
Anonymous Referee #2 
In this work, the authors present global climatic and hydrologic models to simulate 
the extremes and their impacts on the water-energy balance over California. The 
paper is well written and with high relevance to the hess journal. Please see some 
suggestions I kindly ask the authors to address: 
 
We thank the reviewer for their positive comments and feedback and for acknowledging the quality 
and the significance of our work.  
 
1) The title of the paper is “Projecting the impacts of end of century climate extremes 
on the hydrology in California.”. The title of the paper is a bit strong since it 
recommends that the whole hydrological-cycle has been modeled for the State of 
California and also for a time-window reaching the end of the century. Many authors 
struggle to simulate only one part of the hydrological-cycle of California (e.g., 
rainfall-runoff model, as for example in Yin et al., 2021; while many similar studies 
exist in literature). For such a promising title, a strong literature review should be 
performed to include similar studies for all hydrological-cycle variables and to show 
how the proposed model is more advanced. 
   
We acknowledge that the title could be misleading since we are only simulating a watershed in 
California although the watershed is representative of the state’s hydrology. 
We propose to change the title to “Projecting end of century climate extremes and their impacts 
on the hydrology of a representative California watershed” 
While we didn’t simulate the hydrology through the end of the century, we selected particular 
years of interest by analyzing the end of century hydroclimate (from 2070 to 2100). 
In the revised manuscript we will add the listed references although these studies are different from 
ours as they simulated the hydrology using rainfall-runoff and machine learning models, therefore, 
targeting single/individual components of the water cycle and/or not accounting for the physical 
characteristics of the area. To better understand how the hydrology will evolve in response to 
climate change it is important to represent the transfer of water and energy from the bedrock to the 
canopy especially in California where the subsurface hydrology downstream (i.e., groundwater 
dynamics) strongly depends on the land surface processes occurring upstream (i.e., snowmelt). To 
capture such behaviors, ParFlow-CLM is adequate.  
Below is a table with the most used hydrologic models and their advantages and limitations when 
simulating the hydrology of California, highlighting the strong advantages of ParFlow-CLM. Only 
Hydrogeosphere and ATS have similar advantages as ParFlow-CLM and are suitable to model the 
Californian hydrology. Because the equations and the coupling approaches used by these models 
are similar, we expect their results to be the same. 
 
Hydrologic Model Land 

Surface  
Surface Subsurface Limitations when 

simulating Californian 
hydrology 

MODFLOW 
(Harbaugh, 
2005)/FELFOW 

No No Yes 
(diffusivity 
equation) 

These models do not 
integrate land surface 
processes (such as snow 
dynamics) and their 



(Trefry and 
Muffels, 2007) 

interactions with the 
subsurface critical to the 
Californian hydrology.  

SWAT (Soil and 
Water Assessment 
Tool) (Neitsch et 
al., 2000) 

Yes Yes Yes The model is based on HRU 
(hydrologic response units). 
The model isn’t physics-
based, therefore, it doesn’t 
account for the two-way 
interaction between the land 
surface and the subsurface 
processes. 

SAC-MA 
(Sacramento Soil 
Moisture 
Accounting 
Model) 

No Yes 
(Rainfall-
Runoff) 

Yes (Water 
Budget) 

The model doesn’t simulate 
snow dynamics and 
evapotranspiration. A water 
budget equation is used to 
simulate the groundwater 
dynamics which doesn’t 
account for the lateral flow 
and unsaturated zone flow. 

Noah-MP (Niu et 
al., 2011) 

Yes 
(water 
and 
energy 
balance) 

Yes (a 
routing 
scheme can 
be used to 
derive 
surface 
flow) 

Yes 
(percolation) 

Although this model 
physically solves the land 
surface processes including 
evapotranspiration and snow 
dynamics, it doesn’t account 
for the two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows are 
not represented. 

VIC (Variable 
Infiltration 
Capacity Model 
Macroscale 
Hydrologic Model) 
(Liang et al., 1994) 

Yes  Yes 
(Rainfall-
Runoff) 

Yes 
(percolation 
and water 
budget) 

Although this model 
physically solves the land 
surface processes including 
evapotranspiration and snow 
dynamics, it doesn’t account 
for the two-way interaction 
between the land surface 
processes and the 
subsurface. Lateral and 
unsaturated zone flows are 
not represented. 

Hydrogeosphere 
(Aquanty, 2015) 

Yes 
(water 
and 
energy 
balance) 

Yes (2D 
diffusive 
wave 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used to 
model the hydrology of 
California. 



