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Abstract. In many cases flood frequency analysis needs to be carried out on mean daily flow (MDF) series without any 

available information on the instantaneous peak flow (IPF). We analyze the error of using MDFs instead of IPFs for flood 

quantile estimation on a German dataset and assess spatial patterns and factors that influence the deviation of MDF floods 

from their IPF counterparts. The main dependence could be found for catchment area but also gauge elevation appeared to 

have some influence. Based on the findings we propose simple linear models to correct both MDF flood peaks of individual 10 

flood events and overall MDF flood statistics. Key predictor in the models is the event-based ratio of flood peak and flood 

volume obtained directly from the daily flow records. This correction approach requires a minimum of data input, is easily 

applied, valid for the entire study area and successfully estimates IPF peaks and flood statistics. The models perform 

particularly well in smaller catchments, where other IPF estimation methods fall short. Still, the limit of the approach is reached 

for catchment sizes below 100 km², where the hydrograph information from the daily series is no longer capable of 15 

approximating instantaneous flood dynamics.  

1 Introduction 

Common flood frequency analysis (FFA) is based on samples of maximum flows. The dimensions and variability of these 

maxima pose the baseline for the choice of probability distribution, the estimation of its parameters and eventually the 

deduction of flood quantiles as design criteria. For FFA to be as accurate as possible, it is important to have a large number of 20 

peak flows measured with high precision, so that flood magnitude and dynamics are well assessable.  

However, embracing the true dimension of a peak requires continuous measurement of the flow on a high temporal resolution. 

Such data is rarely available and oftentimes FFA needs to be carried out on average daily flow records instead. The daily 

averaging naturally flattens the flood peak and the true maximum becomes unknowable. The degree of this smoothing, i.e. the 

difference between the true instantaneous peak flow (IPF) and the maximum mean daily flow (MDF) depends on the response 25 

time of a system, which is controlled by a multitude of factors. The average relationship between MDF and IPF peaks at a site 

depends greatly on its basin area (Fuller, 1914) and characteristics related to topography, like altitude, relief and channel slope 

(Canuti and Moisello, 1982). The internal variability of the MDF-IPF ratio within a site’s flow record is largely determined by 

the type of meteorological input causing the individual flood events (Viglione and Blöschl, 2009; Gaál et al. 2013). A variety 
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of studies make use of the dependencies named above in order to estimate IPFs from MDFs, including Taguas et al. (2008), 30 

Muñoz et al. (2012) and Ding et al. (2015).  

Other IPF estimation methods aim at using the bare minimum of available data, i.e. solely the available daily flow record. In 

these cases, usually the shape of hydrographs are used to estimate the instantaneous peaks of events (e.g. Langbein, 1944; Ellis 

and Gray, 1966). Several approaches make use of the maximum daily flow and the discharge of the previous and successive 

day. Chen et al. (2017) compare two of these methods, namely those of Sangal (1983) and Fill and Steiner (2003). They also 35 

propose their own method based on the rising and falling slopes of the event hydrograph, estimated from the three consecutive 

days around the peak. They found that their slope-based method and Fill and Steiner’s method perform well and are probably 

applicable under a wide range of climates. However, both methods’ performances decrease with decreasing catchment size 

and work best for areas larger than 500 km².  

There naturally exist more complex means to correct the divergence between MDFs and IPFs. This includes disaggregation of 40 

the daily flow series to a finer scale, as done by e.g. Stedinger and Vogel (1984), Tarboton et al. (1998), Kumar et al. (2000), 

Tan et al. (2007) and Acharya and Ryu (2014). Also, hydrological modelling may be applied for IPF estimation, e.g. in 

combination with high-resolution disaggregated rainfall (Ding et al., 2016) and regionalized model parameters (Ding and 

Haberlandt, 2017). These methods, however, require a variety of computational steps and/or data sources. 

This study aims at analyzing the differences between IPF and MDF with focus on flood frequency. The errors in mean 45 

maximum flows, distribution parameters and flood quantiles are assessed and analyzed for spatial patterns. Based on the 

findings, a method is proposed that facilitates IPF estimation using a combination of daily event hydrographs and functional 

dependencies with geomorphic catchment descriptors, while keeping the data input to a minimum. Key predictor in this 

approach is the ratio of direct event peak runoff and direct event volume. This ratio is expected to effectually describe the 

shape of a flood event, which in turn gives an idea about the expected instantaneous peak: the larger the daily peak and the 50 

smaller the event volume, the larger the expected difference between IPF and MDF and vice versa. We assume that the peak-

volume ratio (p/V) holds important information on the general behavior of flood events (Tan et al., 2006; Gaál et al. 2015; 

Fischer, 2018), and thus the expected magnitude of the IPF. The p/V of individual events can describe the internal variability 

at a site by reflecting different types of floods caused by different rainfall and/or snowmelt inputs. At the same time the p/V 

accounts for the variability between sites caused by local flood generating processes governed by general physiographic 55 

conditions. Accordingly, the proposed method is tested for IPF estimation for individual events, which are then used for FFA, 

and for direct correction of site-specific distribution parameters and flood quantiles.    

