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Abstract. A soil moisture retrieval assimilation framework is implemented across South Asia in an attempt to improve re-

gional soil moisture estimation as well as to provide a consistent regional soil moisture dataset. This study aims to improve the

spatiotemporal variability of soil moisture estimates by assimilating Soil Moisture Active Passive (SMAP) near surface soil

moisture retrievals into a land surface model. The Noah-MP (v4.0.1) land surface model is run within the NASA Land Infor-

mation System software framework to model regional land surface processes. NASA Modern-Era Retrospective Analysis for5

Research and Applications (MERRA2) and GPM Integrated Multi-satellitE Retrievals (IMERG) provide the meteorological

boundary conditions to the land surface model. Assimilation is carried out using both cumulative distribution function (CDF)

corrected (DA-CDF) and uncorrected SMAP retrievals (DA-NoCDF). CDF-matching is implemented to map the statistical

moments of the SMAP soil moisture retrievals to the land surface model climatology. Comparison of assimilated and model-

only soil moisture estimates with publicly available in-situ measurements highlight the relative improvement in soil moisture10

estimates by assimilating SMAP retrievals. Across the Tibetan Plateau, DA-NoCDF reduced the mean bias and RMSE by 8.4%

and 9.4% even though assimilation only occurred during less than 10% of the study period due to frozen soil conditions. The

best goodness-of-fit statistics were achieved for the IMERG DA-NoCDF soil moisture experiment. SMAP retrieval assimi-

lation corrected biases associated with unmodeled hydrologic phenomenon (e.g., anthropogenic influences due to irrigation).

The highest influence of assimilation was observed across croplands. Improvements in soil moisture translated into improved15

spatiotemporal patterns of modeled evapotranspiration, yet limited influence of assimilation was observed on states included

within the carbon cycle such as gross primary production. Improvement in fine-scale modeled estimates by assimilating coarse-

scale retrievals highlights the potential of this approach for soil moisture estimation over data scarce regions.

1 Introduction

Soil moisture (SM) is an important variable in geophysical science. In land surface models, soil moisture primarily influences20

the energy cycle by controlling latent heat flux and soil temperature (Al-Kayssi et al., 1990), and the water cycle via evapo-

transpiration, soil infiltration capacity, and runoff (Penna et al., 2011). Accurate soil moisture estimation is also a requirement

for analyzing the effects of climate change as soil moisture variability influences terrestrial carbon uptake (Green et al., 2019).

In the context of agriculture, soil moisture provides a quantitative basis for the development of sociopolitical policies aimed
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at regulating and monitoring crop cultivation, crop selection, water resources distribution, and irrigation processes (Schneider,25

1989; Shani et al., 2004; Jalilvand et al., 2019). Soil moisture-based frameworks have been extensively used for irrigation

scheduling and monitoring, particularly in terms of tracking plant growth (Dukes and Scholberg, 2005; Soulis et al., 2015).

The three main sources of surface soil moisture are precipitation (Morin and Benyamini, 1977; Douville et al., 2001; Wei

and Dirmeyer, 2012), runoff (Daly and Porporato, 2005), and surface irrigation via groundwater pumping. The feedback loop

between soil moisture and each of these sources varies in space and time according to the geographic and topological features30

of the locale (Wei and Dirmeyer, 2012).

Various techniques have been used in soil moisture estimation such as in situ station networks, physical modeling, and

remote sensing (Seneviratne et al., 2010; Hauser et al., 2017; Reichle et al., 2021). While the in situ station data is considered

most representative of the true ground conditions, it is generally limited by spatiotemporal data sparsity issues. In contrast,

physical modeling can be leveraged to provide estimates at fine spatiotemporal resolutions. However, contemporary modeling35

techniques lack comprehensive representation of the complex relationships between all geophysical variables. Remote sensing

has also been widely utilized in soil moisture estimation to translate optical (Piles et al., 2011), thermal infrared (Zhang et al.,

2014), and microwave radiation (Entekhabi et al., 2010; Panciera et al., 2013) data into soil moisture retrievals.

While providing useful information, remote sensing-based soil moisture retrievals are limited by the accuracy of the retrieval

algorithm, swath width, field-of-view, and the orbital specifications of the observing instrument (aboard the satellite). One40

effective method for overcoming the limitations posed by physical modeling and remote sensing sensors is data assimilation.

Data assimilation (DA) is a technique used to merge modeled estimates with observations while taking into consideration their

respective errors and uncertainties (Kalman, 1960; McLaughlin, 2002). The posterior estimate obtained through DA combines

the strengths of both models and observations to yield a dataset that is improved relative to the standalone products (Zhang and

Moore, 2015). Several studies have attempted to improve water budget estimation by assimilating soil moisture observations45

into land surface model (LSM) estimates. Huang et al. (2008) assimilated in situ surface soil moisture measurements and

low-frequency PMW remote sensing data into the Simple Biosphere Model (SiB2) and produced improvements in surface soil

moisture estimates. Lievens et al. (2015) modeled the hydrologic cycle over the Murray Darling Basin in Australia and explored

the results of assimilating Soil Moisture and Ocean Salinity (SMOS) soil moisture retrievals into the Variable Infiltration

Capacity (VIC) model. They concluded that improvements in the wetness conditions due to soil moisture retrieval assimilation50

translated into improved predictions of associated water fluxes. Comparison of modeled soil moisture estimates with soil

moisture retrievals revealed an inherent bias in the statistical moments of the studied retrievals (Reichle et al., 2004). A bias

correction technique based on CDF-matching suggested by Reichle and Koster (2004) demonstrated better conformity in

the statistical moments between the LSM soil moisture estimates and the satellite-based soil moisture retrievals. However,

Kumar et al. (2015) showed that retrieval distribution mapping via CDF-matching could result in the removal of information55

pertaining to the irrigation signal. Nearing et al. (2018) also attributed loss of signal information to CDF-matching during data

assimilation.

According to the current climate change forecasts, severe water stress is predicted in various parts of South Asia (Sivaku-

mar and Stefanski, 2010). Total groundwater storage in northwestern India has undergone a decline, which is likely linked
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to irrigation-induced groundwater pumping (Rodell et al., 2009; Asoka et al., 2017). Global land surface models (LSM), in60

general, do not include groundwater pumping modules. An inverse technique of estimating the amount of groundwater pumped

could potentially be developed if accurate soil moisture estimates are available (apart from the other water budget contributing

variables). Soil moisture records may be able to provide the much needed information about the extent and amount of ground-

water pumping across the whole of South Asia. Accurate soil moisture estimation across South Asia is, therefore, an important

need.65

In situ soil moisture measurements across South Asia are scarce (apart from having limited accessibility). To fill this knowl-

edge gap and to evaluate the utility of leveraging data assimilation as a feasible option in this region, we demonstrate the

utilization of Soil Moisture Active Passive (SMAP; Entekhabi et al. (2010)) retrieval assimilation to improve soil moisture

estimation across South Asia. Section 2 describes the prominent features of the study domain; Sect. 3 provides details re-

garding the various datasets and the data assimilation framework utilized; Sect. 4 highlights the important results of the DA70

experiments; and Sect. 5 summarizes the main conclusions of this study.

2 Study domain

The study domain discussed in this paper encompasses the mountainous region in South Asia and the adjoining areas, Fig. 1.

The HinduKush-Himalayan mountain range and the Tibetan Plateau, represented by grid cells with elevation > 2000 m in Fig.

1(a) constitute high mountain Asia. Ten major rivers (Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yangtze,75

Yellow, Tarim, Amu, and Syr) originate in this region and flow towards the low elevation areas where they serve as sources

of freshwater for the residing populace. Agriculture-based irrigation is a primary consumer of the freshwater transported

downstream by the rivers (Wester et al., 2018).