CATHY 
(Catchment 
Hydrology) (Bixio 
et al., 2002) 

Yes 
(there is a 
version 
coupled 
to Noah-
MP) 

Yes (1D 
Saint Venant 
Equation) 

Yes (Mass 
balance 
equation) 

The mass balance equation 
is not as robust as the 
Richards equation for 
describing the variably 
saturated flow in the 
subsurface and recharge 
processes. In addition, the 
original model doesn’t solve 
land surface processes. 

MIKE-SHE 
(Abbott et al., 
1986) 

No Yes 
(diffusivity 
equation) 

Yes (Darcy 
equation and 
a 1D Richards 
equation) 

The main limitation of this 
model is the lack of land 
surface processes and the 
Darcy equation used to 
describe subsurface flow 
doesn’t account for the 
unsaturated flow. 

ATS (Advanced 
Terrestrial 
Simulator) (Coon 
et al., 2016) 

Yes 
(water 
and 
energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

This model has similar 
advantages as ParFlow-
CLM and could be used to 
model the hydrology of 
California. 

ParFlow-CLM 
(Kollet and 
Maxwell, 2006) 

Yes 
(water 
and 
energy 
balance) 

Yes (2D 
diffusivity 
equation) 

Yes (3D 
Richards 
equation) 

 

Table R1c: Advantages and limitations of the most used hydrological models 
 

2) There is a lack of calibration, validation, and verification of the proposed model. 
When a forecast is performed, one should use a part of the timeseries to calibratevalidate- 
verify their model, and then perform a forecast for the near future. I suggest 
the authors see/discuss this procedure concerning their own model.  
 
We didn’t employ a time-series based comparison for the climate model due to the uncertainties 
of the model to capture individual events throughout the year. VR-CESM is simulated under 
AMIP-protocols (bounded by monthly observed sea-surface temperatures and sea-ice extents), and 
therefore we do not expect VR-CESM to exactly recreate past historical WYs. However, we do 
expect that our 30-year simulation can reasonably recreate the range of WY types over California 
and the Cosumnes, which is why we utilize the broader range of PRISM WYs that are available. 
The VR-CESM simulations are not forecasts or predictions, but rather projections. There is a subtle 
but important difference in a prediction, which aims to exactly recreate an event or time period, 
versus a projection, which aims to encapsulate the envelope of plausible future scenarios given 
socioeconomic development/greenhouse gas emissions, etc.  The end-century projections 
performed with VR-CESM allow the atmosphere and land-surface model to interact under 
assumptions of the "upper end" emissions scenario (RCP8.5), land-surface cover changes, and 



increases in sea-surface temperatures and decreases in sea-ice.  Therefore, the 30-year period 
(2070-2100) encapsulated by these VR-CESM projections should be thought of as "what might 
happen to the middle and end member years (i.e., driest and wettest) if the world warms by +4 - 
5०C?"  
 
We calibrated and validated the hydrologic model using remotely sensed and ground 
measurements of streamflow, groundwater levels, snow water equivalent, soil moisture, and 
evapotranspiration.  
Below are the details of the comparisons which have been published in a previous paper and will 
be added to the appendix of the revised manuscript.  
 

Model validation procedure (also added to the response to reviewer 1) 
We compared temporal variations of streamflow at 3 stations located in the Sierra (uplands), the 
intersection between the Sierra and the Central Valley, and the outskirts of Sacramento (see Figure 
R1). Four wells in the watershed (see Figure R1a) have reasonable, publicly-available records of 
groundwater levels and were used to check the ability of the model to reproduce water table depth 
variations.  
 

 
Figure R1a: The Cosumnes watershed geology and the locations of the 3 streamflow gauges (CNF, 
MHB, and MFR) and 4 groundwater wells (stars).  
 

Figure R1b depicts the comparisons between simulated and measured river stages at the 3 stations 
indicated in figure R1a. Absolute errors (L1) in m and relative errors (L2) are shown in Table 



R1a. Differences between simulated and measured streamflow vary between 0.4 and 0.8 m (Table 
R1a) indicating that the model is able to reproduce the river dynamics. 
 

 
Figure R1b: Comparisons between measured and calculated river stages (i.e., pressure-heads 
simulated by ParFlow-CLM). Measurements locations are indicated in Figure R1a. 

 
Table R1a: Differences between measured and calculated surface and groundwater levels. L1 is 
the absolute error and R2 the relative error.  
 
