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Below is an itemized list of all comments in plain text and our responses in blue. 
 
Anonymous Referee #1 
The manuscript simulates End of Century (EOC) extremes and their effects on the water-energy 
balance in the Cosumnes river basin, using cutting-edge global climate and integrated hydrologic 
models (ParFlow-CLM). I really like the way the authors used to analyze the hydroclimatic 
changes by median WY, dry WY and wet WY (e.g., Figures 3-5). The manuscript is overall 
clearly written, and the results are well discussed. 
  
We thank the reviewers for their positive comments and feedback and for acknowledging the 
quality and the significance of our work.  
 
My first concern is the insufficient validation of the models’ simulations in the historical period. 
Besides temperature and precipitation outputs, other watershed-integrated fluxes, and storages 
(e.g., ET, soil moisture, TWS and streamflow) should also be validated as much as possible 
using the observations, remote sensing data and reanalysis, to ensure the models’ simulations 
reasonable. Only then will we believe the further analysis between future and historical periods 
is valid. In my opinion, the historical simulation of VR-CESM is not so good because the 
simulated dry, median, and wet water years are distinct from the PRISM (Figure A2). 
  
The developed hydrologic model was previously compared to measurements in Maina et al. 
(2020): simulated ET was compared to remotely sensed ET derived from METRIC, soil moisture 
was compared to SMAP, snow water equivalent to SNODAS and a reanalysis by Bair et al., 
streamflow and groundwater levels variations were compared to ground measurements (4 stations 
were used to compare streamflow and 3 wells for groundwater levels comparisons). Comparisons 
with GRACE TWS are not meaningful given the size of this watershed (~7000 km2) which is far 
smaller than the footprint of GRACE TWS (200,000 km2). We have added details of the model 
validation below (Validation of the hydrologic model) and to appendix C of the revised 
manuscript. 
We have also added the following lines to the revised manuscript, please refer to lines 341-365 
(see below the text in italic). 
“We specifically compared simulated and measured river stages at three stations located in the 
Sierra Nevada headwater, foothill, and the Central Valley. The annual averages absolute 
differences between measurements and simulations were between 0.4 and 0.8 m. We selected four 
wells in the Cosumnes watershed based on their availability of data to compare measured and 
simulated groundwater levels. These wells are sparsely distributed in the Central Valley. The 
absolute differences observed and simulated groundwater levels vary between 0.47 to 3.73 m. The 
highest absolute differences were attributed to the lack of a best estimation of groundwater 
pumping rates in the region. Nonetheless, the reasonable agreement between observations and 
simulated variables has allowed us to conclude that the model can capture these extreme 
dynamics.  We rely on remote sensing data to assess the ability of our model to simulate key land 
surface processes (evapotranspiration, soil moisture, and snow dynamics). We compared the 
simulated SWE to SNODAS (The National Weather Service’s Snow Data Assimilation, National 
Operational Hydrologic Remote Sensing Center, 2004) and a SWE reanalysis by Bair et al., 
(2016). Our comparisons indicated that the absolute differences between our SWE values and 
these data were equal to 3 mm on average. Moreover, the simulated key parameters controlling 
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the snow dynamics such as peak snow and timing of snow ablation were also in agreement with 
remotely sensed data for both dry and wet years (Appendix C). Absolute differences between the 
simulated ET and the remotely sensed ET from METRIC (Mapping Evapotranspiration at High 
Resolution with Internalized Calibration, Allen et al., 2007) were equal to 0.036 mm/s while the 
differences between the simulated soil moisture and the SMAP (Soil Moisture Active Passive, 
SMAP, 2015) soil moisture were 0.2.” 
 
This hydrologic validation was based on WY 2015-2017 in Maina et al. (2020), which used 
meteorological forcings specific to those years. In contrast, the climate model simulations were 
compared throughout the entire historical period because they represent 30 plausible realizations 
of the historical climate, since the simulations are only bounded by observed sea-surface 
temperatures and sea ice extents (a common practice in the climate modeling community known 
as AMIP protocols, https://pcmdi.llnl.gov/mips/amip/home/overview.html). Therefore, these 
simulations would not be expected to exactly recreate specific water years, due to internal 
variability in the atmosphere, but would be expected to recreate the distribution of water year types. 
We have clarified it in the revised manuscript, please refer to lines 190-201 (see below the text in 
italic). 
 
“The atmospheric model used for these simulations is the Community Atmosphere Model (CAM) 
version 5.4 with the spectral element dynamical core, with an atmospheric dynamics time step of 
75 seconds, an atmospheric physics time step of 450 seconds, a prognostic treatment of rainfall 
and snowfall in the microphysics scheme (Gettelman and Morrison, 2015) and run under 
Atmosphere Model Intercomparison Project (AMIP) protocols (Gates, 1992). Under the AMIP 
protocols, the atmosphere and land-surface components of the Earth system model are coupled 
and periodically bounded by monthly observed sea-surface temperatures and sea-ice extents. 
Although this configuration does not exactly recreate historical water years and events, it is 
expected to reasonably simulate the distribution of water year types. Also, it should be noted that 
the model only projects future conditions, within the envelope of plausible future conditions of the 
RCP8.5 scenario and its assumptions of greenhouse gas emissions, sea-surface temperatures, and 
sea ice extents and would not be expected to exactly forecast individual water years.” 
 
Validation of the hydrologic model 
We compared temporal variations of streamflow at 3 stations, one each located in the Sierra 
(uplands), at the intersection between the Sierra and the Central Valley, and in the outskirts of 
Sacramento (see Figure R1). Four wells in the watershed (see Figure R1a) have reasonable, 
publicly-available records of groundwater levels and were used to check the ability of the model 
to reproduce water table depth variations.  
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Figure R1a: The Cosumnes watershed geology and the locations of the 3 streamflow gauges 
(CNF, MHB, and MFR) and 4 groundwater wells (stars).  
 
