
Editor Comments: 
Dear Authors, 
 
Many thanks for your detailed responses to comments of Reviewer 1 and Reviewer 2. 
Both are asking for major revisions. The discussion resulting from your responses is quite 
interesting and should be integrated in the paper in some way. For example, I think that 
Figure A in your response to Reviewer 1 deserves to be published. It could be published 
in a Supplement, together with other additional material that could help better document 
your findings. 
 
Best regards, 
JC Calvet. 
 
 
Response to editor: 
Thank you for your suggestions. We have tried our best to incorporate your comments in 
the revised draft. A separate supplementary document includes the details of the 
supporting experiments while the main results and discussion are included within the 
manuscript in Section 5. All the line numbers are according to the revised manuscript. 
The revised manuscript, supplement document, and track changes document have been 
uploaded. The track changes document does not support figures. The updated figures 
can be viewed in the revised manuscript. Reviewer comments and the corresponding 
responses are attached at the end for reference. 
 
The following text has been added to integrate the discussion from the response to 
reviewer comments within the manuscript. 
 
Lines 475 to 516: 
“Statistics included in Table 2 show the relatively better performance of DA-NoCDF 
estimates as compared to the OL and DA-CDF estimates via evaluation with in-situ soil 
moisture measurements across the Tibetan Plateau. Direct comparison of SMAP soil 
moisture retrievals with in-situ measurements yielded higher relative RMSE than all other 
estimates (Table S1).  SMAP soil moisture retrievals also had the lowest mean bias and 
RMSE. However, only 30 grid cells were available for comparison with in-situ 
measurements as SMAP data has extensive gaps across the Tibetan Plateau due to 
frozen soil conditions. SMAP retrievals are provided on a 36 km EASE Grid and contain 
frequent data gaps in space and time. The Noah-MP model was run at a relatively fine 
resolution of 0.05o (~5 km) and provides continuous data without any spatiotemporal gaps 
(along with lower relative RMSE values). Therefore, while SMAP retrievals contain 
important information, the Noah-MP model estimates provide a more consistent dataset 
without spatiotemporal gaps associated with frozen soil conditions, swath width 
limitations, or radio frequency interference. 
 
The Noah-MP simulation results in Sec. 4 highlight that CDF-matching removes the 
irrigation signal from the SMAP soil moisture retrievals, and therefore, better results are 
obtained across croplands for simulations without any CDF-matching. Optimal data 



assimilation is based on the assumption that the forward model and the observed data 
are unbiased, which is one motivating factor for conducting CDF-matching of retrievals. 
Considering the current study domain, it is apparent that the forward model unbiasedness 
assumptions are violated across irrigated areas. Hence, mapping the retrieval climatology 
to a biased land surface model climatology is not a viable bias correction approach for 
satellite-based retrievals. The spatial patterns in the DA-CDF estimated soil moisture 
across irrigated areas (Fig. 4) highlight this issue. 
 
In an effort to comply with the unbiased forward model assumptions in the EnKF 
assimilation algorithm, assimilation using an anomaly-based approach (i.e., one that is 
zero mean by construct) was also tested. In this approach, the retrieval mean was 
mapped to the land surface model mean and updates were computed using the resultant 
anomalies. Anomaly-based assimilation results (Fig. S1) showed that for heavily irrigated 
areas assimilation estimates closely mimic the OL estimated soil moisture throughout the 
year whereas DA-NoCDF is able to update the soil moisture based on the information in 
the SMAP observations, particularly during the winter months. In terms of general spatial 
patterns (Fig. S2), the anomaly-based assimilation results were similar to the DA-CDF 
soil moisture estimates such that relatively higher soil moisture values were found across 
some irrigated areas during the winter. Further details regarding the anomaly-based 
assimilation experiment are included in the supplement document, see Sect. S2. 
 
Irrigation is primarily carried out via manually operated canals, open channels, and 
ground pumping across South Asia. The amount of water contributed by irrigation in 
South Asian croplands changes in magnitude during different seasons, however, it 
remains non-negligible over the course of the entire year (Biemans et al., 2016). 
Therefore, assumptions regarding higher contribution of irrigation to the regional water 
cycle during winter and negligible contribution during the summer months are not 
appropriate. Hence, implementation of CDF-matching only during certain months would 
not work in this study. That is, there is a need to develop an irrigation module that would 
be able to represent the regional irrigation practices, and therefore, properly account for 
the contribution of water transported via manually operated irrigation schemes in the local 
water balance. 
 
The results in Sect. 3.2.4 highlight the limitations in information transfer from updated 
surface soil moisture to root-zone soil moisture or to the vegetation. Compared to root-
zone soil moisture, the influence of SMAP soil moisture assimilation was greater on 
surface soil moisture. It highlighted the limitations in information transfer between 
adjacent soil layers in the land surface model. One potential method of transferring 
surface soil moisture information to deeper soil layers could entail the development of a 
soil modeling routine that has higher hydrologic coupling between the individual soil 
layers. However, an important point to consider is that with an increase in the hydrologic 
coupling between surface and deep soil layers, the complexity of the land surface model 
would also increase as new parameters are identified to model the feedback loop 
between adjacent soil layers. Similarly, information transfer between the updated surface 
soil moisture and the vegetation states is also limited.” 
  



Details regarding anomaly-scaled assimilation experiments and the comparison of SMAP 
retrievals with in-situ data are included in the attached supplement document: 
 
“S1: Comparison of SMAP soil moisture with in-situ measurements 
Table S1 includes the metrics computed for the SMAP soil moisture retrievals and the 
modeled (OL and DA-NoCDF) soil moisture estimates by comparing them with in-situ 
data from 2015 onwards. Only 30 grid cells have both in-situ measurements and SMAP 
soil moisture retrievals available. The SMAP soil moisture statistics are based on 
observations available on any day between 2015-2020, i.e., there are many temporal 
gaps in the SMAP soil moisture timeseries. However, the OL and DA-NoCDF statistics 
are computed from daily estimates. (Note: The statistics included in Table 2 of the 
manuscript take into account all 78 grid cells suitable for comparison with the modeled 
estimates, which do not have any data gaps.) 
 