2 Methods 

2.1 Analysis and estimation of IPF peaks 

In a first step, the general differences between IPF and MDF statistics are analyzed. An error is computed as percentage 60 

deviation of the MDF statistic MDFstat from the IPF statistic IPFstat 
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Error =  
MDFstat−IPFstat

IPFstat
∗ 100 %.          (1) 

This error is computed at each station for any desired quantity stat, like the mean annual maximum flow (MHQ), L-moments, 

distribution parameters and flood quantiles.  65 

In order to improve the IPF estimation by MDF, several correction methods are applied, which make use of the peak-volume 

ratio. This ratio is computed for events in the average daily time series after baseflow separation using the direct peak flow 

Qdir and the direct flood volume Voldir 

p/V [
1

𝑑
] =  

Qdir [m3d−1]

Voldir [m³]
 .           (2) 

The first IPF estimation method aims at correcting individual events. For calibration, all events are identified that contain a 70 

monthly maximum instantaneous peak. For these events the daily and instantaneous peaks, as well as the daily p/Vs are 

computed. Then a linear regression model of the following form is fitted 

IPFevent =  MDFevent ∗ (𝑎 + 𝑏1 ∗ p/Vevent + 𝑏2 ∗ CD1 + ⋯ + 𝑏𝑛+1 ∗ CD𝑛),     (3) 

where CD denotes additional catchment descriptors that may be included in the models. The combination of hydrograph shape 

and catchment characteristics as predictors is expected to better reproduce both the at-site and between-site variability in the 75 

IPF-MDF relationship and yield a more universal model. 

The event correction method will be compared with the slope correction method developed by Chen et al. (2017). This method 

estimates an instantaneous event peak flow based on the slopes of the daily peak Qpeak to its preceding and following daily 

flows Qpre and Qsuc. The IPF is thus estimated as 

IPFevent =  Qpeak +
(Qpeak−Qpre)∗(Qpeak−Qsuc)

2∗Qpeak−Qpre−Qsuc
 .        (4) 80 

For validation, both methods are applied to estimate IPFs for all separated events in the daily flow series. The maximum flows 

needed for FFA are then taken from this corrected event series rather than from corrected maximum daily peaks. This procedure 

is assumed to be more accurate, since maxima in IPF and MDF do not necessarily overlap. More precisely, events with 

maximum instantaneous peaks can have rather inconsiderable daily peaks in some instances. Correcting only the maximum 

MDFs would lead to underestimation of the IPFs in these cases. 85 

Since the p/V method in equation (3) can only be calibrated on events for which monthly maxima exist but is eventually 

applied to all events, including very small and potentially improperly separated ones, unrealistic IPF estimates may be created 

that adversely affect the subsequent FFA. In order to avoid this problem and to be able to estimate IPF statistics directly from 
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daily records, a second type of IPF estimation methods is analyzed. These involve the estimation of flood statistics, i.e. mean 

annual and seasonal maximum flows, sample L-moments, estimated distribution parameters and derived flood quantiles based 90 

on averaged p/Vs. These averages are obtained from all annual maximum MDF events at each station. These major events are 

expected to be properly separated by the algorithm and to be most influential in FFA. Although the maximum MDF events 

may not necessarily be identical to the maximum IPF events, as discussed before, this approach appears to be the most sensible 

here. The model set up is analogous to the event correction approach 

IPFstat =  MDFstat ∗ (𝑎 + 𝑏1 ∗ p/Vmean +  𝑏2 ∗ CD1 + ⋯ +  𝑏𝑛+1 ∗ CD𝑛).     (5) 95 

The model is expected to represent the average conditions that determine the average deviation of MDF from IPF estimates. 

The p/Vmean in itself is expected to be a good predictor that reflects local conditions like spatial scale, climate, geology and 

other external factors that control flow variability obtainable from daily flow records. The additional inclusion of catchment 

descriptors is tested case by case and may contribute to the reproduction of spatial variability. 

2.2 Event separation 100 

For separation of the flood events, the initial steps of the procedure used by Tarasova et al. (2018) are carried out, which has 

proven effective and convenient for their German dataset. For the initial step of baseflow separation they selected the simple 

nonparametric algorithm by the Institute of Hydrology (1980). This method is applied here with the same settings, i.e. 5-day 

non-overlapping blocks are used to find minima that are identified as turning points if they are more than 1.1 times smaller 

than their neighboring minima. The baseflow is then derived by linear interpolation between the turning points. Discharge 105 

peaks are subsequently determined from the flow series and for every peak the start and end of the belonging flow event is 

defined by the nearest surrounding turning points. In order to prevent false identification of events due to natural variability, 

events are discarded if their peak discharge is not at least 10% larger than the baseflow.  

The final step of re-defining events with multiple peaks is not carried out, as it requires rainfall and snowmelt information, 

which are not available in our case. It is assumed that the majority of events, especially the larger ones relevant for FFA, are 110 

separated correctly.  

2.3 Distribution fitting and flood quantile estimation 

For extrapolation of the time series and estimation of floods with specific return periods, distributions were fitted to the annual 

and seasonal samples of both IPF and MDF. This enables the direct comparison of both the higher flood quantiles and of the 

estimated distribution parameters. Here, the General Extreme Value distribution (GEV) of the following form was used for all 115 

samples 

𝐹(𝑥) =  𝑒−exp (
1

𝑘
∗ log(1−𝑘∗

𝑥−𝜉

𝛼
))

          (6) 
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with location parameter ξ, scale parameter α and shape parameter k. The parameters were estimated using sample L- moments. 

The goodness of fit of the distributions was determined with the Cramer-von-Mises test. 

Additionally, for seasonal considerations, mixed models were applied, which combine two or more GEV distributions fitted 120 

to different subsamples of the data, like summer and winter floods. A simple maximum mixing approach is used to combine 

the individual distributions: 

𝐹mix(𝑥) =  ∏ 𝐹𝑖(𝑥)𝑛
𝑖=1 .           (7) 

This approach allows the combined estimation of flood quantiles from multiple underlying distributions and thus the 

assessment of errors in seasonal FFA. The approach is described in detail in Fischer et al. 2016. Other than in their study, we 125 

do not censor our data with thresholds, i.e. for matters of simplicity we assume that every seasonal maximum is indeed a flood 

event. 

