

1	A Time-Varying Distributed Unit Hydrograph considering soil
2	moisture content
3	Bin Yi ^{1,2} , Lu Chen ^{1,2*} , Hansong Zhang ³ , Ping Jiang ⁴ , Yizhuo Liu ^{1,2} , Hongya Qiu ^{1,2}
4	¹ School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan,
5	430074, China
6	² Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China
7	³ PowerChina Huadong Engineering Corporation Limited, Hangzhou 310014, China
8	⁴ Meizhou Hydrological Bureau, Guangdong Province, Meizhou 514000, China
9	Correspondence: Lu Chen (chen_lu@hust.edu.cn)
10	Abstract: The distributed unit hydrograph (DUH) method has been widely used for
11	flood routing simulation, because it can well characterize the underlying surface
12	characteristics and various rainfall intensities. The core of the DUH is the calculation
13	of flow velocity. However, the current velocity formula assumed a global equilibrium
14	of the watershed and ignored the impact of time-varying soil moisture content on flow
15	velocity, which leads to a larger flow velocity value. The goal of this study is to identify
16	a soil moisture content factor, which was derived based on the water storage capacity
17	curve, to explore the responses of DUH to soil moisture content in unsaturated areas.
18	Thus, an improved distributed unit hydrograph based on time-varying soil moisture
19	content was proposed in this paper. The proposed method considered the impact of both
20	the time-varying rainfall intensity and soil moisture content on the flow velocity, and

21	the watershed is assumed not to be equilibrium but vary with the soil moisture. The Qin
22	River Basin was selected as a case study, and results of the time-varying distributed unit
23	hydrograph (TDUH) and current DUH methods were used as comparisons with that of
24	proposed method. Influence mechanism of time-varying soil moisture content on the
25	flow velocity and flood forecasts were explored. Results show that the proposed method
26	performs the best among the three methods. The shape and duration of the unit
27	hydrograph can be mainly related to the soil moisture content at initial stage of a storm.
28	When the watershed is approximately saturated, the grid flow velocity is majorly
29	dominated by the excess rainfall.

30 Keywords: Time-varying distributed unit hydrograph, Runoff routing, Flow velocity,

31 Soil moisture content, Excess rainfall

32 1. Introduction

Flood is a natural disaster with strong suddenness, high frequency and serious harm (Jongman et al., 2014; Alfieri et al., 2015; Munich, 2017). Global flood losses account for about 40% of the total losses of all kinds of natural disasters. High accuracy flood forecasts can provide decision-making basis for reservoir operation, flood control, and optimal allocation of water resources, which plays a significant role in water resources management, development and utilization, and national economic construction.

40 Watershed routing calculation is an important procedure in hydrological model,

53

61

2015).

41	whose accuracy directly affects flood forecasts results. The Unit Hydrograph (UH),
42	proposed by Sherman (1932), is one of the methods most widely used for development
43	of flood prediction and warning systems for gauged basins with observed rainfall-
44	runoff data (Singh et al., 2014). The UH is a surface runoff hydrograph resulting from
45	one unit of rainfall excess uniformly distributed spatially and temporally over the
46	watershed for the entire specified rainfall excess duration (Chow 1964). Usually, the
47	UH can be categorized into 4 major types, including the traditional models, probability
48	models, conceptual models, and geomorphologic methods (Bhuyan et.al. 2015).
49	First, the traditional models were discussed. The traditional methods established
50	the relationships between parameters used to describe the UH (e.g. peak flow, time to
51	peak and time base) and parameters used to describe the basin. Snyder (1938), Mockus
52	(1957), and U.S. Soil Conservation Service (SCS) (2002) proposed some traditional

54 these methods are that they do not yield satisfactory results, and their application to

methods,, which are still available to hydrologists nowadays. The disadvantages of

55 practical engineering problems is tedious and cumbersome (Nigussie et al., 2016).

Furthermore, Most UHs have steeper rising limbs than their receding sides, which can be well characterized by the probability distribution functions (pdfs). Many pdfs were used for derivation of UHs due to their similarity in the shape of statistical distributions to UHs. The difficulties of these methods are that the distribution functions are diverse, and the parameters depends on numerous hydrological data (Bhuyan et al.,

3

62	Another modeling technique for deriving UHs is conceptual model. Nash (1957)
63	proposed a conceptual model characterized as a succession of n linear reservoirs
64	connected in series with the same storage coefficient K , for the derivation of the
65	instantaneous unit hydrograph (IUH). After that, Dooge (1959) derived a mathematical
66	model for the IUH based on linear reservoirs. Bhunya et al. (2005) and Singh et al.
67	(2007) represented a hybrid and extended hybrid model based on the linear reservoir
68	model. Singh (2015) proposed a new simple two-parameter IUH with conceptual and
69	physical justification. Khaleghi et al. (2018) suggested a new conceptual model namely
70	the inter-connected linear reservoir model (ICLRM). However, the conceptual model
71	neglects the impact of uneven spatial distribution of the basin's underlying surface on
72	the UHs.

73 On the bases of time-area method developed by Clark (1945), Rodriguez-Iturbe 74 (1979) proposed a geomorphologic instantaneous unit hydrograph (GIUH) method, which couples the hydrologic characteristics of a catchment with more detailed 75 geomorphologic parameters (Kumar et al., 2007). In the model, the IUH corresponds 76 77 to the probability density function of travel times from the locations of runoff 78 production to the outlet of a watershed (Gupta et al., 1980). With the development of 79 digital elevation models (DEMs) and geographic information system (GIS) technology, 80 the formulation of width function-based geomorphological IUH methods are available, 81 the rigidity of which is reflected in its incapacity to account properly (i.e. to respect the 82 geometry) for the distribution of rainfall (Rigon et al., 2016).

83	The methods mentioned above are based on the UH linear assumption. However,
84	it is well-known that the rainfall-runoff process is nonlinear due to the dependence of
85	the flood wave celerity on the excess rainfall intensity (Robinson et al., 1995). Minshall
86	(1960) showed that different rainfall intensities significantly correspond to different
87	UHs for a small watershed. After that, Rodríguez-Iturbe et al. (1982) extended the
88	GIUH to the geomorphoclimatic IUH (GcIUH) to cope with this nonlinearity by
89	incorporating excess rainfall intensity in the determination of the IUH. Lee et al. (2008)
90	proposed a variable Kinematic wave GIUH corresponding to time-varying rainfall
91	intensity for the calculation of the runoff concentration, which warrants consideration
92	for rainfall-runoff modelling in ungauged catchments that are influenced by high
93	intensity rainfall.