SMAP soil moisture retrievals and DA-NoCDF (IMERG) yield the lowest mean bias and 
RMSE. However, the SMAP retrievals have the largest mean relative RMSE. Consistent 
with contemporary literature, the raw SMAP retrievals show the highest correlation with 
in-situ measurements. Important to note is the improvement in all statistics after 
assimilation as compared to the OL. 
 
Table S1. Statistics of OL and DA-NoCDF soil moisture estimates (2015 to 2020) 
computed with respect to the soil moisture measurements across the Tibetan Plateau. 
Mean refers to the average of all the stations included within the network. OL = Open 
Loop and DA-NoCDF = data assimilated estimates without CDF matching of the SMAP 
retrievals. 

 
 
S2: Anomaly-scaled retrieval assimilation 
Assimilation using an anomaly-based approach (DA-Anom.) was also tested. In this 
approach, the retrieval mean was mapped to the land surface model mean and updates 
were computed using the resultant anomalies such that: 
 
Observed value (s, t) = Mean NoahMP soil moisture(s) + Observation anomaly(s, t) 
 
where, s= location in space and t= instance in time. Figure S1 shows a sample timeseries 
for a location that is 80% irrigation-equipped. It is apparent that assimilation estimates 
(DA-CDF) after anomaly scaling closely mimic the OL estimated soil moisture throughout 
the year whereas DA-NoCDF is able to update the soil moisture based on the information 
in the SMAP observations, particularly during the winter months.  



 
 

 
Figure S1. Comparative timeseries of OL and DA estimated surface (top 5 cm) soil 
moisture at an irrigation-equipped pixel. The solid line represents the ensemble mean 
whereas the shaded areas represent mean +/- standard deviation across the full 
ensemble. DA-CDF: anomaly-based assimilation; DA-NoCDF: no CDF-matching based 
assimilation. 
 
Figure S2 presents the differences between OL versus DA estimated soil moisture for the 
two main seasons. DA-CDF (subplots (a) and (e)) and DA-Anom. (subplots (b) and (f)) 
simulations show some spatial similarities during both seasons. During summer, the DA-
Anom. simulations (Fig. S2(b)) do not show any visible updates across the Indus, 
Ganges, and Brahmaputra basins. This signal is, however, apparent in the DA-NoCDF 
map (Fig. S2(c)). For winter, the DA-Anom. estimates (Fig. S2(f)) show positive updates 
across the Ganges Basin, however, little influence is seen across the Indus and 
Brahmaputra basins.  
 
Figure S2(d) presents the annual mean differences between the OL and DA-Anomaly 
runs. Positive differences are observed across the Tibetan Plateau, similar to the DA CDF 
run (Fig. 4). The statistics show that DA-CDF estimates have the lowest accuracy across 
the Tibetan Plateau (lower than the OL). The  performance of the individual runs could be 
further explored if in-situ measurements were available across the lower part of the study 
domain. Unfortunately, there are no publicly available soil moisture datasets across the 
three primary river basins in South Asia, i.e., Indus, Ganges, and Brahmaputra, from 2015 
onwards. 
 
 



 
Figure S2. Differences between the mean soil moisture estimated by the OL and DA 
simulations during the summer (April 2016 to September 2016) versus the winter months 
(October 2015 to March 2016). DA-CDF= assimilation of CDF-matched SMAP retrievals; 
DA-Anom.= assimilation of anomaly scaled SMAP retrievals; DA-NoCDF= no CDF-
matching of SMAP retrievals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Reviewer #1 
 

Thank you for your insightful comments. We have made our best effort to address each 
and every point that was raised by the reviewers. The referee comments are written in 
black with the author replies directly below in red. 
 
 
1. MAJOR: The main problem with the paper is that the better results are obtained when 

SMAP soil moisture data are assimilated without the correction of the BIAS. Of course, 
the correction of the BIAS in regions in which we have irrigation, that is not modelled 
by the Noah-MP version used in this study, will provide wrong results. However, 
without the correction of the BIAS, i.e., no CDF-matching (or other methods), the 
assimilation method is not correct as well. Indeed, the assimilation should correct the 
random error, not the BIAS. The bias between modelled and satellite data is related 
to multiple causes, differences in spatial scale, differences in parameterization (e.g., 
wilting point and saturation), differences in land cover specification. A BIAS between 
modelled and satellite data is expected. For instance, a positive BIAS is observed also 
in the summer period (see Figure 4 and 7) or in areas not irrigated (Figure 4), and it 
cannot be easily explained. I am sure that in Pakistan and northern India the satellite 
soil moisture data can contribute to see the unmodelled irrigation and hence to 
contribute to improve land surface modelling. However, the approach used in the 
study should be corrected. E.g., the Noah-MP model with the irrigation module can be 
run. BIAS correction only during summer (i.e., in which irrigation is negligible) can be 
implemented (not month by month). These are just two suggestion to the authors. 

Response: Thank you for your comment. The main point highlighted in this paper is that 
CDF-matching removes the irrigation signal from the retrievals, and therefore, we note 
that better results are obtained across croplands for simulations without any CDF-
matching. Optimal data assimilation is based on the assumption that the forward model 
and the observed data are unbiased, which is one motivating factor for conducting CDF-
matching. It is clearly apparent that in the current case these assumptions are violated in 
some cropland areas. With that said, assimilation without CDF-matching provides the 
best results across irrigated areas and the Tibetan Plateau.  

