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Abstract. Climate change impact studies on hydrological extremes often rely on the use of hydrological models with 

parameters inferred by means ofthrough calibration procedures using observed meteorological data as input forcing. In this 

work, we show that this procedure can lead to a biased evaluation of the probability distribution of high streamflow extremes 

when climate models are used. As an alternative approach, we introduce a methodology, coined Hydrological Calibration of 10 

eXtremes (HyCoX), in which the calibration of the hydrological model, as driven by climate models’ outputs, is carried out 

by maximizing the probability that the modelled and observed high streamflow extremes belong to the same statistical 

population. The application to the Adige river catchment (southeastern Alps, Italy) by means of HYPERstreamHS, a 

distributed hydrological model, showed that this procedure preserves statistical coherence and produceproduces reliable 

quantiles of the annual maximum streamflow to be used in assessment studies.  15 

Key Points/Highlights: 

 A methodology for devising reliable extreme high streamflow scenarios from climate change model simulations  

 Accurate reproduction of observed ECDF of annual streamflow maximum  

 Preservation of statistical coherence between observed and simulated ECDFs of annual streamflow maximum  

Keywords: Goal-oriented calibration; high streamflow extremes, Climate change; statistical coherence; hydrological 20 
modelling  

1 Introduction 

The recognition that an altered climate may affect severely water availability, floods and droughts, led in the past decades to 

a wealth of climate change impact assessment studies. A number ofSeveral studies investigated the likely impact of climate 

change on hydrology by combininghydrological modelling with meteorological forcing obtained from an ensemble of 25 

projections from multiple climate models under different greenhouse gas emissions scenarios and hydrological modelling [e.g., 

Kundzewicz et al., 2007; Todd et al., 2010 and, Wilby and Harris, 2006 for a comprehensive review]. A wealth of studies 
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focused on long-term annual and/or seasonal changes in hydrological variables such as runoff, streamflow, snow melt and soil 

moisture [e.g., Chiew et al. 2009; Majone et al., 2012; Buytaert and De Bièvre, 2012]. Much less studies addressed projected 

changes inof hydrological extremes, i.e. floods and droughts, though they are expected to exert profound and dramatic impacts 30 

on agriculture, economy, human health, energy and many other water-related sectors [e.g., Arnell 2011; Taye et al. 2011; 

Bouwer, 2013; Thornton et al., 2014].  

The peculiarity of hydrological calibration in climate change impact studies has been highly debated in the hydrological 

modelling community [e.g. Peel and Blöschl, 2011; Muñoz et al., 2013; Montanari et al., 2013; Thirel et al., 2014]. According 

to the most used approach the hydrological model is first calibrated against the observed streamflow by using observed 35 

meteorological data as input. The calibrated hydrological model is then run with the output of climate models as input to assess 

the projected changes of selected indicators, including those related to extremes [e.g. flow quantiles, see Ngongondo et al., 

2013; Aich et al., 2016; Pechlivanidis et al., 2017; Vetter et al., 2017; Hattermann et al. 2018]. The drawbacks of such an 

approach are, however, twofold: i) a model correctly reproducingoptimality in the reproduction of the time series of observed 

streamflowstream flow does not guaranteeautomatically imply optimality in the correct reproduction of the desired statistics 40 

for extremes; and ii) because of epistemic uncertainty, a model calibrated with a given set of observations may respond in a 

different waydifferently when fed with projections obtained from climate change scenarios. Concerning this latter aspect, a 

number ofsome studies evidenced that model parameters are highly dependent on the climatic characteristics of the input 

forcing used for the calibration of the hydrological model [e.g., Vaze et al., 2010; Laiti et al., 2018]. Although recognized, this 

additional source of uncertainty is mostly ignored in climate change impact studies. 45 

Several studies suggested that observed streamflow extremes provide valuable information about the hydrological behaviour 

of investigated catchments [Grubbs, 1969; Laio et al., 2010]. Similarly, Perrin et al. [2007] and Seibert and Beven [2009] 

concluded that a limited number of streamflow extremes encapsulate a significant amount of information that may be useful 

for hydrological model calibration. Beven and Westerberg [2011] suggested also that, when dealing with extremes, including 

the entire time series might not be informative. This occurs, for instance, when streamflow extremes belong to a different 50 

population than ordinary flows [e.g., Calenda et al, 2009], such that the latter dodoes not provide useful information for 

inferring the former. Hence, quantifying the influence of such extreme events on model calibration is still a challenge in 

hydrological studies [Brigode et al., 2015], such as quantifying the uncertainty associated towith these estimates [Honti et al., 

2014]. 

To overcome the aforementioned limitations, we propose an innovative methodology in which the calibration of a physically-55 

based hydrological model, as driven by climate models, is conducted by maximizing the probability that the modelled and 

observed streamflow extremes belong to the same population within the reference period. While the approach is exemplified 

in this work for high streamflows (also because of the broad interest in the topic), it can be applied to low flows as well (e.g., 

for droughts assessment). The methodology, coined here as Hydrological Calibration of eXtremes (HyCoX), targets 

specifically climate change impact assessment studies and relies on the use of the two-sample Kolmogorov-Smirnov statistic 60 
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[Smirnov, 1939] as an efficiency metric during the calibration procedure. We emphasize that the suggested approach is by 

definition “goal-oriented”, as recently discussed in Fiori et al. [2016], Guthke [2017] and Laiti et al., [2018]. 

Studies adopting the two-sample Kolmogorov-Smirnov test to evaluate if simulated hydrological variables are distributed 

according to a given probability distribution [e.g., Kleinen and Petschel-Held, 2007], to detect changes in hydrological 

variables [e.g., Wang et al., 2008], or to understand if calibrated parameters of hydrological models belong to a given 65 

probability distribution [e.g., Wu et al., 2017; Wang and Solomatine, 2019], are relatively common in the literature. This 

notwithstanding, we are not aware of any study adopting this statistical test in the context of hydrological model calibration 

on extremes.  

The main objective of the present work is therefore twofold. From one side, we introduce the HyCoX framework and assess 

its capability to reproduce observed high streamflow extremes using climate models as input meteorological forcing. On the 70 

other, the strength of the methodology is checkedtested by performing a comparison with experiments in which model 

parameterizationsparameters are obtained by calibrating the hydrological model by using observed streamflow and 

meteorological data (standard procedure) with a suite of objective functions customarily used in hydrological applications. 

The paper is organized as follows: Sect. 2 presents the hydrological modelling framework, the calibration metrics and the 

adopted statistical test; a description of the study area, the climate change projections, the observational hydro-meteorological 75 

datasets and the simulations set-up are summarized in Sect. 3. The main findings are presented and discussed in Sect. 4, 

whereas conclusions are finally drawn in Sect. 5. 

2 Methods 

2.1 Hydrological modelling                            

Hydrological simulations were performed at the daily time scale with the HYPERstreamHS model [Avesani et al., 2021; Laiti 80 

et al., 2018; Larsen et al., 2021] which couples the HYPERstream routing scheme, recently proposed by Piccolroaz et al., 

[2016], with a continuous module for surface and subsurface flow generation. HYPERstream routing scheme is specifically 

designed for being easily coupledto facilitate coupling with climate models and, in general, with gridded climate datasets. 