 
Figure R1b depicts the comparisons between simulated and measured river stages at the 3 stations 
indicated in figure R1a. Absolute errors (L1) in m and relative errors (L2) are shown in Table 
R1a. Differences between simulated and measured streamflow vary between 0.4 and 0.8 m (Table 
R1a) indicating that the model is able to reproduce the river dynamics. 
 

 
Figure R1b: Comparisons between measured and calculated river stages (i.e., pressure-heads 
simulated by ParFlow-CLM). Measurements’ locations are indicated in Figure R1a. 
 
Measurements L1 (m) L2 (-) 
River Stages (CNF) 0.8 0.5 
River Stages (MHB) 0.4 0.36 
River Stages (MFR) 0.57 1.06 
Groundwater Levels (Well 1) 3.73 0.05 
Groundwater Levels (Well 2) 1.63 0.02 
Groundwater Levels (Well 3) 0.476 0.0077 
Groundwater Levels (Well 4) 1.08 0.016 
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Table R1a: Differences between measured and calculated surface and groundwater levels. L1 is 
the absolute error and R2 the relative error.  
 
Comparisons between simulated and calculated groundwater levels (here referred to as the 
pressure-heads at the bottom of the domain) shown in figure R1c indicate that the model has 
reasonable agreements with measurements. As shown in table R1a, the error varies between 0.47 
to 3.73 m depending on the station. Mismatches between simulated and observed groundwater 
levels at wells 1 and 2 are likely due to an inaccurate estimation of pumping in these areas. The 
temporal variations of the groundwater levels show an impact of withdrawals but because these 
withdrawals are hard to estimate the model does not correctly reproduce these trends.  
 

 
Figure R1c: Comparisons between measured and calculated pressure-heads at the bottom of the 
domain. Measurement locations are indicated in Fig. R1. 
 
ParFlow-CLM also simulates the key land surface processes governing the transfer of water and 
energy at the land-atmosphere-soil interface: evapotranspiration, snow dynamics, and soil 
moisture. In Maina et al., (2020a), we conducted rigorous comparisons between the ParFlow-
CLM simulated land surface processes and remotely sensed estimates of these variables. Table 
R1b shows the correlation coefficient between ParFlow-CLM results and the various datasets 
compared.  
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Figure R1d: (a) Comparisons between domain-averaged total snow water equivalent obtained 
with ParFlow-CLM, SNODAS and Bair et al., reconstruction, (b) Comparisons between actual 
evapotranspiration obtained with ParFlow-CLM and METRIC (c) Relative variation of soil 
moisture obtained with ParFlow-CLM and SMAP. Note that the time series of (c) is shorter 
because of the availability of SMAP data  

 
Satellites based products L1 (m) L2 (-) Pearson Correlation Coefficient 
SWE SNODAS (mm) 3.09 3.77 0.97 
SWE Bair et al., (mm) 3.80 2.69 0.84 
Soil Moisture SMAP (-) 0.217 3.07 0.94 
ET METRIC (mm/s) 0.067 1.40 0.6 

Table R1b: differences between measured and remotely sensed evapotranspiration (METRIC), 
soil moisture (SMAP), and snow water equivalent (SNODAS and Bair et al., 2016) 
 
 
The authors may argue the historical simulations are acceptable, because a global climate and 
integrated hydrologic models are used (more complex and larger simulation domain). However, 
one can use a finer-resolution hydrological model (e.g., VIC, SWAT, and many others) driven by 
statistically or dynamically downscaled regional climate model outputs to obtain more 
reasonable (maybe more accurate from the perspective of validation) simulations in this river 
basin (7000 km2), and to do further analysis like the authors did in this study. Please explain 
why the global climate and integrated hydrologic models are more suitable for this case study? 
 
We set up our modeling framework by taking into account the: 

● Californian atmospheric dynamics. 
● Impacts of groundwater dynamics and lateral flow on the hydrology and the land surface 

processes of the region. 
● Dependance of the groundwater dynamics in the valley to the snow dynamics in the 

Sierra Nevada. 
These considerations are critical for a better understanding of the impacts of a changing climate 
on Californian hydrology. 
 
ParFlow-CLM is an integrated hydrologic model that solves the transfer of water and energy from 
the bedrock to the canopy. Parflow uses the Richards equation a physics-based equation that solves 
the subsurface flow in three dimensions and therefore accounts for deeper and lateral flow. 
Previous studies have demonstrated that the lateral flow is very important to the surface and land 
energy dynamics (Maxwell and Condon, 2016). On the contrary, VIC does not simulate this lateral 
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subsurface flow and only solves overland flow based on an additional routing model. It also 
employs a series of physics-based equations contrary to SWAT.  
 
When simulating the evolution of California’s climate, the interaction between dynamical and 
thermodynamic responses has important, and sometimes, offsetting effects on critical storms that 
drive annual precipitation and snowpack totals in the Sierra Nevada, such as atmospheric rivers. 
Payne et al. (2020) show that thermodynamic responses to climate change enhance atmospheric 
river characteristics (e.g., Clausius-Clapeyron relationship), whereas dynamical responses 
diminish atmospheric river characteristics (e.g., changes in the jet stream and storm track landfall 
location). Therefore, we argue that it is critical to account for both the dynamical and 
thermodynamical effects of climate change, which we do through the use of VR-CESM. 
  