 
The suggestion of applying bias correction during summer only would not yield the 
desired results. The amount of water contributed by irrigation changes in magnitude 
during different seasons (higher during some months depending on the crop), however, 
it remains non-negligible throughout the year (Biemans et al., 2016). Figure 5 in Biemans 
et al. (2016) highlights the year-round contribution of irrigation to the regional water 
balance in the Indus Basin. We cannot assume that during the summer period there is no 
contribution of irrigation. Therefore, CDF-matching during some months and no CDF-
matching during other months will not help in mitigating all the biases from the SMAP 
retrievals.  
 
As an alternative, assimilation using an anomaly-based approach (i.e., one that is zero-
mean by construct) was also tested. In the interest of limiting the scope of the study, these 
results were not added in the paper. In this approach, the retrieval mean was mapped to 



the land surface model mean and updates were computed using the resultant anomalies 
such that: 
 
Observation	anomaly	(s, t) = SMAP	soil	moisture	(s, t) − Mean	SMAP	moisture	(s) 
Observed	value	(s, t) = Mean	NoahMP	soil	moisture	(s) + Observation	anomaly	(s, t) 
s = location	in	space 
t = instance	in	time 

 
 

 

 
 

Figure A: Comparative timeseries of OL and DA estimated surface (top 5 cm) soil 
moisture at an irrigation-equipped pixel. The solid line represents the ensemble mean 
whereas the shaded areas represent mean +/- standard deviation across the full 
ensemble. DA-CDF: anomaly-based assimilation; DA-NoCDF: no CDF-matching based 
assimilation.  
 
Figure A shows a sample timeseries for a location that is 80% irrigation-equipped. It is 
apparent that assimilation estimates (DA-CDF) after anomaly scaling closely mimic the 
OL estimated soil moisture throughout the year whereas DA-NoCDF is able to update the 
soil moisture based on the information in the SMAP observations, particularly during the 
winter months. This could be further explored if in-situ measurements were available. 
Unfortunately, there are no publicly available soil moisture datasets across the three 
primary river basins in South Asia, i.e., Indus, Ganges, and Brahmaputra, from 2015 
onwards.  
 
Figure B shows the differences between DA-NoCDF and DA-CDF estimated soil moisture 
values. The irrigation signal across the cropland regions is clearly seen. Apart from the 
croplands, negative differences are noted across much of the Tibetan Plateau. 
Comparison with in-situ  measurements across the Tibetan Plateau revealed that the DA-
NoCDF run had lower bias than the OL and DA-CDF runs. Using the model climatology 
to correct biases in the retrieval CDF does not take into account the model’s own inherent 
biases. The validity of the assumption that the model climatology is not (or more or less) 
biased as compared to the satellite-based retrievals varies depending on the location 
specifications. Particularly, for areas such as South Asia where land surface modeling 



capabilities of contemporary LSMs need improvement in order to adequately represent 
all the relevant land surface processes. As the reviewer noted, the source of the bias 
cannot be easily explained. However, the results included in the manuscript show that 
assimilation is potentially capable of correcting biases that originate from missing 
information in the land surface model, i.e., irrigation.  
 
 

Figure B: Differences 
between the mean soil 
moisture estimated by 
the DA-NoCDF and DA-
CDF simulations during 
the summer (April 2016 
to September 2016) and 
the winter months 
(October 2015 to March 
2016). Differences 
greater than 0.1 m3/m3 
are, in general, observed 
across cropland regions. 
Negative values within 
the Tibetan Plateau are 
explained by the better 
accuracy of the DA-
NoCDF relative to in-situ  
measurements.  
DA-CDF= assimilation of 
CDF-matched SMAP 
retrievals; DA-NoCDF= 
no CDF-matching of 
SMAP retrievals; GMIA= 
Global Map of Irrigated      

       Areas. 

      
 

e) 



The irrigation module included in Noah-MP was tested by a number of our colleagues 
who concluded that the simulation routine lacked adequate representation in terms of the 
regional irrigation patterns (Ghatak et al., 2018). Zaitchik et al. are currently working on 
developing a more representative irrigation modeling routine for the study domain that 
would benefit future explorations of soil moisture across South Asia. Additionally, another  
follow-on study is planned to explore the influence of no CDF-matching on areas that are 
not irrigated, and how best to devise a suitable method of incorporating the information 
obtained from satellite retrievals to correct the modeled estimates without introducing 
additional bias to the modelled estimates. Some potential methodologies include 
Kornelsen and Coulibaly (2015), Lee et al. (2017), and Zhou and Grassotti (2020). 
 
The framework used in this paper has some limitations. As the reviewer pointed out, a 
positive bias is observed across some pixels that have low irrigation-equipped area 
percentages. To acknowledge this limitation, the following text has been added to lines 
539 to 544:  
 
“Considering the lack of in-situ observations, it is difficult to ascertain the influence of 
assimilation without CDF-matching on areas that are not irrigated. Across the Tibetan 
Plateau, DA-NoCDF estimates exhibit the lowest RMSE. However, the evaluation of DA-
NoCDF estimates across unirrigated areas in the southern part of the study domain is 
limited by the scarcity of ground data. A follow-on study would explore the influence of no 
CDF-matching on areas that are not irrigated and test suitable methods of incorporating 
the information obtained from satellite retrievals to correct the modeled estimates without 
introducing additional bias to the modelled estimates.” 
 
 
Biemans, H., Siderius, C., Mishra, A. and Ahmad, B., 2016. Crop-specific seasonal 
estimates of irrigation-water demand in South Asia. Hydrology and Earth System 
Sciences, 20(5), pp.1971-1982. 
 
Kornelsen, K.C. and Coulibaly, P., 2015. Reducing multiplicative bias of satellite soil 
moisture retrievals. Remote Sensing of Environment, 165, pp.109-122. 
 
Lee, J.H., Zhao, C. and Kerr, Y., 2017. Stochastic bias correction and uncertainty 
estimation of satellite-retrieved soil moisture products. Remote Sensing, 9(8), p.847. 
 