94 Furthermore, it is difficult for the previous methods (traditional models, 95 probability models, conceptual models, and geomorphologic models) to fully consider the geomorphic characteristics of the watershed while incorporating the nonlinearity of 96 rainfall-runoff process (e.g. time-varying rainfall intensities). Thus, the spatially 97 98 distributed unit line hydrograph (DUH) method has been attached much attention. The 99 concept of a DUH is based on the fact that the unit hydrograph can be derived from the 100 time-area curve of a watershed by the S-curve method (Muzik, 1996). The DUH can be 101 essentially classified as a type of geomorphoclimatic unit hydrograph, since its 102 derivation depends on watershed geomorphology, rainfall and hydraulics (Du et al., 103 2009). The spatially distributed flow celerity and temporally varying excess rainfall

104

105	In DUH models, the travel time of each grid cell can be calculated by dividing the
106	travel distance of a cell to the next cell by velocity of flow generated in that cell (Paul
107	et al., 2018). And the travel times are then summed along the flow path to obtain the
108	total travel time from each cell to the outlet. The DUH can be derived using the
109	distribution of travel time from all grid cells in a watershed (Bunster et al., 2019). Some
110	DUH models assumed a time-invariant travel time field and ignored the dependence of
111	travel time on excess rainfall intensity (Melesse & Graham, 2004; Noto and La Loggia,
112	2007; Gibbs et al., 2010), while others suggested various UHs correspond to different
113	storm events, namely time-varying distributed unit hydrograph (TDUH) (Martinez et
114	al.,2002; Sarangi et al., 2007; Du et al., 2009). Compared to the fully distributed models
115	based on the momentum equation, DUH model is a more efficient approach that allow
116	the use of distributed terrain information in a purely ungauged region. The DUH
117	methods are better than the traditional UHs because the spatially information of
118	watershed and time-varying rainfall-runoff process was considered, and have been
119	developed as an alternative method to semi-distributed and fully distributed methods
120	for rainfall-runoff modelling (Bunster et al., 2019).

intensities can be considered in this method (Bunster et al., 2019).

Many researchers have also focused on the upstream contributions to the travel time estimation besides excess rainfall intensity in TDUH method. For instance, Maidment et al. (1996) defined the velocity in the cell also as a function of the contributing area to take into accounts the velocity increase observed downstream in

125	river systems (Gironás et al., 2009). Gad (2014) applies a grid-based technique
126	implementing the stream power formulation to relate flow velocity to the hydrologic
127	parameters of the upstream watershed area through simplistic parametric approaches.
128	Many similar works have been done by Saghafian and Julien (1995), Bhattacharya et
129	al. (2012) and Chinh et al. (2013). Yet, they assumed that the watershed was global
130	equilibrium. After that, Bunster et al. (2019) developed a spatially TDUH model that
131	accounts for dynamic upstream contributions and characterized the temporal behavior
132	of upstream contributions and its impact on travel times in the basin. However, this
133	time-varying DUH model also adopted the assumption that equilibrium in each
134	individual grid cell can be reached before the end of the rainfall excess pulse. When
135	there accrues continuous excess-rainfall in a watershed, the soil moisture content and
136	surface runoff increase, and the infiltration rate decreases, leading to an acceleration of
137	the routing velocity. Until the entire basin is saturated and the routing velocity reach its
138	maximum. Accepting the assumption of equilibrium in global or the grid cell yields
139	slower travel times, shorter times to peak, and higher peak discharges. However, all the
140	aforementioned approximations neglect the impact of dynamic changes of soil moisture
141	exchange and water storage in unsaturated regions.

142 The objective of this study is therefore to propose a time varying distributed unit 143 hydrograph runoff routing method that accounts for dynamic rainfall intensity and soil 144 moisture content based on the existing Xinanjiang (XAJ) model. The main 145 contributions and innovations of the present study are as follows. First, the soil moisture

146	content proportional factor in the unsaturated area was identified and expressed based
147	on the water storage capacity curves. Second, the travel time expression function based
148	on the Kinematic wave theory was modified by considering a soil moisture content
149	proportional factor. Besides the rain intensity, the influence of the time-varying soil
150	moisture storage on the confluence velocity was considered in the watersheds, where
151	the runoff generation is dominated by saturation-excess mode. Finally, the Qin River
152	Basin in Guangdong Province, China, was selected as a case study. The TDUH and
153	DUH methods were compared with the proposed method.
154	

8

155 2. Establishment of flood forecasts model

156	The flood forecast modelling frame work mainly consists the calculation of excess
157	rainfall and the derivation of DUH. In this study, the XAJ model was adopted to
158	calculate the excess rainfall and a new routing method was developed to incorporate
159	the behavior of dynamic changes of soil moisture content and rainfall intensity. The soil
160	moisture content factor in unsaturated regions was expressed by the water storage
161	capacity curves. Thus, the individual gird cell was not assumed to be equilibrium but
162	variable in time. The general formula of velocity proposed by Madidement (1993)
163	combining with the soil moisture content factor was proposed for considering the
164	impact of underlying spatially heterogeneous on the watershed equilibrium.

165 2.1 Calculation of runoff generation

166 The Xinanjiang (XAJ) model was used for the calculation of excess rainfall in this 167 study. It is a conceptual hydrologic model proposed by Zhao et al. (1980) for flood 168 forecasts in the Xinan River Basin. After that, the XAJ model has been widely used in 169 humid and semi-humid watersheds all over the world (Zhao, 1992). It mainly consists 170 of four modules, namely evapotranspiration module, runoff generation module, runoff 171 partition module and runoff routing module (Zhou et al., 2019). Usually, a large 172 watershed is divided into several sub-watersheds to capture the spatial variability of 173 underlying surface, precipitation, and evaporation. In each sub-basin, the inputs of the 174 XAJ model are the average areal rainfall as well as evaporation, and the output is

175

176	First, for the evapotranspiration module, the soil profile of each sub-basin is
177	divided into three layers, the upper, lower and deeper layers, and only when the layer
178	above it exhausted water does evaporation from a next layer occur. Second, as for the
179	Runoff generation in the XAJ model, a catchment is divided into two parts by the
180	percentage of impervious and saturated areas, namely permeable and impervious areas
181	respectively. Since the soil moisture deficit is heterogeneous, runoff distribution is
182	usually nonuniform across a basin. Thus, a storage capacity curve was adopted by the
183	XAJ model to accommodate the nonuniformity of the soil moisture deficit or the tension
184	water capacity distribution. Third, the runoff partition of the XAJ model divides the
185	total runoff into three components by a free reservoir, which consists of surface runoff
186	(RS), interflow runoff (RI) and groundwater runoff (RG). More details can be found in
187	(Zhao et al., 1980). Finally, the linear reservoir method was adopted for calculation of
188	catchment routing (Lu et al., 2014), and the TDUH considering soil moisture content,
189	DUH, TDUH were used to calculate the routing of river net. The Maskingen method
190	was employed to produce the streamflow from each sub-basin to the outlet of the entire
191	catchment. Various runoff routing methods were introduced in Section 2.2.

streamflow. The schematic diagram of the XAJ model is shown in Figure 1.

192 2.2 Calculation of runoff routing based on TDUH considering time-193 varying soil moisture content

194 The routing calculation adopted the GIS-derived DUH method, which allowed the 195 velocity to be calculated on a grid cell basis over the catchment. The core of the DUH

196	method is to equate the probability density distribution function of the time at which
197	the rainfall flows to the outlet of the basin to the IUH, in which the time-area
198	relationship was derived using the velocity field with spatial distribution characteristics.
199	Laurenson (1964) identified that the concept of DUH was due to time-area histogram.
200	After that, Madidement (1993) proposed the travel time formula for each grid cell,
201	which are relating to the length, slop, velocity coefficient of any reach of the flow path,
202	expressed as Equations. (1) and (2). The diagram of travel time calculation is shown as
203	Figure 2(a).

204
$$V = kS^{0.5}$$
 (1)

205
$$\Delta \tau_i = \frac{L_i}{V_i} \quad \text{or} \quad \Delta \tau_i = \frac{\sqrt{2}L_i}{V_i}$$
(2)

where *V* is the flow velocity; *S* is the slope of the watershed unit; *k* is the coefficient of the flow velocity which is related to the vegetational form of the watershed unit; $\Delta \tau_i$ is the retention time of the unit *i*; L_i is the path length of the stream; and *m* is the number of the watershed unit.