2.4 Uncertainty 

Since both distribution fitting and IPF estimation via linear models are approximations and not fully accurate, we eventually 

assess the overall level of uncertainty in the final IPF flood quantile estimates. This is done using simple bootstrapping 130 

procedures. In a first step, the series of annual maxima from both daily and monthly maximum data are analogously resampled 

1000 times with replacement. For each resampling the desired flood quantiles are estimated using L-moments. The range of 

these estimates provides the baseline level of uncertainty due to distribution fitting.  

In a second step, linear regression models are fitted to each pairing of estimated IPF and MDF flood quantiles over all stations 

in the study area. In order to assess the uncertainty of the fitted models, another resampling is carried out, this time shuffling 135 

the set of considered stations, again 1000 times with replacement. For each station this procedure yields 1000 estimates of 

paired flood quantiles from both the IPF and MDF series (IPF-bs and MDF-bs), 1000 full-model quantile estimates resulting 

from the original p/V model fitted to each permutation (p/V-full), and 1000*1000 quantile estimates resulting from permutation 

of the p/V model for all IPF and MDF transpositions (p/V-bs-bs). 

In order to assess the overall level of uncertainty, several indices will be assessed at the individual stations. The first one is the 140 

relative width of the 95% confidence intervals (CI) calculated for all aforementioned bootstrap sample estimates of the desired 

flood quantile 

CIbs =  
𝑥bs;0.975−𝑥bs;0.025

𝑥bs;0.5
,           (8) 

where xbs;0.025 and xbs;0.975 are the 2.5% and 97.5% quantile and xbs;0.5 the median of the respective sample. The second one is 

the deviation of the individual MDF and p/V-model bootstrap samples from the IPF sample, which allows the assessment of 145 

error distributions 
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errorbs =  
𝑥bs− IPFbs

IPFbs
∗ 100%.          (9) 

From the resulting error vector, a variety of statistics can be computed for comparison. Finally, the agreement of the 95% 

confidence intervals of the MDF and p/V-model samples with the IPF confidence bands are determined as percentage overlap: 

overlap =  
min(𝑥bs;0.975,IPFbs;0.975)−max (𝑥bs;0.025,IPFbs;0.025)

max(𝑥bs;0.975,IPFbs;0.975)−min (𝑥bs;0.025,IPFbs;0.025)
∗ 100%.      (10) 150 

3 Study area and data 

This study uses data from 653 discharge gauges distributed over Germany. For the analyses, average daily flow and maximum 

monthly flow are required. The selected stations represent the datasets of the federal agencies, who provide online access to 

both parameters (Lower Saxony, Saxony-Anhalt, Saxony, Bavaria and Baden-Württemberg). 

Germany poses a transition zone from an oceanic climate in the northwest to a humid continental climate in the southeast. The 155 

northwestern parts are influenced by wet air and have mild winters, while the more southeastern parts are drier and exhibit 

larger temperature ranges. The average temperature for the entire country is 8.9 °C, the monthly averages ranging between 

0.4°C in January and 18°C in July (reference period 1981-2010; DWD). The average precipitation is 819 mm, where amounts 

generally decrease in west-east direction and in strong dependence on topography. Annual rainfall sums are generally highest 

over the Alps at the very Southern border and the various secondary mountain ranges. The flat continental east is driest. 160 

Temporally, the summer months are wettest with rainfall often occurring in convective events. Snowfall occurs between 

October and April, where amount and depth of snow cover increase with decreasing oceanic influence and increasing altitude.   

Even though not the entire area of Germany is covered by the available data, the selected gauges provide a cross section 

through the climatically and topographically distinct regions, from the flat oceanic northwest to the mountainous continental 

southeast. 165 
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Figure 1: Location of the 653 gauges used for analysis. The 103 stations used for model calibration are marked in blue. Digital 

elevation data by Jarvis et al. (2008). 

The lengths of the discharge records vary substantially from 11 to 183 years with a mean of 48.4 years. For the general 

assessment of differences in IPF and MDF floods and final model validation, all 653 stations with their variable record lengths 170 

are considered. For assessment of flood frequency criteria only those stations with at least 30 years of observations were used 

(490). Model fitting was carried out on a subset of 103 gauges, whose discharge series were thoroughly checked. Also, their 

records were cropped to a common period from 1979 to 2012, in order to eliminate potential non-stationary effects.  

For the 103 stations used for calibration a catalogue of catchment descriptors is available. For the remaining stations only 

rudimentary information was obtained, i.e. catchment size, geographical position and altitude of the gauges. 175 

4 Results and discussion 

4.1 Comparison of MDF and IPF peaks 

In theory, the relative deviation between MDF and IPF peaks depends greatly on catchment size. Small catchments without 

appreciable buffering capacity react fast to even small rainfall, leading to short and steep flood waves that are hardly 

reproduced on coarsely averaged time scales. Factors like steep slopes, impermeable underground and short but intense rainfall 180 

contribute to the “burstiness” of storm events and make these even less representable through daily flow records. 

The effect of the catchment size is clearly visible in the data set. Fig. 2 demonstrates by means of the mean annual maximum 

flow that the larger the area, the smaller the deviation between MDF and IPF. Also, errors appear to be especially large in 
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higher altitudes. Generally, the error seems to increase in north-south direction, which could be a secondary effect of both 

increasing altitude and decreasing catchment size. 185 

 

Figure 2: Spatial distribution of the MDF error in the MHQ. 