We did not perform statistical downscaling because leveraging variable-resolution Earth system 
model capabilities, such as VR-CESM, enables dynamical downscaling internally within an Earth 
system model which limits traditional multiple model bias propagation (e.g., bias from a global 
climate model forcing imposed on a regional climate model simulation that in turn would also 
generate biases), allows for more consistent teleconnection responses, enables upscale/downscale 
effects to influence the broader climate, etc.  As a result, we think this study adds a "unique" data 
point to the literature regarding changes in end-century hydrology in California as it is a distinctly 
different methodology than previously explored regional climate model based dynamical 
downscaling efforts and/or bias-corrected statistically downscaled global climate model efforts. 
 
Below is a table (Table R1c) with a number of commonly-used hydrologic models and their 
advantages and limitations when simulating the hydrology of California. Only Hydrogeosphere 
and ATS have similar advantages as ParFlow-CLM and represent best the Californian hydrology 
of interest to this study. Because these models use similar equations and the coupling approaches 
use, we expect their results to be the same. Moreover, these models all share the resolution limits 
imposed by high computational expense. We have added this information to the revised 
manuscript, please refer to lines 280-296 and the text below in italic. 
 
“ParFlow has many advantages in comparisons to other hydrologic models. Compared to other 
hydrologic models (MODFLOW (Harbaugh, 2005), FELFOW (Trefry and Muffels, 2007), SWAT 
(Soil and Water Assessment Tool) (Neitsch et al., 2000), SAC-MA (Sacramento Soil Moisture 
Accounting Model)), ParFlow has the advantages of accounting for land surface processes such 
as snow dynamics and evapotranspiration and their interactions with the subsurface which are 
crucial for studying the hydrology of California. ParFlow also solved the subsurface flow by 
accounting for variably saturated conditions, an important feature for calculating groundwater 
recharge and the connection between the groundwater and the land surface processes, which is 
not the case for the aforementioned models. While some hydrologic models have a better 
representation of the land surface processes (Noah-MP (Niu et al., 2011), VIC (Variable 
Infiltration Capacity Model Macroscale Hydrologic Model) (Liang et al., 1994)), these models do 
not have a detailed representation of the subsurface flows. Because the surface flow is important 
in the region and it establishes the connection between the headwaters and the valleys, its good 
representation is essential for projecting changes in hydrology. Compared to other integrated 
hydrologic models (CATHY (Catchment Hydrology) (Bixio et al., 2002), MIKE-SHE (Abbott et al., 
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1986)), ParFlow has the advantages of solving a two-dimensional kinematic flow equation that is 
fully coupled to the Richards equation.” 
 
 
Hydrologic Model Land 

Surface  
Surface Subsurface Limitations when 

simulating Californian 
hydrology 

MODFLOW 
(Harbaugh, 
2005)/FELFOW 
(Trefry and Muffels, 
2007) 

No No Yes (diffusivity 
equation) 

These models do not 
integrate land surface 
processes (such as snow 
dynamics) and their 
interactions with the 
subsurface critical to the 
Californian hydrology.  

SWAT (Soil and Water 
Assessment Tool) 
(Neitsch et al., 2000) 

Yes Yes Yes The model is based on 
HRU (hydrologic 
response units). The 
model isn’t physics-
based, therefore, it 
doesn’t account for the 
two-way interaction 
between the land surface 
and the subsurface 
processes. 

SAC-MA (Sacramento 
Soil Moisture 
Accounting Model) 

No Yes 
(Rainfall-
Runoff) 

Yes (Water 
Budget) 

The model doesn’t 
simulate snow dynamics 
and evapotranspiration. 
A water budget equation 
is used to simulate the 
groundwater dynamics 
which doesn’t account 
for the lateral flow and 
unsaturated zone flow. 

Noah-MP (Niu et al., 
2011) 

Yes (water 
and energy 
balance) 

Yes (a 
routing 
scheme can 
be used to 
derive 
surface flow) 

Yes 
(percolation) 

Although this model 
physically solves the 
land surface processes 
including 
evapotranspiration and 
snow dynamics, it 
doesn’t account for the 
two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows 
are not represented. 
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VIC (Variable 
Infiltration Capacity 
Model Macroscale 
Hydrologic Model) 
(Liang et al., 1994) 

Yes  Yes 
(Rainfall-
Runoff) 

Yes 
(percolation and 
water budget) 

Although this model 
physically solves the 
land surface processes 
including 
evapotranspiration and 
snow dynamics, it 
doesn’t account for the 
two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows 
are not represented. 

Hydrogeosphere 
(Aquanty, 2015) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusive 
wave 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used 
to model the hydrology 
of California. 

CATHY (Catchment 
Hydrology) (Bixio et 
al., 2002) 

Yes (there 
is a version 
coupled to 
Noah-MP) 

Yes (1D 
Saint Venant 
Equation) 

Yes (Mass 
balance 
equation) 

The mass balance 
equation is not as robust 
as the Richards equation 
for describing the 
variably saturated flow 
in the subsurface and 
recharge processes. In 
addition, the original 
model doesn’t solve 
land surface processes. 

MIKE-SHE (Abbott et 
al., 1986) 

No Yes 
(diffusivity 
equation) 

Yes (Darcy 
equation and a 
1D Richards 
equation) 

The main limitation of 
this model is the lack of 
land surface processes 
and the Darcy equation 
used to describe 
subsurface flow doesn’t 
account for the 
unsaturated flow. 

ATS (Advanced 
Terrestrial Simulator) 
(Coon et al., 2016) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used 
to model the hydrology 
of California. 

ParFlow-CLM (Kollet 
and Maxwell, 2006) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

 

Table R1c: Advantages and limitations of the most used hydrological models 
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Anonymous Referee #2 
In this work, the authors present global climatic and hydrologic models to simulate 
the extremes and their impacts on the water-energy balance over California. The 
paper is well written and with high relevance to the hess journal. Please see some 
suggestions I kindly ask the authors to address: 
 
We thank the reviewer for their positive comments and feedback and for acknowledging the 
quality and the significance of our work.  
 