Then the simulation is performed along the flow path from the gird cell to thewatershed outlet (Muzik, 1996), and the formula is given by

212
$$\tau = \sum_{i=1}^{m} \Delta \tau_i$$
(3)

213 where τ_i is the travel time from the unit *i* to the outlet of the sub-watershed.

In addition, the time-area histogram of the watershed can be obtained after the arrival time of each cell being calculated as shown in Figure 2(b), which indicates the

ff at the watershed outlet as	216
gram can be obtained based	217
shown in Figure 2(c). Then,	218
-area diagram values are at	219
	220
(4)	221
ue of the DUH; $A(i\Delta t)$ is	222
	223
influence of the spatial	224
couting process and adopt a	225
time-varying rain intensity.	226
ity and Manning equations	227
method, the TDUH method	228

is more consistent with the routing process. The concrete derivation process of thismethod is as follows.

231 The continuity equation of water flow is given by

 $VLh = IA \tag{5}$

233 where V is the velocity of the flow; L is the length of the unit; h is the depth of the

234 stream; *I* is the intensity of the excess rainfall; and *A* is the area of the unit, $A = L^2$.

235 The Manning formula is described by

(8)

236
$$V = \frac{1}{n} h^{\frac{2}{3}} S^{\frac{1}{2}}$$
(6)

237 where *n* is the coefficient of the roughness; and *S* is the slope of the watershed unit.

238 Combining Equations. (5) and (6), the specific formula of the flow velocity can be

239 written by

243

247

240
$$V = \frac{1}{n^{0.6}} I^{0.4} L^{0.4} S^{0.3}$$
(7)

241 Denote the discrete rainfall intensity and the reference rainfall intensity as I_s and 242 I_c respectively (Kong et al., 2019). The flow velocity of the discrete rainfall intensity

244
$$V_{s} = V_{c} \cdot \frac{V_{s}}{V_{c}} = V_{c} \cdot \frac{I_{s}^{2/5}}{I_{c}^{2/5}}$$

245 where V_c is the flow velocity of the reference rainfall intensity.

246 Combining Equations. (6) and (8), the flow velocity formula considering rainfall

248
$$V_{s1} = \frac{1}{n} h^{\frac{2}{3}} S^{\frac{1}{2}} \left(\frac{I_s}{I_c} \right)^{\frac{2}{5}} v = k S^{\frac{1}{2}} \left(\frac{I_s}{I_c} \right)^{\frac{2}{5}}$$
(9)

249 where *k* is the velocity coefficient.

intensity is given by

 V_s can be written by

Equation. (5) assumes that equilibrium in each individual grid cell is reached before the excess rainfall pulse. However, the DUH derived based on this assumption may be higher, leading to larger forecast errors. For instance, in a continues storm event, due to the spatial heterogeneity of the underlying surface, the surface runoff increases in the unsaturated regions, and the infiltration rate decreases. As is known that the more

255	surface runoff, the greater the velocity. Until the entire basin is saturated and the routing
256	velocity reach its maximum. However, the traditional velocity calculations do not
257	consider the influence of the proportion of water sources in the unsaturated area on the
258	flow velocity. To solve this issue, an improved TDUH method considering soil moisture
259	content was proposed in this paper. The proposed equations for calculation of the flow
260	velocity of each cell was discussed below.
261	First, combining the soil moisture content and watershed storage capacity curve to
262	calculate α_t (the fraction of basin with the soil storage capacity less than W_t);
263	Furthermore, for the $(1-\alpha_i)$ part, calculating the proportion of A_i (the current soil
264	moisture content) to $A_t + B_t$ (the corresponding maximum soil moisture storage for
265	part of $(1-\alpha_t)$). The schematic diagram is shown in Figure 3, in which $\alpha \sim WM'$ is
266	the watershed storage capacity curve; W_t is the current soil moisture storage; and
267	$(1-\alpha_t)$ is the part of the watershed that the soil moisture storage dose not reach the
268	maximum.

For the watershed storage capacity curve $\alpha \sim WM'$, the specific formula is given by

271
$$\alpha = 1 - \left(1 - \frac{WM'}{WMM}\right)^{b}$$
(10)

272 where WM' is the soil storage capacity of the watershed; WMM is maximum 273 watershed soil storage capacity; α is fraction of basin with the soil storage capacity 274 less than WM'; and b is exponent of the curve.

275 For the current soil moisture storage content of the
$$(1-\alpha_t)$$
 part, the specific

formula is given by

$$A_t = 1 - \alpha_t \cdot W_t \tag{11}$$

For the maximum soil moisture storage of the $(1-\alpha_t)$ part, the specific formula

is given by

280
$$A_{t} + B_{t} = \int_{\alpha_{t}}^{1} WMM \left[1 - 1 - \alpha^{-\frac{1}{b}} \right] d\alpha$$
(12)

281 Thus, the proportion w_i of the current soil moisture content to the corresponding 282 maximum soil moisture content is expressed by

283
$$w_{t} = \frac{A_{t}}{A_{t} + B_{t}} = \frac{1 - \alpha_{t} \cdot W_{t}}{\int_{\alpha_{t}}^{1} WMM \left[1 - 1 - \alpha^{-\frac{1}{b}}\right] d\alpha} = \frac{W_{t}}{WMM \left[1 - \frac{b}{b+1} \cdot 1 - \alpha_{t}^{-\frac{1}{b}}\right]}$$
(13)

It can be seen from Equation. (13) that as the rainfall continuous, the soil moisture content in the unsaturated area continues to increase and the non-runoff area continues to decrease. With the gradual increase of soil moisture content w_t , $(1-\alpha_t)$ approaches 0 and w_t tends to 1 when the basin reaches the full storage.

288 Combining Equations. (9) and (13), and considering the impact of both rainfall 289 intensity and time-varying soil moisture content on the watershed velocity, the velocity 290 equation is assumed to be

291
$$V_{s2} = k \cdot S^{\frac{1}{2}} \cdot \left(\frac{I_s}{I_c}\right)^{\frac{2}{5}} \cdot w_t$$
(14)

292 Similar to the studies on dynamic upstream contributions by Bhattacharya et al.

293 (2012), Bunster et al. (2019), a power law can be used to improve the applicability of

it, and the formula is expressed by

295
$$V_{s2} = k \cdot S^{\frac{1}{2}} \cdot \left(\frac{I_s}{I_c}\right)^{\frac{2}{5}} \cdot w_t^{\gamma}$$
(15)

where γ is an exponent smaller than unity, which needs to be determined by trial and error method. Hence, the fraction of the current soil moisture content w_i that contributes to the flow velocity decreases as w_i increases.

Therefore, the proposed method considering both the rainfall intensity and soil moisture content was proposed, in which soil moisture content is regarded as an important factor affecting the TDUH. When the soil moisture content of the whole basin reaches the saturation, V_{s2} is equal to V_{s1} .

303 2.3 Model calibration

304 The SCE-UA (Shuffled Complex Evolution Algorithm) method, developed by the 305 University of Arizona in1992 (Duan et al., 1992), is suitable for the nonlinear, high dimension optimization problems. The method has been widely used for the calibration 306 307 of hydrological model (Vrugt et al., 2006; Beskow et al., 2011; Zhou et al., 2018). 308 Hence, the SCE-UA method was used to optimize the parameters of XAJ model in this 309 study. The relative flood peak error, relative peak time error, and Nash-Sutcliffe 310 efficiency of floods were chosen as the criteria, the specific functions of which are given 311 as follows.