When assessing the differences between average daily and instantaneous peaks, it is also meaningful to take a closer look at 

different types of floods. For our German dataset the two most opposite types are a) flood events induced by short intense 

rainfall, especially convective events, and b) extended flood events with significant volume, as caused by snowmelt and/or 190 

stratiform rain. Presumably, the latter flood type is much better represented by average daily flow than the former. In order to 

roughly distinguish between the two types, the flow records are divided into summer (May - October) and winter (November 

- April) half years.  
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Figure 3: Error in the MHQ in relation to catchment size and elevation for the entire year (a), summer (b) and winter (c). 195 

In Fig. 3 the error in the MHQ is shown for the entire year and the summer and winter half year. The relationship with catchment 

area is clearly visible in all three cases. Also, the effect of the elevation becomes obvious, namely in the lowest elevations 

(yellow points, below 100 m) showing very small errors, even for small catchment sizes down to approximately 100 km². This 

is the clearest stratification in the error due to elevation; the errors at higher altitudes appear less distinguishable.  

There is, however, a clear distinction between summer and winter. As expected, the error is overall smaller in the winter 200 

months, where snowmelt and stratiform events prevail, while the convective events in summer are poorly reproduced by MDF. 

The error in the annual peaks is a mixture of the two seasons. Which season contributes mainly to the annual peaks depends 

on the individual flood regimes. At 69.1% of the considered gauges the winter floods exceed their summer counterparts on 

average, the remaining 30.9% are dominated by summer floods. These seasonality statistics are established on basis of the IPF. 

When considering MDF instead, only 23.2% of the gauges are identified as having maximum peaks in summer. This indicates 205 

that the average daily flow smooths significant peaks to a point where they are no longer relevant for the overall flood behavior. 

Fig. 4 a shows the percentage of annual maxima at each gauge that are attributed to the wrong season. Negative values are 

falsely attributed to summer, positive values to winter. It is obvious that with decreasing catchment size an increasing number 

of annual maxima are falsely identified in the winter half year, while the actual instantaneous maxima occur in summer. Apart 

from not being able to properly identify flood magnitudes when using daily flow series, this is a serious issue for classification 210 

of flood regimes, identification of dominating flood types and application of heterogeneous flood frequency analysis when 

daily data is the only available option.  

Another general issue highlighted by this analysis, independent of seasonality, is the asynchronous occurrence of IPFs and 

MDFs. Instantaneous maxima are not always identifiable in the daily flow series, i.e. the maxima obtained from the daily series 

are inevitably found in other places. In general, the smaller the catchment, the smaller the temporal overlap between 215 

instantaneous and daily peaks, as seen in Fig. 4 b. This problem needs to be kept in mind when attempting to estimate 
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instantaneous peaks from daily peaks, since the two may belong to significantly different events and thus to different 

populations.  

 

Figure 4: Percentage of peaks falsely attributed by MDF to the winter or summer half-year (a) and percentage of peaks in MDF and 220 
IPF overlapping in time (with a 5-day buffer; b). 

4.2 Estimation of mean annual IPF 

For both correction of the individual events and of the MHQ, linear models appeared appropriate. The fitted models are listed 

in Table 1. For all models, the p/V is able to explain the majority of the variance in the IPF-MDF relationship and they may 

well be applied with the p/V as sole regressor. However, including the gauge elevation in some models led to minor 225 

improvements of the performances, especially for the two seasons. Gauge location and catchment size, on the other hand, did 

not prove relevant. 

It turned out that when correcting the peaks of individual events, the performance could not be significantly improved by 

considering the seasons separately. For correction of the MHQ, however, individual seasonal models did prove meaningful. 

This observation indicates that the relationship between average IPF, MDF and p/V differs between seasons. This is attributed 230 

to the inability of the daily series to identify instantaneous events, which is more severe in summer than in winter. The 

individually fitted models tend to correct for this deficiency. 

 

Table 1: Linear models fitted for correction of individual events and the MHQ.  

Type Model 
Events MDF * (0.94 – 0.49 * p/Vevent - 0.000078 * elevation)  

MHQ Year MHQMDF * (1.11 - 1.27 * p/Vmean)  
Summer MHQMDF * (1.34 - 1.54 * p/Vmean - 0.00011 * elevation) 

Winter MHQMDF * (1.34 - 1.63 * p/Vmean - 0.00019 * elevation) 

 235 

Fig. 5 shows the change in mean absolute error in the annual MHQ after correction with the different methods in relation to 

catchment size and elevation. The slope method (a) applied to the individual events yields a rather constant reduction of the 
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error independent of catchment size. However, there are several outliers produced by the method, which can be attributed to 

improper separation of smaller events. Applying the slope method only to the annual maximum MDF events, as done in Fig. 

5 b shows a much smoother and more constant error reduction. The two methods using the p/V ratio (Fig. 5 c and d) yield a 240 

much larger improvement for the smaller catchments where the error is generally larger than in the bigger catchments. 

However, both methods simultaneously lead to an increase of the error in several cases. This deterioration appears to affect 

those stations that have been highlighted earlier, namely the ones with the lowest elevations in the data set. Here the error is 

significantly lower than the p/Vs suggest. Again, the average p/V method appears more robust than the event-correction and 

leads to larger improvements in smaller catchments. 245 

It should be noted that working with large data and automatic event separation without manual post-correction leads to 

problems that could potentially be avoided when considering individual time series more carefully. Several events are 

identified as too long or too short (or not at all), so their volumes are over- or understated, respectively. This results in false 

p/Vs and in some cases to severe over- or underestimation of the peak. The weight of such events is assumed to be significantly 

lower when correcting flood statistics based on average p/Vs, which could be a particular reason for the latter method being 250 

favored here. In addition, the overall performance can only be assessed for events that contain the monthly maximum flow, 

i.e. primarily larger events. How the event correction performs for minor events cannot be analyzed here. 

