
1 

 

Analysis of high streamflow extremes in climate change studies: How 

do we calibrate hydrological models? 

Bruno Majone1, Diego Avesani1, Patrick Zulian1, Aldo Fiori2, Alberto Bellin1 

1Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, I-38123, Italy  

2 Department of Engineering, Roma Tre University, Roma, I- 00154, Italy 5 

Correspondence to: Bruno Majone (bruno.majone@unitn.it) 

Abstract. Climate change impact studies on hydrological extremes often rely on the use of hydrological models with 

parameters inferred by means of calibration procedures using observationalobserved meteorological data of daily 

streamflow.as input forcing. In this work we show that this is an error prone procedure when the interest iscan lead to develop 

reliable Empirical Cumulative Distribution Function curvesa biased evaluation of annualthe probability distribution of high 10 

streamflow maximumextremes when climate models are used. As an alternative approach we introduce a methodology, coined 

Hydrological Calibration of eXtremes (HyCoX), in which the calibration of the hydrological model is carried out by directly 

targeting the probability distribution of high flow extremes. In particular, hydrological simulations conducted during a 

reference period, as driven by climate models’ outputs, are constrained to maximizeis carried out by maximizing the probability 

that the modeledmodelled and observed high flowstreamflow extremes belong to the same statistical population. The 15 

application to the Adige river catchment (southeastern Alps, Italy) by means of HYPERstreamHS, a distributed hydrological 

model, showed that this procedure preserves statistical coherence and produce reliable quantiles of the annual maximum 

streamflow to be used in assessment studies.  

Key Points/Highlights: 

• A methodology for devising reliable extreme high streamflow scenarios from climate change model simulations  20 

• Accurate reproduction of observed ECDF of annual streamflow maximum  

• Preservation of statistical coherence between observed and simulated ECDFs of annual streamflow maximum  

Keywords: Goal-oriented calibration; high streamflow extremes, Climate change; statistical coherence; hydrological 

modelingmodelling  

1 Introduction 25 

The recognition that an altered climate may affect severely water availability, floods and droughts, or other water-related 

resources and sectors, led in the past decades to a wealth of climate change impact assessment studies in hydrological literature. 
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A number of studies investigated the likely impact of climate change on hydrology by combining ensemble of projections from 

multiple climate models under different greenhouse gas emissions scenarios and hydrological modelingmodelling [e.g., 

Kundzewicz et al., 2007; Todd et al., 2010 and Wilby and Harris, 2006 for a comprehensive review]. A wealth of studies 30 

focusfocused on long-term annual and/or seasonal changes in hydrological variables such as runoff, streamflow, snow melt 

and soil moisture [e.g., Chiew et al. 2009; Majone et al., 2012; Buytaert and De Bièvre, 2012]. Much less addressstudies 

addressed projected changes in hydrological extremes, i.e. floods and droughts, though they are expected to exert profound 

and dramatic impacts on agriculture, economy, human health, energy and many other water-related sectors [e.g., Arnell 2011; 

Taye et al. 2011; Bouwer, 2013; Thornton et al., 2014].  35 

The peculiarity of hydrological calibration in climate change impact studies has been highly debated in the hydrological 

modelling community [e.g. Peel and Blöschl, 2011; Muñoz et al., 2013; Montanari et al., 2013; Thirel et al., 2014]. The 

standard According to the most used approach is to calibrate the selected hydrological model using a chronological time series 

of is first calibrated against the observed streamflow observations and then feed the model with future climate projections to 

evaluate changes of by using observed meteorological data as input. The calibrated hydrological model is then run with the 40 

output of climate models as input to assess the projected changes of selected indicators [see , including those related to extremes 

[e.g. flow quantiles, see Ngongondo et al., 2013; Aich et al., 2016; Pechlivanidis et al., 2017; Vetter et al., 2017; Hattermann 

et al. 2018]. However, severalThe drawbacks of such approach are, however, twofold: i) a model correctly reproducing the 

time series of observed streamflow does not guarantee the correct reproduction of the desired statistics for extremes; and ii) 

because of epistemic uncertainty, a model calibrated with a given set of observations may respond in a different way when fed 45 

with projections obtained from climate change scenarios. Concerning this latter aspect, a number of studies showedevidenced 

that model parameters are highly dependent on the climatic characteristics of the input forcing used duringfor the calibration 

of the hydrological model [e.g., Vaze et al., 2010; Laiti et al., 2018]. Although recognized, this additional source of uncertainty 

is mostly ignored in climate change impact studies. 

Indeed, a number ofSeveral studies suggestsuggested that observed streamflow extremes provide valuable information about 50 

the hydrological behaviorbehaviour of investigated catchments [Grubbs, 1969; Laio et al., 2010]. Similarly, Perrin et al. [2007] 

and Seibert and Beven [2009] concluded that a limited number of streamflow extremes encapsulate a significant amount of 

information that may be useful in the context offor hydrological model calibration. Beven and Westerberg [2011] suggested 

also that, when dealing with extremes, including the entire time series might not be informative. This occurs, for instance, 

when streamflow extremes belong to a different population than ordinary flows [e.g., Calenda et al, 2009], such that the latter 55 

do not provide useful information for inferring the former. Hence, quantifying the influence of such extreme events on model 

calibration is still a challenge in hydrological studies [Brigode et al., 2015], such as quantifying the uncertainty associated to 

these estimates [Honti et al., 2014]. 

Despite the above evidences, the typical approach adopted in impact assessments of hydrological extremes is to estimate the 

projected changes of selected indicators (e.g. flow quantiles) using a hydrological model calibrated against chronological time 60 

series of streamflow observations during a reference period [e.g., Wilby and Harris, 2006; Hattermann et al. 2018]. The 
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drawbacks of such approach are however threefold: i) a model correctly reproducing the time series of observed streamflow 

does not guarantee the correct reproduction of the desired statistics for extremes, as discussed above; ii) due to epistemic 

uncertainty, a model calibrated with a given set of observed ground data may respond in a different way when fed with 

projections obtained from climate change scenarios; and iii) due to the impossibility of obtaining totally unbiased climate 65 

simulations there is no a-priori guarantee that simulations fed by climate models produce samples (e.g. time series of simulated 

annual streamflow maximum) that are statistically coherent with observations.  

To overcome the aforementioned limitations, we propose an innovative methodology in which the calibration of a physically-

based hydrological model, as driven by climate models, is conducted by directly targetingmaximizing the probability 

distribution of highthat the modelled and observed streamflow extremes (i.e., the Empirical Cumulative Distribution Function, 70 

ECDF, of annual maxima).belong to the same population within the reference period. While the approach is exemplified in 

this work for high streamflows (also because of the broad interest in the topic), it can be applied to low flows as well (e.g., for 

droughts assessment). The methodology, coined here as Hydrological Calibration of eXtremes (HyCoX), targets specifically 

climate change impact assessment studies. In particular, hydrological simulations conducted during a reference period, as 

driven by climate models, are constrained to maximize the chances that the simulated and observed high flow extremes belong 75 

to the same population. Statistical coherence is obtained by using the two-sample Kolmogorov-Smirnov statistic [Smirnov, 

1939] as the efficiency metric during the calibration procedure. The parameterization of the hydrological model obtained 

following this approach is then used in future climate change scenario runs to project changes in the distribution of high flows. 

The strengths of the methodology are highlighted by performing a comparison with experiments in which model 

parameterizations are obtained by calibrating the hydrological model, fed by observed ground data, with a suite of efficiency 80 

metrics customarily used in hydrological applications, i.e., Nash-Sutcliffe efficiency, [Nash and Sutcliffe,1970] and flow 

duration curve-related metric [Westerberg et al., 2011 and relies on the use of the two-sample Kolmogorov-Smirnov statistic 

[Smirnov, 1939] as efficiency metric during the calibration procedure. We emphasize that the suggested approach is by 

definition “goal-oriented”, as recently discussed in Fiori et al. [2016], Guthke [2017] and Laiti et al., [2018]. 

Studies adopting the two-sample Kolmogorov-Smirnov test to evaluate if simulated hydrological variables are distributed 85 

according to a given probability distribution [e.g., Kleinen and Petschel-Held, 2007], to detect changes in hydrological 

variables [e.g., Wang et al., 2008], or to understand if calibrated parameters of hydrological models belong to a given 

probability distribution [e.g., Wu et al., 2017; Wang and Solomatine, 2019We emphasize that the suggested approach is by 

definition “goal-oriented”, according to the definition discussed in Fiori et al. [2016], Savoy et al. [2017], Guthke [2017], Laiti 

et al., [2018] and Li et al. [2018]. In other words, the selection of the hydrological model, its level of complexity and the metric 90 

to be employed for the evaluation of the statistical coherence of simulated and observed extremes depend on modeler’s choice 

and the particular goal at hand. In the present work the main focus is on high streamflow extremes, and along the goal-oriented 

approach the proposed calibration procedure is tailored around it.   