Figure 1(c) and Table A1 present the soil texture conditions within the domain. The NCEP/STATSGO+FAO (Natural Re-

sources Conservation Service) soil texture classification is used to categorize the grid cells into 16 individual classes (Note:80

soil classes that did not have any grid cell types in the study domain are excluded from the figure legend). The predominant

soil texture type found within the domain is loam followed by clay loam. Landcover categorization (see Fig. 1(d) and Table

A1 columns 4 to 6) is based on the NCEP/MODIS-based International Geosphere–Biosphere Programme (IGBP) (Friedl et al.,

2002) classification (Note: similar classes are lumped together, for example different forest types are grouped into a singular

forest class). The predominant landcover types present within the study domain are barren, croplands, and shrublands.85

The Food and Agriculture Organization (FAO) of the United Nations provides a global map of fraction areas that are

equipped for irrigation as part of the Global Map of Irrigation Areas (GMIA) product, which is provided at a 5-arc minute

(0.0833◦) resolution (Siebert et al., 2005). The GMIA product was used in this study to represent the total irrigation-equipped

area within each grid cell, see Fig. 7(c). The grid cells with high irrigation percentages correspond well (spatially) with grid

cells belonging to the landcover type croplands in Fig. 1(d).90
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Figure 1. The study domain encompasses the mountainous region in South Asia and the adjoining areas. High elevation and high slope

(>0.2) areas demarcate the HinduKush-Himalayan mountain ranges, whereas the high elevation and mild slope (<0.1) grid cells demar-

cate the Tibetan Plateau (subplots (a) and (b)). The yellow markers in subplot (a) locate the stations within the Tibetan Plateau used to

evaluate the soil moisture estimates (Sect. 4.1). The domain soil texture was categorized into 11 soil types (subplot c) according to the

NCEP/STATSGO+FAO classification. The domain landcover comprised 10 main types based on the MODIS-derived IGBP classification

(subplot d). AFG= Afghanistan, BNG= Bangladesh, BHU= Bhutan, CHN= China, IND= India, NPL= Nepal, PAK= Pakistan, and TAJ=

Tajikistan.

3 Methodology and datasets

This section describes the methodology developed to implement the assimilation of SMAP soil moisture retrievals into the land

surface model as well as the various datasets utilized in the analysis results detailed in Sect. 4.

3.1 NASA Land Information System

The NASA Land Information System (LIS) is a software framework which facilitates high performance computing for land95

surface modeling and data assimilation purposes (Kumar et al., 2006; Peters-Lidard et al., 2007). The NASA LIS framework

was used to run the Noah-MP land surface model (LSM) and to assimilate SMAP soil moisture retrievals (Fig. 2).
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Table 1. Selection of model components in Noah-MP version 4.0.1 as implemented within LIS (Sect. 3.1.1).

Model Components Selected Inputs or Parameterizations

Elevation, slope, and aspect SRTM30-v2.0 (Farr et al., 2007)

Landcover MODIS (IGBP-NCEP) (Friedl et al., 2002)

Maximum albedo National Centers for Environmental Prediction (Robinson and Kukla, 1985)

Greenness National Centers for Environmental Prediction (Gutman and Ignatov, 1998)

Vegetation Dynamic vegetation option

Canopy stomatal resistance Ball-Berry method (Ball et al., 1987)

Runoff and groundwater Simple groundwater model, SIMGM (Niu et al., 2007)

Supercooled liquid water and frozen soil permeability NY06 (Niu and Yang, 2006)

Surface-layer drag coefficient General Monin-Obukhov similarity theory (Brutsaert, 2013)

Snow surface albedo Biosphere-Atmosphere Transfer Scheme (Yang and Dickinson, 1996)

Partitioning of rain and snowfall Jordan91 (Jordan, 1991)

Snow and soil temperature Semi-implicit option

Lower boundary of soil temperature Noah native option

Meteorological boundary conditions MERRA-2 (Gelaro et al., 2017), IMERG (Huffman et al., 2015)

3.1.1 Noah-MP land surface model

The Noah-MP (version 4.0.1) LSM (Ek et al., 2003; Niu et al., 2011; Yang et al., 2011) was run within LIS to simulate the

relevant land surface processes across the study domain. Noah-MP was run on an equidistant cylindrical grid with a spatial100

resolution of 0.05◦ x 0.05◦ at a 15 minute timestep. Table 1 outlines the Noah-MP physics in this study.

Noah-MP was selected for this study due to the multilayer representation of soil, explicit modeling of frozen soil permeability

(Niu and Yang, 2006), and representation of snowpack and soil interface processes. Noah-MP (version 4.0.1) includes coupled

energy, water, and carbon cycle simulation routines. The soil profile is divided into four layers with thicknesses of 5, 35, 60,

and 100 cm, respectively. A three-layer (maximum) snow structure is implemented above the surface soil layer to capture105

snowpack dynamics and the snowpack-soil interface fluxes for areas that experience snowfall (Niu et al., 2011). Noah-MP

was (separately) forced with meteorological fields from Modern-Era Retrospective analysis for Research and Applications

(MERRA2, Gelaro et al. (2017)) and Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG,

Huffman et al. (2015)). The IMERG Final run was used. External irrigation and groundwater pumping were not explicitly

modeled. Thus, there was an information gap regarding these two water sources in the modeled water cycle.110
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3.2 Data sets

3.2.1 SMAP Level3 soil moisture for assimilation

Soil Moisture Active Passive (SMAP) is a satellite mission that follows a near-polar, sun-synchronous, 8-day repeat orbit

(O’Neill et al., 2014). The L3SMP Level-3 soil moisture product is utilized in this study. It consists of daily estimates of global

soil moisture within the top ∼5 cm as retrieved by the SMAP passive microwave L-band radiometer (O’Neill et al., 2019).115

The soil moisture data are provided on a global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (Brodzik et al.,

2012) beginning from 31 March 2015.

L-band radiometry offers all-weather, diurnal sensing of the surface dielectric properties. The surface dielectric properties

are a function of the near-surface soil moisture. Several mitigation features directed at preventing signal contamination due to

radio frequency interference (RFI) are built into the radiometer electronics and algorithms. Quality flags are included in the120

metadata to provide location specific details such as retrieval error, retrieval uncertainty, frozen ground conditions, presence of

steep topography, and vegetation information (O’Neill et al., 2019).

3.2.2 In situ soil moisture measurements for model evaluation

Ground-based soil moisture measurements were obtained from the International Soil Moisture Network, an international,

multi-agency cooperation that provides global, in situ soil moisture measurements for the validation of model and remote125

sensing-based products (URL= https://ismn.earth/en/). Station measurements from four separate networks: 1) Ngari, 2) Naqu,

3) Maqu (Su et al., 2011; Zeng et al., 2016), and 4) CTP-SMTMN (Yang et al., 2013) were colocated with the land surface

model grid for evaluation of the modeled estimates. The colocation was based on a simple arithmetic averaging of stations

located within each grid cell.

The different networks represent varying local climates, although all networks are located at high elevations and have rela-130

tively cold climates. The Ngari network is located in an arid region, Naqu and CTP-SMTMN networks are situated in a semiarid

region, and Maqu experiences a relatively humid climate, Fig. 1(a). The total number of stations available for evaluation is 101.