 

Figure 5: Error reduction (negative values) / increase (positive values) in the mean maximum flow for different IPF estimation 

methods when compared to MDF. 255 
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Fig. 6 summarizes the overall model performances for the mean annual/seasonal maximum flow at all 653 stations and 

compares the individual methods to the error in using MDF directly. It is obvious that all methods give significantly better IPF 

estimates than the mere MDFs. The slope correction has quite a large bias, which is, as seen above, not only disadvantageous. 

Still, the overall error is smaller for the p/V methods, with fewer outliers produced by the average p/V approach.  

 260 

Figure 6: Comparison of performances of different IPF estimation methods for the entire year (a), summer (b) and winter(c). 

Table 2 summarizes the normalized root mean square error (NRMSE) and the percentage bias (PBIAS) for all model variants. 

The values in parentheses indicate the performance criteria for gauges with catchment areas below 500 km². Here, the 

advantage of both p/V-approaches over the slope method become apparent, as their errors are significantly smaller. 

 265 

Table 2: Performances of different IPF estimation methods in terms of NRMSE and percentage bias. The values in parentheses show 

the performances for catchment sizes below 500 km². 

 Year  Summer  Winter  

  NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] 

MDF 17.0 (48.0) -18.0 (-32.5) 18.1 (49.1) -20.6 (-38.2) 14.9 (44.3) -16.4 (-28.8) 

Slope-events 9.2 (32.4) -8.6 (-20.5) 8.9 (34.6) -11.6 (-26.7) 10.3 (30.3) -7.8 (-17.3) 

p/V-events 12.1 (24.6) 2.0 (-12.3) 11.5 (26.7) -0.1 (-18.0) 13.5 (23.1) 2.9 (  -9.0) 

p/V-MHQ 7.6 (21.3) 0.7 (  -8.1) 8.2 (23.4) -0.4 (-12.3) 8.2 (22.5) 1.1 (  -5.7) 

 

4.3 Comparison of IPF and MDF distributions 

The GEV distribution appeared to be a generally suitable distribution for the stations in the dataset, as shown in Fig. 7. The 270 

Cramer-von-Mises test certifies a good fit for both the IPF and MDF samples, as well as for the slope and p/V corrected 

samples. Only a few stations lie close to the 5% line which would suggest a rejection of the null hypothesis.  
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Figure 7: Cramer-von-Mises p-values for the GEV distribution fitted to various samples of annual and seasonal maxima. 

A comparison between the estimated parameters for the IPF and MDF samples for the year and the seasons are shown in Fig. 275 

8. As expected, the location parameters are consistently underestimated by the MDF series, with the largest errors in summer. 

This naturally leads to an overall downward shift of the “true” distribution when estimated from MDF values. The scales, here 

normalized by the location, appear to be primarily overestimated in summer, leading to distributions that are steeper for MDF 

than for IPF samples. For the year and winter, the error in in the scale parameter appears to be balanced in its direction.  

The shape parameters differ quite substantially between the seasons. In summer the vast majority of estimated parameter values 280 

is negative, both in IPF and MDF. This indicates a heavy tail behavior for the summer floods. The fact that these negative 

values are in most cases significantly smaller in the MDF than in the IPF sample, suggests that the tails are overstated in the 

former case. This in combination with the underestimation of the location parameter leads to an overall underestimation of the 

lower and an overestimation of the higher flood quantiles by the MDF sample. For the year and winter, again, no clear trend 

is visible.  285 

Some distinct patterns emerge from analysis of the estimated parameters: a) higher altitude catchments have small scale and 

shapes close to zero. This “mild” behavior is quite consistent over all seasons and the year. b) Lowest altitude catchments 

generally have a large scale and, especially in summer, negative shape. These catchments thus exhibit the strongest seasonal 

alternation with heaviest tails in summer. At the same time these catchments show overall largest deviations between IPF and 

MDF, especially in the summer half year. This suggests once more that IPF estimation for these catchments is particularly 290 

difficult.  
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Figure 8: Estimated GEV parameters from the IPF vs. MDF samples for the year and the two seasons.  

Generally, the heavy tails of the summer distributions in contrast to the flatter tails in winter let the summer floods become 

dominant at higher quantiles. For a return period of 100 years, the summer floods exceed the winter peaks at 61.9% of the 295 

stations. For 50 and 10 years this exceedance occurs at 51.2% and 35.7% of stations, respectively. This behavior is also 

noticeable in the MDF but for fewer gauges, namely 53.4%, 43.2% and 21.0% for 100, 50 and 10-year return periods. 

4.4 Estimation of IPF quantiles 

Three approaches were tested for estimating IPF flood quantiles: a) correcting the sample L-moments required for parameter 

estimation (p/V-Lmoms), b) correcting the parameters of the fitted distribution (p/V-params), and c) directly correcting the 300 

desired flood quantiles (p/V-quant). Method a) is convenient since a single model for each L-moment facilitates a correction 

of the complete distribution and hence each desired flood quantile. Estimating the L-moments has the additional advantage of 

not being restricted to a certain type of probability distribution. A proper distribution can be selected and fitted locally using 
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the corrected L-moments. Still, the other methods may prove more robust and are hence tested as well. Additionally, 

distributions were fitted to the annual and seasonal maxima that have been previously corrected using the slope (slope-events) 305 

and p/V methods for events (p/V-events). 

Fig. 9 shows the errors in parameter estimates for the different approaches in comparison to the original uncorrected MDF 

error at the 490 validation stations with minimum 30-year flow records. All methods clearly improve the estimation for the 

location and shape parameters, where the L-Moment correction shows overall smallest error and bias. The improvement in the 

shape parameter for any of the methods is not as obvious. Since the shape parameter is generally difficult to model and the 310 

overall error is comparably low, the direct use of the MDF shape parameter estimates is sensible. Nonetheless, the results 

presented here base on estimated shape parameters. 