Comparisons between simulated and calculated groundwater levels (here referred to as the 
pressure-heads at the bottom of the domain) shown in figure R1c indicate that the model has 
reasonable agreements with measurements. As shown in table R1a, the error varies between 0.47 
to 3.73 m depending on the station. Mismatches between simulated and observed groundwater 
levels at wells 1 and 2 are likely due to an inaccurate estimation of pumping in these areas. The 
temporal variations of the groundwater levels show an impact of withdrawals but because these 
withdrawals are hard to estimate the model isn’t correctly reproducing these trends.  



 
Figure R1c: Comparisons between measured and calculated pressure-heads at the bottom of the 
domain. Measurements locations are indicated in Fig. R1. 
 
ParFlow-CLM also solves the key land surface processes governing the transfer of water and 
energy at the land-atmosphere-soil interface: evapotranspiration, snow dynamics, and soil 
moisture. In Maina et al., (2020a), rigorous comparisons between the ParFlow-CLM simulated 
land surface processes and remotely sensed estimates of these variables was conducted. Table R1b 
shows the correlation coefficient between ParFlow-CLM results and the various datasets 
compared.  

 



Figure R1d: (a) Comparisons between domain-averaged total snow water equivalent obtained 
with ParFlow-CLM, SNODAS and Bair et al., reconstruction, (b) Comparisons between actual 
evapotranspiration obtained with ParFlow-CLM and METRIC (c) Relative variation of soil 
moisture obtained with ParFlow-CLM and SMAP. Note that the x-axis of (c) is shorter because of 
the availability of SMAP data  
 

 
Table R1b: differences between measured and remotely sensed evapotranspiration (METRIC), soil 
moisture (SMAP), and snow water equivalent (SNODAS and Bair et al., 2016) 
 
 

Also, the End of Century (EoC) forecast for such a large area is very optimistic in my opinion. 
Since climate dynamics is highly complex, I imagine that a forecast of only a few steps 
ahead is possible. If one is studying, for example, runoff on an annual scale, then after 
a couple of years, the variability of the forecast would be very wide, thus, reducing 
the credibility of the result (e.g., see Han et al., 2021). Also, the credibility of the 
outcome should depend on the available length of records. Here, the authors perform 
a forecast of 80 years ahead, which is double the length of records the authors use to 
construct the climatic and hydrologic model. I suggest to test/discuss how the 
variability/probability of the forecasts change as we move away from the 
present/historic data. 
 
The study mentioned by the reviewer (Han et al., 2021) uses a deep learning approach which is 
different from the type of model we employed in this study which is based on physics. Although 
physics-based models depend on the initial conditions, the impact of the initial conditions 
decreases with time (Maina et al, 2017), because these models simulate the hydrology based on 
the physical characteristics of the watershed such as the geology and the land cover. While the 
geology dictating the hydrodynamic parameters such as hydraulic conductivity, porosity, and 
specific storage could change with time, this change follows geological scales and timing 
(thousands or millions of years). As acknowledged in the manuscript, the land cover may change 
by the end of the century, nevertheless, this change is uncertain and difficult to predict hence we 
didn’t incorporate them in this study.  
We specifically used the physics-based integrated hydrologic models because these models do not 
strongly rely on the historical/initial conditions rather on the physical characteristics of the area. 
Likewise, because the climate model is based on physics, it doesn’t rely on historical and past 
observations. Moreover, the memory of physics-based climate models is shorter than that of the 
integrated hydrologic models. The uncertainties that could arise from the long forecast is the 



trajectory of CO2 emissions that could potentially change by the end of the century, nevertheless, 
the predictions as documented in the literature (i.e., RCP 8.5). We also perform long-term 
simulations because we are not trying to forecast the exact conditions in various years. We are 
trying to assess the envelope of possibilities if warming occurs and the interactions between 
alterations in atmospheric dynamics and thermodynamics that shape the water cycle in the 
Cosumnes watershed. 
We will discuss these impacts and the advantages of using physics-based models in the revised 
manuscript. 
 
3) It is shown that due to long-range dependence effect to key hydrological-cycle 
processes (e.g., Dimitriadis et al., 2021) such as the ones the authors use, the 
variability of each climatic process would be even higher than, for example, under the 
assumption of zero auto- and cross- correlation (i.e., white noise). Please 
show/discuss whether the proposed model assumes a correlation function for the input 
variables. I also suggest the authors see/discuss whether their model forecasts also 
capture (and verify) the stochastic characteristics of the historical timeseries including 
the effects from climate change (such as marginal distribution function, autocorrelation 
function, etc.). 
 