Soil moisture measured at a depth of 5 cm below the surface was compared with model estimated surface soil moisture (soil

layer depth = 0 to 5 cm). Measurements across the Tibetan Plateau are the only publicly available soil moisture measurements

within the study domain between the years 2015 to 2020.135

3.2.3 ALEXI evapotranspiration for model evaluation

To study the influence of soil moisture assimilation on related geophysical fluxes, the Atmosphere-Land Exchange Inverse

(ALEXI) evapotranspiration product was used. ALEXI estimates evapotranspiration (ET) using multi-sensor thermal infrared

observations (Anderson et al., 2007, 2011). A two-source (soil and canpoy) land surface model is coupled to an atmospheric

boundary layer model in order to derive energy fluxes based on thermal imagery and insolation estimates derived from geo-140

stationary satellites. The thermal infrared information-driven surface energy balance model takes vegetation cover (obtained
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from MODIS-based normalized difference vegetation index) and the change in radiometric temperature of the land surface as

inputs and estimates sensible, latent and ground heat fluxes as well as evapotranspiration. The dataset version used in this study

provides global ET estimates at 0.05◦ x 0.05◦ spatial resolution at a daily temporal scale.

3.2.4 FluxSat gross primary production for model evaluation145

FluxSat is a satellite-based product that employs machine learning, reflectance data from Moderate-resolution Imaging Spec-

troradiometer (MODIS), and eddy covariance measurements to estimate global gross primary production (Joiner and Yoshida,

2020). Gross primary production (GPP) is an important variable within the carbon cycle. It represents the rate at which carbon

is assimilated into the plant biomass per unit area per time during photosynthesis (Gough, 2011). GPP impacts the water cy-

cle as plants transpire water during photosynthesis, thereby acting as moisture sources for the atmosphere and moisture sinks150

within the soil (Philander, 2008). FluxSat is developed by training neural networks using MODIS reflectance data to upscale

GPP obtained from eddy covariance flux tower measurements (Joiner and Yoshida, 2020). FluxSat GPP was used here to study

the influence of soil moisture assimilation on the carbon cycle.

3.2.5 GOME-2 fluorescence for model evaluation

In addition to GPP from FluxSat, solar-induced fluorescence (SIF) retrievals were also utilized to investigate the influence of155

soil moisture assimilation on the resulting carbon flux. Joiner et al. (2013) retrieved chlorophyll fluorescence using observations

near the 740 nm emission peak gathered by the Global Ozone Monitoring Experiment 2 (GOME-2) spectrometer aboard the

European meteorological (MetOp) satellites. Satellite-based fluorescence retrievals can be exploited to infer the functional

status of vegetation (Van der Tol et al., 2014). Chlorophyll-excitation induced by solar energy results in fluorescence generated

during photosynthesis. Carbon is then taken in by vegetation during photosynthesis. Considering the link to photosynthesis,160

Joiner et al. (2014) used SIF as an analog for GPP and highlighted the conformity within their phenologic responses. Joiner

et al. (2014) also examined the seasonal cycles of modeled GPP in conjunction with GOME-2 fluorescence retrievals to track

seasonal patterns in photosynthesis. The GOME-2 satellite fluorescence data is available at a spatial resolution of 0.5◦ x 0.5◦

at a monthly time scale and includes estimated errors on the order of 0.1–0.4 mW m−2 nm−1 sr−1.

3.3 Experimental framework165

Three types of model runs were implemented in LIS, Fig. 2. Details of each of the three types of model runs are provided

below.

3.3.1 Nominal replicate (NR)

Noah-MP was run for five years from 1 January 2010 to 31 December 2014 using a single, nominal replicate (NR) to provide

initial soil moisture conditions for the open loop and data assimilation runs (discussed further below). The NR simulation was170
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Figure 2. Overview of the soil moisture assimilation methodology implemented within the NASA Land Information System using the

Ensemble Kalman Filter.

also utilized to develop the model cumulative distribution functions (CDFs) that were later used for CDF-matching during the

assimilation run discussed in Sect. 3.3.3.

3.3.2 Open loop (OL)

The OL run represents a model-only run, i.e., the Noah-MP model was run in an ensemble configuration without any external

observations assimilated. The OL run serves as a baseline for Noah-MP’s land surface modeling capability across South Asia175

for eventual comparison with the DA runs detailed in Sect. 3.3.3.

The NR restart file provided the initial conditions for the OL run which started on 1 January 2015 and extended to 30

September 2020 (Fig. 2). The NASA Land Data Toolkit (LDT; Arsenault et al. (2018)) was used to upscale to a 20-replicate

ensemble from the single replicate NR restart file. The number of replicates was selected through an ensemble analysis. The

ensemble standard deviation (as a function of time) was studied as the number of replicates in the ensemble was increased180

from five to 50. It was found that as the number of replicates increased beyond 15, the ensemble standard deviation reached
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an asymptotic value. Therefore, a 20-replicate ensemble was selected as an approximation of the probability distribution that

reasonably represents the uncertainty in the model estimates.

Boundary conditions such as air temperature and radiative fluxes (i.e., incident shortwave and longwave radiation) were pro-

vided by the MERRA2 dataset. Boundary condition (forcing) perturbations used by Kwon et al. (2019) (Table 2) were applied185

while propagating the ensemble forward in time. Two different sets of precipitation datasets were used to drive Noah-MP:

i) MERRA2 (Gelaro et al., 2017), and ii) GPM IMERG (Huffman et al., 2015). Usage of two different boundary condi-

tion (precipitation) sources was motivated by efforts to differentiate between the influence of model physics versus boundary

conditions on the prognostic variables, e.g., soil moisture. Comparison of the results obtained from MERRA2-forced versus

IMERG-forced OL and DA experiments aided in understanding the influence of boundary conditions and the effect of SMAP190

retrieval assimilation on model SM estimation.

The OL simulation from 1 January 2015 to 30 September 2015 served as the model ensemble spin-up to achieve realistic

uncertainty in soil moisture estimates. The results detailed in Sect. 4 are computed from the OL and DA experiments for water

years 2016 to 2020. The water year demarcation used in this study starts in October of the preceding year (e.g., 2015) and ends

in September of the relevant year (e.g., 2016).195

3.3.3 Data assimilation (DA)

SMAP SM retrievals are available from 31 March 2015 onwards. In accordance with the availability of SMAP retrievals, the

DA run started on 1 April 2015 and extended to 30 September 2020. The ensemble Kalman filter (EnKF) assimilation algorithm

was utilized to assimilate the SMAP SM retrievals into the Noah-MP modeled estimates.

The EnKF algorithm consists of two main steps: i) propagation step, and ii) update step. Noah-MP is the non-linear forward200

model used to propagate the prognostic state vector (yt) forward in time as yt(x) = f(yt−1(x),α), where f(·) is the Noah-MP

model, α is a vector of model parameters, t is time, and x ∈ X defines the spatial domain. Equation (1) defines the formulation

of the update step applied to the a priori state estimate (for each replicate) based on the difference between the model estimate

and the observed value:

y+
t (x) = y−t (x) +Kt(x) (zt(x) + vt−H(y−t (x))) (1)205

where Kt(x) = Cytzt
(x)[Cztzt

(x) +Cvv]−1 (2)

such that y+
t (x) = a posteriori soil moisture value at time t, y−t = a priori soil moisture estimate at time t, Kt(x) = Kalman

gain at time t, zt(x) = SMAP soil moisture retrieval at time t, vt = SMAP soil moisture retrieval error at time t such that

vt ∼N (0,σ2
vv), H(.) is the linear observation operator, Cytzt

(x) = time-varying cross-covariance matrix between the a priori210

state errors and the predicted observation errors, Cztzt
(x) = time-varying predicted observation error covariance, and Cvv =

time-invariant SMAP soil moisture retrieval error covariance.