312 (a) Objective function of the flood peak:

313
$$Obj_{1} = \frac{1}{N} \left| \sum_{i=1}^{N} \left(\frac{Q_{obs,i} - Q_{sim,i}}{Q_{obs,i}} \right) \right|$$
(16)

314 (b) Objective function of the peak time error:

315
$$Obj_2 = \left|\sum_{i=1}^n \left(T_{obs,i} - T_{sim,i}\right)\right| / \left(\sum_{i=1}^n T_{obs,i}\right)$$
(17)

316 (c) Objective function of the Nash-Sutcliffe efficiency:

317
$$NSE = 1 - \left[\sum_{i=1}^{n} (Q_{obs,i} - Q_{sim,i})^{2}\right] / \left[\sum_{i=1}^{n} (Q_{obs,i} - \overline{Q}_{obs})^{2}\right]$$
(18)

318
$$Obj_3 = 1 - NSE$$
 (19)

319 (d) The optimized objective function:

$$320 Obj = \min(aObj_1 + bObj_2 + cObj_3) (20)$$

321 where $Q_{obs,i}$ is the value of actual flood flow; $Q_{sim,i}$ is the value of predicted flood 322 flow; $Q'_{obs,i}$ is the value of actual flood peak; $Q'_{sim,i}$ is the value of predicted flood 323 peak; $T_{obs,i}$ is the time of actual flood peak; $T_{sim,i}$ is the time of predicted flood peak; 324 \overline{Q}_{obs} is the average of actual flood flow; N is the number of the flood; a, b and c are 325 constants.

326 **3 Study area and data**

The Qin River basin was selected as a case study. This river is the tributary of the Mei jiang River, which originates from Guangdong Province, China. The Qin River is 91 km long with a basin area of 1578 km². The mean slope of the basin is 1.1‰. There are 21 meteorological stations and 1 flow station (Jianshan station) in this area. The location and stations of the Qin River Basin are shown in Figure 4.

222

332	According to the DEM data of the Qin River Basin, the whole basin can be divided
333	into 9 sub-watersheds based on the natural water system, namely watershed 1-9 from
334	upstream to downstream as shown in Figure 5. The details of each sub-watershed are
335	given in Table 1.
336	The rainfall and evaporation data from meteorological stations was collected
337	with the length from the years 2013 to 2018. The simultaneous hourly runoff data for
338	the Jianshan station was collected as well. The soil moisture content before the floods
339	was calculated based on the daily recession coefficient of water storage in the basin.

ding to the DEM data of the Oile Discent Desire the end of a heading and heading data

340 4. Results and discussions

341 4.1 Calibration of parameters

342 4.1.1 Parameters Calibration of the runoff generation using the XAJ Model

343 The accuracy of runoff generation calculation is of great importance in the rainfall-344 runoff forecasts. The higher the accuracy of the runoff calculation is, the smaller the impact on the error of the routing calculation is. Because the Qin River Basin is in the 345 346 humid area of southern China, the saturation-excess method with three-source runoff separation of the XAJ model was adopted to calculate the excess rainfall in this study. 347 Dozens of floods were selected to calibrate the parameters of the XAJ model by the 348 349 shuffled complex evolution algorithm method. In addition, to make the simulation results of the XAJ model more accurate, the unit hydrograph was used for flood routing, 350 351 which was derived by historical rainfall runoff process. The time interval is 1 hour. The

352	flood peak, flood volume, and the occurrence time of flood peak are three main basic
353	elements for describing the flood events, and Equation (20) was used as the objective
354	function. The average Nash-Sutcliffe efficiency, relative flood peak error, and peak
355	occurrence time error obtained in the calibration period of the XAJ model are 0.92,
356	26.1%, and 1.5 hours respectively, indicating a good performance of the XAJ model.
357	The detailed information of the calibrated parameters of the XAJ model is shown in
358	Table 2.

359 4.1.2 Parameters determination of the proposed flood routing method

360 As mentioned in Section 2.2, the core of the DUH is the calculation of grid flow 361 velocity. As shown in Equation (15), the parameters that need to be calibrated are K, S, I_c and γ , in which I_c can be determined according to the hourly mean rainfall intensity 362 and flood forecast accuracy of the target basin. For the Qin River Basin, the Ic is set to 363 364 20 mm/h, because the mean rainfall intensity of multiple floods is about 20mm/h. 365 Additionally, parameter γ reflects the influence of soil moisture content in unsaturated regions on flow velocity. The smaller of parameter γ is, the smaller the 366 influence of soil moisture content has on the flow velocity. When the value of γ is 367 368 equal to 1, the flow velocity of grid cell is proportional to the soil moisture content 369 factor wt. According to the previous research on the flow velocity, the effect of upstream 370 contributions on the flow velocity is adjusted by a coefficient, which is set to 0.5. 371 Inspired by the research, the parameter γ of soil moisture content is assumed to be 0.5 372 to reflect the influence of soil moisture content on flow velocity in this study

373	(Bhattacharya et al., 2012; Bunster et al., 2019). In order to determine the grid cell slope
374	S, the slope distribution of the study areas is obtained from the DEM data of the target
375	basin as shown in Figure $6(a)$. Parameter k is the velocity coefficient, which can be
376	determined based on different underlying surface types or different flow states (Ajward
377	& Muzik, 2000). Parameter k changes with different underlying surface types and the
378	detailed k values are given in Table 3. The land type of the Qin River Basin is shown in
379	Figure 6(b). Then the k values of each grid cell can be determined combining Figure
380	6(b) and Table 3.

The grid flow velocity can be calculated by Equations (1) and (9) with the above parameter settings. In this basis, the flow travel time can be determined by Equation (2). It is noteworthy that the raster size of the basin was divided by 1km×1km, and the rasterized flow direction of each sub-watershed is shown in Figure 6(c), where *L* is 1 when the rasterized flow is flowing along the edges of the grid, and *L* is $\sqrt{2}$ when it is diagonally.

387 *4.2 Derivation of TDUH considering time-varying soil moisture content*

After determining the parameters above, the flood routing can be calculated based on the proposed TDUH considering time-varying soil moisture content. Meanwhile, in order to improve the efficiency and effectiveness of the routing method, the rainfall intensity and soil moisture content parameters were discretized in present study (Kong et al., 2019). Then a simplified TDUH considering time-varying soil moisture content and TDUH can be obtained in a certain range of rainfall intensities or soil moisture

394	contents, the division	ranges of which are	presented in Tables	4 and 5. Furthermore, to

- 395 evaluate the flood simulation effect of the proposed method, the traditional DUH and
- 396 TDUH methods were used for comparisons.

397 The DUH without considering rainfall intensity and soil moisture can be obtained 398 based on Equations (1) to (4). Results of the DUH for each sub-watershed of the Qin 399 River Basin are shown in Figures 7. There is only one DUH for a specific sub-watershed due to the simplification of the underlying surface such as slope and land covers. The 400 401 differences among the DUHs are mainly reflected in the flood peaks and their 402 occurrence time. It can be also seen from Figure 7 that the peaks of DUHs in Sub-403 watersheds 4 and 6 are significantly lower than others. The reasons may be that the 404 smaller mean slop values of Sub-watersheds 4 and 6 lead to lower flow velocity, 405 resulting in lower peaks of DUH.

