAgriculture in more clumped and connected 

land patches with fewer edges has been proven to show a higher capability of reducing thehave reduced more runoff 610 

infiltration of runoff, compared to that in small scattered patches (Boongaling et al., 2018), thus resultingwhich may result in 

the increase of the water yield amount in the catchment. Our results also corroborate with Ayivi and Jha (2018) who reported 

that increased water yield and base flow occur with increasing cohesive and aggregated agriculture in a moderate-altitude 

catchment (i.e., .Reedy Fork-Buffalo Creek catchment, USA).  Negative impacts on ET may be explained by the interactive 

changes between arable and pasture, i.e., arable land has been increased at the cost of losing pasture, and vice versa. 615 

Likewise, Shawul et al. (2019) observed that reduction in pasture would result in a decrease of ET in an agriculture-

dominated and moderate-altitude catchment (the Upper Awash Catchment, Ethiopia). The negative effect of AWMSIp on 

base flow implies that the coarse grass landscape has a higher capacity of absorbing and intercepting rainfall thereby 

resulting in lower base flow. Though landscape metrics are more often used to explain water quantity than quality variables 

(Table 5), the negative influences of LPIa on sediment and nutrients, and positive influences of AWMSIa on sediment and 620 

TP cannot be overlooked. The sSimilar finding waswere observed also is is in agreement with previous  findings in the hilly 

catchments, wherethat scattered and complicated agriculture patches are susceptible to soil erosion and thus water quality 

deterioration  (Nafi'Shehab et al., 2021; Yan et al., 2013).  

The change in the percentage of arable land is most responsible for water quantity and quality dynamics, with VIP values 

greater than 1 for all response variables but WYLD. This may be explained by the fact that the decrease in arable land is the 625 

strongest. The negative correlations between PLANDa and evapotranspiration (ET) and base flow (BF) imply that 

conversion of arable land to e.g., pasture or forest would result in increased ET and BF, due to higher capability of plant 

evapotranspiration and slower water transmission, which is in agreement with previous findings that perennial vegetation is 

more likely to increase ET (Li et al., 2017; Peel et al., 2010) and the decrease in agriculture leads to increased annual base 

flow (Basuki et al., 2019). Changes of the percentage of arable land positively influence SQ, WYLD, SED TP, and TN 630 

loads. Less runoff interception by crops and additional surface runoff routes resulting from implementation of tillage 

practices (e.g., tractor road) can result in increased surface runoff (SQ). The lower ET amount of crops compared to pasture 

and forest is in part responsible for the increase in WYLD. Soil erosion might be accelerated due to uncovered and fragile 

soil by tillage practices implemented in cultivated areas as well as the increased surface runoff. N and P pollution is prone to 

occur in arable areas, which have a high risk of generating nutrient pollutants from excessive fertilizer or manure and eroded 635 

soil particles. The positive relationships between arable land percent and SQ, WYLD, SED TP, and TN loads are found in 

other studies around the world as well (Mirghaed et al., 2018; Sood et al., 2021; Wagner et al., 2013; Wang et al., 2019; 

Zhang et al., 2020a). Pasture shows a positive influence on ET and negative influences on sediment, TP, and TN. This also 

illustrates that more grassland (or rangeland) would increase plant evapotranspiration process. Pasture can improve water 

quality due to reduced soil erosion and nutrient transportation rate, as well as the high uptake and infiltration of nutrients by 640 

vegetation cover. Relevant studies (Ding et al., 2016; Hatano et al., 2005; Li et al., 2008; Zhang et al., 2020a) have often 

observed that semi-natural vegetation (e.g., forest, bushland or grassland) is beneficial for good water quality in river- or 

lake-dominated catchments, bydue to higher capability of filtering contaminants and reducing their inputs as well as 

decreasing surface runoff.  