The difference between the observation (plus observation error) and the mapped a priori model state estimate is known as the

innovation, Int. The normalized innovation (NIt) is an effective diagnostic tool that aids in the diagnosis of the assimilation
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framework and the origin of biases (Buehner, 2010). Equation (3) provides the normalized innovation formula for each replicate215

as:

NIt(x) =
zt(x) + vt−H(y−t (x))√

Cztzt
(x) +Cvv

(3)

The numerator in Eq. (3) equals Int which is then normalized by the squared-root of the sum of Cztzt and Cvv . In an optimal

DA system, the normalized innovations should exhibit a standard normal distribution (NIt ∼ N (0,1)). To compute Cztzt
and

Cvv , the prognostic state and observation error standard deviation was taken equal to 0.04 m3 m−3 (O’Neill et al., 2014).220

It is worth noting here that the EnKF is expected to behave suboptimally given the nonlinearity of the Noah-MP model in

conjunction with the non-Gaussianity of the SMAP retrieval errors. However, the exploration of NIt sequence is a worthwhile

exercise in an effort to better diagnose the behavior of the assimilation framework used in this study.

As part of the experimental matrix, the DA experiments were implemented using two different approaches. First, a CDF-

matching technique (Reichle and Koster, 2004) was used for bias correction of the SMAP soil moisture retrievals, herein225

referred to as DA-CDF. Monthly CDFs of the SMAP soil moisture retrievals and the Noah-MP modeled SM were developed

using the NASA Land Data Toolkit. The monthly CDFs were then used to map the SMAP SM retrievals into the Noah-MP

modeled soil moisture space prior to assimilation. The second approach employed no bias correction applied to the SMAP SM

retrievals using CDF-matching and the raw SMAP SM was assimilated into Noah-MP, herein referred to as DA-NoCDF. The

relative systematic errors between SMAP SM and modeled Noah-MP SM are ignored during DA-NoCDF runs. The OL and230

DA runs were then compared against the evaluation datasets to analyze the influence of SM assimilation on the modeled states

in Sect. 4.

4 Experimental results

Model estimates for water years (October to September) 2016 to 2020 are used to compute the results presented in this sec-

tion. Water years were used rather than Julian years due to the former’s hydrologic suitability for the state variable under235

consideration, i.e., soil moisture (SM).

4.1 Evaluation using in situ measurements

In situ SM measurements available across the Tibetan Plateau were used to evaluate the modeled SM estimates. In situ mea-

surements were collected at the point-scale whereas the Noah-MP grid size equaled 0.05◦ x 0.05◦ (∼5.5 km x 5 km at mid-

latitudes). Some grid cells contain multiple stations located within the 0.05◦ x 0.05◦ area. If more than one station was located240

within a single grid cell, an average of the station measurements was used for comparison against the modeled SM estimates.

Therefore, the total number of grid cells suitable for evaluation equaled 78 based on a total of 101 stations.
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4.1.1 Timeseries evaluation

Figure 3 presents the OL, DA-CDF (i.e., CDF-matched), and DA-NoCDF (i.e., no CDF-matching) estimated SM timeseries

and their comparison with the in situ measurements at two grid cells from two different networks. These example sites were245

selected because they reflect the performance of SM assimilation across two different climate zones. The Ngari network test

site (Figs. 3(a) and 3(b)) represents a cold and arid climate while the the Maqu network test site (Figs. 3(c) and 3(d)) is located

in a cold and humid climate.

For the Ngari network test site, MERRA2 forced modeled estimates overestimate the SM for all model simulations, Fig.

3(a). For MERRA2, the DA-NoCDF run has the lowest RMSE while the DA-CDF run shows the highest RMSE. In addition,250

DA-NoCDF captures the measured values within the mean ± standard deviation (µ±σ) range after 8 September 2016 while

the CDF-matched SMAP retrievals move the DA value in the opposite direction to the in situ measurements. MERRA2-forced

simulations exhibit improved consistency as the SM magnitude decreases with the approaching winter months. IMERG exhibits

much better temporal consistency with the measurements throughout the study period shown in Fig. 3(b). For IMERG, the DA-

CDF run has the lowest RMSE while the DA-NoCDF run has the highest RMSE. However, even the largest RMSE difference255

(DA-CDF versus DA-NoCDF) is less than 0.004 m3 m−3 indicating the limited influence of assimilation at this location. The

modeled values show localized underestimation as well as overestimation during different periods in the timeseries. For the

cold and arid test site, IMERG exhibits lower RMSE as compared to the MERRA2 boundary condition estimates, Figs. 3(a)

and 3(b).

Figures 3(c) and 3(d) present the Maqu test site timeseries for the MERRA2 forced and IMERG forced simulation runs,260

respectively. The MERRA2 runs display better temporal consistency with the measurements as compared to the IMERG runs.

In Fig. 3(c), the DA-NoCDF run exhibits the lowest RMSE while the OL run has the highest RMSE magnitude. However,

the differences between the RMSE magnitudes for the different MERRA2 runs are minimal (i.e., less than 0.002 m3 m−3). In

Fig. 3(d), for IMERG the lowest RMSE is computed for the DA-NoCDF run while the OL has the highest RMSE magnitude

as well. However, the difference in the RMSE magnitudes is higher than the values in Fig. 3(c). There is a negative bias265

(underestimation) apparent in all the IMERG runs after 1 August 2018. For the cold and humid test site, MERRA2 displays

better performance as compared to the IMERG boundary condition estimates, Figs. 3(c) and 3(d).

Figure 3 shows the presence of biases in the modeled estimates and SMAP SM retrievals with respect to the in situ measure-

ments. Relative to MERRA2, IMERG-based SM estimates have lower RMSE for both locations, indicating the importance of

precipitation boundary conditions in terms of SM estimation. The magnitude of state update for DA-NoCDF is generally larger270

than DA-CDF. However, the magnitude of the update increments is limited by the model parameters (such as wilting point and

maximum SM capacity) and model and retrieval error assumptions (via ensemble uncertainty).

4.1.2 Statistical analysis

Relevant statistics were computed using all the measurements (from all the networks) available from October 2015 to Septem-

ber 2020 in conjunction with the corresponding Noah-MP modeled estimates. Table 2 presents mean bias, RMSE, unbiased275
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Figure 3. Comparative timeseries of OL and DA estimated surface (top 5 cm) soil moisture. The solid line represents the ensemble mean

whereas the shaded areas represent ± 1 standard deviation (σ) across the full ensemble.
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Table 2. Statistics of OL and DA soil moisture estimates (2015 to 2020) computed with respect to the soil moisture measurements across

the Tibetan Plateau. All values are in units of m3 m−3 unless otherwise indicated. Mean refers to the average of all the stations included

within the network. OL = Open Loop, DA-CDF = CDF-matched SMAP retrieval assimilation, and DA-NoCDF = data assimilated estimates

without CDF matching of the SMAP retrievals.

Tibetan Plateau MERRA2 IMERG

Statistic OL DA-CDF DA-NoCDF OL DA-CDF DA-NoCDF

Mean bias 0.070 0.070 0.059 0.031 0.033 0.025

Confidence interval95% limits- bias 0.012 0.012 0.012 0.011 0.011 0.011

Mean RMSE 0.130 0.130 0.122 0.106 0.106 0.100

Confidence interval95% limits- RMSE 0.007 0.007 0.008 0.008 0.008 0.008

Mean unbiased RMSE 0.066 0.066 0.060 0.066 0.064 0.061

Confidence interval95% limits- unbiased RMSE 0.004 0.004 0.003 0.004 0.004 0.004

Median relative RMSE [-] 1.873 1.873 1.794 1.507 1.507 1.480

Mean R 0.295 0.300 0.370 0.327 0.321 0.447

RMSE, and correlation (R) computed for the OL, DA-CDF, and DA-NoCDF estimated SM. The individual statistics were

calculated for each grid cell separately and were then averaged to represent the domain-averaged statistical performance of

the modeled SM. The total number of grid cells used for comparison is equal to 78. A majority of the Ngari, Naqu, and

CTP-SMTMN network stations are situated at locations where SMAP L3 retrievals have limited availability (Figs. 1(a) and

7(f)). These high elevation locations are completely frozen or partially frozen during a considerable part of the year leading to280

limitations in the applicability of the tau-omega algorithm used to retrieve soil moisture information from the SMAP observed

brightness temperatures (O’Neill et al., 2014). Given that little or no assimilation occurs over several stations, several of the

statistics computed for the OL, DA-CDF, and DA-NoCDF estimated soil moisture are quite similar.