Moreover, the TDUHs corresponding to different rainfall intensities of 9 subwatersheds are shown in Figure 8. It can be seen from Figure 8 that different rainfall intensities correspond to different TDUHs. The increased rainfall intensity leads to higher peak and earlier peak occurrence time of the TDUH. This is because that larger rainfall intensity causes larger flow velocity according to Equation (9). In the practical use of TDUH, the unit hydrographs need to be selected according to the rainfall intensities.

The TDUH of each sub-watershed can be further divided according to the soilmoisture content. The TDUHs considering soil moisture contents of Sub-watershed 1

415	are shown in Figure 9. Obviously, under the same rainfall intensity conditions, the soil
416	moisture content is of great importance to the shape, peak value and duration of the
417	TDUH. Specifically, when the proportion of soil moisture content w_t increases, the
418	proposed method considering soil moisture content is accompanied with steeper rising
419	limb, higher peak and shorter duration. After the whole basin is saturated, the TDUH
420	considering the time-varying soil moisture content is the same with the TDUH.

421 *4.3 Comparisons of flood routing methods*

422 The runoff generation module of the XAJ model was used to calculate the excess 423 rainfall, and the DUH, TDUH and improved TDUH considering soil moisture content 424 were employed for flood routing calculation, respectively. Dozens of floods for the Qin 425 River Bains were applied for model validation. Simulated results of the three methods 426 are shown in Table 6. Three criterions given in Equations (16), (17) and (19) were used 427 for model performance evaluation. It is demonstrated that the proposed method shows 428 the best performance. The relative flood peak error of the proposed method ranges from -3.9% to 9.5%. The mean peak occurrence time error of the proposed is 1.2h, which is 429 430 the smallest among the three methods. The average NSE coefficients of floods for 431 validation are above 0.8. Figure 10 shows the flood hydrographs of three routing 432 methods for part of the flood events (Event No. 20130720, 20130817, 20150709, 433 20160128, 20161021 and 20180916). It generally shows the proposed method performs 434 the best among the three routing methods.

435	The flood events No.20161021 and 20180916 were conducted in-depth analyses
436	for the reason that the forecast results of the both floods using proposed method are not
437	as good as TDUH. For the flood event No.20161021, the simulation result of the
438	proposed method are basically consistent with that of the DUH method. The rainfall in
439	the previous 30 days before the flood event No.20161021 was calculated, and the result
440	shows that the soil moisture content was close to saturation. As mentioned above, for
441	watershed where the soil moisture content is completely saturated, the proposed method
442	performs the same as the TDUH method. Thus, the simulation results of the proposed
443	method and TDUH are almost consistent and better than that of the DUH method for
444	the flood No.20161021. For the flood event No.20180916, there is a lag in the peak
445	time of the proposed method, and the rainfall in the previous time of this flood is
446	relatively small. The possible reason for the inaccurate flood simulation is that the
447	runoff generation is not dominated by the saturation-excess, and it is therefore not
448	appropriate to calculate runoff with the XAJ model.

449 4.4 Influence of time-varying soil moisture content on floods forecasts

In order to explore the mechanism of time-varying soil moisture content on the flood forecasts, three typical flood forecasting results of the proposed method were chosen for comparison. Specifically, compared with the forecasting results using TDUH, the result of the flood event No.20130817 using the proposed method is relatively similar, the results of the flood events No.20150709 and 20160128 have a better performance, and the result of the flood event No.20180916 is poor. Their

456	corresponding temporal evolution processes of soil moisture content in unsaturated
457	regions were obtained. The box-and-whisker plots of soil moisture contents of all sub-
458	watersheds for flood events No.20130817, 20150709, 20160128 and 20180916 are
459	shown in Figure 11. It can be seen from Figure 11 that the soil moisture content of each
460	sub-watershed is initially low, then the soil moisture content of the sub-watershed
461	gradually increases. Meanwhile, it is obviously that the w_t is hard to reach the maximum.
462	For all the 4 floods, only the flood event No.20130817 does the saturation of 9 sub-
463	watersheds eventually reach. The mean values of w_t for the flood events No.20150709,
464	20160128 and 20180916 range from 0.5 to 0.8, and the soil moisture content does not
465	reach the maximum during the storm events. As shown from the observed flood in
466	Figure 10, the peak discharge of the flood event No.20130817 is larger than those of
467	other floods, reaching 3500 m^3/s , which means that the watershed is more probably
468	reach the saturation during the flood period.

As discussed in Section 4.3, the result of the flood event No.20130817 using the 469 proposed routing method shows the same behavior as that of TDUH. This is because 470 the simulation performance of the proposed method considering time-varying soil 471 moisture content is the same as the TDUH when the soil moisture contents are closer 472 to 1. Additionally, the forecasting results of the flood events No.20150709, 20160128 473 474 with the proposed routing method are obviously better than those of DUH and TDUH. 475 The reason can be summarized as follows. The mean values of w_t range from 0.5 to 0.6 476 for the two floods and the initially w_t values are low as shown in Figure 11. Thus, the

477	soil moisture content has a significant impact on the shape of hydrographs. For the flood
478	event No.20180916, the sub-watersheds do not reach a global saturation eventually, and
479	the time-varying values of w_t are generally high, which leads to lower flow velocity
480	than that of the TDUH method. The peaks occurrence time of unit hydrographs used
481	for the runoff routing calculation are general later, and therefore leading to a lag time
482	between the maximum rainfall intensity and the peak discharge for the forecasting
483	result of the flood event No.20180916. The flood peak discharge is higher, which may
484	be due to the inaccurate calculation of excess rainfall.

485 4.5 Comparisons of velocity calculated by the three routing methods

486 The routing method considering both time-varying rainfall intensity and soil 487 moisture content is more accurate as discussed in Section 4.3. To explore the effect of 488 time-varying soil moisture content on flow velocity, we selected a grid cell in the Subwatershed 3, in which slope and land type parameters are constants. Then, the flow 489 490 velocity was calculated under different storm conditions. The storm events 491 No.20130817 and 20150709 were selected and compared, because the storm event 492 No.20130817 is with a high intensity and long duration, and the storm event No. 493 20150709 is with a short period of heavy rainfall. Thus, soil moisture contents during 494 the two storm events are significantly different. Figure 12 shows time-varying velocity values of a grid cell for storm events No.20130817 and 20150709. For the two storm 495 events, the mean velocity of the DUH method is the largest among the three methods, 496 followed by the TDUH method. The velocity calculated by the proposed method 497

498	considering soil moisture content is the smallest. The velocity of DUH method is a
499	constant in two storms, and that of the TDUH method varies with the changes of the
500	excess rainfall. Meanwhile, the flow velocity of the proposed method is not only
501	dominated by rainfall intensity, but also related to soil water content.
502	For the storm event No.20130817, the initial soil moisture content is large, and it
503	reaches the maximum rapidly. The flow velocity of the proposed method is slightly
504	smaller than that of TDUH method at the initial stage of storm events. When the whole
505	basin reaches saturation, the flow velocity of the two methods is equal. Therefore, the
506	differences of hydrographs are small when using TDUH method and the proposed
507	method for flood routing calculation, which leads to similar forecasting results.
508	For the storm event No.20150709, the initial soil moisture content is small, and
509	the entire basin cannot reach the saturation after the rainstorm. Therefore, the grid
510	velocity in the early stage of a storm is greatly affected by the soil moisture content. In
511	the later stage of the rainstorm, the w_t of the watershed does not reach the maximum,
512	and it is nearly close to 1. Thus, the impact of later soil moisture content on the flow
513	velocity value is small. From the analyses above, it can be concluded that the shape and
514	duration of the unit hydrograph is mainly related to the soil moisture content at the
515	initial stage of a storm, and when the watershed is approximately saturated, the grid
516	flow velocity is majorly dominated by the excess rainfall.