The ], are relatively common in the literature. This notwithstanding, we are not aware of any study adopting this statistical test 

in the context of hydrological model calibration on extremes.  95 
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The main objective of the present work is therefore twofold. From one side, we introduce the HyCoX framework and assess 

its capability to reproduce observed high streamflow extremes using climate models as input meteorological forcing. On the 

other, the strength of the methodology is checked by performing a comparison with experiments in which model 

parameterizations are obtained calibrating the hydrological model by using observed streamflow and meteorological data 

(standard procedure) with a suite of objective functions customarily used in hydrological applications. 100 

The paper is organized as follows: SectionSect. 2 presents the hydrological modelling framework, the calibration 

framework,metrics and the adopted statistical coherence test and the calibration metricstest; a description of the study area, the 

climate change projections available and, the observational hydro-meteorological datasets used and the simulations set-up are 

summarized in SectionSect. 3. The main findings are presented and discussed in SectionSect. 4, whereas conclusions are finally 

drawn in SectionSect. 5. 105 

2 Methods 

2.1 Hydrological modelling                            

Hydrological simulations were performed at the daily time scale with the HYPERstreamHS model [Avesani et al., 2021; Laiti 

et al., 2018; Larsen et al., 2021] which couples the HYPERstream routing scheme, recently proposed by Piccolroaz et al., 

[2016], with a continuous SCS-CN module for surface and subsurface flow generation [Michel et al., 2005].. HYPERstream 110 

routing scheme is specifically designed for being easily coupled with climate models and, in general, with gridded climate 

datasets. HYPERstream can share the same computational grid as that of any overlaying product providing the meteorological 

forcing, still preserving geomorphological dispersion of the river network [Rinaldo et al., 1991] irrespective of the grid 

resolution. This “perfect upscaling” [cf. Piccolroaz et al., 2016] can be achievedis obtained by the application of suitable 

transfer functions derived from a high-resolution Digital Elevation Model of the study area. The Surface flow is computed by 115 

using the continuous soil-moisture accounting SCS-CN model for surface[Michel et al., 2005], which receives as input the 

total precipitation given by the sum of rainfall and subsurface flow generation, based on the SCS-CN methodology, is snow 

melting evaluated by the degree-day model coupled with mass balance for taking into account snow accumulation [Rango and 

Martinec, 1995]. The remaining flow enters into a non-linear bucket model formimicking soil moisture dynamics [Majone et 

al., 2010], a degree-day model for snow melting and accumulation [Rango and Martinec, 1995] and].  Evapotranspiration is 120 

computed by the Hargreaves and Samani [1982] model for evapotranspiration.. Furthermore, deep infiltration enters a linear 

bucket used to represent return flow. Notice that theThe surface and subsurface flow generation module was already 

successfully applied in two previous studies conducted in Alpine catchments [Piccolroaz et al., 2015; Bellin et al., 2016; 

Galletti et al., 2021]. The model requires a total of 12 parameters, which are assumed as spatially uniform but uncertain and 

all subject to calibration. The list of the 12 parameters with their units together with a short description and range of variation 125 

is presented in Table 1. A detailed description of the hydrological modelingmodel can be found in Laiti et al. [2018] and 

Avesani et al. [2021].  
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Table 1:  List of model parameters with their units and parameters range. 

Model Component Parameters Description Units Parameters range 

Snow model 𝑇𝑠𝑛𝑜𝑤 temperature threshold for snow 

precipitation 

°C -2 ÷ 6 

𝑇𝑚𝑒𝑙𝑡 temperature threshold for snow melting °C -2 ÷ 6 

𝑐𝑚𝑒𝑙𝑡 snow melting factor 𝑚𝑚 °𝐶−1𝑑−1 0 ÷ 10 

Continuous soil-

moisture accounting 

SCS-CN based 

model 

𝑐𝑠 parameter of the rainfall excess model - 0.1 ÷ 10 

𝑐𝑎 parameter of the rainfall excess model - 0.01 ÷ 1 

𝑞𝑟𝑒𝑓 parameter of the nonlinear bucket 𝑚𝑚 𝑠−1 10-7 ÷ 10-3 

𝜇 parameter of the nonlinear bucket 𝑚𝑚 0.5 ÷ 300 

𝑐𝑓𝑐  coefficient for field capacity - 0 ÷ 1 

𝑐𝑟 coefficient for residual soil moisture - 0 ÷ 0.25 

Base-flow model 𝑘 mean residence time for baseflow linear 

reservoir 
𝑑𝑎𝑦 200 ÷ 1000 

𝛼 partition coefficient for leakage flux - 0 ÷ 1 

HYPERstream 

routing  

𝑣 stream velocity 𝑚 𝑠−1 0.2 ÷ 4.0 

2.2 Evaluation of statistical coherence 

Statistical coherence between the observed and simulated populations of extremes was evaluated by means of the two-sample 130 

Kolmogorov-Smirnov test [Smirnov, 1939], applied under the null hypothesis that the two samples are drawn from the same 

underlying distribution. In the two-tail application of interest here the test’s statistic is defined as the maximum absolute 

distance, 𝐷𝑛, between the simulated (𝐹𝑠) and observed (𝐹𝑜) ECDFs of annual daily streamflow maximum (QM):  

𝐷𝑛 = 𝑚𝑎𝑥
𝑖∈[1,𝑛]

|𝐹𝑠(𝑄𝑠,(𝑖)
𝑀 ) − 𝐹𝑜(𝑄𝑜,(𝑖)

𝑀 )|,         (1) 

where i is the position of 𝑄𝑠,(𝑖)
𝑀  and 𝑄𝑜,(𝑖)

𝑀  in the ranked samples of the simulated (s) and observed (o) annual streamflow 135 

maxima, respectively, and n is the number of years considered in the simulation (29 values in this work, one for each year of 

the investigated period excluding the first two, see Sect. 2.4). As customary in statistics 𝑄𝑠,(𝑖)
𝑀 , 𝑖 = 1, … , 𝑛 indicates the ranked 
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time series of the annual maxima 𝑄𝑠,𝑖
𝑀  of simulated streamflow. A similar definition has been introduced for observed 

streamflow.2.2 The closer 𝐷𝑛 is to 0 the more likely it is that the two samples are drawn from the same population. In addition, 

the two-sample Kolmogorov-Smirnov test returns a p-value (p) corresponding to the computed 𝐷𝑛 statistic. The p-value is the 140 

probability of rejecting the null hypothesis when it is true. It can also be defined as the smallest significance level 𝛼𝑠 at which 

the null hypothesis would be rejected [Conover, 1999]. In simpler terms, the larger the p-value the stronger is the evidence in 

favor of the null hypothesis, i.e., in our work that the samples are drawn from the same distribution. 

In our framework the evaluation of statistical coherence of observed and simulated populations of extremes is performed a-

posteriori for each simulation experiment described in Section 2.4. In particular, the p-value will be used as a measure of the 145 

statistical coherence between simulated and observed high streamflow extremes. 

2.3 ECDF computation 

The daily average annual streamflow maxima are extracted from the chronological daily time series of observed (o) and 

simulated (s) streamflow and their empirical probability, F, is computed separately according to the classic Weibull 

formulation [Weibull, 1939]:  150 

𝐹𝑗(𝑄𝑗,(𝑖)
𝑀 ) =

𝑖

𝑛+1
,   𝑗 = 𝑜, 𝑠, 𝑖 ∈ [1, 𝑛].        (2) 

Empirical probabilities provided by Eq. (2) are used in Eq. (1) to compute the Kolmogorov-Smirnov statistic 𝐷𝑛.  

2.4 Hydrological model calibration 

The HYPERstreamHS hydrological model was calibrated against streamflow observations using as meteorological forcing 

both an observational dataset (i.e. ADIGE, see Sect. 3.2) and three climate models each one under two emission scenarios. A 155 

short description of these datasets is provided in Sect. 3.3. Calibrations were performed during the period 1980-2010, assumed 

as reference, with the first two years used as spin-up and therefore excluded from the computation of model performances. 

Parameters were inferred by optimizing three efficiency metrics by means of the Particle Swarming Optimization algorithm 

[Kennedy and Eberhart, 1995].(PSO) algorithm [Kennedy and Eberhart, 1995]. PSO is an iterative method belonging to the 

swarm intelligence category, which is based on the exploration of the space of parameters by a set of particles, called bees. 160 

Particles locations are first randomly initialized and then iteratively updated in the search of the optimal solution, with the 

location updating procedure considering the memory of all locations visited by the whole collection of particles. 

The first efficiency metric is the classic Nash-Sutcliffe index [Nash and Sutcliffe, 1970], which is widely used in hydrological 

applications:  

𝑁𝑆𝐸 = 𝑚𝑎𝑥
𝜽∈𝑃𝑞

 (1 −
∑ (𝑄𝑠,𝑖(𝜽)− 𝑄𝑜,𝑖)

2𝑚
𝑖=1

∑ (𝑄𝑜,𝑖−𝑄�̄�)
2𝑚

𝑖=1

) ,        (31) 165 

where m is the total number of daily time steps, 𝑄𝑠,𝑖(𝜽) and 𝑄𝑜,𝑖 are the simulated (s) and observed (o) streamflow value at 

time step i, respectively, �̄�𝑜 is the mean of the observed values and 𝜽 = [𝜃1, … , 𝜃𝑞] are the q=12 model parameters forming 
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the parameter space 𝑃𝑞 . A daily time step is used here. Since this metric is sensitive toconsiders the chronological time series 

of simulated and observed daily streamflow, it was applied only in the simulations calibrated by using the observational dataset 

ADIGE as meteorological input.  170 

The second efficiency metric (RFDC) is an adaptation of the objective function proposed in Westerberg et al. [2011] with the 

aim to obtain a good match between simulated, �̂�𝑠,(𝑖)(𝜽), and observed, �̂�𝑜,(𝑖), flow duration curves (i.e., the ranked streamflow 

values this time in descending order): 

𝑅𝐹𝐷𝐶 = 𝑚𝑎𝑥
𝜽∈𝑃𝑞

 (1 −
∑ |�̂�𝑠,(𝑖)

𝐸𝑃 (𝜽)−�̂�𝑜,(𝑖)
𝐸𝑃 |

𝑛𝐸𝑃
𝑖=1

∑ |�̂�𝑜,(𝑖)
𝐸𝑃 −𝑄�̄�|

𝑛𝐸𝑃
𝑖=1

),        (2) 

where �̂�𝑠,(𝑖)
𝐸𝑃 (𝜽) and �̂�𝑜,(𝑖)

𝐸𝑃  are the simulated and observed streamflow values at the 𝑛𝐸𝑃   evaluation points (EPs) in which the 175 

flow duration curves are partitioned (ranked from the larger to the smaller value) and �̄�𝑜 is the mean of the observed time 

series. According to this metric, RFDC = 1 when the two flow duration curves coincide (i.e., they are the same at all the EPs). 