HYPERstream can share the same computational grid as that of any overlaying product providing the meteorological forcing, 

still preserving geomorphological dispersion of the river network [Rinaldo et al., 1991] irrespective of the grid resolution. This 85 

“perfect upscaling” [cf. Piccolroaz et al., 2016] is obtained by the application of suitable transfer functions derived from a 

high-resolution Digital Elevation Model (DEM) of the study area. Surface flow is computed by using the continuous SCS-CN 

model [Michel et al., 2005], which receives as input the total precipitation given by the sum of rainfall and snow melting 

evaluated by the degree-day model coupled with mass balance for taking into account, which includes snow accumulation 

[Rango and Martinec, 1995]. The remaining flow enters into a non-linear bucket mimicking soil moisture dynamicsdynamic 90 

[Majone et al., 2010].  Evapotranspiration is computed by the Hargreaves and Samani [1982] model. Furthermore, deepDeep 

infiltration enters a linear bucket used to represent return flow. The surface and subsurface flow generation module was already 
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successfully applied in previous studies conducted in Alpine catchments [Piccolroaz et al., 2015; Bellin et al., 2016; Galletti 

et al., 2021]. The model requires a total of 12 parameters, which are assumed as spatially uniform but uncertain and all subject 

to calibration.determined through calibration. Spatial heterogeneity of evapotranspiration, infiltration and runoff generation 95 

are accounted for by computing for each macrocell all relevant properties (e.g., maximum infiltration capacity, average 

elevation, soil type, crop coefficient etc.) based on available DEM and land-use/land-cover spatial maps. The list of the 12 

parameters with their units together with a short description and range of variation is presented in Table 1. A detailed 

description of the hydrological model can be found in Laiti et al. [2018] and Avesani et al. [2021].  

Table 1:  List of model parameters with their units and parameters range. 100 

Model Component Parameters Description UnitsUnit ParametersParameter 
range 

Snow model 𝑇௦௡௢௪ temperature threshold for snow 
precipitation 

°C -2 ÷− 6 

𝑇௠௘௟௧ temperature threshold for snow melting °C -2 ÷− 6 

𝑐௠௘௟௧ snow melting factor 𝑚𝑚 °𝐶ିଵ𝑑ିଵ 0 ÷− 10 

Continuous soil-

moisture accounting 

SCS-CN based 

model 

𝑐௦ parameter of the rainfall excess model - 0.1 ÷− 10 

𝑐௔ parameter of the rainfall excess model - 0.01 ÷− 1 

𝑞௥௘௙ parameter of the nonlinear bucket 𝑚𝑚 𝑠ିଵ 10-7 ÷− 10-3 

𝜇 parameter of the nonlinear bucket 𝑚𝑚 0.5 ÷− 300 

𝑐௙௖  coefficient for field capacity - 0 ÷− 1 

𝑐௥ coefficient for residual soil moisture - 0 ÷− 0.25 

Base-flow model 𝑘 mean residence time for baseflow linear 
reservoir 

𝑑𝑎𝑦 200 ÷− 1000 

𝛼 partition coefficient for leakage flux - 0 ÷− 1 

HYPERstream 

routing  

𝑣 stream velocity 𝑚 𝑠ିଵ 0.2 ÷− 4.0 

2.2 Hydrological model calibration 

The HYPERstreamHS hydrological model was calibrated against streamflow observations using as meteorological forcing 

both anthe observational dataset (i.e. ADIGE,  (see Sect. 3.2) and three climate models each onemodels’ outputs under two 
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emission scenarios. A short description of these datasets is provided in Sect. 3.3. Parameters were inferred by optimizing three 

efficiency metrics by means ofusing the Particle Swarming Optimization (PSO) algorithm [Kennedy and Eberhart, 1995]. PSO 105 

is an iterative methodalgorithm belonging to the swarm intelligence category, which is based on the exploration of the space 

of parameters by a set of particles, called bees. ParticlesParticles' locations are first randomly initialized and then iteratively 

updated in the search offor the optimal solution, with the location updating procedure considering the memory of all locations 

visited by the whole collection of particles. 

The first efficiency metric is the classic Nash-Sutcliffe index model efficiency [Nash and Sutcliffe, 1970], which is widely 110 

used in hydrological applications:  

𝑁𝑆𝐸 = 𝑚𝑎𝑥
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where m is the total number of daily time steps, 𝑄௦,௜(𝜽) and 𝑄௢,௜ are the simulated (s) and observed (o) streamflow at time step 

i, respectively, 𝑄̄௢  is the mean of the observed values and 𝜽 = [𝜃ଵ, … , 𝜃௤]  are the q=12 model parameters forming the 115 

parameter space 𝑃௤ .. Since this metric considers the chronological time series of simulated and observed daily streamflow, it 

was applied only in the simulations calibrated by usingwhen the observational dataset ADIGE was used as meteorological 

input.  

The second efficiency metric (RFDC) is an adaptation of the objective function proposed in Westerberg et al. [2011] with the 

aim to obtain a good match between simulated, 𝑄෠௦,(௜)(𝜽), and observed, 𝑄෠௢,(௜), flow duration curves (i.e., the ranked streamflow 120 

values in descending order): 
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    (2) 

where 𝑄෠௦,(௜)
ா௉ (𝜽) and 𝑄෠௢,(௜)

ா௉  are the simulated and observed streamflow values at the 𝑛ா௉ evaluation points (EPs) in which the 

flow duration curves are partitioned and 𝑄̄௢ is the mean of the observed time series. According to this metric, RFDC = 1 when 125 

the two flow duration curves coincide (i.e., they are the same at all the EPs). Given that the flow duration curve is insensitive 

to chronologic sequence, RFDC has been used as objective function for streamflow maxima obtained with both climate models 

and the observational dataset ADIGE. Furthermore, following Westerberg et al. [2011], the so-called volume method was 

employed in which EPs are identified as the upper boundary of the elements obtained by partitioning the area below the curve 

in 𝑛ா௉ elements such that each of them is characterized by the same water volume. Given the same number of EPs, we remark 130 

that the procedure is performed independently for observed and simulated FDCs and it is indeed possible that the total volume 

under the curves and the water volume of each interval differ between observations and simulations. The water volume 

pertaining to each interval as well as the total water volume of the flow duration curve are computed by using the right Riemann 
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sum procedure [Protter and Morrey, 1977]. In the computations we used 𝑛ா௉ = 50, which has been shown sufficient to obtain 

convergence of the statistic (2) irrespective of the integration scheme [Vogel and Fennessey, 1994].  135 

The third efficiency metric (KS) is the minimum of the two-sample Kolmogorov-Smirnov statistic (𝐷௡):   

𝐾𝑆 = 𝑚𝑖𝑛
𝜽∈௉೜

 (𝐷௡) = 𝑚𝑖𝑛
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where 𝐹௦  and 𝐹௢  are the simulated and observed Empirical Cumulative Distribution Functions (ECDFs) of the simulated, 

𝑄௦,(௜)
ெ (𝜽), and observed, 𝑄௢,(௜)

ெ , samples of daily average annual streamflow maxima ranked in increasing order, respectively, 140 

and n is the number of years considered in the simulation (29 in the present work, one for each year of the investigated period 

excluding the first two, see Sect. 3.4). Before ranking in increasing order, samples of annual streamflow maxima are extracted 

from the chronological daily time series of observed and simulated streamflow, respectively. Afterwards, their ECDFs of the 

simulated and observed samples of annual maxima are computed according to the classic Weibull formulation [Weibull, 1939]:  

𝐹௝൫𝑄௝,(௜)
ெ ൯ =

௜

௡ାଵ
,   𝑗 = 𝑜, 𝑠, 𝑖 ∈ [1, 𝑛].        (4) 145 

This metric, which is at the core of the proposed approach, aims to maximize the probability that the modelled and observed 

samples of high streamflows extremes belong to the same population. In other words, among all possible sets of model 

parameters, we consider the one leading to the smallest maximum absolute distance Dn between simulated and observed 

ECDFs of daily annual streamflow maxima. Since KS is not sensitive to the temporal sequence of observed and simulated 

streamflows, similar to the RFDC case, it has been applied to climate projections in addition to the simulations with the 150 

observational dataset ADIGE. 