1) The title of the paper is “Projecting the impacts of end of century climate extremes 
on the hydrology in California.”. The title of the paper is a bit strong since it 
recommends that the whole hydrological-cycle has been modeled for the State of 
California and also for a time-window reaching the end of the century. Many authors 
struggle to simulate only one part of the hydrological-cycle of California (e.g., 
rainfall-runoff model, as for example in Yin et al., 2021; while many similar studies 
exist in literature). For such a promising title, a strong literature review should be 
performed to include similar studies for all hydrological-cycle variables and to show 
how the proposed model is more advanced. 
   
We acknowledge that the title could be misleading since we are only simulating a watershed in 
California although the watershed is representative of the state’s hydrology.  We propose to change 
the title to “Projecting end of century climate extremes and their impacts on the hydrology of a 
representative California watershed”.  
 
While we didn’t simulate the hydrology over the entire 30-years at the end of the century (2070-
2100), we selected three years that represent the spread of hydroclimatic conditions in this end-of-
century period by choosing the driest, median, and wettest years from the climate simulations. We 
believe that the study mentioned by the reviewer has a different scope from ours as it seeks to 
forecast discharge a week ahead of time for use in rainfall-runoff and machine learning models. 
To better understand how the hydrology will evolve over long timescales in response to climate 
change it is important to represent the transfer of water and energy from the bedrock to the canopy. 
This is especially important in California where the subsurface hydrology downstream (i.e., 
groundwater dynamics) strongly depends on the land surface processes occurring upstream (i.e., 
snowmelt). ParFlow-CLM has been shown to capture these critical processes in many sites. 
 
To justify how our hydrologic model differs from others, we provide a table below (Table R1c) 
with the most used hydrologic models and their advantages and limitations when simulating the 
hydrology of California. Only Hydrogeosphere and ATS have similar advantages as ParFlow-
CLM.  We also argue that Parflow-CLM can best represent the Californian hydrology of interest 
to this study due to these unique advantages over other models. Because the equations and the 
coupling approaches used by these models are similar, we expect their results to be the same. 
 
We have added this justification to the revised manuscript, please refer to lines 280-296 and the 
text in italic below. 
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“ParFlow has many advantages in comparisons to other hydrologic models. Compared to other 
hydrologic models (MODFLOW (Harbaugh, 2005), FELFOW (Trefry and Muffels, 2007), SWAT 
(Soil and Water Assessment Tool) (Neitsch et al., 2000), SAC-MA (Sacramento Soil Moisture 
Accounting Model)), ParFlow has the advantages of accounting for land surface processes such 
as snow dynamics and evapotranspiration and their interactions with the subsurface which are 
crucial for studying the hydrology of California. ParFlow also solved the subsurface flow by 
accounting for variably saturated conditions, an important feature for calculating groundwater 
recharge and the connection between the groundwater and the land surface processes, which is 
not the case for the aforementioned models. While some hydrologic models have a better 
representation of the land surface processes (Noah-MP (Niu et al., 2011), VIC (Variable 
Infiltration Capacity Model Macroscale Hydrologic Model) (Liang et al., 1994)), these models do 
not have a detailed representation of the subsurface flows. Because the surface flow is important 
in the region and it establishes the connection between the headwaters and the valleys, its good 
representation is essential for projecting changes in hydrology. Compared to other integrated 
hydrologic models (CATHY (Catchment Hydrology) (Bixio et al., 2002), MIKE-SHE (Abbott et al., 
1986)), ParFlow has the advantages of solving a two-dimensional kinematic flow equation that is 
fully coupled to the Richards equation.” 
 
 
Hydrologic Model Land 

Surface  
Surface Subsurface Limitations when 

simulating Californian 
hydrology 

MODFLOW 
(Harbaugh, 
2005)/FELFOW 
(Trefry and Muffels, 
2007) 

No No Yes (diffusivity 
equation) 

These models do not 
integrate land surface 
processes (such as snow 
dynamics) and their 
interactions with the 
subsurface critical to the 
Californian hydrology.  

SWAT (Soil and Water 
Assessment Tool) 
(Neitsch et al., 2000) 

Yes Yes Yes The model is based on 
HRU (hydrologic 
response units). The 
model isn’t physics-
based, therefore, it 
doesn’t account for the 
two-way interaction 
between the land surface 
and the subsurface 
processes. 

SAC-MA (Sacramento 
Soil Moisture 
Accounting Model) 

No Yes 
(Rainfall-
Runoff) 

Yes (Water 
Budget) 

The model doesn’t 
simulate snow dynamics 
and evapotranspiration. 
A water budget equation 
is used to simulate the 
groundwater dynamics 
which doesn’t account 
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for the lateral flow and 
unsaturated zone flow. 

Noah-MP (Niu et al., 
2011) 

Yes (water 
and energy 
balance) 

Yes (a 
routing 
scheme can 
be used to 
derive 
surface flow) 

Yes 
(percolation) 

Although this model 
physically solves the 
land surface processes 
including 
evapotranspiration and 
snow dynamics, it 
doesn’t account for the 
two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows 
are not represented. 

VIC (Variable 
Infiltration Capacity 
Model Macroscale 
Hydrologic Model) 
(Liang et al., 1994) 

Yes  Yes 
(Rainfall-
Runoff) 

Yes 
(percolation and 
water budget) 

Although this model 
physically solves the 
land surface processes 
including 
evapotranspiration and 
snow dynamics, it 
doesn’t account for the 
two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows 
are not represented. 