As mentioned in the previous answer, we used a physics-based model not a machine learning 
model that is based on the previous observations to perform prediction and is strongly dependent 
on the previous conditions and the period used to do the training and make the predictions. We 
will clarify these differences between physics-based models and trained models in the revised 
manuscript. 
Also, because these models are based on physics there is no need to account for a longer historical 
period that captures the statistical distribution of the event. Nonetheless, we validate our model by 
testing its ability to simulate dry and wet years in California. The comparisons have shown that 
the developed model captures such extremes. 
 
4) There are many equations in the text. Please consider creating a Table with all the 
inputs variables, output variables, boundary conditions, model assumptions, model 
limitations, simulation times, discretization method, etc., in order to help the readers 
identify the complexity/strength of the proposed model. 
 
We will add the following section to the Appendix. 
 
 

1. Input Variables 



 
Figure R2a: Geological map of the Cosumnes watershed (source: USGS, Jennings et al., 1977) 
 
Hydrodynamic properties based on the geology 

Geological Formation Porosity 
(-) 

Specific 
Storage (m-
1) 

Van Genuchten 
α (m-1) 

Van 
Genuchten  n (-
) 

Bedrock (Consolidated, 
Plutonic and Volcanic Rocks) 

0.02 10-6 3.0 3.0 

Alluvial aquifers 0.2 10-4 3.0 3.0 
Table R2b: Assigned values of hydrodynamic parameters (porosity, specific storage and Van 
Genuchten parameters). Values are based on literature review (Faunt et al., 2010; Faunt and 
Geological Survey (U.S.), 2009; Flint et al., 2013; Gilbert and Maxwell, 2017; Welch and Allen, 
2014). 



 
Figure R2b: Cosumnes watershed characteristics: land use and land cover (source: Homer et al., 
2015), and model boundaries. 
 
 

Surface roughness based on land use 
Land Use Manning Coefficient (h.m-1/3) 
Forest 5x10-2 
Shrub land and agricultural area 5x10-3 
Urban areas 5x10-5  

Crop properties  
Crop Type and Reference Height 

(m) 
Maximum Leaf 
Area Index (-) 

Minimum Leaf 
Area Index (-)  

Alfalfa 
(Evett et al., 2000; Orloff, 1995; 
Robison et al., 1969) 

0.6 6.0 2.0 

 
Pasture 
(Buermann et al., 2002; King et al., 
1986; Rahman and Lamb, 2017) 

0.12 6.0 1.0 

 
Vineyards 
(Johnson and Pierce, 2004; Vanino 
et al., 2015) 

0.9 3.0 0.6 

Table R2b: Manning coefficients and crop properties 
 
Boundary conditions Value 
Mokelumne and 
American river 

Weekly-varying Dirchlet boundary conditions. These values are 
based on the measured river stages. 

Sierra Nevada limit No flow Neumann boundary condition 



Bottom of the model No flow Neumann boundary condition 
Table R2c: boundary conditions 
 
 
2. Numerical model set-up 
 
Domain size ~7000 km2 
Spatial 
discretization 

200 m horizontal from 0.1 m to 30 m in the vertical direction 
 

  
Simulation 
time 

Model validation (from water year 2012 to water year 2017), then water years 
1998, 2004, 2007, 2076, 2078, and 2084. 

Temporal 
discretization 

hourly 

Table R2d: Numerical model discretization 
 
 
3. Output variables 
Selected output variables Temporal scale Spatial scale 
Snow Water Equivalent Yearly, monthly, and 

hourly 
Domain-average and 
point scale 

Evapotranspiration Yearly, monthly, and 
hourly 

Domain-average and 
point scale 

Soil Moisture Yearly, monthly, and 
hourly 

Domain-average and 
point scale 

River Stages (also surface water storages) Yearly, monthly, and 
hourly 

Domain-average and 
point scale 

Groundwater levels variations (also 
subsurface storages) 

Yearly, monthly, and 
hourly 

Domain-average and 
point scale 

Table R2e: Selected output variables 
 
5) Please include more details on the water-energy balance equation and show 
whether is preserved in historical and forecasts. Also, have the authors included in the 
mass-energy balance analysis groundwater depletion in California (e.g., Badiuzzaman 
et al., 2017) and effects from sea level rise and ocean dynamics (e.g., Katsman et al., 
2008)? 
 
Mass balance is preserved when solving the mixed form of the Richards equation shown in 
equation (1) (Celia, et al., 1990). ParFlow-CLM numerically solves this equation by using the 
New-Krylow linearization scheme, this scheme iteratively solves the equation at each time step 
until the mass balance criteria set (equal to 10-3) is satisfied. Any large errors in the mass balance 
will automatically stop the resolution of the equation. 
 