Given that the flow duration curve is insensitive to chronologic sequence, RFDC has been used as objective function for 

streamflow maxima obtained with both climate models and the observational dataset ADIGE. Furthermore, following 

Westerberg et al. [2011], we employed the so-called volume method was employed in which EPs are identified as the upper 180 

boundary of the elements obtained by partitioning the area below the curve in 𝑛𝐸𝑃  elements such that each of them is 

characterized by the same water volume. Given the same number of EPs, we remark that the procedure is performed 

independently for observed and simulated FDCs and it is indeed possible that the total volume under the curves and the water 

volume of each interval differ between observations and simulations. The water volume pertaining to each interval as well the 

total water volume of the flow duration curve are computed by using the right Riemann sum procedure [Protter and Morrey, 185 

1977]. In the computations we used 𝑛𝐸𝑃 = 50, which has been shown sufficient to obtain convergence of the statistic (42) 

irrespective of the integration scheme [Vogel and Fennessey, 1994].  

The third efficiency metric (KS) is the minimum of the two-sample Kolmogorov-Smirnov (𝐷𝑛) statistic (𝐷𝑛):   

𝐾𝑆 = 𝑚𝑖𝑛
𝜽∈𝑃𝑞

 (𝐷𝑛) = 𝑚𝑖𝑛
𝜽∈𝑃𝑞

 ( 𝑚𝑎𝑥
𝑖∈[1,𝑛]

|𝐹𝑠(𝑄𝑠,(𝑖)
𝑀 (𝜽)) − 𝐹𝑜(𝑄𝑜,(𝑖)

𝑀 )|),     (defined in Eq. 

(1):   190 

𝐾𝑆 = 𝑚𝑖𝑛
𝜽∈𝑃𝑞

 (𝐷𝑛) = 𝑚𝑖𝑛
𝜽∈𝑃𝑞

 ( 𝑚𝑎𝑥
𝑖∈[1,𝑛]

|𝐹𝑠(𝑄𝑠,(𝑖)
𝑀 (𝜽)) − 𝐹𝑜(𝑄𝑜,(𝑖)

𝑀 )|),     (53) 

where 𝐹𝑠  and 𝐹𝑜  are the simulated and observed ECDF as introduced in Eq. (2), andEmpirical Cumulative Distribution 

Functions (ECDFs) of the simulated, 𝑄𝑠,(𝑖)
𝑀 (𝜽) = 𝑚𝑎𝑥(𝑄𝑠,𝑘(𝜽), 𝑘 ∈  𝑖 − 𝑡ℎ 𝑦𝑒𝑎𝑟) and , and observed, 𝑄𝑜,(𝑖)

𝑀 = 𝑚𝑎𝑥(𝑄𝑜,𝑘 ,

𝑘 ∈  𝑖 − 𝑡ℎ 𝑦𝑒𝑎𝑟) are the simulated and observed, samples of daily average annual streamflow maxima of the i-th yearranked 

in increasing order, respectively, and n is the number of years considered in the simulation (29 in the present work, one for 195 

each year of the investigated period excluding the first two, see Sect. 3.4). Before ranking in increasing order, samples of 
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annual streamflow maxima are extracted from the chronological daily time series of observed and simulated streamflow, 

respectively. Afterwards, their ECDFs are computed according to the classic Weibull formulation [Weibull, 1939]:  

𝐹𝑗(𝑄𝑗,(𝑖)
𝑀 ) =

𝑖

𝑛+1
,   𝑗 = 𝑜, 𝑠, 𝑖 ∈ [1, 𝑛]. .        (4) 

This metric, which is at the core of the proposed approach, aims to maximize the chancesprobability that the modeledmodelled 200 

and observed samples of extreme high flowsstreamflows extremes belong to the same population. In other words, among all 

possible sets of model parameters we consider the one leading to the sample of simulated annual maxima with the smallest 

maximum absolute distance Dn between simulated and observed ECDFs of daily annual streamflow maxima. Since KS is not 

sensitive to the temporal sequence of observed and simulated streamflows, similar to the RFDC case, it has been applied to 

climate projections in addition to the simulations with the observational dataset ADIGE. 205 

2.3 Evaluation of statistical coherence 

After calibration, statistical coherence between the observed and simulated samples of high streamflow extremes was evaluated 

by means of the two-sample Kolmogorov-Smirnov test [Smirnov, 1939], applied under the null hypothesis that the two samples 

are drawn from the same underlying distribution. In the two-tail application of interest here the test’s statistic, Dn is given by 

Eq. (3). The closer 𝐷𝑛 is to 0 the more likely it is that the two samples are drawn from the same population. In addition, the 210 

two-sample Kolmogorov-Smirnov test returns a p-value (p) corresponding to the computed 𝐷𝑛 statistic(i [Conover, 1999]. The 

larger the p-value the stronger is the evidence in favor of the null hypothesis, i.e., KS metric). Since KS is not sensitive to the 

temporal sequence of observed and simulated streamflows, similar to the RFDC case, it has been applied to climate projections 

in addition to the simulations with the observational dataset ADIGE. 

that the samples are drawn from the same distribution. 215 

In this study p-value has been used as a measure of the statistical coherence between samples of simulated and observed high 

streamflow extremes. Furthermore, this evaluation step has been performed a-posteriori for each simulation experiment 

described in Sect. 3.4.  

2.54 Probability distribution computation and confidence intervals 

The theoretical probability distributions of simulated and observed annual streamflow maxima were obtained by fitting the 220 

Extreme Value Type I (Gumbel) [Gumbel, 1941] distribution, 𝑃(𝑄 ≤ 𝑞) = 𝑒𝑥𝑝[−𝑒𝑥𝑝[−𝛽(𝑞 − 𝑢)]], with the Maximum 

Likelihood Method (MLE) [Hosking, 1985] to the respective samples. The Pearson’s chi-squared test [Pearson, 1990] with a 

confidence level 𝛼𝑠 = 0.05 was then applied to validate the parameters 𝛽 and 𝑢  provided by the MLE. The 

adaptationExtrapolation of high quantiles (i.e., estimation of quantiles for a return period beyond the Gumbel distribution to 

the annual maxima of theavailable number of simulation years) of observed and simulated dailyannual streamflow wasmaxima 225 

were then performed a-posteriori for comparison purposes in order to extrapolate high flow quantiles (i.e., high return periods) 

for all the simulation experiments presenteddescribed in Sect.3.4. 



9 

 

Confidence intervals of observed streamflow ECDF were computed by means of parametric bootstrap [Efron, 1982] under the 

assumption that the quantity of interest was distributed according to the above parametric Gumbel probability distribution. In 

particular, 90% confidence band was estimated by using 10000 uniform random samplings from the underlying inferred 230 

distribution. 

3 Study area and, hydro-climatic datasets and simulations set-up 

3.1 Study area 

To exemplify the application of the methodology we selected as a case study the upper portionpart of the Adige river basin 

(Italy), located in the south-eastern Alpine region (see Figure 1), at the gauging station of Trento (11° 06' 54.8" E, 46° 04' 13" 235 

N, drainage area of about 9850 km2).) was selected as case study. The Adige river originates at the Resia Pass (close to the 

Alpine divide) and ends its course after 410 km in the northern Adriatic Sea. It is a typical Alpine watershed, with terrain 

elevations ranging from 185 m a.s.l. at Trento to 3500 m a.s.l. at the Italian-Austrian border. The morphology is characterized 

by deep valleys and high mountain crests. 

 240 
Figure 1: Map of the Adige river basin, with the computational grid cells (“macrocells”) superimposed to the Digital Elevation Model 

(DEM) and the river network. The streamflow gauging stations used in the study are marked with red dots. The inset shows the 

location of the Adige river basin within the Italian territory. 
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The climate of the watershed is characterized by relatively dry and cold winters followed by humid summers and autumns. 

Streamflow is minimum in winter, when precipitation fallsfalling as snow over most of the river basin, and shows two maxima: 245 

one occurring early in summer, due to snowmelt, and the other in autumn, triggered by intense cyclonic storms. The annual 

average precipitation ranges from 500 mm in the North-West to 1600 mm in the southern part of the basin [Lutz et al., 2016; 

Diamantini et al., 2018; Laiti et al., 2018]. Projected decrease of snowfall in winter and anticipation of earlier snow-melting, 

essentially due to rising temperatures associated with global warming [Gobiet et al., 2014; Gampe et al., 2016], will likely 

affect Adige streamflow regime by the second half of 21st century [Bard et al., 2015; Majone et al., 2016]. This may have 250 

relevant consequences on water resources and hydropower production, which is particularly relevant in this region of the Alps 

[Zolezzi et al., 2009; Bellin et al., 2016; Majone et al., 2016].; Avesani et al., 2022]. See also Chiogna et al. [2016] for a 

comprehensive review of the hydrological stressors acting in the Adige basin, as well as of its ecological status. 

  

3.2 Observational datasets 255 

The regional dataset ADIGE developed by Mallucci et al., [2019] by using the meteorological stations within the catchment 

and in the nearby Austrian territory bounding the catchment from the north, was used as an observational precipitation and 

temperature dataset. during the time window 1950-2010. ADIGE was selected since it is the most accurate gridded 

meteorological dataset of the investigated river basin (as shown in the recent paper by Laiti et al., 2018). Meteorological data 

at the selected stations were provided by the Austrian Zentralanstalt für Meteorologie und Geodynamik (www.zamg.ac.at) and 260 

the meteorological offices of the Autonomous Provinces of Trento (www.meteotrentino.it) and Bolzano 

(www.provincia.bz.it/meteo). The time series were interpolated over a 1-km grid at a daily time step by means of the kriging 

with external drift algorithm [Goovaerts, 1997; Journel and Rossi, 1989], with an exponential semivariogram and by using the 

16 closest neighbouring stations to generatein the estimateslinear combination providing the estimate. The spatial distribution 

model was selected by Mallucci et al. [2019] according to the leave-one-out cross-validation procedure, applied to ordinary 265 

kriging and kriging with external drift algorithms, in association with multiple semi-variogram models (i.e., Gaussian, spherical 

and exponential models) and different numbers of neighbouring stations (namely 8, 16 and 32 stations). An average absolute 

error of the daily estimates of about 1.32 mm for precipitation and 0.02°C for temperature is reported in Mallucci et al. [2019], 

comparable with the error estimates provided by other ground data-based datasets available in the Alpine region such as APGD 

[Isotta et al., 2014]. To comply with Daily streamflow at the computational grid adopted by HYPERstreamHS model, ADIGE 270 

was aggregated by areal averaging to the 5 km grid depicted inTrento Ponte San Lorenzo and Bronzolo gauging stations (see 

Figure 1) were provided by the Hydrological Offices of the Autonomous Province of Trento (www.floods.it.) and Bolzano 

(http://www.provincia.bz.it/hydro).  