Hydrogeosphere 
(Aquanty, 2015) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusive 
wave 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used 
to model the hydrology 
of California. 

CATHY (Catchment 
Hydrology) (Bixio et 
al., 2002) 

Yes (there 
is a version 
coupled to 
Noah-MP) 

Yes (1D 
Saint Venant 
Equation) 

Yes (Mass 
balance 
equation) 

The mass balance 
equation is not as robust 
as the Richards equation 
for describing the 
variably saturated flow 
in the subsurface and 
recharge processes. In 
addition, the original 
model doesn’t solve 
land surface processes. 

MIKE-SHE (Abbott et 
al., 1986) 

No Yes 
(diffusivity 
equation) 

Yes (Darcy 
equation and a 

The main limitation of 
this model is the lack of 
land surface processes 
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1D Richards 
equation) 

and the Darcy equation 
used to describe 
subsurface flow doesn’t 
account for the 
unsaturated flow. 

ATS (Advanced 
Terrestrial Simulator) 
(Coon et al., 2016) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used 
to model the hydrology 
of California. 

ParFlow-CLM (Kollet 
and Maxwell, 2006) 

Yes (water 
and energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

 

Table R1c: Advantages and limitations of the most used hydrological models 
 
 
2) There is a lack of calibration, validation, and verification of the proposed model. 
When a forecast is performed, one should use a part of the timeseries to calibratevalidate- 
verify their model, and then perform a forecast for the near future. I suggest 
the authors see/discuss this procedure concerning their own model.  
 
We didn’t employ a time-series based comparison for the climate model simulations because they 
are climate projections and not weather forecasts. VR-CESM is simulated under AMIP-protocols, 
meaning the atmosphere and land-surface components of the Earth system model are coupled and 
allowed to solve prognostic and diagnostic equations that describe the interactions between the 
atmosphere and land-surface while being prescribed new lower boundary conditions every month 
via observed sea-surface temperatures and sea-ice extents. Therefore, we do not expect VR-CESM 
to exactly recreate past historical water years and do not consider that these projections would 
exactly forecast the weather in a given future year. However, we do expect that our 30-year 
simulation can reasonably recreate the range of water year types over California and the Cosumnes, 
which is why we utilize the broader range of PRISM water years that are available to compare 
with our 30-year simulation. 
 
To clarify, the VR-CESM simulations are not forecasts or predictions, but rather projections. There 
is a subtle but important difference in a prediction, which aims to exactly recreate an event or time 
period, versus a projection, which aims to encapsulate the envelope of plausible future scenarios 
given greenhouse gas emissions, sea-surface temperatures, sea ice extents, land-surface cover 
changes, etc. The end-century projections performed with VR-CESM allow the atmosphere and 
land-surface model to interact under assumptions of the high emissions scenario (RCP8.5), account 
for land-surface cover changes, and increases in sea-surface temperatures and decreases in sea-ice 
extent.  Therefore, the 30-year period (2070-2100) encapsulated by these VR-CESM projections 
should be thought of as "what might happen to the middle and end member years (i.e., driest and 
wettest) if the world warms by +4 - 5०C?". 
 
We have clarified it in the revised manuscript, please refer to lines 190-201 (see below the text in 
italic). 
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“The atmospheric model used for these simulations is the Community Atmosphere Model (CAM) 
version 5.4 with the spectral element dynamical core, with an atmospheric dynamics time step of 
75 seconds, an atmospheric physics time step of 450 seconds, a prognostic treatment of rainfall 
and snowfall in the microphysics scheme (Gettelman and Morrison, 2015) and run under 
Atmosphere Model Intercomparison Project (AMIP) protocols (Gates, 1992). Under the AMIP 
protocols, the atmosphere and land-surface components of the Earth system model are coupled 
and periodically bounded by monthly observed sea-surface temperatures and sea-ice extents. 
Although this configuration does not exactly recreate historical water years and events, it is 
expected to reasonably simulate the distribution of water year types. Also, it should be noted that 
the model only projects future conditions, within the envelope of plausible future conditions of the 
RCP8.5 scenario and its assumptions of greenhouse gas emissions, sea-surface temperatures, and 
sea ice extents and would not be expected to exactly forecast individual water years.” 
 
We calibrated and validated the hydrologic model using remotely sensed and ground 
measurements of streamflow, groundwater levels, snow water equivalent, soil moisture, and 
evapotranspiration. Below are the details of the comparisons which were published in Maina et al. 
(2020) and added to appendix C of the revised manuscript.  
We have also added the following lines to the revised manuscript, please refer to lines 341-365 
(see below the text in italic). 
 
“We specifically compared simulated and measured river stages at three stations located in the 
Sierra Nevada headwater, foothill, and the Central Valley. The annual averages absolute 
differences between measurements and simulations were between 0.4 and 0.8 m. We selected four 
wells in the Cosumnes watershed based on their availability of data to compare measured and 
simulated groundwater levels. These wells are sparsely distributed in the Central Valley. The 
absolute differences observed and simulated groundwater levels vary between 0.47 to 3.73 m. The 
highest absolute differences were attributed to the lack of a best estimation of groundwater 
pumping rates in the region. Nonetheless, the reasonable agreement between observations and 
simulated variables has allowed us to conclude that the model can capture these extreme 
dynamics.  We rely on remote sensing data to assess the ability of our model to simulate key land 
surface processes (evapotranspiration, soil moisture, and snow dynamics). We compared the 
simulated SWE to SNODAS (The National Weather Service’s Snow Data Assimilation, National 
Operational Hydrologic Remote Sensing Center, 2004) and a SWE reanalysis by Bair et al., 
(2016). Our comparisons indicated that the absolute differences between our SWE values and 
these data were equal to 3 mm on average. Moreover, the simulated key parameters controlling 
the snow dynamics such as peak snow and timing of snow ablation were also in agreement with 
remotely sensed data for both dry and wet years (Appendix C). Absolute differences between the 
simulated ET and the remotely sensed ET from METRIC (Mapping Evapotranspiration at High 
Resolution with Internalized Calibration, Allen et al., 2007) were equal to 0.036 mm/s while the 
differences between the simulated soil moisture and the SMAP (Soil Moisture Active Passive, 
SMAP, 2015) soil moisture were 0.2.” 
 