Zhou, Y. and Grassotti, C., 2020. Development of a Machine Learning-Based Radiometric 
Bias Correction for NOAA’s Microwave Integrated Retrieval System (MiRS). Remote 
Sensing, 12(19), p.3160. 
 
 
2. MODERATE: The title and the text are misleading. The study is carried out in a limited 

region between northern India and southern China and Pakistan, not South Asia. 
Moreover, from the results it is not shown that soil moisture is improved over irrigated 
areas, as the comparison with in situ data is carried out over non-irrigated sites. Please 
correct the title and the corresponding text. 



Response: The paper has been retitled to: 
“Soil moisture estimation in South Asia via SMAP retrieval assimilation” 

 
We use the term South Asia to identify the location of the study area. The three main river 
basins in South Asia, i.e., Indus, Ganges, and Brahmaputra, and the Tibetan Plateau are 
the focus of this study. We have used the general and well-known term of South Asia to 
keep the title succinct and easily geographically identifiable. 
 
One approach of evaluating the estimated soil moisture datasets was via comparison with 
in-situ measurements across the Tibetan Plateau. The secondary evaluation was indirect 
and based on known physical relationships. The Food and Agriculture Organization 
(FAO) provides a global map of irrigation-equipped areas (GMIA, Figure Ae). Section 4.3 
is dedicated to the discussion of the soil moisture estimated by the OL, DA-CDF, and DA-
NoCDF simulations. An analysis is carried out to connect the location of highly irrigated 
areas and their correspondence with the individual soil moisture datasets. Using rational 
deduction, we note that SMAP assimilation without CDF-matching is correcting the 
magnitude of soil moisture estimates across irrigated areas. As noted above, it would be 
ideal if in-situ  observations in cropland areas were available. Unfortunately, there are no 
publicly available soil moisture datasets in the three main river basins of South Asia from 
2015 onwards. In such a scenario, a viable option was to use rational deduction and 
spatial correlation with the GMIA irrigation data. 

 
3. MAJOR: The results of the comparison with in situ data are not robust. I believe that 

direct comparison of SMAP soil moisture against in situ observations provides a much 
better agreement with in situ data. Therefore, the data assimilation configuration is not 
optimal, and very likely the model error has been underestimated (or overestimated 
the SMAP observations error).  

Response: Thank you for your comment.  
Direct comparison of SMAP soil moisture retrievals with in-situ  measurements yields 
higher relative RMSE than all other estimates. Only 30 grid cells are available for 
comparison with in-situ  measurements as SMAP data has extensive gaps across the 
Tibetan Plateau due to frozen soil conditions. The following metrics were computed for 
the SMAP soil moisture retrievals and the modeled soil moisture estimates by comparing 
them with the relevant 30 grid cells containing in-situ data and available SMAP 
observations from 2015 onwards (see Table A). The SMAP soil moisture statistics are 
based on observations available on any day between 2015-2020, i.e., there are many 
temporal gaps in the SMAP soil moisture timeseries. However, the OL and DA-NoCDF 
statistics are computed from daily estimates. (Note: The statistics included in Table 2 of 
the manuscript take into account all 78 grid cells suitable for comparison with the modeled 
estimates (which do not have any data gaps).) 

 
SMAP soil moisture retrievals and DA-NoCDF (IMERG) yield the lowest mean bias and 
RMSE. However, the SMAP retrievals have the largest mean relative RMSE when 
compared against the in-situ measurements. Consistent with contemporary literature, the 
raw SMAP retrievals show the highest correlation with in-situ measurements. Important 
to note is the improvement in all statistics after assimilation as compared to the OL.  



Table A: Statistical metrics computed with respect to in-situ measurements. 

Statistic SMAP soil 
moisture 

OL 
(MERRA2) 

DA-NoCDF 
(MERRA2) 

OL 
(IMERG) 

DA-NoCDF 
(IMERG) 

Mean bias 
[m3/m3] 0.02 0.07 0.06 0.03 0.02 

Mean RMSE 
[m3/m3] 0.10 0.13 0.12 0.11 0.10 

Mean relative 
RMSE [-] 2.00 1.87 1.79 1.51 1.48 

Mean 
Correlation [-] 0.48 0.30 0.37 0.33 0.45 

 
 

SMAP retrievals are provided on a 36 km grid and contain frequent data gaps in space 
and time. The Noah-MP model was run at a relatively fine resolution of 5 km and provides 
continuous data without any spatiotemporal gaps (along with lower relative RMSE 
values). Therefore, while SMAP retrievals contain important information, the Noah-MP 
model estimates provide a more consistent dataset without spatiotemporal gaps 
associated with frozen soil conditions, swath width limitations, or radio frequency 
interference. 

 
A number of test experiments were carried out to ascertain the most representative model 
and SMAP soil moisture retrieval error values. In the interest of manuscript size limits, 
these results were not included in the paper. Model error standard deviation was 
increased from 0.02 m3/m3 to 0.1 m3/m3, while the SMAP error standard deviation was 
kept fixed at the standard value used in literature, i.e., 0.04 m3/m3. Similarly, the model 
error was fixed while the SMAP soil moisture error standard deviation was increased. 
Based on the test results, it was seen that the smallest bias and RMSE values were 
computed for model and SMAP soil moisture retrieval error standard deviations equal to 
0.04 m3/m3. In order to clarify this point, the following text has been added at lines 226 to 
231: 
 
“Test simulations were conducted to ascertain the most suitable model and SMAP soil 
moisture retrieval error values (results not shown). Model error standard deviation was 
increased from 0.02 m3/m3 to 0.1 m3/m3, while the SMAP error standard deviation was 
kept fixed at the standard value used in literature, i.e., 0.04 m3/m3. Similarly, the model 
error was fixed while the SMAP soil moisture error standard deviation was increased. 
Based on the test results, it was seen that the smallest bias and RMSE values were 
computed for model and SMAP soil moisture retrieval error standard deviations equal to 
0.04 m3/m3.” 
 