 

Figure 9: Comparison of performances of various IPF-estimation methods for the GEV distribution parameters for the year and 

the two seasons. 315 
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Fig. 10 demonstrates the quality of the different correction approaches by means of the 10-, 50- and 100-year flood at the 490 

validation stations. Other than for the mean, the differences between the individual methods are not as distinct here. It turned 

out that with increasing return period, the advantage of the L-Moment, parameter and quantile correction methods declines. 

The errors in the higher quantiles appear more random and do not relate as much to the average daily peak-volume relationship. 

Moreover, even if the parameter estimates of the correction methods are generally good, slightest deviations manifest 320 

themselves in the tails of the distribution. This turns out to be especially valid for the low-altitude catchments. The 

overcorrection that was observed for the mean is even more pronounced here, which leads to an average decline in model 

performance. Last but not least, the general uncertainty in parameter estimation and extrapolation far beyond the time series 

length need to be kept in mind. Overall, even the estimation of the “true” IPF quantiles is potentially defective in itself, as will 

be discussed in the next section. 325 

 

Figure 10: Comparison of performances of various IPF-estimation methods for different flood quantiles for the entire year. 

Still, even for the 100-year flood, the L-moment and quantile approaches perform slightly better than the event correction 

methods, which becomes obvious from Table 3, where the normalized root mean square error (NRMSE) and the percentage 

bias (PBIAS) for all methods and return periods are summarized. It appears that all three average p/V methods perform 330 

similarly well. However, due to its previously named advantages, the L-moment method is considered the superior approach 

in this setting. 

Between the event correction techniques, the slope method performs better than the p/V in terms of overall error but is strongly 

biased. The outlier problem, observed for the MHQ appears to propagate severely in the p/V-event method, leading to the high 

NRMSE values. When focusing on the catchments with areas below 500 km², the superiority of the p/V-methods becomes 335 

once again apparent. Still, the difference in performance between the event methods and the p/Vmean methods decreases with 

increasing return period. For 50 and 100 years, the p/V-event model poses the best approach in terms of NRMSE and PBIAS, 

which suggests that the average p/V ratio is no longer able to properly explain the IPF-MDF relationship in the tails of the 
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distributions and that the severe overestimations of the event correction occur primarily at the larger catchments with overall 

small deviation between MDF and IPF.  340 

 

Table 3: Performances of different IPF estimation methods in terms of NRMSE and percentage bias for different flood quantiles. 

The values in parentheses show the performances for catchment sizes below 500 km². 

  T = 10 years T = 50 years T = 100 years 

  NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] 

MDF 17.8 (50.0) -18.0 (-32.9) 17.8 (48.1) -18.3 (-32.4) 17.9 (47.6) -18.4 (-32.2) 

Slope-events 8.4 (30.9) -6.0 (-18.1) 10.8 (28.6) -4.6 (-16.4) 12.8 (29.1) -4.2 (-16.0) 

p/V-events 14.7 (23.6) 5.0 (  -9.7) 17.0 (21.7) 6.3 (  -7.4) 18.3 (23.0) 6.7 (  -6.7) 

p/V-Lmoms 8.8 (23.1) 1.1 (  -8.7) 10.0 (24.0) 0.1 (  -9.4) 10.9 (25.7) -0.4 (  -9.8) 

p/V-params 8.5 (24.2) 0.6 (  -9.3) 9.4 (25.8) -0.5 (-10.6) 10.1 (27.7) -1.1 (-11.4) 

p/V-quants 8.9 (23.0) 1.2 (  -8.5) 10.3 (23.8) 0.6 (  -9.2) 11.3 (25.5) 0.2 (  -9.7) 

 

Finally, the model performances of the mixed models, combining summer and winter floods, are analyzed for different flood 345 

quantiles. Their behavior is generally comparable to the annual maximum series approach, as shown in Fig. 11. Even though 

the quantiles obtained with the mixed models may be more extreme and more parameters need to be estimated and corrected, 

there is no indication that the IPF correction will not function in this case. 

 

Figure 11: Comparison of performances of various IPF-estimation methods for different seasonally mixed flood quantiles. 350 

The NRMSE and PBIAS values for the mixed approach are shown in table 4. Again, for the smaller catchments, the p/V-event 

correction method shows the best performance. 
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 355 

Table 4: Mixed-model performances of different IPF estimation methods in terms of NRMSE and percentage bias for different flood 

quantiles. The values in parentheses show the performance for catchment sizes below 500 km². 

  T = 10 years T = 50 years T = 100 years 

  NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] NRMSE [%] PBIAS [%] 

MDF 17.7 (50.2) -17.9 (-33.0) 17.5 (48.4) -18.0 (-32.3) 17.6 (48.0) -18.1 (-32.1) 

Slope-events 8.0 (31.2) -6.1 (-18.3) 9.4 (28.4) -4.4 (-16.2) 10.6 (28.4) -3.7 (-15.5) 

p/V-events 14.6 (23.8) 4.8 (  -9.8) 16.7 (21.8) 6.4 (  -7.2) 17.8 (23.3) 6.9 (  -6.2) 

p/V-Lmoms 9.1 (25.7) 0.0 (-10.0) 8.6 (26.0) -2.0 (-11.4) 9.2 (27.3) -3.1 (-12.5) 

p/V-params 9.3 (26.1) -0.8 (-10.1) 8.8 (26.3) -2.8 (-11.7) 9.4 (27.7) -4.0 (-12.8) 

 

The final models for the L-moment correction can be found in Table 5. Some models exhibited a non-constant error variance 

and were thus re-fitted using generalized least squares from the “nlme” R-package (Pinhero & Bates, 2018). Where this was 360 

the case, the utilized variance function is given in the table. 