 
Model validation procedure (also added to the response to reviewer 1) 



15 
 

We compared temporal variations of streamflow at 3 stations, one each located in the Sierra 
(uplands), at the intersection between the Sierra and the Central Valley, and in the outskirts of 
Sacramento (see Figure R1). Four wells in the watershed (see Figure R1a) have reasonable, 
publicly-available records of groundwater levels and were used to check the ability of the model 
to reproduce water table depth variations.  
 

 
Figure R1a: The Cosumnes watershed geology and the locations of the 3 streamflow gauges 
(CNF, MHB, and MFR) and 4 groundwater wells (stars).  
 
 
Figure R1b depicts the comparisons between simulated and measured river stages at the 3 stations 
indicated in figure R1a. Absolute errors (L1) in m and relative errors (L2) are shown in Table 
R1a. Differences between simulated and measured streamflow vary between 0.4 and 0.8 m (Table 
R1a) indicating that the model is able to reproduce the river dynamics. 
 

 
Figure R1b: Comparisons between measured and calculated river stages (i.e., pressure-heads 
simulated by ParFlow-CLM). Measurements locations are indicated in Figure R1a. 
 
Measurements L1 (m) L2 (-) 
River Stages (CNF) 0.8 0.5 
River Stages (MHB) 0.4 0.36 
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River Stages (MFR) 0.57 1.06 
Groundwater Levels (Well 1) 3.73 0.05 
Groundwater Levels (Well 2) 1.63 0.02 
Groundwater Levels (Well 3) 0.476 0.0077 
Groundwater Levels (Well 4) 1.08 0.016 

Table R1a: Differences between measured and calculated surface and groundwater levels. L1 is 
the absolute error and R2 the relative error.  
 
Comparisons between simulated and calculated groundwater levels (here referred to as the 
pressure-heads at the bottom of the domain) shown in figure R1c indicate that the model has 
reasonable agreements with measurements. As shown in table R1a, the error varies between 0.47 
to 3.73 m depending on the station. Mismatches between simulated and observed groundwater 
levels at wells 1 and 2 are likely due to an inaccurate estimation of pumping in these areas. The 
temporal variations of the groundwater levels show an impact of withdrawals but because these 
withdrawals are hard to estimate the model does not correctly reproduce these trends.  

 
Figure R1c: Comparisons between measured and calculated pressure-heads at the bottom of the 
domain. Measurement locations are indicated in Fig. R1. 
 
ParFlow-CLM also simulates the key land surface processes governing the transfer of water and 
energy at the land-atmosphere-soil interface: evapotranspiration, snow dynamics, and soil 
moisture. In Maina et al., (2020a), we conducted rigorous comparisons between the ParFlow-
CLM simulated land surface processes and remotely sensed estimates of these variables. Table 
R1b shows the correlation coefficient between ParFlow-CLM results and the various datasets 
compared.  
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Figure R1d: (a) Comparisons between domain-averaged total snow water equivalent obtained 
with ParFlow-CLM, SNODAS and Bair et al., reconstruction, (b) Comparisons between actual 
evapotranspiration obtained with ParFlow-CLM and METRIC (c) Relative variation of soil 
moisture obtained with ParFlow-CLM and SMAP. Note that the time series of (c) is shorter 
because of the availability of SMAP data  

 
Satellites based products L1 (m) L2 (-) Pearson Correlation Coefficient 
SWE SNODAS (mm) 3.09 3.77 0.97 
SWE Bair et al., (mm) 3.80 2.69 0.84 
Soil Moisture SMAP (-) 0.217 3.07 0.94 
ET METRIC (mm/s) 0.067 1.40 0.6 

Table R1b: differences between measured and remotely sensed evapotranspiration (METRIC), 
soil moisture (SMAP), and snow water equivalent (SNODAS and Bair et al., 2016) 
 
 
Also, the End of Century (EoC) forecast for such a large area is very optimistic in my opinion. 
Since climate dynamics is highly complex, I imagine that a forecast of only a few steps 
ahead is possible. If one is studying, for example, runoff on an annual scale, then after 
a couple of years, the variability of the forecast would be very wide, thus, reducing 
the credibility of the result (e.g., see Han et al., 2021). Also, the credibility of the 
outcome should depend on the available length of records. Here, the authors perform 
a forecast of 80 years ahead, which is double the length of records the authors use to 
construct the climatic and hydrologic model. I suggest to test/discuss how the 
variability/probability of the forecasts change as we move away from the 
present/historic data. 
 