Also, I believe that the sample size for which the analysis has been carried is quite low, 
sample size should be added to assess the significance of the results.  
We agree with the reviewer that the in-situ sample size is limited and would benefit from 
an increase in the number of measurement stations. With that said, we have worked 
diligently to obtain as many publicly-available datasets for model comparison as possible. 



As noted by the reviewer, an ideal evaluation strategy would entail the use of in-situ  soil 
moisture measurements across all landcover types. However, there are no publicly 
available soil moisture measurements across the southern part of the study domain. That 
is, soil moisture measurements from 2015 onwards are not available for public use. 
Available in-situ measurements are limited to the Tibetan Plateau only.  

 
On this basis, I believe such analysis should be improved and that meaningful inferences 
cannot be done due to, e.g., the very low correlation values or very high relative RMSE 
(>1.5 and should be lower than 0.7). Note that SMAP vs in situ provides R values greater 
than 0.8 (see e.g., https://www.mdpi.com/2072-4292/10/4/535/htm, but there are several 
other papers). In my opinion, in the paper it is not shown that the assimilation improves 
soil moisture estimates, at least not a robust assessment, and not in irrigated areas (as 
in the title).  
The paper shared above by the reviewer shows correlation between in-situ data and 
SMAP soil moisture retrievals across a differently defined study period (i.e., one year only 
from May 2015 to September 2016). Our study covers a longer time period (May 2015 to 
September 2020). Hence, the performance statistics are not directly comparable to one 
another. In addition, in the referenced paper, R>0.8 is for the Naqu network only. In this 
manuscript, in-situ measurements from the Naqu, Maqu, Ngari, and CTP-SMTMN 
networks are included in order to evaluate the performance of modeled datasets across 
a larger range of climates, and as a result, the correlation values are lower. Given that 
our study evaluates a larger period of time across a larger region of space, it is expected 
that the performance metrics would differ between the two different studies. 
 
We have intentionally added the relative RMSE values to highlight that although 
assimilation is improving the estimates in the right direction, there is a need to further 
advance soil moisture estimation within this domain. The data-scarcity prevalent in the 
study area renders the development of comprehensive soil moisture products vital. 
 
Since the traditional evaluation strategy of using in-situ  measurements is limited across 
the study area, an indirect approach was used. The FAO provides a global map of 
irrigated areas (GMIA) that was used to infer information regarding the percentage of 
irrigation-equipped area within each grid cell. Figure 7 in the manuscript shows that as 
the percentage of irrigation equipped area increased, the normalized innovation, which 
contributes to the state update, also increased. Analogously, the spatial correlation for 
the DA-NoCDF simulation increased to 0.4 (IMERG forcings) and 0.35 (MERRA2 
forcings) from 0.16 and 0.0 for the DA-CDF estimates, respectively. Since the OL and 
DA-CDF simulations are not properly considering the influence of irrigation on the soil 
moisture, physical rationality suggests that the DA-NoCDF estimates are updating the soil 
moisture in the right direction. Again, we agree with the reviewer that direct comparison 
against a robust in-situ network is always preferred, but for this particular study domain 
that is not an option. Hence, we made the best with the limited amount of information that 
was made available. 
 
In order to address this framework limitation, the following text has been added to lines 
355 to 357: 



“The unavailability of in-situ measurements across different land cover types limits a direct 
validation of the DA-CDF and DA-NoCDF estimated soil moisture across the lower part 
of the study domain. The influence of irrigation is analyzed through an indirect approach 
using the GMIA maps of irrigated areas.” 
 
 
4. MODERATE: As expected, the impact of the assimilation on the evapotranspiration 

fluxes and on GPP is limited. It depends on the variable that is assimilated, i.e., surface 
soil moisture, but also on the coupling of such variable with root zone soil moisture 
and fluxes. It happened frequently that models are not able to transfer surface soil 
moisture information to deeper layer due to model and data assimilation technique 
limitations. There’s a lot of scientific literature on the topic. Please consider this 
important aspect in the assessment of the impact on fluxes, and possibly to improve 
the data assimilation framework employed in the study. 

Response: Thank you for your comment. Figures 8 and 9 show that evapotranspiration 
(ET) benefits from assimilation (DA-NoCDF) as the magnitude of evapotranspiration is 
higher than the OL across irrigated areas. Also, the spatial correlation with the 
independent ALEXI dataset is also improved via assimilation. Figures 10 and 11 present 
the limited influence of assimilation on gross primary production (GPP). In the context of 
land surface modeling with Noah-MP, surface soil moisture exhibits a weaker influence 
on GPP as compared to ET. A first-order estimate of this influence is provided by the 
correlation between ET and GPP. The domain-wide spatiotemporal correlation between 
ET and GPP is equal to 0.654 and 0.650 while the correlation between vegetation 
transpiration and GPP is equal to 0.845 and 0.846 for the OL and DA-NoCDF simulations, 
respectively. The minute decrease in the correlation between ET and GPP after 
assimilation results from the decrease in the correlation between ET and vegetation 
transpiration after assimilation (0.582 versus 0.581). The magnitude of cross-correlation 
between ET and GPP is limited by the percentage of different landcover types within the 
study domain. The most dominant land cover type in the study domain is barren/sparse 
vegetation. Hence, the major influence of soil moisture assimilation across much of this 
domain manifests as surface evaporation rather than vegetation transpiration. 

 
Figure 11 shows that the correlations between GOME-SIF and the different Noah-MP 
modeled estimates are similar in magnitude and do not highlight any significant influence 
of SMAP assimilation for major landcover types. In contrast, vegetation optical depth 
(VOD) assimilation implemented by Kumar et al. (2020) showed relatively higher 
improvement in modeled GPP estimates as compared to surface soil moisture 
assimilation. GPP is directly influenced by VOD via plant biomass, whereas the impact of 
surface soil moisture updates on GPP is indirect via rootzone soil moisture and ET. The 
following text included at lines 466 to 473 discusses these results. 
 