By applying the quantitative results that the increases in arable or pasture areas most significantly intensify or reduce the risk 645 

of soil erosion and nutrient pollution, respectively, individual subbasins can be identified as nutrient pollution “source” or 

“sink”. Based on these results, it is possible to develop a set of more targeted strategies to effectively control diffuse 

pollution at a spatial scale. At the same time, best management practices such as proper fertilization, abate of traditional 

tillage, crop rotation, vegetation buffer, are important to improve water quality in rural catchments (Haas et al., 2017; Pott 

and Fohrer, 2017a). Urban expansion is most important influencing surface runoff, the increase in urban area percent results 650 

in an increase of it (regression coefficient value > 1.16, Table 5Table 5). Similar results have been found, e.g., by Shi et al. 
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(2007) who discovered that increased urbanized land led to increased surface runoff, by increasing flood peaks flood runoff 

and decreasing surface runoff confluence time, in a typical urbanized region (Shenzhen) in China. It is therefore necessary to 

increase the frequency of measuring runoff, sediment and nutrient, particularly during the course of storm flood events in 

settlement area. Unlike previous findings (Wang et al., 2018; Yan et al., 2013), forest properties have not exerted significant 655 

influences, probably due to only minor temporal changes in some landscape metrics, e.g., area percent (PLAND), dominance 

(LPI), and shape (AWMSI) of forest (Figure 6).  

Table 5. Regression coefficients (RCs), VIP and weight values of each PLSR model. 

Predictors 

ET   SQ    BF       WYLD       

RC VIP W*[1] RC VIP W*[1] W*[2] RC VIP W*[1] W*[2] W* [3] W* [4] W* [5] RC VIP W*[1] W*[2]    

PLANDa -0.101 1.037 -0.017 0.403 0.790 -0.048 0.189 -1.654 1.259 -0.001 -0.128 -0.135 -0.208 -0.201 0.043 0.882 0.017 -0.042    

PLANDp 0.089 0.918 0.015     -1.474 1.030 -0.034 0.024 -0.117 -0.304 -0.256 0.011 0.866 -0.015 0.072    

PLANDf        -0.575 0.915 -0.035 -0.074 -0.072 -0.045 0.092        

PLANDu 0.080 0.818 0.013 1.161 1.173 0.090 0.173               

LPIa -0.088 0.906 -0.015                   

AWMSIp        -0.143 1.063 -0.052 -0.058 0.059 0.093 -0.013        

AWMSIf 0.085 0.870 0.014            -0.039 0.837 -0.016 0.041    

AIa -0.122 1.254 -0.020            0.187 1.226 0.024 0.025    

AIP -0.094 0.961 -0.016            0.100 0.924 0.018 -0.009    

AIu -0.100 1.030 -0.017            0.212 1.068 0.020 0.058    

CONTIGAWa -0.122 1.251 -0.020            0.184 1.218 0.024 0.024    

CONTIGAWP -0.087 0.891 -0.015            0.112 0.880 0.018 0.004    

CONTIGAWu -0.094 0.959 -0.016     0.281 0.805 0.040 0.029 -0.078 0.064 0.011 0.198 1.007 0.019 0.054    

IJIa        0.038 0.859 0.040 0.024 0.098 -0.142 -0.091        

Predictors 

SED       TP       TN       

RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] RC VIP W*[1] W*[2] W*[3] W*[4] W*[5] 

PLANDa 0.602 1.165 0.027 0.038 0.106 0.037 0.040 0.755 1.305 0.029 0.031 0.117 0.142 0.059 0.884 1.232 0.033 0.103 0.133 0.166 0.333 

PLANDp -0.693 1.173 -0.026 -0.022 -0.124 -0.096 -0.099 -0.499 1.089 -0.025 -0.007 -0.099 -0.074 0.002 -0.122 1.005 -0.030 -0.054 -0.049 0.031 0.324 

PLANDu 0.013 0.908 -0.022 -0.033 0.020 0.097 0.116 -0.045 1.038 -0.025 -0.033 0.005 0.057 0.137 0.028 1.013 -0.024 -0.032 0.052 0.197 0.093 

PLANDf        -0.009 0.821 -0.016 -0.053 0.061 0.047 0.004        

LPIa -0.632 1.113 0.015 -0.095 -0.117 -0.037 -0.070 -0.740 1.205 0.017 -0.064 -0.208 -0.091 -0.057 -0.225 0.945 0.023 -0.054 -0.209 0.028 0.019 

LPIp 0.397 0.819 -0.009 0.075 0.086 -0.043 0.020               

AWMSIa 0.472 0.902 0.007 0.103 -0.017 0.073 0.080 0.492 0.817 0.008 0.087 0.020 0.093 0.085        

AWMSIp -0.445 1.087 -0.023 -0.077 -0.050 -0.022 0.107 -0.152 0.872 -0.019 -0.031 -0.057 0.127 -0.001        

CONTIGAWa 0.039 0.877 0.023 -0.001 -0.042 -0.024 0.075 0.079 0.864 0.021 -0.027 -0.013 0.015 0.069 0.114 0.840 0.022 -0.072 0.037 0.019 0.077 

AIa -0.053 0.876 0.022 -0.006 -0.055 -0.039 0.041 0.008 0.856 0.021 -0.030 -0.025 0.000 0.052 -0.034 0.833 0.022 -0.081 0.015 -0.024 -0.038 

Note: VIP values greater than 1 were marked in bold; the absolute weights greater than 0.1 were marked in Italic. 