26

517 4. Conclusions

518	An improved distributed unit hydrographs routing method considering time-
519	varying soil moisture content was proposed for flood routing. The proposed method
520	comprehensively considered the changes of time-varying soil moisture content and
521	rainfall intensity. The response of underlying surface to the soil moisture content was
522	considered as an important factor in this study. The Qin River Basin was selected as a
523	case study. The DUH, TDUH and proposed routing methods were used for flood
524	forecasts, and the simulated results were compared and discussed. The main
525	conclusions are summarized as follows.

(1) The proposed runoff routing method considering both time-varying rainfall intensity and soil moisture content was proposed, and the influence of the inhomogeneity of runoff generation on the confluence process was considered. It is suggested that the soil moisture content is a significant factor affecting the accuracy of flood forecasts, especially in the catchment dominated by saturation-excess runoff, and the flow velocity increases gradually with more surface runoff after considering the soil moisture content in unsaturated regions.

(2) The time-varying characteristics of the DUH can be further considered by
introducing both the factors such as rainfall intensity and soil moisture content to the
flow velocity formula, which can effectively improve the accuracy of flood forecasts.
The simulation hydrographs and criterions of ten floods show that the accuracy of the
proposed method is the highest, followed by the TDUH method, and then the DUH

- 538 method.
- 539 (3) The shape and duration of the improved TDUH considering soil moisture are
- 540 mainly affected by the rainfall intensity. Meanwhile, soil moisture content at initial
- 541 stage of a storm also plays a significant role in the characteristics of the improved
- 542 TDUH. When the watershed is approximately saturated, the grid flow velocity is
- 543 majorly dominated by the excess rainfall.
- 544 Data availability
- 545 Due to the strict security requirements from the departments, some or all data, models,
- 546 or code generated or used in the study are proprietary or confidential in nature and may
- 547 only be provided with restrictions (e.g. anonymized data).
- 548 Author contributions
- 549 Lu Chen conceived the original idea, and Bin Yi designed the methodology. Ping Jiang
- 550 collected the data. Bin Yi developed the code and performed the study. Bin Yi, Lu Chen,
- 551 and Hansong Zhang contributed to the interpretation of the results. Bin Yi wrote the
- 552 paper, and Lu Chen revised the paper.
- 553 Competing interests
- 554 The authors declare that they have no conflict of interest.

555 Acknowledgments

556 This research has been supported by the key project of Natural Science Foundation of

557 China (No. U1865202, No. 52039004).

558 References

559	Alfieri, L., Burek, P., Feyen, L. and Forzieri, G.: Global warming increases the
561	10.2247 2260 https://doi.org/10.5104/hoss 10.2247 2015 2015
562	$\begin{array}{c} 15.2247-2200, https://doi.org/10.5174/https/$
563	Model for Derivation of Synthetic Unit Hydrograph Journal of Hydrologic
564	Engineering 10(6):458 467 https://doi.org/10.1061/(ASCE)1084
565	0600(2005)10.6(458) 2005
566	Deskow S. Mallo C. P. Norton J. D. and de Silve A. M.: Performance of a
567	distributed semi concentual hydrological model under tropical watershed
568	anditions Catona 86(2):160 171 https://doi.org/10.1016/j.astona.2011.02.010
560	2011
570	2011. Phottagharwa A K MaEnros P M Zhao H Kumar D and Shinda C Madalark
571	model: improvement and application. Journal of Engineering, 2(7):100-118
572	https://doi.org/10.0700/3021.0271100118.2012
572	Brenden I Stefen H S. Luc F. Jergen C. I. H. Aerts Reinhard M. Wouter Botzen
574	W I Laurens M B. Georg P. Rodrigo R and Philin I W: Increasing stress on
575	disaster risk finance due to large floods Nature Climate Change 4(4):264-268
576	https://doi.org/10.1038/nclimate/2124_2014
577	Bhuvan M K Kumar S Jena J and Bhunya P K · Flood Hydrograph with Synthetic
578	Unit Hydrograph Routing Water Resources Management 29(15):5765-5782
579	https://doi.org/10.1007/s11269-015-1145-1.2015
580	Bunster T Gironás I Niemann I D. On the Influence of Unstream Flow
581	Contributions on the Basin Response Function for Hydrograph Prediction Water
582	Resources Research 55 (6) 4915-4935 https://doi.org/10.1029/2018WR024510
583	2019
584	Clark C. O. Storage and the unit hydrograph Transactions 69(9):1333-1360
585	https://doi.org/10.1061/TACEAT.0005800_1945
586	Chow V T : Handbook of applied hydrology Hydrological Sciences Journal 10(1)
587	1964
588	Chinh L. Iseri H. Hiramatsu K. Harada M. and Mori M. Simulation of rainfall
589	runoff and pollutant load for Chikugo River basin in Japan using a GIS-based
590	distributed parameter model. Paddy and Water Environment, 11(1-4):97-112.
591	https://doi.org/10.1007/s10333-011-0296-9. 2013.
592	Dooge, L: A General Theory of the Unit Hydrograph, Journal of Geophysical Research
593	Atmospheres, 64(2):241-256, https://doi.org/10.1029/JZ064i002p00241.1959.
594	Duan, O. Y., Sorooshian, S., Gupta, V.: Effective and efficient global optimization for
595	conceptual rainfall-runoff models. Water Resources Research. 28(4):1015-1031.
	1