2.3 Evaluation of statistical coherence 

After calibration, statistical coherence between the observed and simulated samples of high streamflow extremes was evaluated 

by means ofemploying the two-sample Kolmogorov-Smirnov test [Smirnov, 1939], applied under the null hypothesis that the 

two samples are drawn from the same underlying distribution. In the two-tail application of interest here the test’s statistic, Dn 155 

is given by Eq. (3). The closer 𝐷௡ is to 0 the more likely it is that the two samples are drawn from the same population. In 

addition, the two-sample Kolmogorov-Smirnov test returns a p-value (p) corresponding to the computed 𝐷௡ statistic [Conover, 

1999]. The larger the p-value the stronger is the evidence in favorfavour of the null hypothesis, i.e., that the samples are drawn 

from the same distribution. 

In this study, the p-value has been used as a measure of the statistical coherence between samples of simulated and observed 160 

high streamflow extremes. Furthermore, this evaluation step has been performed a-posteriori for each simulation experiment 

described in Sect. 3.4.  
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2.4 Probability distribution computation and confidence intervals 

The theoretical probability distributions of simulated and observed annual streamflow maxima were obtained by fitting the 

Extreme Value Type I (Gumbel) [Gumbel, 1941] distribution, 𝑃(𝑄 ≤ 𝑞) = 𝑒𝑥𝑝ൣ−𝑒𝑥𝑝[−𝛽(𝑞 − 𝑢)]൧, with the Maximum 165 

Likelihood Method (MLE) [Hosking, 1985] to the respective samples. The Pearson’s chi-squared test [Pearson, 1990] with a 

confidence level 𝛼௦ = 0.05 was then applied to validate the parameters 𝛽 and 𝑢 provided by the MLE. Extrapolation of high 

quantiles (i.e., estimation of quantiles for a return period beyondlarger than the available number of observation and simulation 

years) of observed and simulated annual streamflow maxima werewas then performed for all the simulation experiments 

described in Sect.3.4. 170 

Confidence intervals of observed streamflow ECDF were computed by means ofusing parametric bootstrap [Efron, 1982] 

under the assumption that the quantity of interest was distributed according to the above parametric Gumbel probability 

distribution. In particular, 90% confidence band was estimated by using 10000 uniform random samplings from the underlying 

inferred distribution. 

3 Study area, hydro-climatic datasets and simulations set-up 175 

3.1 Study area 

To exemplify the application of the methodology the upper part of the Adige river basin (Italy), located in the south-eastern 

Alpine region (see Figure 1), at the gauging station of Trento (11° 06' 54.8" E, 46° 04' 13" N, drainage area of about 9850 km2) 

was selected as a case study. The Adige river originates at the Resia Pass (close to the Alpine divide) and ends its course after 

410 km in the northern Adriatic Sea. It is a typical Alpine watershedriver basin, with terrain elevations ranging from 185 m 180 

a.s.l. at Trento to 3500 m a.s.l. at the Italian-Austrian border. The morphology is characterized by deep valleys and high 

mountain crests. 
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Figure 1: Map of the Adige river basin, with the computational grid cells (“macrocells”) superimposed toon the Digital Elevation 185 
Model (DEM) and the river network. The streamflow gauging stations used in the study are marked with red dots. The inset shows 
the location of the Adige river basin within the Italian territory. 

The climate of the watershedriver basin is characterized by relatively dry and cold winters followed by humid summers and 

autumns. Streamflow is minimum in winter, when precipitation fallingfalls as snow over most of the river basin, and shows 

two maxima: one occurring early in summer, due to snowmelt, and the other in autumn, triggered by intense cyclonic storms. 190 

The annual average precipitation ranges from 500 mm in the North-West to 1600 mm in the southern part of the basin [Lutz 

et al., 2016; Diamantini et al., 2018; Laiti et al., 2018]. Projected decrease of snowfall in winter and anticipation of earlier 

snow-melting, essentially due to rising temperatures associated with global warming [Gobiet et al., 2014; Gampe et al., 2016], 

will likely affect the Adige streamflow regime by the second half of the 21st century [Bard et al., 2015; Majone et al., 2016]. 

This may have relevant consequences on water resources and hydropower production, which is particularly relevant in this 195 

region of the Alps [Zolezzi et al., 2009; Bellin et al., 2016; Majone et al., 2016; Avesani et al., 2022]. See also Chiogna et al. 

[2016] for a comprehensive review of the hydrological stressors acting in the Adige basin, as well as of its ecological status. 

3.2 Observational datasets 

The regional dataset ADIGE developed by Mallucci et al., [2019] by using the meteorological stations within the catchment 

and in the nearby Austrian territory bounding the catchment from the north, was used as an observational precipitation and 200 

temperature dataset duringwithin the time window 1950-2010. ADIGE was selected since it is the most accurate gridded 

meteorological dataset of the investigated river basin (as shown in the recent paper by Laiti et al., 2018). Meteorological data 

at the selected stations were provided by the Austrian Zentralanstalt für Meteorologie und Geodynamik (www.zamg.ac.at) and 

the meteorological offices of the Autonomous Provinces of Trento (www.meteotrentino.it) and Bolzano 

(www.provincia.bz.it/meteo). The time series were interpolated over a 1-km grid at a daily time step by means ofusing the 205 

kriging with external drift algorithm [Goovaerts, 1997; Journel and Rossi, 1989], with an exponential semivariogram and by 

using the 16 closest neighbouring stations in the linear combination providing the estimate. The spatial distribution model was 

selected by Mallucci et al. [2019] according to the leave-one-out cross-validation procedure, applied to ordinary kriging and 

kriging with external drift algorithms, in association with multiple semi-variogram models (i.e., Gaussian, spherical and 

exponential models) and different numbers of neighbouring stations (namely 8, 16 and 32 stations). An average absolute error 210 

of the daily estimates of about 1.32 mm for precipitation and 0.02°C for temperature is reported in Mallucci et al. [2019], 

comparable with the error estimates provided by other datasets available in the Alpine region such as APGD [Isotta et al., 

2014].  Daily streamflow at the Trento Ponte San Lorenzo in Trento and Bronzolo gauging stations (see Figure 1) were 

provided by the Hydrological Offices of the Autonomous Province of Trento (www.floods.it) and Bolzano 

(http://www.provincia.bz.it/hydro).  215 
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3.3 Climate change projections 

Climate projections used in the present work were derived from the combination of General Circulation Models (GCMs) and 

Regional Climate Models (RCMs) available from the EURO-CORDEX initiative under 4.5 and 8.5 Representative 

Concentration Pathways (RCP4.5 and RCP8.5), at a spatial resolution of about 12 km [EUR-11, http://www.eurocordex.net/, 

Jacob et al., 2014]. To reduce the computational burden in the hydrological modelling experiments, we adopted the model sub-220 

selection proposed by Vrzel et al. [2019] whomwho applied a hierarchical clustering approach [Wilcke and Bärring, 2016] in 

selected European river basins (including the Adige) in order to reduce the number of available Climate Model (CM) 

simulations (i.e., GCM-RCM combinations) while preserving the variability of the ensemble of climate change signals. In 

particular, model reduction involved 5 steps: 1) identification of meteorological variables; 2) transformation of variables into 

orthogonal and therewith uncorrelated variables by means ofusing singular vector decomposition; 3) identification of the 225 

optimum number of clusters; 4) hierarchical clustering to group the simulations; and finally, 5) selection of the simulations 

closest to the group's mean as representative. This procedure led to the selection of the three GCM-RCM combinations (out of 

the 12 available), here referred to as CLMcom, KNMI and SMHI (see Table 2).  