“The correlations between GOME-SIF and the different Noah-MP modeled estimates are 
similar in magnitude and do not highlight any significant influence of SMAP assimilation 
(OL versus DA-NoCDF) with respect to individual landcover types. Comparing these 
results to the vegetation optical depth (VOD) assimilation implemented by Kumar et al. 
(2020), it seems that the modeled GPP estimates are relatively more improved by 



assimilating VOD than surface SM. In the context of land surface modeling with Noah-
MP, surface SM exhibits a weaker influence on GPP as compared to VOD. This is 
because SM has an indirect effect on GPP, whereas assimilation of VOD has a direct 
impact on plant biomass, and hence, on GPP. Kumar et al. (2020) found that SM had a 
higher control over ET and GPP during moisture-limited conditions.” 
 
 
In order to transfer the soil moisture information to deeper soil layers, one possible future 
study could entail the development of a soil modeling routine that has higher hydrologic 
coupling between the individual soil layers. The following sentences have been added to 
lines 547 to 553: 
 
“The influence of SMAP soil moisture retrieval assimilation was primarily limited to surface 
soil moisture, compared to root-zone soil moisture, across locations where SMAP soil 
moisture retrievals were available for assimilation. One method of transferring surface soil 
moisture information to deeper soil layers could entail the development of a soil modeling 
routine that has higher hydrologic coupling between the individual soil layers. While it may 
improve the information transfer to deeper soil layers, the complexity of the land surface 
model would also increase considerably with the addition of new parameters that would 
better control the feedback loop between adjacent soil layers.” 
 
 
SPECIFIC COMMENTS (P: page, L: line or lines) 
 
5. P1, Title: Please change by considering the general comment above. 
Response: The title has been partially modified according to the referee’s 
recommendation to: 
“Soil moisture estimation across South Asia via SMAP retrieval assimilation”  
 
6. P3, L77: Typo “populace” 
Response: Populace refers to people residing in an area. Thus, we used the term here to 
refer to all the people residing in the study area. 
 
7. P6, L128: Show in the map the location of in situ soil moisture stations with the name 

of the networks. 
Response: Thank you for the comment. The network names have been added to Fig. 1. 
 



 
 
 
8. P7, L142: Please check the acronyms definition throughout the text, e.g., MODIS 

defined below, not the first time used. 
Response: Thank you for the suggestion. We have corrected the definition of acronyms 
in the paper. 
 
9. P7, L143: Please specify the version of the datasets used, and the link where the data 

are available. 
Response: The following sentence has been added to lines 600-601: 
 
FluxSAT Gross Primary Production is available at 
https://avdc.gsfc.nasa.gov/pub/tmp/FluxSat_GPP/, while the ALEXI evapotranspiration 
dataset can be accessed at https://lpdaac.usgs.gov/products/eco3etalexiv001/. 
 
 
10. P7, L169-170: It is likely that 5-year of spinup is not enough for a correct initialization 

of the model. In our simulations we typically consider 30-year spinup. 
Response: The spinup duration is related to the variable under consideration. For 
example, if we were analyzing changes in groundwater, then a spinup of five years would 
have been inadequate. However, in the present case the variable of interest is surface 
soil moisture. The five-year spin-up is adequate for the present study since soil moisture 
is a relatively dynamic state variable that rapidly spins up after a small number of 
precipitation events. The five-year spinup duration was largely motivated by initializing 
the experiments with a reasonable representation of both the surface soil moisture and 
the rootzone soil moisture, but was less of a motivating concern with respect to 
unconfined groundwater. 



 
Additional experiments were carried out for another study in order to test the influence of 
initial conditions on the subsequent soil moisture conditions and it was noted that a five-
year spin-up yielded the same results for the sixth year as did a 10-year spinup across 
the study domain. In order to comply with standard literature, we have replaced the 
assimilation results for the five-year spin up with a 10-year spin up. This replacement 
does not have any influence on the subsequent results though. 
 
11. P9, L185: Where is Table 2? It is the table in Kwon et al. Please check. 
Response: Yes, Table 2 is in Kwon et al. We cited that particular table in Kwon et al. to 
help the readers easily locate the information regarding forcing perturbations within the 
cited manuscript. The following table has been included in the appendix for the reader’s 
convenience: 

 
 
12. P10, L230: It should be clarified the soil layer that is considered for the assimilation of 

surface soil moisture data, and how the information is propagated with depth. 
Response: Surface soil moisture is considered during assimilation since the SMAP 
retrievals being assimilated represent the top ~5 cm of surface soil. The information is 
propagated to underlying soil layers based on the water diffusivity and hydraulic 
conductivity, maximum soil moisture threshold of layers, and moisture flux between 
subsequent layers of the soil. Noah-MP connects subsequent soil layers such that 
excessive water above saturation in a layer is moved to the next unsaturated layer similar 
to a bucket. Further details are provided in (Ek et al., 2003; Niu et al., 2011; Yang et al., 
2011). 
 
The following sentence has been added to line 242: 
“Since the SMAP retrievals being assimilated represent the top ~5 cm of surface soil, the 
soil moisture in the topmost soil layer is the model state variable considered during 
assimilation.” 
 
The following sentences have been added at line 108: 
“Updates in the surface soil moisture information are propagated to the underlying soil 
layers based on the water diffusivity and hydraulic conductivity, maximum moisture 
threshold of soil layers, and moisture flux between subsequent layers of the soil. Noah-
MP connects subsequent soil layers such that excessive water above saturation in a layer 
is moved to the next unsaturated layer.” 
 