The Richards equation as shown in (1) accounts for groundwater depletion which is included in 
the term qs. While groundwater depletion plays an important role in the hydrodynamics of 
California we didn’t account for this effect in this study because the current pumping rates are 
difficult to estimate and their prediction by the end of the century is highly uncertain as it depends 
on many factors including policy and management. 
 

Discussion on the potential impacts of groundwater depletion on hydrologic projection in 
California 

Because pumping rates may substantially change in the future due to new demands, policies/ 
regulations, and changes in land cover and land use, a model which includes a projection (or an 
envelope of these projections) is a work in itself. Therefore, we did not include them in this work, 
although the ParFlow-CLM model of this basin was developed to account for an approximation 
of the pumping and irrigation practices (to date) in the Central Valley. In the simulations 
originally shown here, we chose to simulate the natural system, given the constraints and 
uncertainty around the aforementioned projections in water and land management practices. 
However, we have taken the reviewer’s comment very seriously, and we have performed additional 
simulations since receiving their comments, which now compare the EoC simulations with 
pumping and irrigation as a type of “numerical experiment”. Specifically, we performed two 
additional simulations for both historical and EoC median water years with pumping and 
irrigation. The two simulations are as follow: 

• Baseline without any pumping and irrigation  
• Pumping and irrigation, around 700 pumping wells operating from April to November 

have been placed in the Central Valley aquifers. The number of wells, timing, and rates of 
pumping were determined by discussion with stakeholders in the areas and an estimation 
technique, which accounts for the water required by each crop for its optimal growth. More 
details about the estimation technique can be found in Maina et al., (2020a). 

 
Figure R6 illustrates the temporal variations of surface water and groundwater storages obtained 
with the four simulations. As expected, the pumping scenarios have lower storages than the 
baselines. We notice that both pumping and baseline EoC scenarios are characterized by an 
earlier and higher increase in groundwater and surface water storage compared to the historical 
conditions (similar to the main conclusions of our study). These storages decrease by the end of 
the water year to become nearly equal to the historical baseflow conditions. In the baseline 
scenarios, the EoC groundwater storage is lower than the historical groundwater storage into 
August, though the historical baseline storage dips below the EoC baseline in September. In 
contrast, in the historical pumping scenario the groundwater storage remains lower throughout 
the summer, showing distinct behavior in the pumping scenarios. We attribute this difference to 
reduced evapotranspiration in the pumping scenarios because of the deep water tables. 



 
Figure R2c: Temporal variation of groundwater and surface water storages associated with EoC 
and historical baseline and pumping scenarios. The dashed green lines indicate the beginning and 
end of the pumping.  
 
An analysis of the spatial differences between the baseline and the pumping differences (not shown 
here) has shown that these differences are mostly located in areas close to the pumping wells. 
Figure R7 depicts the temporal variation of water table depth and recharge associated with EoC 
and historical baseline and pumping scenarios at a selected point (located close to the pumping 
wells) in the Central Valley.  
In the pumping scenarios, the water table decreases in the first two months whereas the water 
table is constant during this period in the baseline simulations. As the water table becomes deeper, 
the recharge also decreases. In the EoC, there is an early rise of the water table and an increase 
in recharge in both pumping and baseline scenarios due to the meteorological conditions (high 
and early precipitation). The water table rises earlier in the baseline compared to the pumping 
scenario. This rise is much earlier in the EoC than the historical conditions because the high 
precipitation of the EoC quickly compensates for the depressions created by pumping and 
increases the water table and therefore increases the recharge as explained in the schematic figure 
R8. 



 
 
Figure R2d: Temporal variation of water table depth (WTD) and recharge associated with EoC 
and historical baseline and pumping at a selected point in the Central Valley. The dashed green 
lines indicate the beginning and end of the pumping.  
 

 
Figure R2e: Schematic representation of the influence (on recharge) of pumping in historical and 
EoC conditions. At a local point, early and high precipitation of the EoC leads the water table to 
rise earlier and the recharge to increase because the unsaturated zone (UZ) becomes less thick, 
and the effective permeability k becomes higher.  
 
While the pumping simulations have lower storages than the baselines, the mechanisms (early and 
high increases in storages and depletion in spring and summer) in both EoC and historical 
conditions remain the same. This is because we applied the same rate of pumping in both EoC and 
historical conditions and the timing of the pumping is assumed to be the same in both simulations. 



However, we note that the simulations without pumping could overestimate the depletion of aquifer 
by evapotranspiration by 5 to 10%.  
 

The watershed is not located near the coastal region; therefore, the effects of sea level rise are 
nonexistent. 
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