These three GCM-RCM combinations provide projections of likely future climate changes for the mid-term horizon 2040-

2070, with the time window 1980-2010 selected as a period of reference. The projected climate change meteorological signals 230 

in the Adige are discussed in Gampe et al. [2016]. Both RCP4.5 and RCP8.5 emission scenarios are available for all the 

combinations, thereby leading to a total of six CMs which are investigated in the present study (see Table 2). Since 

GCMs/RCMs combinations are prone to model biases, especially in complex terrain [Kotlarski et al., 2014], bias-correction is 

needed to accurately reproduce historical meteorological forcing during the reference period. In this work, we rely on products 

retrieved from EURO-CORDEX, which are available bias-corrected by the distribution-based scaling approach [DBS, Yang 235 

et al., 2010] using as observations the MESAN gridded reanalysis datasets of daily precipitation and temperature [Landelius 

et al., 2016]. Basin-averaged monthly mean precipitation and temperature of the six CMs forcingare presented in the Figure 2 

with reference to the period 1980-2010 together with those of the ADIGE dataset. Notice that CMs slightly differ between the 

two RCPs as a consequence of: i) the bias correction method adopted, which matches observed and simulated frequency 

distributions rather than the observed values; and ii) the correction performed with reference to the period 1989-2010 is 240 

extended to the previous 9 years to obtain bias-corrected scenarios for the entire reference period 1980-2010. This is needed 

because MESAN data are available only for the former period. Figure 2a and 2b show that the six CMs basin-averaged monthly 

mean time series for both variables are in close agreement with ADIGE, with the largest deviations observed in May for 

precipitation (differences in the range of 15 - 21 mm), and in December for temperature (differences in the range of 1.3 - 1.9 

°C), respectively. Accordingly, differences at the annual scale are rather small as highlighted in the insets of Figures 2a and 245 

2b. ECDFs of basin-averaged daily precipitation and temperature for both ADIGE and the 6 CMs are presented in Figures 2c 

and 2d. For precipitation, no appreciable differences are observed between CMs and ADIGE throughout the entire range of 

variability. For the temperature (Figure 2d), small differences are observed which reduce progressively as temperature 
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increases and become undetectable at high temperatures. Overall, these results indicate that CMs’ outputs are in good 

agreement with the observations during the reference period, a statement which is also valid for the extremes of precipitation 250 

and temperatures which are indeed at the base of our approach. 

Table 2: List of the EURO-CORDEX CMs used in this study. Acronyms adopted are listed in the last column. 

RCM GCM Institute RCP Acronym 

CLMcom-CCLM4-8-17 EC-EARTH-r1 
Climate Limited-area Modelling 
Community (CLM-Community) 

 4.5  
CMLcom 

8.5 

KNMI-RACMO22E EC-EARTH-r12 
Royal Netherlands Meteorological 
Institute, De Bilt, The Netherlands 

4.5 
KNMI 

8.5 

SMHI-RCA4 HadGEM2-ES 
Swedish Meteorological and Hydrological 

Institute, Rossby Centre 

4.5  
SMHI 

8.5 

 

  

Figure 2: Annual cycle of basin-averaged monthly mean precipitation (a) and temperature (b) during the reference period 1980-255 
2010 for both ADIGE and the 6 CMs used (different color bars). The associated annual averages are also shown in the insets. ECDFs 
of basin-averaged daily precipitation and temperature for the same datasets are presented in subplots (c) and (d), respectively. 
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3.4 Simulations set-up 

All the simulations were performed with the HYPERstreamHS hydrological model by using a daily time step and the 5 km 

computational grid depicted in Figure 1. Accordingly, precipitation and temperature provided by the ADIGE dataset and by 260 

the six CM simulations presented in Sect. 3.3 were projected to this grid by means of the nearest neighbour method.using the 

nearest neighbour method. Notice that the contributing area of the macrocells at the border of the domain was reduced by the 

amount belonging to the neighbouring basins, such as to preserve the overall contributing area of the investigated case study.  

In a first set of simulations, presented in Sect. 4.1, the HYPERstreamHS model was calibrated at the Trento gauging station 

by using the metrics NSE, KS and RFDC as objective functions during the period 1980-2010, which is assumed as reference. In 265 

order to ease the presentation of results, these three parameterizations are hereafter termed ascalled NSE-ADIGE, KS-ADIGE 

and RFDC-ADIGE, respectively. Validation of the modelling framework was then performed, for these three parameterizations, 

by computing the efficiency metrics at the Bronzolo gauging station (drainage area of about 6000 km2, see Figure 1) during 

the same time window, and at the Trento gauging station during the period 1950-1980, not used for calibration.  

In a second set of simulations, presented in Sect. 4.2, we assessed whether the model calibrated with observational data and 270 

fed with precipitation and temperature obtained from climate models, produces samples of annual streamflow maxima 

statistically coherent with the observations. Here we considered simulations performed duringin the period 1980-2010 by using 

precipitations and temperature from the three GCM-RCM combinations selected as described in Sect. 3.3 each one for both 

RCP4.5 and RCP8.5 emission scenarios, for a total of six CM combinations (see Table 2). The parameters of the hydrological 

model were those referring to NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parameterizations. 275 

In Sect. 4.3, we present the results of the calibration experiments performed by using in HYPERstreamHS the precipitations 

and temperature distributions provided by the six CMs during the period 1980-2010, and KS and RFDC as objective functions. 

Following the procedure described in Sect. 2.4, extrapolations were performed under the assumption that simulated and 

observed ECDFs were distributed according to the parametric Gumbel probability distribution. Verification of statistical 

inference procedure was performed in all cases with the successful application of the Pearson’s chi-squared test.  280 

For all time windows and for all simulations, the first two years were used as spin-up and therefore excluded from the 

computation of model performances. Furthermore, statistical coherence between simulated and observed samples of annual 

streamflow maxima was evaluated a-posteriori by using the p-values associated towith the Kolmogorov-Smirnov two-sample 

test described in Sect. 2.3. 