Daily streamflow data collected at the Trento Ponte san Lorenzo gauging station (see Figure 1) during the period 1980-2010 

were provided by the Hydrological Office of the Autonomous Province of Trento (www.floods.it).  275 

http://www.floods.it/
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3.3 Climate change projections 

Climate projections appliedused in this studythe present work were derived from the combination of General Circulation 

Models (GCMs) and Regional Climate Models (RCMs) available from EURO-CORDEX initiative under 4.5 and 8.5 

Representative Concentration Pathways (RCP4.5 and RCP8.5), at a spatial resolution of about 12 km [EUR-11, 

http://www.eurocordex.net/, Jacob et al., 2014]. To reduce the computational burden in the hydrological modelingmodelling 280 

experiments, we adopted the model sub-selection proposed by Vrzel et al. [2019] whom applied a hierarchical clustering 

approach [Wilcke and Bärring, 2016] in selected European river basins (including the Adige) in order to reduce the number of 

available Climate Model (CM) simulations (i.e., GCM-RCM combinations) while preserving the variability of the overall 

ensemble of climate change signals. In particular, model reduction involved 5 steps: 1) identification of meteorological 

variables; 2) transformation of variables into orthogonal and therewith uncorrelated variables by means of singular vector 285 

decomposition; 3) identification of the optimum number of clusters; 4) hierarchical clustering to group the simulations; and 

finally, 5) selection of the simulationsimulations closest to the group's mean as representative. This procedure led to the 

selection of the three GCM-RCM combinations (out of the 12 available), here referred to as CLMcom, KNMI and SMHI (see 

Table 12).  

These three Climate Models (CMs)GCM-RCM combinations provide an assessmentprojections of likely future climate 290 

changes for the mid-term horizon 2040-2070, with the time window 1980-2010 selected as a period of reference. The projected 

climate change meteorological signals in the Adige are discussed in Gampe et al. [2016]. Both RCP4.5 and RCP8.5 emission 

scenarios are available for all the three adopted CMscombinations, thereby leading to a total of six CMs which are investigated 

in the present study (see Table 12). Since GCMs/RCMs combinations are prone to model biases especially in complex terrain 

[Kotlarski et al., 2014], bias-correction is needed to accurately reproduce historical meteorological forcing during the reference 295 

period. As customarily done in most of the climate change impacts studies,In this work we rely on bias-corrected products 

retrieved from EURO-CORDEX initiative. For the reference period 1989-2010 EURO-CORDEX products, which are 

available bias-corrected by the distribution-based scaling approach [DBS, Yang et al., 2010] using as a referenceobservations 

the MESAN gridded reanalysis datasets of daily precipitation and temperature [Landelius et al., 2016]. CMs forcing in the 

reference period 1980-2010 slightly differ between the two RCPs as a consequence of: i) the bias correction method adopted, 300 

which matches observed and simulated frequency distributions rather than the observed values; and ii) the correction used in 

theperformed with reference to the period 1989-2010 is extended to the previous 9 years to obtain bias-corrected scenarios for 

the entire reference period 1980-2010. Finally, before using them as input in hydrological calibration experiments, the gridded 

CMs outputs were resampled by means ofThis is needed because MESAN data are available only for the nearest neighbour 

method to the computational 5 km spacing grid used in the discretization of the Adige river basin (see the grid shown in Figure 305 

1).former period. 

Table 12: List of the EURO-CORDEX CMs used in this study. Acronyms adopted are listed in the last column. 
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RCM GCM Institute RCP Acronym 

CLMcom-CCLM4-8-17 EC-EARTH-r1 
Climate Limited-area Modelling 

Community (CLM-Community) 

 4.5  
CMLcom 

8.5 

KNMI-RACMO22E EC-EARTH-r12 
Royal Netherlands Meteorological 

Institute, De Bilt, The Netherlands 

4.5 
KNMI 

8.5 

SMHI-RCA4 HadGEM2-ES 
Swedish Meteorological and Hydrological 

Institute, Rossby Centre 

4.5  
SMHI 

8.5 

4 Results and discussion 

4.1 Direct calibrations forced by CMs  

Here we consider3.4 Simulations set-up 310 

All the results of hydrological simulations performedwere performed with the HYPERstreamHS hydrological model by using 

a daily time step and the 5 km computational grid depicted in Figure 1. Accordingly, precipitation and temperature provided 

by the ADIGE dataset and by the six CM simulations presented in Sect. 3.3 were projected to this grid by means of the nearest 

neighbour method. 

In a first set of simulations, presented in Sect. 4.1, the HYPERstreamHS model was calibrated at the Trento gauging station 315 

by using NSE, KS and RFDC as objective functions during the period 1980-2010, which is assumed as reference. In order to 

ease the presentation of results, these three parameterizations are hereafter termed as NSE-ADIGE, KS-ADIGE and RFDC-

ADIGE, respectively. Validation of the modelling framework was then performed, for these three parameterizations, by 

computing the efficiency metrics at the Bronzolo gauging station (drainage area of about 6000 km2, see Figure 1) during the 

same time window, and at the Trento gauging station during the period 1950-1980, not used for calibration.  320 

In a second set of simulations, presented in Sect. 4.2, we assessed whether the model calibrated with observational data and 

fed with precipitation and temperature obtained from climate models, produces samples of annual streamflow maxima 

statistically coherent with the observations. Here we considered simulations performed during the period 1980-2010 by using 

precipitations and temperature from the three GCM-RCM combinations selected as described in SectionSect. 3.3 each one 

withfor both RCP4.5 and RCP8.5 pathwaysemission scenarios, for a total of six CM combinations, as shown in (see Table 325 

1.2). The parameters of the hydrological model are obtained by optimizingwere those referring to NSE-ADIGE, KS-ADIGE 

and RFDC-ADIGE parameterizations. 

In Sect. 4.3, we present the results of the calibration experiments performed by using in HYPERstreamHS the precipitations 

and temperature distributions provided by the six CMs during the period 19821980-2010. The ECDFs of the daily average 

annual streamflow maximum are extracted a-posteriori from the six optimized models and then compared with, and KS and 330 

RFDC as objective functions. Following the procedure described in Sect. 2.4, extrapolations were performed under the 

assumption that of the historical observations in the same period. The comparison is performed by applyingsimulated and 
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observed ECDFs were distributed according to the parametric Gumbel probability distribution. Verification of statistical 

inference procedure was performed in all cases with the successful application of the Pearson’s chi-squared test.  

For all time windows and for all simulations, the first two years were used as spin-up and therefore excluded from the 335 

computation of model performances. Furthermore, statistical coherence between simulated and observed samples of annual 

streamflow maxima was evaluated a-posteriori by using the p-values associated to the Kolmogorov-Smirnov two-sample test 

between simulated and observed ECDFs (see Sect. 2.2), with the former obtained by optimizing the two metrics 𝐾𝑆 (Eq. (5)) 

and 𝑅𝐹𝐷𝐶 (Eq. (4)), respectively. described in Sect. 2.3. 

ResultsThe effects on model parameters of calibrations conducted using different input forcing (observational data as well 340 

CMs simulations) is investigated in Sect. 4.4 with reference to the KS metric. For each calibration experiment performed with 

the PSO algorithm we considered 100 particles that, with a maximum number of 400 iterations, leads to a maximum of 40000 

hydrological simulations for each external forcing. Parameters ranges considered during the search for the optimal solution 

were those presented in Table 1, and have been set by means of preliminary simulations such as to minimize the probability 

of excluding from the searching domain combinations of parameters leading to behavioural solutions [Beven and Binley, 345 

1992]. In addition, we considered as a metric of uncertainty for the calibrated parameter the range, �̅�, between the maximum 

and minimum value of each parameter in the 200 simulations presenting the highest efficiency metric [see Piccolroaz et al., 

2015]. 2 show that for both RCP4.5 and RCP8.5 emission scenarios simulations performed by optimizing KS (Eq., (5)) 

provided samples We remark that with the procedure adopted here aims at quantifying only the differences in the range of 

calibrated parameters and not to perform a full uncertainty analysis of predictions. 350 

Finally, in Sect. 4.5 the projected changes of high flow extremes in the future period 2040-2070 are evaluated. For each CM 

we considered the following parameterizations obtained during calibration in reference period: calibrations with KS and RFDC 

as objective functions, and NSE-ADIGE as representative of a standard calibration procedure using the observational dataset 

ADIGE as input forcing. 

4 Results and discussion 355 

probability (i.e. p4.1 Simulations using the observational dataset ADIGE 

Figure 2a shows the simulated ECDFs obtained by using the three metrics NSE, KS and RFDC as objective functions and the 

observational ADIGE dataset as input forcing. Table 3 shows the associated p-values of the Kolmogorov-Smirnov test. In a 

strict statistical sense all the three metrics provide simulated samples of annual streamflow maxima belonging to the same 

population of the observed ones, given that in all cases p>0.05, with a maximum for KS (p = 1.000) and a minimum for RFDC 360 

(p = 0.372).  At the same time, calibration conducted by using KS as objective function leads to NSE and RFDC values (0.4 and 

0.564, respectively, see Table 3) which are lower than those obtained when calibration is performed by optimizing (separately) 

these two metrics (NSE = 0.822 and RFDC = 0.975, respectively, see Table 3). This is in accordance with several studies 

showing that the adoption of a given metric in calibration may lead to suboptimal results for other metrics, since each one of 
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them is more sensitive to specific aspects of the time series with its own limitations and trade-offs [see e.g., Schaefli and Gupta, 365 

2007; Gupta et al., 2009; Mcmillan et al., 2017; Fenicia et al., 2018]. This latter limitation is, in our opinion, outweighed by 

the improvements in representing the ECDF of observed high flow extremes when the model is calibrated considering 

explicitly such an information. Accordingly, in our analyses the use of different efficiency metrics leads to different simulated 

ECDFs and hence to different p-values in the application of the statistical coherence test (see Table 3). 