 

Table 5: Linear models fitted for correction of L-moments with variance function used for variance stabilization in generalized least 

squares fitting. 

  Model Variance Function 

L1 

 

Year L1MDF * (1.10 - 1.27 * p/Vmean)  - 
Summer L1MDF * (1.28 - 1.32 * p/Vmean - 0.00014 * elevation)  Exponential  

Winter L1MDF * (1.29 - 1.43 * p/Vmean - 0.00021 * elevation)  Exponential 

L2 Year L2MDF * (1.06 - 1.06 * p/Vmean)  - 
Summer L2MDF * (1.24 - 1.09 * p/Vmean- 0.00013 * elevation)  Exponential 

Winter L2MDF * (1.28 - 1.37 * p/Vmean- 0.00026 * elevation)  Exponential 

T3 Year 0.95 * T3MDF - 0.00062 * p/Vmean  - 
Summer 1.07 * T3MDF - 0.19 * p/Vmean  - 

Winter 0.94 * T3MDF - 0.024 * p/Vmean  Power  
 365 

4.5 Uncertainty 

The results of the bootstrapping procedure used to assess uncertainty are exemplary shown in Fig. 12 for the HQ100 at a single 

station with a reduced number of 100 permutations. In panel a, the IPF and MDF estimates for each permutation of the annual 

maximum series are plotted against each other. This shows the bandwidths of both the IPF and MDF estimates as a result of 

uncertainty in the distribution fitting. Fig. 12 b shows the estimated IPF flood quantiles vs. the quantiles estimated using the 370 

p/V models for each permutation. The dark blue points represent the full linear models using all available stations in the study 

area, while the light blue points represent 100 resampled model estimates. In this example, it becomes obvious that the range 

in flood quantile estimates due to permutation in the linear models is significantly smaller than the range in estimates due to 

distribution fitting. This is valid for the majority of stations.  
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 375 

Figure 12: Example of bootstrapping results at a station with 100 permutations. (a) HQ100 from IFP vs. MDF for each permutation 

of the time series, (b) HQ100 from IPF vs. 100 model estimates per permutation; the dark blue dots represent the full model. 

Fig. 13 shows the relative widths of the 95% confidence intervals for all bootstrapping samples. The average widths of the 

IPF-bs, MDF-bss and p/V-full seem to be similar with a larger variability in the IPF sample. The width of the average range of 

the individual model permutations (p/V-bs-mean) is very small at all stations and therefore contributes little to the overall level 380 

of uncertainty (p/V-bs-bs). 

 

Figure 13: Relative widths of various bootstrap samples for different flood quantiles. 

In order to assess the full bandwidth of the errors in the linear model estimates, they are compared to the range of errors in the 

MDF estimates. Fig. 14 shows the mean deviations from the perturbed IPF quantiles, as well as the lower and upper limits of 385 

the 50% and 95% confidence intervals of the errors for the 10-, 50- and 100-year flood quantiles. It is obvious that the overall 

uncertainty gets larger with increasing return period, as can be seen by the increasing distance between lower and upper 

confidence limits. The p/V-model estimates appear to be slightly positively biased and positively skewed, which is especially 

noticeable in the 95% confidence interval for the HQ100. At many stations there is a significant overestimation of the true IPF 
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quantile with some of the linear model transpositions. The MDF estimates on the other hand exhibit the expected persistent 390 

underestimation.  

 

Figure 14: Error distribution of the MDF and p/V bootstrap samples for three flood quantiles. Shown are the median errors (left), 

as well as the lower and upper limits of the 50% (center) and 95% confidence intervals (right). 

Fig. 15 summarizes the general overlap of the confidence intervals of MDF and estimated IPF with the confidence intervals of 395 

the observed IPF for the three flood quantiles. It becomes obvious that the agreement between IPF and the p/V model estimates 

is significantly larger than with the MDF values. This observation suggests that with high probability the p/V model estimates 

are in the range of the “true” IPF quantiles. 

 

Figure 15: Percentage overlap between the 95% confidence intervals of all IPF bootstrap estimates and MDF and p/V model 400 
bootstrap estimates for three flood quantiles.  

4.6 Range of applications and limitations 

The method of correcting the error of MDF floods via p/Vs performs well and is easily applicable in our study area. However, 

its great simplification and mere approximation of physical flood generating processes results in some problems and limitations 

that will be listed and discussed here.  405 
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The first aspect that may influence the performance of the proposed IPF correction method is the event separation technique. 

The chosen technique determines how flood events and thus the required hydrograph characteristics are defined. The choice 

of baseflow separating algorithm can greatly affect the identification of start and end points of flood events. Strict independence 

criteria and thresholds for event recognition may lead to rejection of crucial flood events when considering daily time series. 

Lax criteria, on the other hand, may create unnaturally long multi-peak events and false inclusion of small events, both leading 410 

to unrealistic hydrograph characteristics and IPF estimates. Thus, the additional step of refining multiple peak events, as 

suggested by Tarasova et al. (2018) should be carried out, when rainfall and snowmelt information is available. 

Using the p/Vevent in order to correct individual events and then using the corrected series for FFA poses in theory a more 

sensible approach than using the p/Vmean from the annual MDF maxima. As mentioned before, maximum MDF events do not 

necessarily coincide with maximum IPF events, which is why correcting all events first and then selecting the annual maxima 415 

should yield a more appropriate IPF sample. But again, correcting individual events depends greatly on a very careful event 

separation, which could not be achieved in this case and which led to some unrealistic IPF estimates. Nonetheless, if a proper 

event separation is possible, the event correction method may have the larger potential. In such a case, a single model would 

be sufficient to account for all aspects of IPF estimation, including high flood quantiles.  