The effects on model parameters of calibrations conducted using different input forcing (observational data as well CMs 285 

simulations) isare investigated in Sect. 4.4 with reference to the KS metric. For each calibration experiment performed with 

the PSO algorithm, we considered 100 particles that, with a maximum number of 400 iterations, leadslead to a maximum of 

40000 hydrological simulations for each external forcing. Parameters ranges considered during the search for the optimal 

solution were those presented in Table 1, and have been set by means of preliminary simulations such as to minimize the 

probability of excluding from the searching domain combinations of parameters leading to behavioural solutions [Beven and 290 
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Binley, 1992]. In addition, we considered as a metric of uncertainty for the calibrated parameter the range, 𝑑̅, between the 

maximum and minimum value of each parameter in the 200 simulations presenting the highest efficiency metric [see Piccolroaz 

et al., 2015]. We remark that the procedure adopted here aims at quantifying only the differences in the range of calibrated 

parameters and not to perform a full uncertainty analysis of predictions. 

Finally, in Sect. 4.5 the projected changes of high flow extremes in the future period 2040-2070 are evaluated. For each CM 295 

we considered the following parameterizations obtained during calibration in the reference period: calibrations with KS and 

RFDC as objective functions, and NSE-ADIGE as representative of a standard calibration procedure using the observational 

dataset ADIGE as input forcing. 

4 Results and discussion 

4.1 Simulations using the observational dataset ADIGE 300 

Figure 2a3a shows the simulated ECDFs obtained by using the three metrics NSE, KS and RFDC as objective functions and the 

observational ADIGE dataset as input forcing. Table 3 shows the associated p-values of the Kolmogorov-Smirnov test. In a 

strict statistical sense, all the three metrics provide simulated samples of annual streamflow maxima belonging to the same 

population ofas the observed ones, given that in all cases p>0.05, with a maximum for KS (p = 1.000) and a minimum for RFDC 

(p = 0.372).  At the same timeHowever, calibration conducted by using KS as an objective function leads to NSE and RFDC 305 

values (0.4 and 0.564, respectively, see Table 3) which are lower than those obtained when calibration is performed by 

optimizing (separately) these two metrics (NSE = 0.822 and RFDC = 0.975, respectively, see Table 3). This is in accordance 

with several studies showing that the adoption of a given metric in calibration may lead to suboptimal results for other metrics, 

since each one of them is more sensitive to specific aspects of the time series with its own limitations and trade-offs [see e.g., 

Schaefli and Gupta, 2007; Gupta et al., 2009; Mcmillan et al., 2017; Fenicia et al., 2018]. This latter limitation is, in our 310 

opinion, outweighed by the improvements in representing the ECDFECDFs of observed high flow extremes when the model 

is calibrated considering explicitly such an information., i.e. by minimizing the KS metric. Accordingly, in our analyses, the 

use of different efficiency metrics leads to different simulated ECDFs and hence to different p-values in the application of the 

statistical coherence test (see Table 3). 

Validation of the hydrological modelling framework was performed by evaluating the model performance in the time -frame 315 

1952-1980, not used for calibration, at the gauging station of Ponte San Lorenzo in Trento. The validation was done by using 

the ADIGE dataset as input and the parameterizations obtained by calibrating the model in the time -frame 1982-2010 (i.e., 

NSE-ADIGE, RFDC-ADIGE and KS-ADIGE, as described above). NSE-ADIGE and RFDC-ADIGE parameterizations led to 

NSE and RFDC values (NSE = 0.803 and RFDC = 0.804, see Table 3) which are only slightly lower than those obtained in 

calibration. KS-ADIGE parameterization leadleads to a smallan increase of KS from 0.067 in calibration to 0.233 in validation, 320 

still rather small. The limited modifications of the efficiency metrics in validation is an encouraging result which shows that 

the HYPERstreamHS model provides a good representation of the hydrological system independently of the metric adopted 
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during the calibration procedure. Simulated and observed ECDFs of annual streamflow maxima and the associated p-value of 

the Kolmogorov-Smirnov test are presented in Figure 2b3b. Reproduction of observed ECDF is satisfactorily for all the 3 

parameterizations, particularly for high flow quantiles, with p-values in the range between 0.222 and 0.372 (see also Table 3). 325 

In a strict statistical sense, the three parameterizations provide simulated samples of annual streamflow maxima belonging to 

the same population of observations also in the time window 1952-1980; the reduction of the p-value from calibration to 

validation is significant, but rather common in hydrological models. 

A spatialSpatial validation of the modelling framework was also performed by simulating streamflow at the Bronzolo gauging 

station (see Figure 1) in the same time window of the calibration conducted at the Trento Gauging station (1982-2010). 330 

Similarly, to the previous case, efficiency metrics in validation are only slightly different fromevidence a small reduction of 

performance with respect to those obtained in calibration (see Table 3). Furthermore, the results presented in Figure 3b3c 

highlight an excellent reproduction of the observed ECDF of annual streamflow maxima for all the 3 parameterizations, with 

the associated p-values in the range between 0.791 (NSE-ADIGE) and 0.951 (RFDC-ADIGE and KS-ADIGE). The latter is a 

noteworthy result which indicates that the parameterization obtained using KS as an objective function is reliable, though 335 

relying on the use of a limited number of observations, and does not introduce distortion in the spatial representation of the 

hydrological processes, particularly for those associated to high streamflow events, i.e., runoff generation and streamflow 

concentration processes. This latter aspect will be further investigated in Sect. 4.4. 

Table 3: Efficiency metrics for calibration and validation runs obtained by using the ADIGE dataset as input forcing. The terms 
NSE-ADIGE, KS-ADIGE and RFDC-ADIGE refer to the parameterizations described in Sect. 3.4. Grey shaded area and bold 340 
numbers indicateindicates the metric optimized in calibration. p-values of the Kolmogorov-Smirnov test are also reported in the 
bottom line for the three calibration experiments and for the validationsvalidation runs highlighted by bold numbers.  

 Calibration  Validation 

 Trento 1982-2010 Trento 1952-1980 Bronzolo 1982-2010 

 NSE RFDC KS NSE RFDC KS NSE RFDC KS 

NSE-ADIGE 0.822 0.875 0.133 0.803 0.760 0.260 0.787 0.705 0.166 

FDCRFDC-
ADIGE 

0.488 0.975 0.233 0.552 0.804 0.233 0.506 0.830 0.133 

KS-ADIGE 0.400 0.564 0.067 0.250 0.529 0.233 0.289 0.476 0.137 

          

p-value 0.951 0.372 1.000 0.222 0.372 0.372 0.791 0.951 0.951 



15 
 

 
Figure 23: ECDFs of daily annual streamflow maximum obtained by using as input the observational dataset ADIGE and the 
parametrizations NSE-ADIGE, KS-ADIGE and RFDC-ADIGE at a) the Trento gauging station in the period 1982-2010; b) the Trento 345 
gauging station in the period 1952-1980, and c) the Bronzolo gauging station during the period 1982-2010. The experimental 
ECDFECDFs obtained from streamflow observations in the same time frames isare shown with black bullets with the grey shaded 
area indicating the associated 90% confidence interval of the fitted Gumbel distribution. p-values of the Kolmogorov-Smirnov two-
sample test are also reported within brackets for each simulation run. 
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4.2 Simulations using parameterizations derived from calibrations with observed ground data 350 