Validation of the hydrological modelling framework was performed by evaluating model performance in the time-frame 1952-370 

1980, not used for calibration, at the gauging station of Ponte San Lorenzo in Trento. The validation was done by using the 

ADIGE dataset as input and the parameterizations obtained by calibrating the model in the time-frame 1982-2010 (i.e., NSE-

ADIGE, RFDC-ADIGE and KS-ADIGE, as described above). NSE-ADIGE and RFDC-ADIGE parameterizations led to NSE 

and RFDC values (NSE = 0.803 and RFDC = 0.804, see Table 3) which are only slightly lower than those obtained in calibration. 

KS-ADIGE parameterization lead to a small increase of KS from 0.067 in calibration to 0.233 in validation, still rather small. 375 

The limited modifications of the efficiency metrics in validation is an encouraging result which shows that the 

HYPERstreamHS model provides a good representation of the hydrological system independently of the metric adopted during 

the calibration procedure. Simulated and observed ECDFs of annual streamflow maxima and the associated p-value of the 

Kolmogorov-Smirnov test are presented in Figure 2b. Reproduction of observed ECDF is satisfactorily for all the 3 

parameterizations, particularly for high flow quantiles, with p-values in the range between 0.222 and 0.372 (see also Table 3). 380 

In a strict statistical sense, the three parameterizations provide simulated samples of annual streamflow maxima belonging to 

the same population of observations also in the time window 1952-1980; the reduction of p-value from calibration to validation 

is significant, but rather common in hydrological models. 

A spatial validation of the modelling framework was also performed by simulating streamflow at the Bronzolo gauging station 

(see Figure 1) in the same time window of the calibration conducted at the Trento Gauging station (1982-2010). Similarly, to 385 

the previous case, efficiency metrics in validation are only slightly different from those obtained in calibration (see Table 3). 

Furthermore, results presented in Figure 3b highlight an excellent reproduction of the observed ECDF of annual streamflow 

maxima for all the 3 parameterizations, with the associated p-values in the range between 0.791 (NSE-ADIGE) and 0.951 

(RFDC-ADIGE and KS-ADIGE). The latter is a noteworthy result which indicates that parameterization obtained using KS as 

objective function is reliable, though relying on the use of a limited number of observations, and does not introduce distortion 390 

in the spatial representation of the hydrological processes, particularly for those associated to high streamflow events, i.e., 

runoff generation and streamflow concentration processes. This latter aspect will be further investigated in Sect. 4.4. 

Table 3: Efficiency metrics for calibration and validation runs obtained by using ADIGE dataset as input forcing. The terms NSE-

ADIGE, KS-ADIGE and RFDC-ADIGE refer to the parameterizations described in Sect. 3.4. Grey shaded area and bold numbers 

indicate the metric optimized in calibration. p-values of the Kolmogorov-Smirnov test are also reported in the bottom line for the 395 
three calibration experiments and for the validations runs.  

 Calibration  Validation 

 Trento 1982-2010 Trento 1952-1980 Bronzolo 1982-2010 

 NSE RFDC KS NSE RFDC KS NSE RFDC KS 
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NSE-ADIGE 0.822 0.875 0.133 0.803   0.772   

FDC-ADIGE 0.488 0.975 0.233  0.804   0.830  

KS-ADIGE 0.400 0.564 0.067   0.233   0.137 

          

p-value 0.951 0.372 1.000 0.222 0.372 0.372 0.791 0.951 0.951 
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Figure 2: ECDFs of daily annual streamflow maximum obtained by using as input the observational dataset ADIGE and the 

parametrizations NSE-ADIGE, KS-ADIGE and RFDC-ADIGE at a) the Trento gauging station in the period 1982-2010; b) the Trento 

gauging station in the period 1952-1980, and c) the Bronzolo gauging station during the period 1982-2010. The experimental ECDF 400 
obtained from streamflow observations in the same time frames is shown with black bullets with the grey shaded area indicating the 

associated 90% confidence interval of the fitted Gumbel distribution. p-values of the Kolmogorov-Smirnov two-sample test are also 

reported within brackets for each simulation run. 

4.2 Simulations using parameterizations derived from calibrations with observed ground data 

Here we analyse the case in which HYPERstreamHS is run in the time frame 1982-2010 using as input the meteorological 405 

variables produced by the climate models with the three sets of parameters obtained by using ADIGE as input and NSE, RFDC 

and KS as objective functions in calibration (i.e., NSE-ADIGE, RFDC-ADIGE, KS-ADIGE, see Sect. 3.4). Visual inspection 

of Figures 3a, 3b and 3c evidence that for high quantiles the simulated ECDFs are often outside the 90% confidence interval 

of the Gumbel distribution fitted to observations for all the considered combinations of CMs and parameterizations. The p-

values of these validation runs are shown in the last three columns of the Table 4. In particular, these 3 parameterizations lead 410 

p-values always lower than p = 0.372 for all the considered CMs and emission scenarios (see Table 4). NSE-ADIGE and RFDC-

ADIGE show on average the lowest p-values, with KS-ADIGE showing a slightly better performance: p = 0.372 for KNMI 

and SMHI under the RCP8.5 scenario (see Figures 3b and 3c and Table 4). Inspection of Table 4 also reveals that 𝑝 <  0.05, 

and thereby the simulated ECDFs do not belong to the same population of the measured one, for the CLMcom model with 

both NSE-ADIGE and KS-ADIGE parameterizations under both emission scenarios, and for the KNMI model with NSE-415 

ADIGE and RFDC-ADIGE parameterizations under RCP4.5 

The above results highlight how classical approaches based on feeding hydrological models, calibrated by using observed 

meteorological data and employing customary efficiency metrics (i.e., NSE and RFDC), with meteorological forcing provided 

by Climate Models produce results characterized by low statistical coherence with the observational data. Furthermore, our 

results indicate that the same drawback arises when employing parameterizations obtained with a calibration approach 420 

optimizing the desired statistic of extremes, but still using observational data as input, i.e., KS-ADIGE in Figures 3a, 3b and 

3c. These results are in agreement with previous studies evidencing that the hydrological models, calibrated against observed 

data, that performs well within a baseline period may not be accurate nor consistent for simulating streamflow under future 

climate conditions [Brigode et al., 2013; Lespinas et al., 2014]. Indeed, it is recognized that the use of different datasets can 

lead to different optimized parameters that will partially account for their specific climate characteristics [Yapo et al. 1996; 425 

Vaze et al., 2010; Laiti et al., 2018]. Furthermore, it is acknowledged that climate change impact simulations are affected by 

uncertainty in climate modelling, but also the calibration strategy adopted during the reference period plays a role [Lespinas 

et al., 2014; Mizukami et al., 2019]. observed values for all the 3 CMs used.In this respect, we showed that the statistical 

coherence between climate scenarios and observations (i.e., high streamflow extremes in our case) should be preserved during 

hydrological calibration, at least in the reference period. This latter aspect will be further discussed in the ensuing Sect. 4.3. 430 
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4.3 Performance of the hydrological model calibrated using as input climate models’ outputs 

Table 4 summarizes the efficiency metrics and the p-values of the calibration experiments performed by using in 

HYPERstreamHS the precipitations and temperature distributions provided by the six CMs, and KS and RFDC as objective 

functions. Simulations refer to the period 1982-2010. When KS is used in calibration, all the 6 simulations provided samples 

of annual streamflow maxima that with high probability (i.e. p = 1.000) belong to the same population of the observed values. 435 

On the other hand, the optimization of RFDC leads to when R-FDC is used as objective function, simulations lead to samples 

belonging to the same population with probability larger than p= = 0.05 (i.e. the level of significance customarily adopted in 

the statistical literature to reject the null hypothesis), though significantly lower than for KS (fourth columnsixth and seventh 

columns in Table 24). The lowest p-value is obtained when the calibration is performed with RFDC metric and by using the 

climate model CLMcom with RCP4.5 (p = 0.222, see Figure 2a and Table 24). Consistently, the absolute maximum 440 

distancedistances between the ECDF of observed and simulated sample distributions (i.e., Dn)samples obtained by using RFDC 

as calibration metric are always larger than those obtained by using KS (see third and fifth columns in Table 4). When 

calibration is performed with KS as objective function the results are satisfactorily also with respect to the RFDC metric, which 

is in the range between 0.449 and 0.804 for all the CMs (see fourth column in Table 2). The consequence in terms4). Since 

RFDC employs the entire time series of correspondenceobservational data, this result evidences that using KS metric during 445 

calibration avoids model’s overparameterization, despite the limited number of observational data (i.e., 29 values of observed 

daily annual streamflow maxima). 

The appreciable difference between observed and simulated ECDFs is indeed appreciable.obtained in the calibration 

experiments conducted using KS and RFDC metrics is highlighted in Figure 4. The ECDFs obtained from simulations performed 

by adoptingemploying KS as optimization criteria are indeed in a better agreement with the observed ECDF than the ECDFs 450 

obtained from simulations that useemploying RFDC, as optimization criterion (see showed in all subplots inof Figure 2).4. These 

results also highlight that adopting the KS metric is preferable than using RFDC when dealing with high flow extremes, thus 

strengthening the idea of targetingapproach envisaged here of addressing directly the desired statistics forof extremes in 

calibration instead of calibrating the hydrological model on the entire streamflow record. 

 455 

Table 4: RFDC and KS efficiency metrics of the period 1982-2010 with forcing provided by CLMcom, KNMI, and SMHI climate 

models under the RCP4.5 and RCP8.5 emission scenarios. Grey shaded area and bold numbers indicate the metric optimized in 

calibration. p-values of the Kolmogorov-Smirnov test are also reported for the different calibration experiments and for the 

validations conducted using NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parameterizations.  