596	https://doi.org/10.1029/91WR02985, 1992.
597	Du, J., Xie, H., Hu, Y., Xu, Y. P. and Xu, C. Y.: Development and testing of a new storm
598	runoff routing approach based on time variant spatially distributed travel time
599	method. Journal of Hydrology, 369(1-2):44-54,
600	https://doi.org/10.1016/j.jhydrol.2009.02.033, 2009.
601	Gupta, V. K., Waymir, E., Wang, C. T.: A representation of an instantaneous unit
602	hydrograph from geomorphology. Water Resources Research, 16(5): 855-862,
603	https://doi.org/10.1029/WR016i005p00855, 1980.
604	Gibbs, M. S., Dandy, G. C., Maier, H. R.: Evaluation of parameter setting for two GIS
605	based unit hydrograph models. Journal of Hydrology, 393(3-4), 197-205,
606	https://doi.org/10.1016/j.jhydrol.2010.08.014, 2010.
607	Gironás, J., Niemann, J. D., Roesner, L. A., Rodriguez, F. and Andrieu, H.: A morpho-
608	climatic instantaneous unit hydrograph model for urban catchments based on the
609	kinematic wave approximation. Journal of Hydrology, 377(3-4),
610	https://doi.org/10.1016/j.jhydrol.2009.08.030 317-334, 2009.
611	Gad, M. A.: Flow Velocity and Travel Time Determination on Grid Basis Using
612	Spatially Varied Hydraulic Radius. Journal of Environmental Informatics,
613	https://doi.org/10.3808/jei.201400259, 23(2):36-46, 2014.
614	Kumar, R., Chatterjee, C., Singh, R. D., Lohani, A. K. and Kumar, S.: Runoff estimation
615	for an ungauged catchment using geomorphological instantaneous unit
616	hydrograph (GIUH) models. Hydrological Processes, 21(14):1829-1840,
617	https://doi.org/10.1002/hyp.6318, 2007.
618	Khaleghi, S., Monajemi, P., Nia, M. P.: Introducing a new conceptual instantaneous unit
619	hydrograph model based on a hydraulic approach. Hydrological Sciences Journal,
620	63:13-14, https://doi.org/10.1080/02626667.2018.1550294, 2018.
621	Kong, F. Z., Guo, L.: A method of deriving time-variant distributed unit hydrograph.
622	Advances in Water Science, 30(04):477-484,
623	https://doi.org/10.14042/j.cnki.32.1309.2019.04.003. 2019. (in chinese)
624	Lee, K. T., Chen, N. C., Chung, Y. R.: Derivation of variable IUH corresponding to
625	time-varying rainfall intensity during storms. International Association of
626	Scientific Hydrology Bulletin, 53(2):323-337,
627	https://doi.org/10.1623/hysj.53.2.323, 2008.
628	Lu, M. J., Li, X.: Time scale dependent sensitivities of the XinAnJiang model
629	parameters. Hydrological Research Letters, 8 (1):51-56,
630	https://doi.org/10.3178/hrl.8.51, 2014.
631	Laurenson, E. M.: A catchment storage model for runoff routing. Journal of Hydrology,
632	2(2):141-163, https://doi.org/10.1016/0022-1694(64)90025-3, 1964.
633	Mockus, V.: Use of storm and watershed characteristics in synthetic hydrograph
634	analysis and application. AGU, Pacific Southwest Region Mtg., Sacramento, Calif,
635	1957.
636	Minshall, N. E.: Predicting storm runoff on small experimental watersheds. J. Hydraul.
637	Engng ASCE, 86(HY8), 17-38, https://doi.org/10.1061/JYCEAJ.0000509, 1960.

638	Maidment, D. R.: Developing a spatially distributed unit hydrograph by using GIS.
039	IARIS publication, 181-181, 1993.
640 641	for generating synthetic unit hydrographs. Transactions of the ASAE, 45(6):1825-
642	1834, https://doi.org/10.13031/2013.11433, 2002.
643	Maidment, D. R., Olivera, F., Calver, A., Eatherall, A. and Fraczek, W.: Unit
644	hydrograph derived from a spatially distributed velocity field. Hydrological
645	ProcHydrological Processesses, 10: 831-844,
646	https://doi.org/10.1002/(SICI)1099-1085(199606)10:6<831::AID-
647	HYP374>3.0.CO;2-N, 1996.
648	Melesse, A. M., Graham, W. D.: Storm runoff prediction based on a spatially distributed
649	travel time method utilizing remote sensing and GIS, Journal of the American
650	Water Resources Association, 40 (4), 863-879, https://doi.org/10.1111/j.1752-
651	1688.2004.tb01051.x, 2004.
652	Muzik, I.: A GIS-derived distributed unit hydrograph. Hydrological Processes,
653	10(10):1401-1409, https://doi.org/10.1002/(SICI)1099-
654	1085(199610)10:10<1401::AID-HYP469>3.0.CO;2-3, 1996.
655	Munich, R. E.: Natural catastrophe losses at their highest for four years, 2017.
656	Noto, L. V., Loggia, G. L.: Derivation of a distributed unit hydrograph integrating GIS
657	and remote sensing. Journal of Hydrologic Engineering, 12 (6):639-650,
658	https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(639), 2007.
659	Nigussie T. A., Yeğen E. B., Melesse A. M.: Performance Evaluation of Synthetic Unit
660	Hydrograph Methods in Mediterranean Climate. A Case Study at Guvenc Micro-
661	watershed, Turkey. In: Melesse A., Abtew W. (eds) Landscape Dynamics, Soils
662	and Hydrological Processes in Varied Climates. Springer Geography. Springer,
663	Cham. https://doi.org/10.1007/978-3-319-18787-7_15, 2016.
664	Nash, J. E.: The form of the instantaneous unit hydrograph. International Association
665	of Science and Hydrology, 45(3):114-121, 1957.
666	Paul, P. K., Kumari, N., Panigrahi, N., Mishra, A. and Singh, R.: Implementation of
667	cell-to-cell routing scheme in a large scale conceptual hydrological model
668	Environmental Modelling & Software, 101(C):23-33,
669	https://doi.org/10.1016/j.envsoft.2017.12.003, 2018.
670	Rodríguez-Iturbe, I., Valdes, J. B.: The geomorphologic structure of hydrologic
671	response. Water Resources Research, 15(6): 1409-1420,
672	https://doi.org/10.1029/WR015i006p01409, 1979.
673	Rodríguez-Iturbe, I., González-Sanabria, M., Bras R. L.: A geomorphoclimatic theory
674	of the instantaneous unit hydrograph. Water Resources Research, 18(4):877-886,
675	https://doi.org/10.1029/WR018i004p00877, 1982.
676	Robinson, J. S., Sivapalan, M., Snell, J. D.: On the relative roles of hillslope processes,
677	channel routing, and network geomorphology in the hydrologic response of
678	natural catchments. Water Resources Research, 31(12),
679	https://doi.org/10.1029/95WR01948, 1995.

680	Rigon, R., Bancheri, M., Formetta, G. and Lavenne, A.: The geomorphological unit
681	hydrograph from a historical-critical perspective[J]. Earth Surface Processes &
682	Landforms, 41(1):27-37, https://doi.org/10.1002/esp.3855, 2016.
683	Sherman, L. K.: Streamflow from rainfall by the unit-graph method. Engineering News
684	Record, 108:501-505, 1932.
685	Snyder, F. F.: Synthetic unit-graphs. Transactions American Geophysical Union, 19,
686	447-454, https://doi.org/10.1029/TR019i001p00447, 1938.
687	Saghafian, B., Julien, P. Y.: Time to equilibrium for spatially variable watersheds.
688	Journal of Hydrology, 172 (1-4):231-245, https://doi.org/10.1016/0022-
689	1694(95)02692-I, 1995.
690	SCS. Design of hydrograph. Washington, DC: US Department of Agriculture, Soil
691	Conservation Service. 2002.
692	Singh, P. K., Bhunya, P. K., Mishra, S. K. and Chaube, U. C.: An extended hybrid model
693	for synthetic unit hydrograph derivation. Journal of Hydrology, 336(3-4):347-360,
694	https://doi.org/10.1016/j.jhydrol.2007.01.006, 2007.
695	Singh, P. K., Mishra, S. K. and Jain, M. K.: A review of the synthetic unit hydrograph:
696	from the empirical UH to advanced geomorphological methods. International
697	Association of Scientific Hydrology Bulletin, 59(2):239-261,
698	https://doi.org/10.1080/02626667.2013.870664, 2014.
699	Sarangi, A., Madramootoo, C. A., Enright, P. and Prasher, S. O.: Evaluation of three
700	unit hydrograph models to predict the surface runoff from a Canadian watershed.
701	Water Resources Management, 21(7):1127-1143, https://doi.org/10.1007/s11269-
702	006-9072-9, 2007.
703	Singh, S. K.: Simple Parametric Instantaneous Unit Hydrograph. Journal of Irrigation
704	& Drainage Engineering, 141(5):04014066.1-04014066.10,
705	https://doi.org/10.1061/(ASCE)IR.1943-4774.0000830, 2015.
706	Vrugt, J. A., Gupta, H. V., Dekker, S. C., Sorooshiand, S., Wagenere, T. and Boutenf,
707	W.: Application of stochastic parameter optimization to the Sacramento Soil
708	Moisture Accounting model. Journal of Hydrology, 325(1-4),288-307,
709	https://doi.org/10.1016/j.jhydrol.2005.10.041, 2006.
710	Zhao, R. J., Zuang, Y., Fang, L.: The xinanjiang model. IAHS AISH Publ. 129, 351-
711	356, 1980.
712	Zhao, R. J.: Xinanjiang model applied in China. J. Hydrol. 135(1-4), 371-381,
713	https://doi.org/10.1016/0022-1694(92)90096-E, 1992.
714	Zhou, Q., Chen, L., Singh, V. P., Zhou, J. Z., Chen, X. H. and Xiong, L. H.: Rainfall-
715	runoff simulation in Karst dominated areas based on a coupled conceptual
716	hydrological model. Journal of Hydrology, 573: 524-533,
717	https://doi.org/10.1016/j.jhydrol.2019.03.099, 2019.
718	List of Tables