Here we analyse the case in which HYPERstreamHS iswas run in the time frame 1982-2010 using as input the meteorological 

variables produced by the climate models with the three sets of parameters obtained by using ADIGE as input and NSE, RFDC 

and KS as objective functions in calibration (i.e., NSE-ADIGE, RFDC-ADIGE, KS-ADIGE, see Sect. 3.4). Visual inspection 

of Figures 3a, 3b4a, 4b and 3c4c evidence that for high quantiles the simulated ECDFs are often outside the 90% confidence 

interval of the Gumbel distribution fitted to observations for all the considered combinations of CMs and parameterizations. 355 

The p-values of these validation runs are shown in the last three columns of the Table 4. In particular, these 3three 

parameterizations lead to p-values always lower than p = 0.372 for all the considered CMs and emission scenarios (see Table 

4). NSE-ADIGE and RFDC-ADIGE show on average the lowest p-values, with KS-ADIGE showing a slightly better 

performance: p = 0.372 for KNMI and SMHI under the RCP8.5 scenario (see Figures 3b4b and 3c4c and Table 4). Inspection 

of Table 4 also reveals that 𝑝 <  0.05, and thereby the simulated ECDFs do not belong to the same population ofas the 360 

measured one, for the CLMcom model with both NSE-ADIGE and KS-ADIGE parameterizations under both emission 

scenarios, and for the KNMI model with NSE-ADIGE and RFDC-ADIGE parameterizations under RCP4.5 

The above results highlight how classical approaches based on feeding hydrological models, calibrated by using observed 

meteorological data and employing customary efficiency metrics (i.e., NSE and RFDC), with meteorological forcing provided 

by Climate Models, produce results characterized by low statistical coherence with the observational data. Furthermore, our 365 

results indicate that the same drawback arises when employing parameterizations obtained with a calibration approach 

optimizing the desired statistic of extremes, but still using observational data as input, i.e., KS-ADIGE in Figures 3a, 3b4a, 4b 

and 3c4c. These results are in agreement with previous studies evidencing that the hydrological models, calibrated against 

observed data, that performsperform well within a baseline period may not be accurate nor consistent for simulating streamflow 

under future climate conditions [Brigode et al., 2013; Lespinas et al., 2014]. Indeed, it is recognized that the use of different 370 

datasets can lead to different optimized parameters that will partially account for their specific climate characteristics [Yapo 

et al. 1996; Vaze et al., 2010; Laiti et al., 2018]. Furthermore, it is acknowledged that climate change impact simulations are 

affected by uncertainty in climate modelling, but also the calibration strategy adopted during the reference period plays a role 

[Lespinas et al., 2014; Mizukami et al., 2019]. In this respect, we showed that the statistical coherence between climate 

scenarios and observations (i.e., high streamflow extremes in our case) should be preserved during hydrological calibration, at 375 

least in the reference period. This latter aspect will be further discussed in the ensuing Sect. 4.3. 

4.3 Performance of the hydrological model calibrated using as input climate models’ outputs 

Table 4 summarizes the efficiency metrics and the p-values of the calibration experiments performed by using in 

HYPERstreamHS the precipitations and temperature distributions provided by the six selected CMs, and KS and RFDC as 

objective functions. Simulations refer to the period 1982-2010. When KS is used in calibration, all the 6 simulations provided 380 

samples of annual streamflow maxima that with high probability (i.e. p = 1.000) belong to the same population of the observed 
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values. OnA similar conclusion was reached for the other hand, when R-FDC is used as objective function, simulations lead to 

samples belonging to the same population R-FDC, but with probabilitylower p values, which are however larger than p = 0.05 

(i.e., the level of significance customarily adopted in the statistical literature to reject the null hypothesis), though significantly 

lower than for KS (sixth and seventh columns in Table 4).. The lowest p-value iswas obtained when the calibration is performed 385 

with RFDC was used as metric and by usingwith the climate model CLMcom withunder RCP4.5 providing the input signal (p 

= 0.222, see Table 4). Consistently, the absolute maximum distances between the ECDF of observed and simulated samples 

obtained by using RFDC as calibration metric are always larger than those obtained by using KS (see third and fifth columns in 

Table 4). When calibration is performed with KS as objective function the results are satisfactorily also with respect to the 

RFDC metric, which is in the range between 0.449 and 0.804 for all the CMs (see the fourth column in Table 4). Since RFDC 390 

employs the entire time series of observational data, this result evidences that using KS metric duringin calibration avoidsdoes 

not cause model’s overparameterization, despite the limitedreduced number of observational data (i.e., 29 values of observed 

daily annual streamflow maxima). 

The appreciable difference between observed and simulated ECDFs obtained in the calibration experiments conducted using 

KS and RFDC metrics is highlighted in Figure 45. The ECDFs obtainedextracted from the simulations employingusing the 395 

parameters calibrated with KS are indeed in a better agreement with the observed ECDF than the ECDFs employing RFDC, as 

showed in all subplots of Figure 4. These results also highlight5. This comparison highlights that the KS metric is preferable 

thanto RFDC when dealing with high flow extremes, thus strengthening the approach envisaged here of addressing directly the 

desired statistics of extremes in calibration instead of calibrating the hydrological model on the entire streamflow record. 

Table 4: RFDC and KS efficiency metrics of the period 1982-2010 with forcing provided by CLMcom, KNMI, and SMHI climate 400 
models under the RCP4.5 and RCP8.5 emission scenarios. Grey shaded area and bold numbers indicate the metric optimized in 
calibration. p-values of the Kolmogorov-Smirnov test are also reported for all the different calibration experiments and for the 
validations conducted using the parametrizations NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parameterizations.  

Dataset Efficiency metric p-value 

      Direct calibration Validations with ADIGE parameterizations 

  RFDC KS RFDC KS RFDC KS NSE-ADIGE RFDC-ADIGE KS-ADIGE 

CLMcom RCP45 0.943 0.267 0.730 0.067 0.222 1.000 0.030 0.222 0.030 

KNMI RCP45 0.940 0.167 0.804 0.067 0.791 1.000 0.013 0.030 0.123 

SMHI RCP45 0.972 0.200 0.589 0.067 0.572 1.000 0.222 0.123 0.123 

CLMcom RCP85 0.980 0.200 0.449 0.067 0.572 1.000 0.123 0.372 0.222 

KNMI RCP85 0.961 0.167 0.456 0.067 0.791 1.000 0.123 0.222 0.372 

SMHI RCP85 0.932 0.167 0.484 0.067 0.791 1.000 0.123 0.372 0.123 
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 405 
Figure 34: ECDFs of annual maximum streamflow at Trento gauging station in the period 1982-2010 obtained by using NSE-ADIGE, 
KS-ADIGE and RFDC-ADIGE parameterizations and a) CLMcom, b) KNMI, and c) SMHI climate models as input forcing for both 
RCP4.5 and RCP8.5 emission scenarios. The experimental ECDF of observations is also shown with black dots together with the 
associated 90% confidence interval of the fitted Gumbel distribution (grey shaded area). p-values of the Kolmogorov-Smirnov two-
sample test are also reported within brackets for each simulation run. 410 

ExamplesThe literature reports a few examples of hydrological models calibrated by using tailored information instead of the 

entire observed streamflow series are present in the hydrological literature [e.g., Montanari and Toth, 2007; Blazkova and 
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Beven, 2009; Westerberg et al., 2011; Lindenschmidt, 2017]. However, these approaches are typically adopted for reproducing 

watershedbasin response to observed meteorological forcing and have not been applied (to our best knowledge) in combination 

with GCM-RCMs simulations. in climate change impact studies. The only example somewhat similar to our approach we 415 

found in the literature is that of Honti et al. [2014], which however used a stochastic weather generator trained by observed 

weather time series coupled with observed discharge data to sample the posterior distribution of model parameters. The 

adoption of a time-independent calibration, for which time shift does not influence the objective function, has the intrinsic 

advantage of allowing the use of GCM-RCM runs conducted without the assimilation of observational data, as in our case. In 

fact, these runs provide time-slice experiments representing a stationary climate for both reference and future periods [see e.g., 420 

Majone et al., 2012] and by definition cannot be used in the context of a classical day-by-day hydrological comparison 

experiment with observed historical data [see e.g., Eden et al., 2014]. 