Dataset Efficiency metric p-value 

      Direct calibration Validations with ADIGE parameterizations 

  RFDC KS RFDC KS RFDC KS NSE-ADIGE RFDC-ADIGE KS-ADIGE 

CLMcom RCP45 0.943 0.267 0.730 0.067 0.222 1.000 0.030 0.222 0.030 

KNMI RCP45 0.940 0.167 0.804 0.067 0.791 1.000 0.013 0.030 0.123 

SMHI RCP45 0.972 0.200 0.589 0.067 0.572 1.000 0.222 0.123 0.123 
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CLMcom RCP85 0.980 0.200 0.449 0.067 0.572 1.000 0.123 0.372 0.222 

KNMI RCP85 0.961 0.167 0.456 0.067 0.791 1.000 0.123 0.222 0.372 

SMHI RCP85 0.932 0.167 0.484 0.067 0.791 1.000 0.123 0.372 0.123 

 460 

 
Figure 23: ECDFs of annual maximum daily streamflow at Trento gauging station duringin the period 1982-2010 obtained by using 

NSE-ADIGE, KS-ADIGE and RFDC-ADIGE parameterizations and a) CLMcom (first row),, b) KNMI (second row),, and c) SMHI 
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(third row) climate models as input forcing under the RCP4.5 (left) and RCP8.5 (right) emission scenarios. Calibrations have been 

performed using for both KSRCP4.5 and RFDC metricsRCP8.5 emission scenarios. The ECDF of observations is also shown with 465 
black dots together with the associated 90% confidence interval obtained by bootstrapping as described in Section 2.5of the fitted 

Gumbel distribution (grey shaded area). p-values of the Kolmogorov-Smirnov two-sample test are also reported within brackets in 

the legend. for each simulation run. 

The above findings can be cast and discussed in the context of the hydrological literature of hydrological extremes, and in the 

following we further expand the discussion presented in the Introduction in light of the results obtained so far. Climate change 470 

effects on extremes are typically assessed by using a hydrological-climatological modeling chain [Wilby and Harris, 2006] in 

which the adopted hydrological model is calibrated against chronological time series of observed streamflows during a 

reference period, and then used with  GCM-RCM future projections as meteorological input to assess projected changes of the 

extremes [see e.g. Ngongondo et al., 2013; Aich et al., 2016; Pechlivanidis et al., 2017; Vetter et al., 2017; Hattermann et al. 

2018]. Calibration of the hydrological model by targeting directly the statistics of extremes (e.g. high flow quantiles or KS 475 

metric as in our case) are indeed much less common in hydrological applications [see e.g. Honti et al., 2014]. This distinction 

may appear unnecessary since it seems reasonable to assume that a model correctly reproducing the chronological time series 

of streamflow will also reproduce the statistics of interest (or distribution). However, unavoidable epistemic and parametric 

errors, impairs this implicit assumption. A possible alternative, we explore here, is to calibrate on the distribution of the 

considered extremes, i.e. the annual streamflow maxima in our case. 480 

Examples of hydrological models calibrated by using tailored information instead of the entire observed streamflow series are 

present in the hydrological literature. [e.g., Montanari and Toth [, 2007] used the spectral properties of the streamflow time 

series as a goodness of fit metric.; Blazkova and Beven [, 2009] used certain flow quantiles as acceptability criteria within a 

GLUE framework.; Westerberg et al. [., 2011] used an informal triangular likelihood function for calibrating a hydrological 

model on the basis of observed flow duration curves. Furthermore,; Lindenschmidt (, 2017) used water stage frequency curves 485 

as objective functions for reproducing ice jam formation in northern rivers.]. However, these approaches are typically adopted 

for reproducing watershed response to observed meteorological forcing under observed conditions, and have not been applied 

(to our best knowledge) using directly thein combination with GCM-RCMs simulations as input forcing in the calibration 

procedure. The only example somewhat similar to our approach we found in literature is that of Honti et al. [2014], which 

however used a stochastic weather generator trained by observed weather time series coupled with observed discharge data to 490 

sample the posterior distribution of model parameters. The adoption of a time-independent calibration (i.e., timing errors do, 

for which time shift does not influence the model performance)objective function, has the intrinsic advantage of allowing the 

use of GCM-RCM runs conducted without the assimilation of observational data, as in our case. In fact, these runs provide 

time-slice experiments representing a stationary climate for both reference and future periods [see e.g., Majone et al., 2012] 

and by definition cannot be used in the context of a classical day-by-day hydrological comparison experiment with observed 495 

historical data [see e.g., Eden et al., 2014]. 

Studies adopting the two-sample Kolmogorov-Smirnov test to evaluate if simulated hydrological variables are distributed 

according to a given probability distribution [e.g., Kleinen and Petschel-Held, 2007], to detect changes in hydrological 
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variables [e.g., Wang et al., 2008], or to understand if calibrated parameters of hydrological models belong to a given 

probability distribution [e.g., Wu et al., 2017; Wang and Solomatine, 2019] are relatively common in the literature. This 500 

notwithstanding, we are not aware of any study adopting directly the KS metric in the context of hydrological model calibration 

on extremes.  

The proposed method, coined here as Hydrological Calibration on Extremes (HyCoX), hence consists in the calibration of a 

physically-based hydrological model on the probability distribution of extremes (in our case the ECDF of the annual 

maximumQuantiles of daily streamflow), i.e. the possibility to constrain simulated (driven by GCM-RCM runs during the 505 

reference period) and observed data samples to belong to the same population. In this respect, HyCoX also provides a 

framework for excluding CMs forcing datasets not coherent with hydrological observations of high flow extremes (i.e., cases 

with 𝑝 < 0.05 in the Kolmogorov-Smirnov two-sample test). Finally, the parameterization obtained for the hydrological 

model guaranties statistical coherence between scenarios and observations during the reference period, and can then be used 

in future climate change scenario runs to project changes in extremes. 510 

 
Table 2: NSE, RFDC and KS efficiency metrics of the period 1982-2010 with forcing provided by ADIGE dataset and CLMcom, 

KNMI, and SMHI climate models under the RCP4.5 and RCP8.5 emission scenarios. Grey shaded area and bold numbers indicate 

the metric optimized in calibration. p-values of the Kolmogorov-Smirnov coherence test are also reported for each calibration 

experiment.  515 

      NSE RFDC KS p-value 

  NSE-Adige   0.822 0.874 0.133 0.951 

 FDC-Adige  0.488 0.975 0.233 0.372 

 FDC-CLMcom RCP4.5 -- 0.943 0.267 0.222 

 FDC-KNMI RCP4.5 -- 0.940 0.167 0.791 

 FDC-SMHI RCP4.5 -- 0.972 0.200 0.572 

 FDC-CLMcom RCP8.5 -- 0.980 0.200 0.572 

 FDC-KNMI RCP8.5 -- 0.961 0.167 0.791 

 FDC-SMHI RCP8.5 -- 0.932 0.167 0.791 

 KS-Adige  0.400 0.564 0.067 1.000 

 KS-CLMcom RCP4.5 -- 0.730 0.067 1.000 

 KS-KNMI RCP4.5 -- 0.804 0.067 1.000 

 KS-SMHI RCP4.5 -- 0.589 0.067 1.000 

 KS-CLMcom RCP8.5 -- 0.449 0.067 1.000 

 KS-KNMI RCP8.5 -- 0.456 0.067 1.000 

  KS-SMHI RCP8.5 -- 0.484 0.067 1.000 

 



21 

 

4.2 Forward simulations using parameterizations derived from calibrations with observed ground data 

The typical way to assess the impact of climate change on hydrology is to run a model, calibrated with observed meteorological 

and hydrological data, with the meteorological forcing provided by climate models. This approach is pursued here by using 

HYPERstreamHS calibrated against daily streamflow in the period 1982-2010, with precipitation and temperature extracted 520 

from the ADIGE dataset [Mallucci et al., 2019], and meteorological input provided by the six aforementioned CM simulations. 

The main objective is to assess if a model well calibrated with observational data responds coherently when applied with 

precipitation and temperature obtained from climate models. Again, the comparison is performed by applying the Kolmogorov-

Smirnov two-sample test between simulated and observed ECDFs. HYPERstreamHS was calibrated at the Trento gauging 

station by using NSE, KS and RFDC metrics. In order to ease the ensuing discussions, these three parameterizations are hereafter 525 

termed as NSE-ADIGE, KS-ADIGE and RFDC-ADIGE, respectively (see also Table 2). 

Figure 3a shows the simulated ECDFs and the associated p-values of the Kolmogorov-Smirnov test for calibrations conducted 

with the ADIGE dataset as input and the three aforementioned metrics (NSE, KS and RFDC). In a strict statistical sense all the 

three metrics provide simulated samples of annual streamflow maxima belonging to the same population of the observed ones, 

given that in all cases p>0.05, but with an evidence in favor of this conclusion that is maximum for KSE (p = 1.000) and 530 

minimum for RFDC (p = 0.372).  At the same time, calibration conducted by using KS as efficiency metric leads to NSE and 

RFDC values (0.4 and 0.564, respectively, see Table 2) which are lower than those obtained optimizing the two metrics in the 

calibration (NSE = 0.822 and RFDC = 0.975, see Table 2). This is in accordance with several studies showing that the adoption 

of a given metric in calibration may lead to suboptimal results for other metrics since each one of them is more sensitive to 

specific aspects of the time series with its own limitations and trade-offs [see e.g., Schaefli and Gupta, 2007; Gupta et al., 535 

2009; Mcmillan et al., 2017; Fenicia et al., 2018]. This latter limitation is, in our opinion, outweighed by the improvements in 

representing the ECDF of observed high flow extremes during the calibration of the hydrological model. Accordingly, in our 

analyses the use of different efficiency metrics leads to different simulated ECDFs and hence to different p-values in the 

application of the statistical coherence test (see Table 2). 