A problem for IPF correction, which has been exhaustively discussed above, are gauges that exhibit little difference between 420 

MDF and IPF floods, even though their p/V ratio would suggest a much larger error. For our dataset this applies to the lowest-

altitude gauges in the dataset. The MDFs at these stations are overcorrected and thus exhibit severe overestimation of the true 

IPFs. We therefore discourage the application of the suggested correction methods at gauges that are both situated below 100 

m a.s.l. and have catchment areas larger than 200 km². 

This observation may also suggest that other factors need to be considered for proper error estimation or that the parameters 425 

of the correction models need to be adjusted for different subsets of data. This is also relevant for the question of universality 

of the proposed method. Our data set is limited and representative of a temperate humid climate and moderate altitude. Thus, 

a qualitative sensitivity analysis is carried out on the full 653-stations dataset in order to identify patterns that may be 

extrapolatable to other regions. The subsets are selected by combinations of geographical location, catchment size and gauge 

elevation. Target variable is the mean annual maximum IPF. Differences in the individual models due to different degrees of 430 

freedom are natural, which is why only those subsets that lead to significant deviations from the original model are mentioned 

here.  

Two sets of stations deviate noticably from the original model. The first one includes the low-altitude gauges discussed before. 

Here the overall error is so small that no correction yields better results than correction by the linear model. The second group 

includes the catchments with areas below 50 km². The errors for these stations appear very scattered and randomly distributed. 435 

Comparing the p/V from the daily series with the p/V obtained from instantaneous events, it becomes obvious that the 

difference increases with decreasing catchment size and becomes excessively large and random for catchment sizes below 100 

km². The correction using mean daily p/V only functions where unknown instantaneous flood dynamics are roughly 

approximated by observed daily flow variability. The smaller the temporal scale of an instantaneous flood event, the poorer it 
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is reproduced in the daily records. If instantaneous events manifest themselves primarily on a subdaily basis, the possibility to 440 

describe their dynamics via daily flows becomes ineligible. This observation is also in accordance with the observed temporal 

shifts between MDF and IPF events, which is increasingly pronounced in smaller catchments. In summary, the proposed 

correction method founders at smaller scales below 100 km². Even though the IPF estimation leads to a general improvement 

at this scale, the daily flood time scale poses a poor predictor in these catchments. 

Longitude and latitude do not appear to have any effect on the model fitting. Dividing the study area into quadrants does not 445 

result in any differences between the subsets, even when equalizing the other factors catchment size and elevation. Also, 

neither record length nor period of record appear to have an influence. 

The distinction between summer and winter for representation of the two most opposite flood types is particularly valid for 

this study area and should be adjusted where flood types are otherwise distributed. In general, even the rough distinction 

between different flood types for IPF estimation proved meaningful in our case, as it revealed different dynamics and MDF-450 

IPF relationships. This observation could be further exploited by more carefully defining and distinguishing flood types, as 

e.g. proposed by Fischer (2018) or Tarasova et al. (2020). 

Finally, one should note that the type of distribution for flood quantile estimation can only be selected based on daily data and 

may differ from the optimal IPF distribution. For our data, the GEV proved flexible enough to be a good match in both MDF 

and IPF but this could differ in other cases. 455 

5 Conclusions and Outlook 

As in other studies before, it could be shown that the IPF-MDF relationship depends primarily on catchment size. It could also 

be observed that other factors, in this case gauge elevation, play a role in determining the difference between MDF and IPF 

floods. The relationship also appeared to differ between the two types of floods considered here, namely winter and summer 

floods. Since summer floods are often caused by short but intense rain events and thus exhibit steep rising and falling limbs, 460 

their subdaily peaks are much larger than and difficult to estimate from the smoothed average daily peaks. Long, voluminous 

winter floods on the other hand show a much smaller IPF-MDF ratio and are easier to model. 

This study has also shown that hydrograph characteristics, like the peak-volume ratio of flood events can be used to estimate 

instantaneous peak flows when only average daily series are available. The p/V ratio may be used to predict both IPFs of 

individual events and instantaneous flood statistics, including mean annual and seasonal maximum flows and flood quantiles. 465 

Due to improper flood event separation, the event-correction method produced some outliers in our case but may work 

significantly better when flood events can be defined more carefully. In general, the p/V method requires a minimum of data 

and can be applied using mere information from the daily series itself. The performance could be marginally improved by 

including gauge elevation as additional predictor in the models.  

The general recommendation for estimating IPF flood quantiles is to use the average p/V approach for correction of L-470 

moments. This method is convenient since L-moments can be globally corrected while distributions may be locally fitted 

https://doi.org/10.5194/hess-2021-466
Preprint. Discussion started: 17 September 2021
c© Author(s) 2021. CC BY 4.0 License.



23 

 

afterwards. It turned out that the first two L-moments are easily estimated using p/Vmean, while higher order L-moments or L-

moment ratios are more difficult to model with this approach.  

There are two limitations, where the proposed method should be handled with care: a) at stations with an elevation below 100 

m and catchment areas above 200 km², since it overestimates the true difference between IPF and MDF and b) at catchments 475 

smaller than 100 km², where it underestimates the error so that the full correction potential cannot be achieved. Still, in 

comparison to the slope method, the time-scale approach works significantly better for smaller catchment areas, especially 

below 500 km². For larger catchments, the two methods are more comparable in performance.  

For future analyses it will be meaningful to test the universality of the proposed approach in other study regions. Also, the 

effect of the flood event separation on the IPF estimation performance should be analyzed in more detail, especially in order 480 

to improve the event correction technique. Finally, it will be interesting to see if explicit consideration of more carefully defined 

flood types can improve the IFP estimation in mixed models. 
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