Quantiles of daily annual streamflow maxima as a function of the return period at the Trento gauging station are shown in 

Figure 56, where results obtained by calibrating the hydrological model with the meteorological input provided by the Climate 

Models (for both KS and RFDC metrics as objective functions) are compared with those obtained using the same meteorological 425 

input but employing NSE-ADIGE, RFDC-ADIGE, and KS-ADIGE parameterizations. Visual inspection of Figure 56 shows 

that for all return periods parametrizations obtained by calibrating with the observed precipitations and temperatures as 

provided by the ADIGE dataset significantly underestimate the quantiles of the observations and fall outside the confidence 

interval of the fitted Gumbel distribution (i.e., outside the grey area). The only exceptions are the quantiles derived from 

simulations conducted with KNMI (KS-ADIGE, dotted line in Figure 5c6c) and CLMcom (all the 3 metrics, Figure 5a6a) 430 

climate models under RCP4.5. We note, however, how these curves are obtained with forward simulations providing low p-

values of the Kolmogorov-Smirnov test with respect to the other cases (always lower than p = 0.222). Quantiles obtained by 

calibrating the hydrological model with the meteorological input provided by the Climate Models and KS as metric are in a 

very good agreement with the experimental data, while those obtained by using RFDC are outside or at the lower bound of the 

interval of confidence, though they generally are in a better agreement with the quantiles of the experimental data than those 435 

obtained with the aforementioned NSE-ADIGE, RFDC-ADIGE, and KS-ADIGE parametrizations. Exceptions are represented 

bythe quantiles obtained with CLMcom and KNMI under RCP4.5 emission scenario and RFDC as metric that present the largest 

deviations from observations (see Figures 5a6a and 5c6c, respectively). We attribute this occurrence to the additional source 

of uncertainty arising from the extrapolation procedure (i.e., the selection of the probability distribution and of the statistical 

inference method for the parameters, MLE in our case). The interval of confidence of the fitted Gumbel distribution (grey 440 

area) widens as the return period increases and this is in line with the recent findings of Meresa and Romanowicz [2017], 

which showed that errors in fitting theoretical distribution models to annual maxima streamflow series might contribute 

significantly to the overall uncertainty associated to projections of future hydrological extremes. 
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Figure 45: Simulated ECDFs of daily annual maximum streamflow at Trentothe gauging station of Trento in the period 1982-2010 445 
with precipitation and air temperature provided by CLMcom (first row), KNMI (second row), and SMHI (third row) climate models 
under the RCP4.5 (left) and RCP8.5 (right) emission scenarios. Calibration of HYPERstreamHS was performed using both KS and 
RFDC metrics as objective functions. The ECDF of observations is also shown with black dots together with the associated 90% 
confidence interval of the fitted Gumbel distribution (grey shaded area). p-values of the Kolmogorov-Smirnov two-sample test are 
also reported within brackets for each simulation run.  450 
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Figure 56: Quantiles of daily annual streamflow maxima as a function of return period at the Trento gauging station. Extrapolations 
are based on simulations conducted during the period 1982-2010 using as input forcing the CLMcom (first row), KNMI (second 
row), and SMHI (third row) climate models under the RCP4.5 (left) and RCP8.5 (right) emission scenarios, respectively. Each curve 
represents a combination of CM, emission scenario and parameterization obtained with the calibration. Simulations conducted using 455 
the parameterizations derived fromobtained by using the use of observational dataset ADIGE as input in calibration are labelled as 
NSE-ADIGE, RFDC-ADIGE and KS-ADIGE. Extrapolation from observed streamflow maxima is also shown (continuous black line) 
together with the associated 90% confidence interval of the fitted Gumbel distribution (grey shaded area).  
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4.4 Model parameters 460 

The results presented in the previous Sections highlight how the largest level ofbetter statistical coherence between 

observations and simulations (performed with CMs simulations as input) iswas achieved by optimizing the desired statistics 

of extremes (i.e., , in our case KS (see the curves labelled KS in Figures 45 and 5)6), in the calibration of the hydrological 

model. Starting from this evidence, we investigated what is the effect on model parameters of performing the calibration by 

using either observational dataobserved or derived from CMs simulations as inputmeteorological data and KS as objective 465 

function. Figure 67 shows the range, 𝑑̅, between the maximum and minimum valuevalues, here represented by the length of 

the vertical bar, of each parameter associated withamong the 200 accepted sets ofvalues parameters (see Sect. 3.4), together 

with the corresponding optimal parameter set, which is represented with a horizontal segment. The values of the parameters 

are normalized with respect to their range (see Table 1) such that they are directly comparable. In all simulations the normalized 

parameters range 𝑑̅ is generally well distributed between 0 and 1, indicating a proper choice of the parameters range in the 470 

PSO algorithm, although for a few parametersof them the optimal value was located close to the boundary of the 

searchsearching domain. As shown in Figure 67 the majority of the parameters span a range 𝑑̅ that is similar in terms of 

amplitude (or slightly larger) to that obtained in the case offor KS-ADIGE, thus supporting the conclusion that calibration 

using CMs simulations does not lead, for both RCPs, to bias parameterizations. Figure 67 also shows that for most of the 

parameters, simulations performed with CMs lead to generally overlapping ranges for 𝑑̅ with respect to the case in which the 475 

observational dataset ADIGE iswas used. The largest deviations in terms of 𝑑̅ are observed for KS-KNMI, particularly under 

the RCP8.5 emission scenario. Notably, the parameters shaping the continuous soil-moisture accounting module result in 

values of the optimum which are very similar in all the investigated cases (see qref, 𝜇, and cfc in Figures 6a7a and 6b7b). Visual 

inspection of Figure 67 also highlights that the parameters controlling runoff generation and streamflow concentration (in 

particular, 𝑣, cs, qref, and cfc) present a very good identifiability (i.e., a small range 𝑑̅). This is not the case for parameters 480 

controlling snowmelting and groundwater contribution, the latter being relevant only for low flowsflow conditions (see 𝑘 in 

Figures 6a7a and 6b7b). These results, together with the good performances obtained in the validation runs presented in Sect. 

4.1, suggest that, although the model is calibrated considering a limited number of observations, in the continuous simulations 

the maxima are well reproduced but this is achieved only if the interaction between the precipitation and streamflow relevant 

during high flow extremes is correctly reproduced. We cannot exclude that additional analyses could be envisioned for 485 

improving the identifiability of some parameters (e.g., reduced number of model parameters, introduction of constraints in the 

parameters range, etc.) in applications dealing with different hydrological models and different data availabilities (e.g. lower 

number of streamflow extremes). However, resultsthe analysis presented in this Section are in our view enough to considerhere 

provides clear evidences that the parameterizations derived from the use of KS metric asare reliable.  