When the 3 aforementioned parameterizations (i.e., NSE-ADIGE, RFDC-ADIGE, KS-ADIGE) are used in the forward 540 

simulations of the reference period 1982-2010 using as input the meteorological variables produced by the climate models, the 

conclusions are significantly different (see Figures 3b, 3c, 3d). In particular, the adopted parameterizations lead to simulations 

that show low p-values (always lower than p = 0.372) for all the considered CMs and pathways. In particular, NSE-ADIGE 

and RFDC-ADIGE show on average the lowest p-values, with KS-ADIGE showing a slightly better performance: p = 0.372 for 

KNMI and SMHI under the RCP8.5 scenario (see Figures 3c and 3d).  545 

The above results highlight how the classical approaches based on feeding the hydrological model calibrated to observed 

streamflow data (i.e., by using the NSE metric) or to flow duration curve (i.e., by using the RFDC metric), with meteorological 

forcing provided by Climate Models produce results characterized by low statistical coherence with the observational data. 

Furthermore, our results indicate that the same drawback arises when employing parameterizations obtained with a calibration 
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approach optimizing the desired statistic of extremes, but still using observational data as input, i.e., KS-ADIGE in Figures 550 

3b, 3c and 3d. These results are in agreement with previous studies evidencing that the use of parameterizations of hydrological 

models (obtained with observational input forcing) providing a good reproduction during a baseline period is questionable for 

simulating streamflow under future climate conditions [Brigode et al., 2013; Lespinas et al., 2014]. Indeed, it is well recognized 

that the use of different datasets can lead to different optimized parameter sets that will partially account for their specific 

climate characteristics [Yapo et al. 1996; Vaze et al., 2010; Laiti et al., 2018]. Furthermore, it is acknowledged that climate 555 

change impact simulations are certainly affected by uncertainties in climate modeling, but also the calibration strategy adopted 

during the reference period plays a, often dominant, role [Lespinas et al., 2014; Mizukami et al., 2019]. In this respect, we 

believe that the preservation of statistical coherence between climate scenarios and observations (i.e., high flow extremes in 

our case) should be taken into account directly during hydrological calibration, at least in the reference period. 

Figures 3b), 3c) and 3d) evidence that for high quantiles the simulated ECDFs are often outside the 90% confidence interval 560 

of the observed ECDF for all the considered forward simulations. This is further highlighted in Figure 4, which shows the 

quantiles of annual maximum daily streamflow as a function of return period at the Trento gauging station. Following the 

procedure described in Section 2.5 extrapolations are performed under the assumption that the simulated ECDFs are distributed 

according to the parametric Gumbel probability distribution. All the adaptations to the simulated ECDFs passed the Pearson’s 

chi-squared test. Confidence intervals of observed streamflow are derived from the parametric bootstrap procedure outlined in 565 

Sect. 2.5. are shown in Figure 5, where results obtained by calibrating the hydrological model with the meteorological input 

provided by the Climate Models (for both KS and RFDC metrics as objective functions) are compared with those obtained using 

the same meteorological input but employing NSE-ADIGE, RFDC-ADIGE, and KS-ADIGE parameterizations. Visual 

inspection of Figure 45 shows that for all investigated return periods parameterizationsparametrizations obtained by fitting 

calibrating with the model to observed streamflow with meteorological dataprecipitations and temperatures as provided by the 570 

ADIGE dataset (i.e., NSE-ADIGE, RFDC-ADIGE, KS-ADIGE) significantly underestimate the ECDFquantiles of annual 

maximumthe observations and fall outside the confidence interval of observationsthe fitted Gumbel distribution (i.e., outside 

the grey area). The only exceptions are curves the quantiles derived from simulations conducted with KNMI (KS-ADIGE, 

dotted line in Figure 4c5c) and CLMcom (all the 3 metrics, Figure 4a5a) climate models under RCP4.5 pathway. We note 

however how these curves are obtained with forward simulations providing low p-values of the Kolmogorov-Smirnov test 575 

with respect to the other cases (always lower than p = 0.222). Quantiles obtained by calibrating the hydrological model with 

the meteorological input provided by the Climate Models and KS as metric are in a very good agreement with the experimental 

data, while those obtained by using RFDC are outside or at the lower bound of the interval of confidence, though they generally 

are in a better agreement with the quantiles of the experimental data than those obtained with the aforementioned NSE-ADIGE, 

RFDC-ADIGE, and KS-ADIGE parametrizations. Exceptions are represented by CLMcom and KNMI under RCP4.5 emission 580 

scenario and RFDC as metric that present the largest deviations from observations (see Figures 4a5a and 4c5c, respectively). 

We attribute this occurrence to the additional source of uncertainty arising from the extrapolation procedure (i.e., the selection 

of the probability distribution and of the statistical inference method for the parameters, MLE in our case). The interval of 
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confidence (grayof the fitted Gumbel distribution (grey area) widens as the return period increases and this is line with the 

recent findings of Meresa and Romanowicz [2017], which showed that errors in fitting theoretical distribution models to annual 585 

extrememaxima streamflow series might contribute significantly to the overall uncertainty associated to projections of future 

hydrological extremes. 

 

 

Figure 4: Simulated ECDFs of daily annual maximum streamflow at Trento gauging station in the period 1982-2010 with 590 
precipitation and air temperature provided by CLMcom (first row), KNMI (second row), and SMHI (third row) climate models 

under the RCP4.5 (left) and RCP8.5 (right) emission scenarios. Calibration of HYPERstreamHS was performed using both KS and 

RFDC metrics as objective functions. The ECDF of observations is also shown with black dots together with the associated 90% 

confidence interval of the fitted Gumbel distribution (grey shaded area). p-values of the Kolmogorov-Smirnov two-sample test are 

also reported within brackets for each simulation run.  595 
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Figure 5: Quantiles of daily annual streamflow maxima as a function of return period at the Trento gauging station. Extrapolations 

are based on simulations conducted during the period 1982-2010 using as input forcing the CLMcom (first row), KNMI (second 

row), and SMHI (third row) climate models under the RCP4.5 (left) and RCP8.5 (right) emission scenarios, respectively. Each curve 

represents a combination of CM, emission scenario and parameterization obtained duringwith the calibration. Forward simulations 600 
are labelled as NSE-ADIGE, RFDC-ADIGE and KS-ADIGE depending on the metric adopted during calibrationsSimulations 

conducted using theparameterizations derived from the use of observational dataset ADIGE as input forcing.in calibration are 

labelled as NSE-ADIGE, RFDC-ADIGE and KS-ADIGE. Extrapolation from observed streamflow datamaxima is also shown 

(continuous black line) together with the associated 90% confidence interval of the fitted Gumbel distribution (grey shaded area).  
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 605 

4.34 Model parameters 

The results presented in the previous Sections highlight how the largest level of statistical coherence between observations and 

simulations (performed with CMs simulations as input) can beis achieved only by optimizing the desired statistics of extremes 

(i.e., see the curves labeledlabelled KS in Figures 34 and 45) in the calibration of the hydrological model. Starting from this 

evidence, we investigated what is the effect on model parameters of performing the calibration by using different input data 610 

(either observational data as wellor CMs simulations). The list of the 12 parameters of the model with their units together with 

a short description  as input data and range of variation is presented in Table 3. Notice that all the 12 parameters of 

HYPERStreamHS are calibrated. To simplify the comparison, we considered for the 3 CMs and for both emission scenarios 

only the calibrations performed by using the KS metric. In particular, for each calibration run we considered the 200 

simulations (out of 40000 performed in total) presenting the highest efficiency. In addition, we considered the 100% confidence 615 

bands resulting from the retained solutions, and used the distance between the upper and lower limits of the confidence interval, 

�̅�, as a metric of uncertainty for the calibrated parameter objective function. [see Piccolroaz et al., 2015]. We remark that the 

procedure adopted here aims at quantifying only the differences in the calibrated parameters and not to perform a full 

uncertainty analysis of predictions. 

 620 

Figure 56 shows the range of variability of the parameters , �̅�, between the maximum and minimum value of each parameter 

associated with the retained solutions200 accepted sets of parameters (see Sect. 3.4), together with the corresponding optimal 

parameter setsset. The values of the parameters are normalized with respect to their range (see Table 3). The boundary of the 

parameters space has been set by means of preliminary simulations1) such as to minimize the probability of excluding from 

the search domain combinations of parameters leading to behavioral solutions [Beven and Binley, 1992]. Furthermore, we 625 

verified a-posteriori that the optimal parameters are inside the range of variation. In all cases, confidence bands arethat they 

are directly comparable. In all simulations the range �̅� is generally well distributed between 0 and 1, indicating a proper choice 

of theirthe parameters range of variation, although for a few parameters optimalitythe optimal value was located close to the 

boundary of the search domain. As shown in Figure 56 the majority of the parameters havespan a confidence bandrange �̅� that 

is similar in terms of amplitude (or slightly larger) to that obtained in the case of KS-ADIGE, thus supporting the conclusion 630 

that calibration using CMs simulations does not lead, for both RCPRCPs, to anomalous identification of model parameters.bias 

parameterizations. Figure 56 also shows that for most of the parameters, simulations performed with CMs lead to generally 

overlapping confidence bandsranges for �̅� with respect to the case in which the observational dataset ADIGE is used. The 

largest deviations in terms of confidence bands�̅� are observed for KS-KNMI, particularly under the RCP8.5 emission scenario. 

Notably, the parameters shaping the continuous soil-moisture accounting module result in values of the optimum which are 635 

very similar (see qref, 𝜇, and cfc in Figures 5a and 5b). Notwithstanding, this analysis evidences the possibility to identify to 

what degree each parameter is sensitive to the adoption of a different input in the calibration procedure.6a and 6b). Visual 
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inspection of Figure 6 also highlights that the parameters controlling runoff generation and streamflow concentration (in 

particular, 𝑣, cs, qref, and cfc) present a very good identifiability (i.e., small range �̅�). This is not the case for parameters 

controlling snowmelting and groundwater contribution, the latter being relevant only for low flows conditions (see 𝑘 in Figures 640 

6a and 6b). These results, together with the good performances obtained in the validation runs presented in Sect. 4.1, suggest 

that, although the model is calibrated considering a limited number of observations, in the continuous simulations the maxima 

are well reproduced only if the interaction between the precipitation and streamflow relevant during high flow extremes is 

correctly reproduced. We cannot exclude that additional analyses could be envisioned for improving the identifiability of some 

parameters (e.g., reduced number of model parameters, introduction of constraints in the parameters range, etc.) in applications 645 

dealing with different hydrological models and different data availabilities (e.g. lower number of streamflow extremes). 