4 Conclusion 660 

In this study,  the separate contributions of changes in land use on the dynamics of seven water quantity and quality 

variables, i.e., actual evapotranspiration (ET), surface runoff (SQ), base flow (BF), water yield (WYLD), sediment (SED), 

total phosphorus (TP), and total nitrogen (TN) loads have beenwere quantified by applying an integrated approach of 

hydrological modeling (SWAT) and partial least squares regression (PLSR). The influences of the changes in individual land 

use indicators dscape metrics on variations changes in water quantity and quality have beenwere measured and identified 665 

using a scenario analysis for three different land use maps of the past.  

With an exceptional data set that covers land use changes and three water quality campaigns over a period of three decades, a 

hydrologic model was set up and showed reasonable performance on the daily time scale. The modelling analysis of the 

effects of past land use changes showed that Driven by land use changes, water quality and quantity variables are modelled 

to variedy in different ways on the subbasin scale. SED, TP, and TN decreased more strongly in the eastern and western 670 
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parts than in the middle lowlands, implying that a higher contribution of nutrients by groundwater can mediate the influences 

of land use change. The results of the scenario analysis indicate that the dynamics of all water quantity and quality variables 

are largely explained Based on a PLSRn analysis using PLSR,, about 75% (on average) of the modelled variations in water 

quality and quantity variables can be accurately explained by land use indicators., indicating land use changes contribute to 

the majority of water resources dynamics. The change of arable land is inferred to be most responsibleimportant for water 675 

quality and quantity dynamics, as arable land indicators mostly holdshowed a greater importance (measured by VIP>1) for 

more response variables compared to other indicators. Looking at the most significant impacts, expansion of arable land 

(PLANDa) may causecaused BF to decrease and. Uurbanization expansion will resultresulted in increased SQ. WithMore 

aggregated and connected arable land patches become more aggregatedled to a decreadese of, ET and an increase of WYLD 

are expected to decrease and increase, respectively. Arable land expansion tend to exacerbated soil erosion and P and N 680 

pollution, whereas an increase of pasture can helphelped to relieve nutrient pollution problems. These results pointunderline 

to the fact that water quality and quantity variables are affected by land use changes in different ways. Overall,T to achieve 

reasonable water balance and good water quality, more attention should be attached to the dynamics in the extent and the 

spatial configuration of arable land require special attention.extent as well as its spatial configuration. The spatial assessment 

of changes in water quantity and quality variables in se results this study canprovides a basis  be referred to provide for an 685 

informed and location-specific suggestion with regard to a balanced management of land and water resources. 

Moreover, water quantity and quality variables are most influenced by arable land change. (61-68% of the variations in ET 

and WYLD; 75-88% of the variations in other water quantity and quality variables) by land use changes (LUCC) between 

1987 and 2019. Landscape metrics show a stronger effect on water quantity than on water quality. Moreover, water quantity 

and quality variables are most influenced by arable land change. The percentage (PLANDa), contiguity (CONTIGAWa), 690 

and aggregation (AIa) of arable land are identified as primary landscape metrics controlling the variations in BF, ET and 

WYLD. Greater percentages of settlement area and arable land may significantly accelerate runoff processes. Land planners 

and decision makers probably need to control land use patterns in runoff-sensitive areas to minimize negative impacts. 

Sediment, TP, and TN loads are closely associated with pasture and arable land. The expansion of arable land (PLANDa) 

may exacerbate soil erosion and P and N pollution. The arable land in large and aggregated (LPIa) or simpler shape 695 

(AWMSIa) patches can help to mitigate soil erosion and water quality deterioration. The results indicate that the smaller 

changes in forest did not exert significant influence on water quantity and quality.  

The approach applied in this study identifies the important influences of land use changes on water quantity and quality, 

which are helpful for formulating an informed and targeted plan with regard to land and water resource management. This 

approach is applicable to other catchments to predict both the water quality and hydrological responses to land use changes 700 

with the help of time-sequenced land use data. 
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