MERRA2 and IMERG exhibit similar relative results, i.e., the lowest mean bias, RMSE, unbiased RMSE, and relative

RMSE is computed for the DA-NoCDF run. Similarly, the highest correlation is also observed for the DA-NoCDF run. For285

MERRA2, in terms of mean bias the OL/DA-CDF and DA-NoCDF intersect at the 95% confidence interval limit (0.070±0.012

m3 m−3 versus 0.059±0.012 m3 m−3). Similar values are computed for RMSE (0.130±0.007 m3 m−3 versus 0.122±0.008

m3 m−3) and unbiased RMSE (0.066±0.004 m3 m−3 versus 0.060±0.003 m3 m−3). The IMERG mean bias, RMSE, and

unbiased RMSE, however, overlap within the 95% confidence interval limits (columns 5-7 in Table 2).

Relative RMSE is calculated as the ratio of the RMSE to the standard deviation of the state variable (SM). The median rela-290

tive RMSE highlights the relative accuracy of the majority of the grid cells. A relative RMSE of less than 0.7 indicates medium

or high goodness-of-fit depending on the state variable (McCuen, 2016). In terms of comparative values, the DA-NoCDF runs

for both MERRA2 and IMERG show lower median relative RMSE magnitudes than the OL and DA-CDF estimates. Overall,
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Figure 4. Differences between the mean soil moisture estimated by the OL and DA simulations during the summer (April 2016 to September

2016) versus the winter months (October 2015 to March 2016) highlight: i) the unmodeled irrigation signal across croplands, and ii) the

relatively higher influence of assimilation on soil moisture estimates during the winter period as compared to the summer period. DA-CDF=

assimilation of CDF-matched SMAP retrievals and DA-NoCDF= no CDF-matching of SMAP retrievals.

it is observed that the IMERG statistical values are lower than the corresponding MERRA2 values, thereby indicating better

performance of the IMERG-forced model estimates as compared to MERRA2 across the Tibetan Plateau.295

4.2 Spatial analysis of OL versus DA

Figure 4 shows the difference in spatial patterns of the SM estimated by the OL and the DA-CDF/DA-NoCDF simulations

during the summer (April to September) and winter (October to March) months. This temporal grouping is motivated by the

precipitation climatology (i.e., summer monsoon versus winter westerlies) of the region (Dhar and Nandargi, 2003), which also

influences the irrigation patterns in the region. Two main crop seasons are noted across South Asia, i.e., the summer (Kharif)300

crop and the winter (Rabi) crop (Biemans et al., 2016). Precipitation, snowmelt, and ground water extraction are the main

sources of river runoff that provides water for irrigation (Armstrong et al., 2018).

The magnitudes of DA minus OL values shown in the summer maps are relatively lower than the magnitudes in the winter

maps for all DA experiments. This feature suggests that there is a relatively higher consistency between the OL and DA-

CDF/DA-NoCDF runs (i.e., smaller DA minus OL magnitudes) during the summer months when the bulk of the precipitation305

occurs, especially in the lower latitudes, as compared to the winter months. A spatial feature apparent in Figs. 4(b), 4(d), 4(f),

and 4(h) is the occurrence of large differences in areas surrounding the major rivers in the lower latitudes (. 31◦ N). The

location of these large differences indicates the influence of irrigation on the water budget. Fig. 7(c) includes the map of the
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Figure 5. Comparison of OL versus DA-NoCDF estimated soil moisture according to the dominant landcover types present within the study

domain. The OL and DA-NoCDF joint PDFs (presented here as fractions of grid cells) are computed from the LIS runs with MERRA2

boundary conditions during the winter months of WY 2016.

total percentage of irrigated area per grid cell that corresponds well with the cropland landcover type shown in Fig. 2(d). These

three maps highlight the increase in model estimated SM by the assimilation of raw (i.e., no CDF matching applied) SMAP310

retrievals in the irrigated cropland grid cells. Further, comparing the MERRA2 maps (Figs. 4(a), 4(b), 4(e), and 4(f)) with the

IMERG maps (Figs. 4(c), 4(d), 4(g), and 4(h)) it appears that the influence of the boundary conditions used (MERRA2 versus

IMERG) is damped by more dominant influencing factors such as anthropogenic irrigation and the seasonal precipitation

pattern. In other words, similar spatial patterns in DA minus OL are visible in both the MERRA2 and IMERG forced model

estimates.315

The DA-NoCDF simulation exhibits higher differences with the OL relative to the DA-CDF run. Therefore, to further dissect

its spatial patterns with respect to landcover and soil texture, Figs. 5 and 6 were created. Fig. 5 presents the OL and MERRA2-

forced DA-NoCDF joint PDFs (shown here as fractions of total landcover type grid cells) for the winter months of the 2016

water year. The bar graph in subplot 5(h) provides the percentage of grid cells for each landcover type that have at least one

instance of SMAP retrieval assimilation. The highest percentage is observed for grid cells belonging to the cropland type.320

Linear regression coefficients included in all the subplots of Fig. 5 represent the slope between the two axes. If the slope is

>1 then, in general, the variable on the y-axis (here DA-NoCDF) has greater soil moisture magnitudes than the x-axis (here

OL). Forest (subplot 5(a)), savannas (subplot 5(c)), and cropland (subplot 5(e)) landcover types show>1 linear regression coef-
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ficients, indicating that, in general, the SMAP assimilation increases the soil moisture magnitude across grid cells belonging to

these landcover types. Interesting to note is that the percentage of grid cells with assimilation is quite different for these three325

landcover types (forest=10%, savannas=40%, and cropland=80%). For shrublands (subplot 5(b)), grasslands (subplot 5(d)),

urban/built-up (subplot 5(f)), and barren (subplot 5(g)) landcover types, the linear regression coefficients are <1 indicating

that, in general, the SMAP assimilation decreases the soil moisture magnitude across grid cells belonging to these landcover

types. The lowest regression coefficient is computed for the urban/built-up landcover type. The correlation coefficients for

savannas, croplands and urban/built-up are ≤0.75 and are relatively lower than the other landcover types, which suggests that330

SMAP SM assimilation alters the SM estimates across grid cells belonging to these three landcover types the most (Note: if

the SM assimilation caused no change, the OL and DA SM estimates would be nearly identical, and hence the correlation co-

efficient between the two would equal 1.). The lowest correlation is computed for the urban/built-up landcover type, of which

70% of the grid cells underwent assimilation, however, this landcover type only represents 0.4% of the total domain grid cells

(Table A1). Similar results were observed for the IMERG-forced simulation as well (results not shown).335

Figure 6 displays the OL and MERRA2-forced DA-NoCDF joint PDFs (shown here as fractions of total grid cells) catego-

rized with respect to the soil texture types for the winter months of the 2016 water year. The bar graph in subplot 6(h) provides

the percentage of grid cells belonging to each soil texture type that have at least one instance of SMAP retrieval assimilation.