However, results presented in this Section are in our view enough to consider the parameterizations derived from the use of 

KS metric as reliable.  

The differences observed in the optimal valuevalues of model parameters are due to structural errors in the GCMs and RCMs 

(i.e., theiruse of datasets presenting different capabilities to simulate the present climate), which are a substantial source of 650 

uncertainty in the impact assessment modeling chain [Honti et al., 2014; Tian et al, 2016].. Along the concepts brought forward 

here, this source of uncertainty can be addressed effectively by calibration of the hydrological model to the quantities of interest 

(i.e. the observed streamflow statistics of extremes) using as input the forcing provided by a specific GCM-RCM 

combination.CM. This approach can be seen as a “hydrologic-based bias-correction” and is rooted in the adoption of a “goal-

oriented” calibration framework [see e.g., Laiti et al., 2018] along the lines stated in the Introduction. Furthermore, our 655 

approach provides an answer to the need of reducing uncertainty in climate change impact assessments recently highlighted in 

the review by Clark et al. [2016].  
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Figure 5: Normalized parameters range obtained by retaining Figure 6: Range, �̅�, between the maximum and minimum value of 660 
each parameter associated with the 200 simulations presenting the highest efficiency. plotted as a normalized range with respect to 

the parameter range presented in Table 1. Calibrations are conducted for the 3 different CMs under (a) RCP4.5 and (b) RCP8.5 

emission scenarios with reference to the KS metric. MarkedBold horizontal dashes indicate the optimal parameter sets for all 

experiments. See Table 3 for the description of parameters and their ranges. 

4.45 Projected changes of streamflow quantiles 665 

Here we evaluate projected changes of high flow extremes in the future period 2040-2070. Notice that, similar to the reference 

period, the first two years of simulations (i.e., 2040 and 2041) have been used as a spin-up period. Figure 6Figure 7 presents 

the annual maximum streamflow as a function of return period at Trento gauging station in the future time window 2040-2070 

for the 3 consideredselected CMs under both RCP4.5 and RCP8.5 emission scenarios. As customary, extrapolations are 

performed under the assumption that the simulated ECDFs are distributed according to a parametric Gumbel probability 670 

distribution and the comparison is presented only for the optimal solution obtained during calibration. For each CM we 
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considered the following parameterizations referred to the reference period: direct calibration with KS and RFDC metrics, and 

NSE-ADIGE as representative of a standard calibration procedure. 

Visual inspection of Figure 67 confirms that using the standard calibration (i.e., NSE-ADIGE) of the hydrological model leads 

to a significant underestimation of all quantiles with respect toof using KS and RFDC for all the 3 considered CMs under both 675 

RCPs. This is in agreement with the results obtained for the reference period (see Figure 45), where simulations using NSE-

ADIGE parameterization provided streamflow quantiles systematically lower than with the CMs. In addition, KS-based 

calibrations always provide larger streamflow quantiles with respect to the cases in which the RFDC metric is considered 

(considering the same RCP emission scenario). We remark how the adoption of the KS metric is preferable since it provided 

an almost perfect match with observed streamflow quantiles in the calibration period (see Figure 45). 680 

Figure 67 shows that projected changes of high flows extremes depend on the selected CM and emission scenario. Projected 

streamflow quantiles under RCP8.5 emission scenario are larger than those under RCP4.5 for all the CMs. In general, the 

projected streamflow quantiles do not exceed the extrapolations from observations in the period 1982-2010 (black lines in 

Figure 67), with the exceptions of CLMcom and SMHI models under RCP8.5 and SMHI under RCP4.5 when KS metric is 

adopted. These results are in line with other recent contributions which concluded that the sign and magnitude of projected 685 

changes of high flow extremes vary significantly with the location of the investigated river basin, the climate models used, the 

emission scenario as well as the selection of the investigated time window [Ngongondo et al., 2013; Aich et al., 2016; 

Pechlivanidis et al., 2017; Vetter at al., 2017]. Similar results were also found by Brunner et al. [2019] who implemented a 

stochastic framework to simulate future streamflow time series in 19 regions of Switzerland, and concluded that future shifts 

in maximum streamflow will increase and decrease in rainfall-dominated and melt-dominated regions, respectively. In 690 

agreement withSimilarly to our results, Di Sante et al. [2019] also showed that a moderate increase in high flow magnitude 

(return time of 100 years) is projected for large river basin (drained area >10.000 km2) in the Central Europe region under 

RCP8.5 and considering a mid-century time slice. 
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Figure 67: Quantiles of annual maximum daily streamflow as a function of return period at Trento gauging station. Projections are 695 
based on simulations conducted during the future time period 2042-2070 using as input the CLMcom (first row), KNMI (second 

row), and SMHI (third row) climate models under the RCP4.5 (left) and RCP8.5 (right) emission scenarios, respectively. Black line 

denotes the extrapolation of observational data in the period 1982-2010. together with the associated 90% confidence interval of the 

fitted Gumbel distribution (grey shaded area).  

 700 
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5 Conclusions 

We investigated different strategies for the calibration of hydrological models to be used in assessing projections of 

hydrological high flows in light of climate change. In particularthis work, we proposed athe methodological framework HyCoX 

in which the calibration of the hydrological model is carried out by optimizing the reproduction ofmaximizing the probability 

distribution of high flows extremes. The methodology, coined here as Hydrological Calibration on eXtremes (HyCoX), is such 705 

that the hydrological simulations conducted during a reference period, as driven by climate model outputs, are constrained to 

maximize the probability that the modeledmodelled and observed extreme streamflowshigh streamflow extremes belong to 

the same statistical population. The proposed framework is “goal-oriented” and aims at reducing the uncertainty associated 

toimproving the estimation of streamflow extremes by directly calibrating the selected hydrological model to the quantities of 

interest (i.e. flow statistics instead of time series) using as input directly the meteorological data (precipitations and temperature 710 

in the case at hand) provided by the Climate Model (CM).Models. In particular, the framework relies on the use of the two-

sample Kolmogorov-Smirnov statistic (KS) as objective function during the calibration procedure. This approach ensures 

statistical coherence between scenarios and observations duringin the reference period, and, likely, preserves it in the future 

climate change scenario runs performed with the aim of projecting changes in streamflow extremes. The goal-oriented 

approach envisaged in this work can be also applied to a variety of hydrological scenario and modelling approaches. While 715 

the approach is exemplified here for high flows, it can be applied to low flows as well (e.g. for drought assessment).  

The proposed procedure is exemplified through application of a few climate models and observational data to the analysis of 

annual maximum streamflow of the Adige river at the Ponte San Lorenzo gauging station in Trento (Italy). Though the nature 

of the present work is inherently methodological, it is worth mentioning that the application of the framework over a 

statistically-sized number of watersheds is currently ongoing in order to demonstrate method’s generality. The hydrological 720 

model employed is HYPERstreamHS, a continuous simulation distributed model. Three performance metrics were adopted, 

including the proposed one, for which the Kolmogorov-Smirnov two-sample statistical test was employed (KS for brevity). 

WeFurthermore, we remark that the HyCoX methodology is not metric dependent, and any type of metric assessing the 

statistical coherence between observed and simulated streamflow extremes could have beencan be employed without any loss 

of generality. 725 

The proposed procedure is exemplified through application of a few climate models and observational data to the analysis of 

annual maximum streamflow of the Adige river basin (Italy) by means of the distributed hydrological model HYPERstreamHS. 

The results highlight that adopting KS is preferable to other popular metrics (e.g. Nash-SutcliffeNSE or fit to Flow Duration 

Curveflow duration curve, RFDC) when dealing with high flowstreamflow extremes. This result validates our hypothesis that 

targeting directly the statistics of extreme values under consideration during the calibration exercise leads to coherent and 730 

consistentreliable hydrological models for addressing the impact of climate change. We remark that such approach may lead 

to a suboptimal performance if the target is different from the one employed in this study, limitation that is outweighed by the 

improvements in representing high flow extremes in line with the goal-oriented framework pursued in this work. Furthermore, 
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investigation of optimal values highlighted that direct calibration using CMs outputs and KS as objective function lead to 

unbiased identification of model parameters. 735 

In addition, our analysis revealed that using CMs simulations as input of the hydrological model, and adopting the 

parameterizations derived from calibration against historical time series, is an error prone procedure. Nowadays, it is generally 

acknowledged that the uncertainties arising at the different steps of the hydrological-climatological modeling chain can cause 

a significant divergence in the statistics of extremes. However, it appears crucial that the simulated effects on projected 

extremes in a climate change impact assessment can be safely attributed to the change in climate alone, and not to uncertainties 740 

arising from the selection of the efficiency metric in the calibration process. Finally, investigation of optimal values highlighted 

that direct calibration using CMs outputs lead to unbiased identification of model parameters. 

In climate change impact assessments on streamflow extremes In the present work we also showed that the way the 

hydrological model is calibrated against observations assumes paramount importance. In the present work we showed that  in 

climate change impact assessments on streamflow extremes. In particular, we highlighted how the classical approach of 745 

calibrating on daily streamflow observations by using observed meteorological data is an error prone procedure when the 

objective iscan lead to projecta biased evaluation of the probability distribution of streamflow extremes by usingwhen climate 

models. Streamflow are used as input forcing during the reference period, with high streamflow quantiles arebeing dramatically 

underestimated and fall outside the confidence interval of the quantiles of observed annual maxima when applied to the 

observation periodwith respect to the fitted extreme value distribution of observations. Extrapolations performed by using the 750 

proposed calibration procedure, with input provided by CMs, are instead more consistent and provide a good match with 

observed quantiles.  

The goal-oriented approach envisaged in this work can be applied to a variety of hydrological scenario and modeling 

approaches. While the approach is exemplified here for high flows, it can be applied to low flows as well (e.g. for drought 

assessment). In any case, it is advisable to calculate the uncertainty band for both the simulation model and the ECDF from 755 

observations.  
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