The differences observed in the optimal values of model parameters are due to the use of datasets presentingfor the 490 

meteorological forcing with different capabilities to simulatereproduce the present climate. Along the concepts brought 
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forward here, this source of uncertainty can be addressed effectively by calibration of the hydrological model to the quantities 

of interest (i.e. the observed streamflow statistics of extremes) using as input the forcing provided by a specific CM. This 

approach can be seen as a “hydrologic-based bias-correction” and is rooted in the adoption of a “goal-oriented” calibration 

framework [see e.g., Laiti et al., 2018] along the lines stated in the Introduction.  495 

 

 

Figure 67: Range, 𝒅ഥ, between the maximum and minimum value of each parameter associated with the 200 simulations presenting 
the highest efficiency plotted as a normalized range with respect to the parameter range presented in Table 1. Calibrations are 
conducted for the 3 different CMs under (a) RCP4.5 and (b) RCP8.5 emission scenarios with reference to the KS metric. Bold 500 
horizontal dashessegments indicate the optimal parameter sets for all experiments.  

4.5 Projected changes of streamflow quantiles 

Figure 7 presents8 shows the annual maximum streamflow at the Trento gauging station as a function of the return period at 

Trento gauging station in the future time window 2040-2070 and for the 3 selected CMs under both RCP4.5 and RCP8.5 
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emission scenarios. Visual inspection of the Figure 78 confirms that using the standard calibration (i.e., NSE-ADIGE) of the 505 

hydrological model leads to a significant underestimation of all quantiles with respect ofto using KS and RFDC for all the 3 

CMs under both RCPs. This is in agreement with the results obtained for the reference period (see Figure 56), where 

simulations using NSE-ADIGE parameterization provided streamflow quantiles systematically lower than that obtained with 

the CMs. In addition, KS-based calibrations always provide larger streamflow quantiles with respect to the cases in which the 

RFDC metric is consideredadopted (considering the same RCP emission scenario). We remark how the adoption of the KS 510 

metric is preferable since it provided an almost perfect match with observed streamflow quantiles in the calibration period (see 

Figure 56). 

Moreover, Figure 78 shows that projected changes of high flows extremes depend on the selected CM and emission scenario. 

Projected streamflow quantiles under RCP8.5 emission scenario are larger than those under RCP4.5 for all the CMs. In general, 

the projected streamflow quantiles do not exceed those obtained by fitting the extrapolations from observations inGumbel 515 

distribution to the observational data of the period 1982-2010 (continuous black lines in Figure 7Figures 6 and 8), with the 

exceptions of CLMcom and SMHI models under RCP8.5 and SMHI under RCP4.5 when KS metric is adopted. These results 

are in line with other recent contributions which concluded that the sign and magnitude of projected changes of high flow 

extremes vary significantly with the location of the investigated river basin, the climate models used, the emission scenario as 

well as the selection of the investigated time window [Ngongondo et al., 2013; Aich et al., 2016; Pechlivanidis et al., 2017; 520 

Vetter at al., 2017]. SimilarOur results wereare in line also found bywith the analysis of Brunner et al. [2019] who implemented 

a stochastic framework to simulate future streamflow time series in 19 regions of Switzerland, and concluded that future shifts 

in maximum streamflow will increase and decrease in rainfall-dominated and melt-dominated regions, respectively. Similarly 

to our results, Di Sante et al. [2019] showed that a moderate increase in high flow magnitude (return time of 100 years) is 

projected for large river basinbasins (drained area >10.000 km2) in the Central Europe region under RCP8.5 and considering 525 

a mid-century time slice. 
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Figure 78: Quantiles of annual maximum daily streamflow as a function of return period at the Trento gauging station. Projections 
are based on simulations conducted duringof the future time period 2042-2070 using as input the CLMcom (first row), KNMI 
(second row), and SMHI (third row) climate models under the RCP4.5 (left) and RCP8.5 (right) emission scenarios, respectively. 530 
BlackThe continuous black line denotesshows the extrapolationquantile distribution of high flow extremes evaluated with the 
observational data inof the period 1982-2010 together with the associated 90% confidence interval of the fitted Gumbel distribution 
(grey shaded area).  
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5 Conclusions 535 

In this work, we proposed the methodological framework HyCoX in which the calibration of the hydrological model is carried 

out by maximizing the probability that the modelled and observed high streamflow extremes belong to the same statistical 

population. The proposed framework is “goal-oriented” and aims at improving the estimation of streamflow extremes by 

directly calibrating the selected hydrological model to the quantities of interest (i.e. flow statistics instead of time series) using 

as input directly the meteorological data provided by Climate Models. In particular, the framework relies on the use of the 540 

two-sample Kolmogorov-Smirnov statistic (KS) as an objective function during the calibration procedure. This approach 

ensures statistical coherence between scenarios and observations in the reference period, and, likely, preserves it in the future 

climate change scenario runs performed with the aim of projectingto project changes in streamflow extremes. The goal-

oriented approach envisaged in this work can be also applied to a variety of hydrological scenarioscenarios and modelling 

approaches. While the approach is exemplified here for high flows, it can be applied to low flows as well (e.g. for drought 545 

assessment). Furthermore, we remark that the HyCoX methodology is not metric dependent, and any type of metric assessing 

the statistical coherence between observed and simulated streamflow extremes can be employed without any loss of generality. 

The proposed procedure is exemplified through the application of a few climate modelssix Climate Models and observational 

data to the analysis of the annual maximum streamflow of the Adige river basin (Italy) by means ofusing the distributed 

hydrological model HYPERstreamHS. While the approach is exemplified here for high flows, it can be applied to low flows 550 

as well (e.g. for drought assessment). The results highlight that adopting KS is preferable to other popular metrics (e.g. NSE 

or fit to flow duration curve, RFDC) when dealing with high streamflow extremes. This validates our hypothesis that 

targetingaddressing directly the statistics of extreme valuesextremes under consideration during the calibration exercise leads 

to coherent and reliable hydrological models for addressingassessing the impact of climate change. We remarkwarn that such 

an approach may lead to a suboptimal performance if the target is different from the one employed in this study, limitation that 555 

is outweighed by the improvements in representing high flow extremes in line with the goal-oriented framework pursued in 

this work.in line with the goal-oriented framework here pursued. Alternatively, a multi-objective approach could be envisioned 

to investigate the trade-off in model performance emerging from the use of multiple metrics, including the one proposed here. 

This latter aspect is indeed beyond the objective of the present contribution, though we acknowledge that it is worthy of further 

analysis. Furthermore, investigation of optimal values highlighted that direct calibration using CMs outputs and KS as 560 

objective function leadleads to unbiased identification of model parameters. 

In the present work we alsoOverall, we showed that the way the hydrological model is calibrated against observations assumes 

paramount importance in climate change impact assessments on streamflow extremes. In particular, we highlighted how the 

classical approach of calibrating on daily streamflow observations by using observed meteorological data can lead to a biased 

evaluation of the probability distribution of streamflow extremes when climate models are used as input forcing during the 565 

reference period, with high streamflow quantiles being dramatically underestimated with respect to the fitted extreme value 
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distribution of observationsthe observed extremes. Extrapolations performed by using the proposed calibration procedure, with 

input provided by CMs, are instead more consistentreliable and they provide a good match with observed quantiles.  
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