The soil types that included sand or loam exhibited regression coefficients >1 (except for loamy sand). Grid cells belonging

to loamy sand (subplot 6(b)) , silty clay (subplot 6(h)), and clay (subplot 6(i)) soil types exhibited regression coefficients <1,340

indicating a general decrease in SM magnitude after SMAP assimilation. However, the regression coefficients of all three of

these soil texture types are close to one, and therefore, do not reinforce any significant influence of SMAP assimilation on grid

cells belonging to these particular soil texture types.

4.3 Irrigation impact

In South Asia, irrigation is implemented through routing of the: i) river runoff (contributed by snowmelt and precipitation),345

ii) discharge from storage reservoirs such as dams, and iii) water pumped from subsurface aquifers, using a network of canals

and tube wells (Chambers, 1988). The GMIA total irrigation-equipped area map in Fig. 7(e) visualizes this practice as high

magnitudes are observed in the areas surrounding the major rivers in Pakistan, India, and Bangladesh.

Irrigation is not explicitly modeled in the Noah-MP land surface modeling environment. Therefore, to investigate the effect

of SM assimilation on irrigated areas in further detail, the maps of temporal mean normalized innovation (NI) were compared350

against the GMIA total irrigation-equipped area map. NI (detail in Sect. 3.3.3) represents the difference between the obser-

vations (i.e., SMAP SM retrievals) and the modeled a priori estimates. A positive NI value indicates that the a priori state

estimate is less than the observed value while a negative NI value indicates that the a priori state estimate is greater than

the observed value. For an unbiased, optimal assimilation framework, the NI sequence exhibits a mean of 0 and a standard

deviation equal to 1 over time. Therefore, high positive or negative NI values reveal the presence of bias either in the model355

estimates or the assimilated retrievals.
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Figure 6. Comparison of OL versus DA-NoCDF estimated soil moisture according to the dominant soil texture types present within the

study domain. The OL and DA-NoCDF joint PDFs (presented here as fractions of grid cells) are computed from the LIS runs with MERRA2

boundary conditions during the winter months of WY 2016.
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Figure 7. The spatial patterns in normalized innovation (NI) maps present the results of CDF-matched (DA-CDF) versus raw SMAP SM

retrievals (DA-NoCDF), subplots (a), (b), (d), and (e). Grey areas represent grid cells where no assimilation occurred due to missing SMAP

SM retrievals. The improved spatial correlation with respect to irrigation-equipped area (Rirr) for both of the DA-NoCDF maps (subplots

(c) and (d)) highlights the correction of SM biases due to an unmodeled hydrologic process, i.e., irrigation. Subplots (g) and (h) underscore

the increase in NI magnitude for both DA-NoCDF (MERRA2 and IMERG) simulations as the total irrigation-equipped area increases for

summer and winter months, respectively. Subplot (c) presents the total percentage of irrigated area per grid cell developed from the Global

Map of Irrigated Areas (GMIA) dataset provided by the Food and Agriculture Organization. Subplot (f) shows the % of total days in the

study period on which SMAP retrievals were assimilated.
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A number of distinct features can be observed in the NI maps presented in Fig. 7. MERRA2 DA-CDF and DA-NoCDF, and

IMERG DA-NoCDF spatial patterns show positive NI values in Pakistan (Indus Basin) and the areas surrounding the Ganges

River in India, Figs. 7(a), 7(b), and 7(e). Comparing the location of these positive NIs with the GMIA total irrigation-equipped

area map (Fig. 7(c)), it is apparent that the SMAP retrievals have higher SM magnitudes across irrigated areas. SMAP retrievals360

implicitly contain the effects of irrigation and subsequently transfer that information to the modeled estimates via assimilation.

Hence, the water budget across these locations was corrected as information related to an unmodeled soil moisture source was

effectively incorporated into the land surface model. Figures 7(g) and 7(h) show the general increase in mean NI magnitudes

during the winter and summer months, respectively, as the percentage of irrigation-equipped area increases. NIs computed

from the MERRA2 and IMERG DA-CDF runs, however, do not display this pattern.365

Further comparing the MERRA2 and IMERG DA-NoCDF NI maps with the water storage trends identified by Fig. 1 in

Girotto et al. (2017) and Fig. 2 in Loomis et al. (2019), the locations in the northwestern part of India that show negative water

storage trends (resulting from groundwater pumping for purposes of irrigation) are spatially consistent with high positive NI

values. The additional water introduced into the hydrologic cycle via pumping from subsurface aquifers is captured by the

SMAP SM retrievals and is then used to condition the modeled estimates via assimilation.370

The spatial patterns in NI show different magnitudes (and even different signs) at some locations for DA-CDF versus DA-

NoCDF. The visible difference in NI signs is due to the implementation of CDF matching of the assimilated retrievals during

the DA-CDF simulation. If the model estimates are biased, traditional data assimilation generally does not result in optimal

estimates (Zhang and Moore, 2015). Mapping the observation CDF to a biased model CDF would ultimately transfer the model

bias into the CDF-matched observations. Therefore, in cases where the model estimates are inherently biased, assimilation of375

CDF-matched retrievals could update the a priori state estimates in the wrong direction. This phenomenon is apparent in

IMERG DA-CDF versus IMERG DA-NoCDF NI maps across the irrigated areas and the Tibetan Plateau.

One interesting pattern to note is the presence of highly negative NI values across the high elevation areas (Hindukush

mountains) in the western part of the domain in the DA-NoCDF maps (subplots 7(b) and 7(e)). Comparing the DA-NoCDF

NI maps with the DA minus OL map in Fig. 4, it is apparent that the high NI values did not manifest into high DA minus OL380

values. A high NI magnitude does not necessarily lead to a subsequently high update. If the model state error variance is quite

low, the denominator in Eq. 3 will be a small value that can then result in a large NI if the nominator (innovation) is relatively

large. However, a low model state error variance results in a reduced Kalman gain (due to Cytzt
), and hence, the computed

update will be relatively small.

High NI magnitudes are observed in the Indus Basin even though assimilation occurred during<20% of the total days (in the385

study period) at these locations. This suggests that the quantitative effect of SMAP SM retrieval assimilation is not primarily

based on the assimilation frequency, but rather the large differences between the SMAP and a prioi estimates. The DA-CDF

versus DA-NoCDF results seen here are similar to the experiments conducted by Kumar et al. (2015) to evaluate SM retrievals

across irrigated areas. Their study showed that bias correction of observations via CDF matching can lead to the removal of the

information pertaining to the unmodeled processes from the observations when the estimation bias stems from the absence of390

such processes in the model.
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Figure 8. Comparative maps of modeled evapotranspiration (ET) with respect to the ALEXI evapotranspiration estimates (Sect. 3.2.3) for

WY 2016. DA-NoCDF maps show relatively higher spatial consistency with ALEXI ET, particularly in areas surrounding the major rivers

in lower latitudes (<30◦). The correlation values (RET ) indicate the spatial consistency between annual mean ET estimated by ALEXI and

the corresponding Noah-MP simulation.

4.4 Influence on water and carbon cycle

SM is an important component of the water cycle. It is, therefore, expected that changes in the SM estimates would translate

into changes in hydrologic variables that are dependent on SM such as evapotranspiration (ET). ET is composed of evaporation

from the soil and vegetation as well as transpiration from the vegetation. While ET is used to represent the water cycle in this395

section, gross primary production (GPP) and solar-induced chlorophyll fluorescence (SIF) are utilized as vegetation proxies

that represent the carbon cycle.