The study mentioned by the reviewer (Han et al., 2021) uses a deep learning approach. The deep 
learning approach is different from the model we employed in this study, which solves physical 
equations both prognostically and diagnostically. Although physics-based models depend on the 
initial conditions, the impact of those initial conditions decreases with time (Maina et al, 2017). 
While the geology dictating the hydrodynamic parameters such as hydraulic conductivity, 
porosity, and specific storage could change with time, this change usually occurs on geological 
timescales (thousands or millions of years). As acknowledged in the manuscript, the land cover 
may change by the end of the century. However, this change is uncertain and difficult to predict 
hence we didn’t incorporate it in this study–in this sense our results are a sensitivity analysis 
focused on the shifts in meteorological forcing rather than a fully-integrated assessment of 
changes. We specifically used the physics-based integrated hydrologic models because these 
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models do not strongly rely on the historical/initial conditions and rather are controlled by the 
representations of watershed processes and physical characteristics of the area. Likewise, because 
the climate model is also solving the fundamental physics of fluid flow, thermodynamics, etc. in 
the atmosphere, it doesn’t rely on historical and past observations to bound the simulations. 
Moreover, the memory of physics-based climate models is shorter than that of the integrated 
hydrologic models. The uncertainties that could arise from the long forecast is the trajectory of 
CO2 emissions that could potentially change by the end of the century. We also perform long-term, 
30-year simulations because we are not trying to forecast the exact conditions at end-of-century 
rather looking to investigate the envelope of possibilities based on atmospheric dynamics and 
thermodynamics and their impacts on hydrologic processes. 
 
3) It is shown that due to long-range dependence effect to key hydrological-cycle 
processes (e.g., Dimitriadis et al., 2021) such as the ones the authors use, the 
variability of each climatic process would be even higher than, for example, under the 
assumption of zero auto- and cross- correlation (i.e., white noise). Please 
show/discuss whether the proposed model assumes a correlation function for the input 
variables. I also suggest the authors see/discuss whether their model forecasts also 
capture (and verify) the stochastic characteristics of the historical timeseries including 
the effects from climate change (such as marginal distribution function, autocorrelation 
function, etc.). 
 
As mentioned in the previous answer, we used a physics-based model not a machine learning 
model that is based on the previous observations to perform prediction and is strongly dependent 
on the previous conditions and the period used to do the training and make the predictions.  
Also, because these models are based on physics there is no need to account for a longer historical 
period that captures the statistical distribution of the event. Nonetheless, we validate our model by 
testing its ability to simulate dry and wet years in California. The comparisons (please refer to the 
previous answer) have shown that the developed model captures such extremes. 
 
4) There are many equations in the text. Please consider creating a Table with all the 
inputs variables, output variables, boundary conditions, model assumptions, model 
limitations, simulation times, discretization method, etc., in order to help the readers 
identify the complexity/strength of the proposed model. 
 
We have added the following paragraphs to Appendix B of the revised manuscript.  
 

1. Input Variables 
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Figure R2a: Geological map of the Cosumnes watershed (source: USGS, Jennings et al., 1977) 

 
Hydrodynamic properties based on the geology 

Geological 
Formation 

Porosity (-) Specific 
Storage (m-1) 

Van Genuchten 
α (m-1) 

Van Genuchten  n 
(-) 

Bedrock 
(Consolidated, 
Plutonic and 
Volcanic Rocks) 

0.02 10-6 3.0 3.0 

Alluvial aquifers 0.2 10-4 3.0 3.0 
Table R2b: Assigned values of hydrodynamic parameters (porosity, specific storage and Van 
Genuchten parameters). Values are based on literature review (Faunt et al., 2010; Faunt and 
Geological Survey (U.S.), 2009; Flint et al., 2013; Gilbert and Maxwell, 2017; Welch and Allen, 
2014). 
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Figure R2b: Cosumnes watershed characteristics: land use and land cover (source: Homer et al., 
2015), and model boundaries. 
 
 
 Surface roughness based on land use 
Land Use Manning Coefficient (h.m-1/3) 
Forest 5x10-2 
Shrub land and agricultural area 5x10-3 
Urban areas 5x10-5 
 Crop properties 
 Crop Type and Reference Height (m) Maximum Leaf 

Area Index (-) 
Minimum Leaf 
Area Index (-) 

 Alfalfa 
(Evett et al., 2000; Orloff, 1995; 
Robison et al., 1969) 

0.6 6.0 2.0 

 Pasture 
(Buermann et al., 2002; King et al., 
1986; Rahman and Lamb, 2017) 

0.12 6.0 1.0 

 Vineyards 
(Johnson and Pierce, 2004; Vanino 
et al., 2015) 

0.9 3.0 0.6 

Table R2b: Manning coefficients and crop properties 
 
Boundary conditions Value 
Mokelumne and American river Weekly-varying Dirchlet boundary 

conditions. These values are based on the 
measured river stages. 

Sierra Nevada limit No flow Neumann boundary condition 
Bottom of the model No flow Neumann boundary condition 

Table R2c: boundary conditions 
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2. Numerical model set-up 
Domain size ~7000 km2 
Spatial discretization 200 m horizontal from 0.1 m to 30 m in the vertical direction 

 

 
 

Simulation time Model validation (from water year 2012 to water year 2017), then 
future water years. 

Temporal discretization hourly 
Table R2d: Numerical model discretization 
 

3. Output variables 
Selected output variables Temporal scale Spatial scale 
Snow Water Equivalent Yearly, monthly, and 

hourly 
Domain-average and point 
scale 

Evapotranspiration Yearly, monthly, and 
hourly 

Domain-average and point 
scale 

Soil Moisture Yearly, monthly, and 
hourly 

Domain-average and point 
scale 

River Stages (also surface water 
storages) 

Yearly, monthly, and 
hourly 

Domain-average and point 
scale 

Groundwater levels variations 
(also subsurface storages) 

Yearly, monthly, and 
hourly 

Domain-average and point 
scale 

Table R2e: Selected output variables 
 
5) Please include more details on the water-energy balance equation and show 
whether is preserved in historical and forecasts. Also, have the authors included in the 
mass-energy balance analysis groundwater depletion in California (e.g., Badiuzzaman 
et al., 2017) and effects from sea level rise and ocean dynamics (e.g., Katsman et al., 
2008)? 
 