719 **Table 1.** Detailed information of sub-watersheds

Sub-watersheds	Drainage area/km ²	Number of grids	Average slope
Sub-watershed 1	175.64	176	13.29
Sub-watershed 2	195.86	197	9.27
Sub-watershed 3	154.97	156	12.50
Sub-watershed 4	153.08	151	9.57
Sub-watershed 5	147.79	147	12.49
Sub-watershed 6	249.36	253	11.74
Sub-watershed 7	213.34	211	10.56
Sub-watershed 8	122.28	129	10.77
Sub-watershed 9	166.51	161	9.74

720 **Table 2.** Calibrated parameters of the XAJ model

Parameters	Physical meaning	Value	Unit
UM	Averaged soil moisture storage capacity of the upper layer	18.87	mm
LM	Averaged soil moisture storage capacity of the lower layer	73.67	mm
DM	Averaged soil moisture storage capacity of the deep layer	39.29	mm
В	Exponential of distribution of tension water capacity	0.27	-
IM	Ratio of impervious to total areas in the catchment	0.01	-
Κ	Ratio of potential evapotranspiration to pan evaporation	0.85	-
С	Evapotranspiration coefficient of the deeper layer	0.12	-
SM	Free water capacity of the surface layer	46.29	mm
EX	Exponent of the free water capacity curve influencing the development of the saturated area	0.50	-
KI	Outflow coefficient of free water storage to interflow	0.41	-
KG	Outflow coefficient of free water storage to groundwater	0.28	-
CI	Recession constant of the lower interflow storage	0.87	-
CG	Recession constant of the ground water storage	0.99	-
CS	Recession constant in the lag and rout method for routing through	0.46	_
0.0	the channel system within each sub-watershed	0110	
KE	Muskingum time constant for each sub-reach	23.90	-
XE	Muskingum weighting factor for each sub-reach	0.13	-

721 **Table 3.** The specific values of *k* for different vegetational types

Land Type	Vegetational Form	<i>k</i> (m/s)
	fallow	1.37
Crop land	contour tillage	1.40
	straight plough	2.77
	trample	0.30
	lush	0.46
Grass and plow land	sparse	0.64
	pasture	0.40
	dense	0.21
Forest	sparse	0.43
	full of dead leaves	076
Impervious surface	1	6.22

Table 4. The rainfall intensity I_t of each period corresponds to the discrete rain intensity

 $I_{\rm s}$

Net rainfall intensity I_t (mm/h)	$0 < I_t \leq 15$	$15 < I_t \le 25$	$25 < I_t \leq 35$	$I_{\rm t} > 35$
Discrete rainfall intensity <i>I</i> _s (mm/h)	10	20	30	40

Table 5. The soil moisture content w_t of each period corresponds to the discrete soil

725 moisture content w_s

Soil moisture content w _t	$0 < w_t \le 0.2$	$0.2 < w_t \le 0.4$	$0.4 < w_t \le 0.6$	$0.6 < w_t \le 0.8$	$w_{\rm t} > 0.8$
Discrete soil					
moisture content	0.1	0.3	0.5	0.7	0.85
W_S					

726 **Table 6.** The results of three criterions for all routing methods

Event	Event $Obj_1(\%) / Obj_2(h) / Obj_3(-)$		
number	DUH	TDUH	Proposed
20130720	13.3/5/0.47	12.5/3/0.52	-3.9/1/0.73
20130817	4.7/7/0.69	0.5/4/0.81	4.9/2/0.82
20130922	15.9/-3/0.57	-11.1/-3/0.54	2.4/2/0.85
20150709	27.1/-3/0.56	-18.8/0/0.54	9.5/-1/0.83
20160128	1.7/1/0.32	-6.6/-1/0.48	1.5/0/0.92
20160827	8.8/2/0.75	4.9/1/0.81	3.3/0/0.91

⁷²³

20161021	15.7/3/0.56	4.6/-1/0.78	8.8/-2/0.72
20180606	4.8/2/0.64	-2.4/1/0.72	2.6/0/0.84
20180830	4.2/-2/0.71	-0.3/-1/0.82	2.4/1/0.79
20180916	6.5/8/0.52	-4.8/3/0.69	4.4/-3/0.54
Average	9.5 / 3.3 /0.58	7.4 / 2.1 /0.67	4.4 / 1.2 /0.80

727 List of Figures

728

729 Figure 1. Schematic diagram of the XAJ model

730

731 Figure 2. Schematic diagram of the DUH

732

734

733 Figure 3. Watershed storage capacity curve

735 Figure 4. Distribution diagram of meteorological and flow stations in Qin river basin

737 Figure 5. The sub-watershed of the Qin River Basin. (*Note*. The satellite imagines for

the study area are available at http://www.gscloud.cn)

- 740
- 741 Figure 6. Slope, Land types and rasterized flow direction of the Qin River Basin. (a)
- 742 Slope distribution. (b) Land types. (c) Rasterized flow direction.

743

744 Figure 7. The DUH for the Qin River Basin

748 Figure 8. The TDUH for the Qin River Basin. (a) Sub-watershed 1. (b) Sub-watershed

2. (c) Sub-watershed 3. (d) Sub-watershed 4. (e) Sub-watershed 5. (f) Sub-watershed 6.

Figure 9. The TDUH considering soil moisture content for sub-watershed 1 of Qin River Basin. (a) $I_s = 10$ mm/h. (b) $I_s = 20$ mm/h. (c) $I_s = 30$ mm/h. (d) $I_s = 40$ mm/h.

Figure 10. Comparisons of flood hydrograph obtained by three methods. (a) Flood
event No.20130720. (b) Flood event No.20130817. (c) Flood event No.20150709. (d)
Flood event No.20160128. (e) Flood event No.20161021. (f) Flood event No.20180916.

Figure 11. Distributions of time-varying w_t at different times in each sub-watershed during the simulation period of the runoff using proposed TDUH method. (a) Flood event No.20130817. (b) Flood event No.20150709. (c) Flood event No.20160128. (d) Flood event No.20180916. w_t represents the ratio of current soil moisture content to the corresponding maximum soil moisture content in unsaturated region.

769 Figure 12. Time-varying velocity values of a grid cell in different storm events. (a)

770 Time-varying velocity in storm event No.20130817. (b) Time-varying velocity in storm

event No.20150709. The rainfall content is
$$\frac{I_s}{I_c}$$
, and the soil moisture content is w_t