In order to diagnose the influence of SMAP SM assimilation on ET, the mean annual ET from the MERRA2 and IMERG-

forced OL, DA-CDF, DA-NoCDF simulations is analyzed. Figure 8 highlights the improved spatial consistency (relative to the

ALEXI ET) of the DA-NoCDF estimates (subplots 8(d) and 8(g)) compared to the OL (subplots 8(b) and 8(e)) and DA-CDF ET400

(subplots 8(c) and 8(f)). The spatial correlation of mean annual ET calculated with respect to the ALEXI ET for the MERRA2

runs increases from 0.54 for the OL to 0.56 for DA-CDF and 0.64 for the DA-NoCDF estimates. Similarly, there is an increase

in the spatial correlation of the IMERG runs from 0.68 for the OL to 0.69 and 0.75 for the DA-CDF and DA-NoCDF estimates,

respectively. The DA-NoCDF estimates for both sets of boundary conditions show relatively higher spatial correlation with the

ALEXI ET, particularly in the Indus River Basin, where surface irrigation is significant. All three of the MERRA2 estimates405

show higher ET magnitudes across the Tibetan Plateau as compared to the IMERG runs, which corresponds well with the

higher positive bias computed in MERRA2-forced SM estimates (see Table 2). All of the IMERG simulations exhibit better

overall spatial correlation with ALEXI ET relative to the MERRA2 runs.
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Figure 9. The magnitude of average evapotranspiration (ET) increased as the percentage of irrigated area within the grid cell increased. OL=

Open Loop, DA-CDF= CDF-matched SMAP retrieval assimilation, and DA-NoCDF= data assimilated estimates without CDF matching of

the SMAP retrievals. ALEXI ET provides independent ET estimates for evaluation of the Noah-MP modeled ET.

Comparing the spatial patterns in ET magnitudes with the GMIA irrigation-equipped area map (Fig. 7(c)), it can be seen

that the mean ET magnitudes across irrigated areas, particularly across the Indus basin, increased for DA-NoCDF simulations410

(Figs. 8(d) and 8(g)) relative to the OL. However, this feature is absent in the DA-CDF simulations (Figs. 8(c) and 8(f)). The

spatial patterns observed in the DA minus OL SM (see Figs. 4(f) and 4(h)) are similarly shown in the ET maps (Figs. 8(d) and

8(g)) in terms of higher ET magnitudes observed for grid cells belonging to the cropland landcover type.

Further investigation of this feature highlighted the correction of SM and ET in irrigated areas via SMAP assimilation. It

is expected that as the irrigation percentage increases the surface SM would also increase. The increase in SM, in general,415

translates into an increase in ET. Figure 9 shows the increase in ALEXI ET as the percentage of irrigated area (Fig. 7(c))

in each grid cell increases. In contrast, the OL and DA-CDF estimates do not capture this behavior, and alternatively, show

declining ET values for regions with 40% or more total irrigation-equipped area when using the MERRA2 boundary conditions.

The IMERG OL and DA-CDF estimates show approximately the same decreasing trend. However, the DA-NoCDF estimates

corrected the decreasing magnitudes for grid cells with >40% total irrigation-equipped area for both sets of precipitation420

boundary conditions.

The ALEXI ET dataset serves as an independent evaluation source for OL, DA-CDF, and DA-NoCDF ET estimates. The

ET magnitudes for all the modeled runs are lower than the ALEXI ET, which could be attributed to the absence of relevant

processes (e.g., surface irrigation) in Noah-MP, whereas the ALEXI product implicitly includes this information. Although

ALEXI is a modeled dataset, it is based on remote sensing data and has been shown to detect irrigation (Knipper et al., 2019).425

These results suggest assimilation of SMAP SM retrievals in the absence of CDF-matching can help correct for some of the

missing physics in the Noah-MP land surface model.

Figures 10(a), (b), and (c) were created to further dissect the influence of SMAP assimilation on the water and carbon cycle

over irrigated regions. The test site selected contains 88% total irrigation-equipped area and belongs to the cropland landcover
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Figure 10. Influence of SMAP soil moisture (SM) assimilation on an irrigated location is assessed through soil moisture of successive soil

layers (L1 and L2), evapotranspiration (ET) and the corresponding behavior of the dynamic vegetation (represented by the gross primary

production (GPP)). ALEXI ET (Sect. 3.2.3) and GOME solar-induced chlorophyll fluorescence (SIF) (Sect. 3.2.5) are used as evaluation

datasets. (a) L1 = layer 1 near-surface SM and L2 = layer 2 root-zone SM. Noah-MP modeled ET exhibits similar temporal patterns as the

near-surface SM (L1); however, root-zone (L2) SM and GPP are not correspondingly modulated.
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type. Noah-MP divides the soil profile into four layers. Figure 10(a) shows the monthly temporal variation in near-surface (first430

soil layer, L1) and root-zone (second soil layer, L2) soil moisture (SM) at this location. The first (top) soil layer (L1) is 5 cm

deep, while the second layer (L2) extends 35 cm below that. L1 estimates for all simulations exhibit a seasonal variation in

the surface SM with the major peak occurring in Feb and a minor local peak in Aug. The DA-NoCDF runs for both sets of

boundary conditions depict a higher seasonal amplitude as compared to the OL. Comparing the L1 values with the L2 values,

the damping of the seasonal variation amplitude is apparent in L2, i.e., the influence of assimilation on surface SM is not435

proportionally translated into the root-zone SM. However, compared to the OL, the DA-NoCDF estimates for L2 do exhibit

seasonal variation (albeit to a limited extent). The DA-CDF estimates were quite similar to the OL L1 and L2 estimates and

are thus excluded from the graph for visual clarity. Figure 10(b) highlights the translation of L1 SM temporal patterns into ET

estimates. ALEXI ET displays much higher magnitudes of ET throughout the year. The DA-NoCDF simulations exhibit better

consistency with ALEXI ET as compared to the OL and DA-CDF ET for both sets of precipitation boundary conditions.440

Figure 10(c) presents the impact of SM on vegetation in terms of gross primary production (GPP) and solar-induced fluo-

rescence (SIF). Compared to the FluxSat GPP (Sect. 3.2.4), the magnitude of OL and DA (Noah-MP) GPP observed at this

location is relatively small. However, similar seasonal variability (not magnitude) is observed in all the Noah-MP simulations

similar to the FluxSat GPP (peaks in Feb/Mar and Aug/Sep). The OL, DA-CDF (not shown in figure), and DA-NoCDF GPP

estimates exhibit high similarity and do not differ significantly throughout the year. A possible explanation for this behaviour445

is that vegetation transpiration is more dependent on root-zone SM than surface SM. In Fig. 10(b), it is seen that the change

in near-surface (L1) SM is largely modulated in terms of root-zone (L2) SM. In general, root-zone SM tends to maintain low

variation throughout the year. Thus, it is expected that assimilation of surface SM retrievals may not significantly impact the

dynamic vegetation.

FluxSat GPP and Noah-MP GPP were compared with respect to dominant landcover types and it was observed that the450

SMAP assimilation did not influence the vegetation within any of the landcover type grid cells to a high extent, Fig. 11. Even

the highest percent improvement in the RMSE, computed for savannas (normalized information content (NIC) = 4.5%, see

Appendix B for formula) during the summer months was <5%. The correlations between GOME-SIF and the different Noah-

MP modeled estimates are similar in magnitude and do not highlight any significant influence of SMAP assimilation (OL

versus DA-NoCDF) with respect to individual landcover types. Comparing these results to the vegetation optical depth (VOD)455

assimilation implemented by Kumar et al. (2020), it seems that the modeled GPP estimates are relatively more improved by

assimilating VOD than surface SM. In the context of land surface modeling with Noah-MP, surface SM exhibits a weaker

influence on GPP as compared to VOD. This is because SM has an indirect effect on GPP, whereas assimilation of VOD has a

direct impact on plant biomass, and hence, on GPP. Kumar et al. (2020) found that SM had a higher control over ET and GPP

during moisture-limited conditions.460
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Figure 11. (a) Normalized information content (NIC) with respect to RMSE (RMSEOL versus RMSEDA−NoCDF ) is computed through

comparison with FluxSat gross primary production (GPP). All landcover types exhibit low NICRMSE magnitudes (<0.1). (b) Correlation

with GOME solar-induced chlorophyll fluorescence (SIF) depicts the spatiotemporal consistency between the Noah-MP modeled GPP and

GOME SIF. R values for the OL versus DA-NoCDF GPP estimates for all landcover types are quite similar. Data from the summer months

of WYs 2016-2019 were used to compute the metrics.