 
Ek, M., Mitchell, K., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, 
J.: Implementation of Noah land surface model advances in the National Centers for 
Environmental Prediction operational mesoscale ETA model, Journal of Geophysical 
Research: Atmospheres, 108, 2003. 
 
Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., 
Manning, K., Niyogi, D., Rosero, E., and Tewari, M.: The community Noah land surface 
model with multiparameterization options (Noah-MP): 1. Model description and evaluation 
with local-scale measurements, Journal of Geophysical Research: Atmospheres, 116, 
2011. 
 
Yang, Z.-L., Niu, G.-Y., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Longuevergne, 
L., Manning, K., Niyogi, D., Tewari, M., and Xia, Y.: The community Noah land surface 
model with multiparameterization options (Noah-MP): 2. Evaluation over global river 
basins, Journal of Geophysical Research: Atmospheres, 116, 2011. 
 
 
13. P11, L269-270: In Maqu results are different, i.e., RMSE is lower for MERRA2. Please 

reformulate. 
Response: Thank you for the correction. The following sentence has been added to lines 
281-283: 
“Relative to MERRA2, IMERG-based SM estimates have lower RMSE for the sample 
location in the Ngari network and higher RMSE for the location in the Maqu network. This 
indicates the importance of precipitation boundary conditions in terms of SM estimation 
across locations of varying climatology (i.e., arid versus humid).” 
 
14. P15, L323: Why overestimation also for Savannas? It should be clarified. 
Response: Thank you for your comment. Only 1.4% of the total grid cells included in the 
study domain belong to the land cover type Savannas. Of the 1.4%, only 40% of the pixels 
have SMAP retrievals available for assimilation. Therefore, the total instances of 
assimilation are much lower in number as compared to croplands or baren land cover. 
Figure 5 describes a general increase in soil moisture magnitudes after assimilation as 
compared to the OL. Considering the limited number of grid cells used to compute the 
linear regression coefficient (as compared to shrublands or baren areas), it is difficult to 
ascertain the exact cause of the generally higher soil moisture magnitudes for the DA-
NoCDF estimates relative to the OL. The following sentence has been added to lines 339-
342: 
 
“It is difficult to ascertain the exact cause of the generally higher soil moisture magnitudes 
for the DA-NoCDF estimates relative to the OL for pixels included in savannas due to the 
small sample size. Approximately 1.4% of the total grid cells included in the study domain 
belong to the land cover type savannas of which only 40% of the pixels have SMAP 
retrievals available for assimilation.” 
 



15. Figure 6: Due to uncertainties in soil map, I believe this figure is not really useful for 
the paper and it can be moved to the appendix. 

Response: Thank you for your comment. The figure has been relocated to Appendix C 
under the added section ‘OL versus DA estimates with respect to soil texture’. 
 
16. P16, L349: Note that Noah-MP includes an irrigation module that I believe can be very 

useful for this paper (see also General Comments). 
Response: Thank you for the suggestion. Noah-MP does indeed include an irrigation 
module. A number of our colleagues have studied the utility of the irrigation module 
included within Noah-MP across South Asia and concluded that the simulation routine 
was inadequate in representing the general irrigation patterns in this particular domain 
(Ghatak et al., 2018). In South Asia, irrigation is carried out via a network of formal canals 
and informal channels and streams. The irrigation network is manually monitored and is 
therefore quite difficult to explicitly model. Unfortunately, the irrigation module within 
Noah-MP is unable to accurately replicate these anthropogenic influences on soil 
moisture via irrigation and is therefore not suitable to adequately model irrigation across 
the study domain. Zaitchik et al. are currently working on developing a more 
representative irrigation modeling routine for the study domain that could benefit future 
explorations of soil moisture across South Asia. 
 
Ghatak, D., Zaitchik, B., Kumar, S., Matin, M.A., Bajracharya, B., Hain, C. and Anderson, 
M., 2018. Influence of precipitation forcing uncertainty on hydrological simulations with 
the NASA South Asia land data assimilation system. Hydrology, 5(4), p.57. 
 
17. P24, 479-480: It should be added more details on how irrigation can be quantified 

using “an inverse method” otherwise I suggest to remove the sentence. 
Response: The inverse method is a potential future study. A similar methodology was 
explored by Brocca et al. (2018) who used coarse-scaled soil moisture retrievals to 
quantify the amount of water used for irrigation. The following sentences have been 
added to line 536:  
 
“Brocca et al. (2018) used coarse-scaled soil moisture retrievals to quantify the amount 
of water used for irrigation. A similar methodology can be explored that uses the 
difference between the OL and DA estimated soil moisture across croplands to infer 
information regarding the water quantity supplied by irrigation.” 
 
 
Brocca, L., Tarpanelli, A., Filippucci, P., Dorigo, W., Zaussinger, F., Gruber, A. and 
Fernández-Prieto, D., 2018. How much water is used for irrigation? A new approach 
exploiting coarse resolution satellite soil moisture products. International Journal of 
Applied Earth Observation and Geoinformation, 73, pp.752-766. 
   
 
 
 
 



Reviewer# 2 
 

Thank you for your comments. We have endeavored to reply to each and every point that 
was raised by the reviewer. The referee comments are written in black with the author 
replies directly below in red. 
 