Mass balance is preserved when solving the mixed form of the Richards equation shown in 
equation (1) (Celia, et al., 1990). ParFlow-CLM numerically solves this equation by using the 
New-Krylow linearization scheme, this scheme iteratively solves the equation at each time step 
until the mass balance criteria set (equal to 10-3) is satisfied. Any large errors in the mass balance 
will automatically stop the resolution of the equation. 
We have added the mass conservative properties of the mixed of the Richards equation in the 
revised manuscript, please refer to lines 265-266, see below the text in italic. 
 
“ParFlow solves the mixed form of the Richards equation which has the advantage of conserving 
the mass (Celia et al., 1990).” 
 
The Richards equation as shown in (1) accounts for groundwater depletion which is included in 
the term qs. While groundwater depletion plays an important role in the hydrodynamics of 
California we didn’t account for this effect in this study (stated in lines 377-382 of the revised 
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manuscript) because the current pumping rates are difficult to estimate and their prediction by the 
end of the century is highly uncertain as it depends on many factors including policy and 
management. We, however, tested the impacts of this assumption of excluding pumping in our 
simulation (please see below the discussion: Discussion on the potential impacts of groundwater 
depletion on hydrologic projection in California). We found that the simulations without pumping 
do not significantly change the observed dynamics of the system, but they could overestimate the 
depletion of aquifer by evapotranspiration by 5 to 10%.  
 
The watershed is not located near the coastal region; therefore, the effects of sea level rise are 
negligible. 
 
 

Discussion on the potential impacts of groundwater depletion on hydrologic projection in 
California 

Because pumping rates may substantially change in the future due to new demands, policies/ 
regulations, and changes in land cover and land use, a model which includes a projection (or an 
envelope of these projections) is a work in itself. Therefore, we did not include them in this work, 
although the ParFlow-CLM model of this basin was developed to account for an approximation 
of the pumping and irrigation practices (to date) in the Central Valley. In the simulations 
originally shown here, we chose to simulate the natural system, given the constraints and 
uncertainty around the aforementioned projections in water and land management practices. 
However, we have taken the reviewer’s comment seriously and have performed additional 
simulations comparing the EoC simulations with pumping and irrigation as a type of “numerical 
experiment”. Specifically, we performed two additional simulations for both historical and EoC 
median water years with pumping and irrigation. The two simulations are as follow: 

● Baseline without any pumping and irrigation  

● Pumping and irrigation, around 700 pumping wells operating from April to November 

have been placed in the Central Valley aquifers. The number of wells, timing, and rates 

of pumping were determined by discussion with stakeholders in the areas and an 

estimation technique, which accounts for the water required by each crop for its optimal 

growth. More details about the estimation technique can be found in Maina et al., 

(2020a). 

 
Figure R6 illustrates the temporal variations of surface water and groundwater storages obtained 
with the four simulations. As expected, the pumping scenarios have lower storages than the 
baselines. We notice that both pumping and baseline EoC scenarios are characterized by an 
earlier and higher increase in groundwater and surface water storage compared to the historical 
conditions (similar to the main conclusions of our study). These storages decrease by the end of 
the water year to become nearly equal to the historical baseflow conditions. In the baseline 
scenarios, the EoC groundwater storage is lower than the historical groundwater storage into 
August, though the historical baseline storage dips below the EoC baseline in September. In 
contrast, in the historical pumping scenario the groundwater storage remains lower throughout 
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the summer, showing distinct behavior in the pumping scenarios. We attribute this difference to 
reduced evapotranspiration in the pumping scenarios because of the deep water tables. 

 
Figure R2c: Temporal variation of groundwater and surface water storages associated with EoC 
and historical baseline and pumping scenarios. The dashed green lines indicate the beginning 
and end of the pumping.  
 
An analysis of the spatial differences between the baseline and the pumping differences (not shown 
here) has shown that these differences are mostly located in areas close to the pumping wells. 
Figure R7 depicts the temporal variation of water table depth and recharge associated with EoC 
and historical baseline and pumping scenarios at a selected point (located close to the pumping 
wells) in the Central Valley.  
In the pumping scenarios, the water table decreases in the first two months whereas the water 
table is constant during this period in the baseline simulations. As the water table becomes deeper, 
the recharge also decreases. In the EoC, there is an early rise of the water table and an increase 
in recharge in both pumping and baseline scenarios due to the meteorological conditions (high 
and early precipitation). The water table rises earlier in the baseline compared to the pumping 
scenario. This rise is much earlier in the EoC than the historical conditions because the high 
precipitation of the EoC quickly compensates for the depressions created by pumping and 
increases the water table and therefore increases the recharge as explained in the schematic figure 
R8. 
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Figure R2d: Temporal variation of water table depth (WTD) and recharge associated with EoC 
and historical baseline and pumping at a selected point in the Central Valley. The dashed green 
lines indicate the beginning and end of the pumping.  
 
 

 
Figure R2e: Schematic representation of the influence (on recharge) of pumping in historical 
and EoC conditions. At a local point, early and high precipitation of the EoC leads the water 
table to rise earlier and the recharge to increase because the unsaturated zone (UZ) becomes 
less thick, and the effective permeability k becomes higher.  
 
While the pumping simulations have lower storages than the baselines, the mechanisms (early and 
high increases in storages and depletion in spring and summer) in both EoC and historical 
conditions remain the same. This is because we applied the same rate of pumping in both EoC and 
historical conditions and the timing of the pumping is assumed to be the same in both simulations. 
However, we note that the simulations without pumping could overestimate the depletion of aquifer 
by evapotranspiration by 5 to 10%.  
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