5 Conclusions

Soil moisture estimation across South Asia was implemented in this study by assimilating SMAP soil moisture retrievals into a

land surface model. The Noah-MP land surface model was run within the NASA Land Information System software framework

to simulate the regional land surface processes. Precipitation boundary conditions (in different experiments) were provided by

the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA2) and GPM Integrated Multi-satellite465

Retrievals (IMERG) products. SMAP retrieval assimilation was implemented using two approaches: i) DA-CDF= mapping of

the SMAP retrieval CDF to the land surface model climatology prior to assimilation, and ii) DA-NoCDF = SMAP retrieval

assimilation without CDF-matching. CDF-matching of the observations to the modeled estimates was applied in an effort to

correct the distribution moments of the SMAP soil moisture retrievals.

Comparison of assimilated and model-only soil moisture estimates against in situ measurements showed the relative im-470

provement in soil moisture by assimilating SMAP retrievals. The IMERG DA-NoCDF simulation exhibited the best goodness-

of-fit and reduced the mean bias and RMSE by 8.4% and 9.4% across the Tibetan Plateau. The results presented in Sect. 4

highlight that SMAP assimilation decreased the magnitude of error (Table 2), and improved the spatiotemporal soil moisture

patterns (Figs. 3 and 7) and associated evapotranspiration (Fig. 8), particularly over irrigated areas. However, the influence on

evapotranspiration did not proportionally translate into changes in the carbon flux.475

The most important feature of SMAP retrieval assimilation observed in this study is the correction of state estimation biases

generating from missing physics in the land surface model (unmodeled hydrologic process), i.e., irrigation. Information about

the exact quantity and timing of irrigation practices is generally not publicly available except for a few parts across the globe.

The framework described in this paper could possibly be used to infer information regarding irrigation patterns and practices

using an inverse method.480
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The utility of L-band radiometry for soil moisture estimation is limited by the soil penetration depth associated with PMW

(∼5 cm) and the data gaps in the soil moisture retrievals. These data gaps are due to the presence of snow, ice, frozen soil,

dense vegetation, and RFI instances. Therefore, the influence of SMAP soil moisture retrieval assimilation was primarily

limited to surface soil moisture, compared to root-zone soil moisture, across locations where SMAP soil moisture retrievals

where available for assimilation. However, improvements in the fine-scale spatial and temporal patterns in soil moisture were485

observed even though the retrievals being assimilated were at a much coarser scale than the model grid (36 km versus 0.05◦).

These results highlight the potential applicability of the described framework for regions where measured data are scarce as

well as where accurate and consistent soil moisture estimates do not currently exist. A follow-on study to be explored based on

the results of the described experiments is the routing of streamflow using modeled runoff to analyze the effect of soil moisture

assimilation on runoff and river discharge. Antecedent soil moisture conditions affect the soil permeability and infiltration490

capacity. Therefore, it is expected that improvements in soil moisture estimation could translate into improved streamflow

estimates.

Appendix A: Soil texture and landcover across study domain

Table A1 presents the predominant soil texture and landcover classes and their respective percentages across the study domain

shown in Fig. 1.495

Table A1. List of soil texture and landcover classes (and their respective percentages) found within the study domain presented in Fig. 1.

Soil texture Landcover

Class no. of grid cells % of total grid cells Class no. of grid cells % of total grid cells

Sand 12528 4.04 Forest 43669 14.1

Loamy Sand 322 0.10 Shrublands 62654 20.2

Sandy Loam 18753 6.05 Savannas 4244 1.4

Silt Loam 2098 0.68 Grasslands 41306 13.3

Loam 188716 60.91 Croplands 67366 21.7

Sandy Clay Loam 14132 4.56 Urban/ Built-up 1269 0.4

Clay Loam 28885 9.32 Snow/Ice 1027 0.3

Silty Clay 35 0.01 Barren/Sparsely vegetated 78338 25.3

Clay 23048 7.44 Ocean 9952 3.2

Water 10805 3.49

Other

(ice/lakes/water

bodies)

10503 3.39

25

https://doi.org/10.5194/hess-2021-460
Preprint. Discussion started: 8 September 2021
c© Author(s) 2021. CC BY 4.0 License.



Appendix B: Statistical metrics

The following formulas were used to calculate the relevant statistics described in Sect. 4:

Bias =
T∑

t=1

(ys− ym) (B1)

RMSE =

√∑T
t=1(ys− ym)2

T
(B2)500

Unbiased RMSE =

√∑T
t=1((ys− (ys− ym))− ym)2

T
(B3)

Relative RMSE =
RMSE
σys

(B4)

505 Confidence interval95% limits =±1.96 ∗ σX√
N

(B5)

where ys equals the ensemble mean of the OL/DA-CDF/DA-NoCDF soil moisture estimate, ym is the in situ soil moisture

measurement, σys
is the standard deviation of the ensemble mean soil moisture over time, T is the total number of data

instances in time at a given location in space, X is the array containing bias/RMSE values computed for each comparative

grid cell, and N is the total number of (in situ measurements versus modeled estimates) comparative grid cells. The overbar510

represents temporally averaged values. The cross-correlation, R, between variables x and y is computed as:

R =
∑T

t=1(x− x̄)(y− ȳ)√∑T
t=1(x− x̄)2

∑T
t=1(y− ȳ)2

(B6)

The fractional normalized information content, NICRMSE , improved in terms of RMSE due to assimilation is computed as:

NICRMSE =
RMSEOL−RMSEDA

RMSEOL
(B7)

where RMSEOL is the root mean squared error (RMSE) for the OL and RMSEDA is the RMSE for the DA-CDF or DA-NoCDF515

experiment.

Acronyms and abbreviations

ALEXI Atmosphere-Land Exchange Inverse

CDF Cumulative distribution function

DA Data assimilation

DA-CDF Data assimilation with CDF matching

DA-NoCDF Data assimilation without CDF matching

EnKF Ensemble Kalman filter

ET Evapotranspiration

GMIA Global Map of Irrigation Areas
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GOME-2 Global Ozone Monitoring Experiment 2

GPP Gross primary production

IMERG Integrated Multi-satellite Retrievals for Global Precipitation Measurement

L1 Layer 1 near-surface soil moisture

L2 Layer 2 root-zone soil moisture

LIS Land Information System

MODIS Moderate Resolution Imaging Spectroradiometer

MERRA2 Modern-Era Retrospective analysis for Research and Applications

NI Normalized innovation

SIF Solar-induced fluorescence

SM Soil moisture

SMAP Soil Moisture Active Passive

OL Open loop

VOD Vegetation optical depth

Code and data availability. The NASA Land Information System source code was downloaded from https://github.com/NASA-LIS/LISF.

SMAP soil moisture retrievals were downloaded from https://nsidc.org/data/SPL3SMP/. Soil moisture measurements across the Tibetan

Plateau are available at https://ismn.earth/en/. FluxSAT Gross Primary Production is available at https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_520

GPP/. GOME-2 Fluorescence dataset can be downloaded from https://avdc.gsfc.nasa.gov/pub/data/satellite/MetOp/GOME_F/.
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