Major point 
Comment: The comparison with in situ soil moisture measurements is the only direct and 
independent evaluation. However, the stations are not located in the regions with higher 
irrigation-equipped areas. These are the regions with higher impact, and with some 
indirect evaluation via the signal on evapotranspiration. While the results are consistent, 
the main conclusions are not fully supported by independent evaluation. Therefore, I 
suggest that this limitation is highlighted in the conclusions and abstract. For example, 
Line 473: “and improved the spatiotemporal soil moisture patterns (Figs. 3 and 7) and 
associated evapotranspiration (Fig. 8), particularly over irrigated areas.” Since there are 
no direct observations of evapotranspiration and Soil moisture over the irrigated areas, I 
would recommend to say that the results “suggest improvements”. 
Response: Thank you for your comment. The evaluation is indeed limited by the 
unavailability of ground measurements across the irrigated areas in South Asia. To 
highlight this point, the following textual modifications have been implemented: 
 
Lines 11 to 19: 
“Across the Tibetan Plateau, DA-NoCDF reduced the mean bias and RMSE by 8.4% and 
9.4%, even though assimilation only occurred during less than 10% of the study period 
due to frozen (or partially frozen) soil conditions. The best goodness-of-fit statistics were 
achieved for the IMERG DA-NoCDF soil moisture experiment. The general lack of publicly 
available in-situ measurements across irrigated areas limited a domain-wide direct model 
validation. However, comparison with regional irrigation patterns suggested correction of 
biases associated with an unmodeled hydrologic phenomenon (i.e., anthropogenic 
influence via irrigation) as a result of SMAP soil moisture retrieval assimilation. The 
greatest sensitivity via assimilation was observed in cropland areas. Improvements in soil 
moisture potentially translate into improved spatiotemporal patterns of modeled 
evapotranspiration, although limited influence from soil moisture assimilation was 
observed on modeled processes within the carbon cycle such as gross primary 
production.” 
 
Lines 528 to 531: 
“The results presented in Sect. 4 highlight that SMAP soil moisture assimilation 
decreased the magnitude of error (Table 2), and suggest improvements in the 
spatiotemporal soil moisture patterns (Figs. 3 and 7) and associated evapotranspiration 
(Fig. 8), particularly over irrigated areas.” 
 
Line 532 to 533: 
“An important feature of SMAP retrieval assimilation observed in this study is the 
suggested correction of state estimation biases resulting from missing physics in the land 
surface model (unmodeled hydrologic process), i.e., irrigation.”  



 
Comment: Also on this point, the title can be a bit misleading since there is no clear 
evidence of improved soil moisture across irrigated areas, but we see the impact of the 
assimilation across irrigated areas. Therefore, I also suggest a change in the title to clearly 
reflect the manuscript content. 
Response: We have changed the title to be more reflective of the paper to: 
“Soil moisture estimation across South Asia via SMAP retrieval assimilation” 
 
 
Minor details 
Comment: line 185 “ perturbations used by Kwon et al. (2019) (Table 2)” For 
completeness, I would recommend replicating Table 2 of Kwon 2019 (if there were no 
changes?) in the appendix for example. 
Response: Thank you for the suggestion. The following table has been included in the 
appendix: 

 
 
Comment: Figure 3: Please define acronyms in figure captions. E.g. “TPO” in red symbols 
are the observations ? SMAP-CDF are the colocated SMAP observations after CDF 
matching ? Also in Figure 10, e.g. panel c) FS GPP == FluxSat GPP ? 
Response: Thank you for the recommendation. We have clarified the acronyms within the 
figure captions. 
 
“Figure 3: Comparative timeseries of open loop (OL) and data assimilation (DA) estimated 
surface (top 5 cm) soil moisture. The solid line represents the ensemble mean whereas 
the shaded areas represent +/- 1 standard deviation (𝜎) across the full ensemble. DA-
CDF= assimilation with CDF-matching; DA-NoCDF= assimilation without CDF-matching; 
TPO= Tibetan Plateau Observatory measurements; SMAP-CDF= SMAP retrieval value 
after CDF-matching; SMAP-NoCDF= original SMAP retrieval value.” 
 
“Figure 10: Influence of SMAP soil moisture (SM) assimilation on an irrigated location is 
assessed through soil moisture of successive soil layers (L1 and L2), evapotranspiration 
(ET) and the corresponding behavior of the dynamic vegetation. ALEXI ET (Sect. 3.2.3), 
FluxSat gross primary production (FS GPP; Sect. 3.2.4), and GOME solar-induced 
chlorophyll fluorescence (SIF; Sect. 3.2.5) are used as evaluation datasets. (a) L1 = layer 
1 near-surface SM and L2 = layer 2 root-zone SM. Noah-MP modeled ET exhibits similar 
temporal patterns as the near-surface SM (L1); however, root-zone (L2) SM and GPP are 



not correspondingly modulated. DA-CDF= assimilation with CDF-matching; DA-NoCDF= 
assimilation without CDF-matching.” 
 
“Figure 11: (a) Normalized information content (NIC) with respect to RMSE (RMSEOL 
versus RMSEDA−NoCDF) is computed through comparison with FluxSat gross primary 
production (FS GPP). (b) Correlation with GOME solar-induced chlorophyll fluorescence 
(SIF) depicts the spatiotemporal consistency between the Noah-MP modeled GPP and 
GOME SIF. Data from the summer months of water years 2016-2019 were used to 
compute the metrics.” 
 
Comment: Lines 336-354: It’s not clear what’s the motivation of Figure 6. To link some 
potential impact of the DA as a function of soil texture ? While it was clear in Figure 5 for 
the land cover, I would recommend removing Figure 6, and just mention in the text that 
no clear link was found between soil moisture in OL vs DA-NoCDF for different soil 
textures. 
Response: Similar to land cover type, Figure 6 was intended to examine the updates in 
the spatial patterns due to assimilation with respect to soil texture. The objective was to 
analyze if any meaningful conclusions could be drawn based on the different soil types. 
As was shown in Figure 6, there were no distinctive patterns with respect to varying soil 
compositions. According to Reviewer #1’s suggestion, and in an effort to focus the 
discussion within the main text, Figure 6 has been moved to the appendix with the 
following text added to line 352: 
 
“The OL and MERRA2-forced DA-NoCDF joint PDFs categorized with respect to soil 
texture types did not yield any distinctive patterns and are included in Appendix C for 
reference.” 
 
Comment: Line 47: please define PMW 
Response: We have replaced the acronym with the full term, i.e., passive microwave. 
 
 
 
 
 
 
 
 


