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Abstract. Microwave observations are sensitive to vegetation water content (VWC). Consequently, the increasing temporal

and spatial resolution of spaceborne microwave observations creates a unique opportunity to study vegetation water dynamics

and its role in the diurnal water cycle. However, we currently have a limited understanding of sub-daily variations in VWC

and how they affect passive and active microwave observations. This is partly due to the challenges associated with measuring

internal VWC for validation, particularly non-destructively and at timescales of less than a day. In this study, we aimed to (1)5

use field sensors to reconstruct diurnal and continuous records of internal VWC of corn, and (2) use these records to interpret

the sub-daily behaviour of a 10-day time series of polarimetric L-band backscatter with high temporal resolution. Sub-daily

variations of internal VWC were calculated based on the cumulative difference between estimated transpiration and sap flow

rates at the base of the stems. Destructive samples were used to constrain the estimates and for validation. The inclusion of

continuous surface canopy water estimates (dew or interception) and surface soil moisture allowed us to attribute hour-to-10

hour backscatter dynamics to either internal VWC, surface canopy water or soil moisture variations. Our results showed that

internal VWC varied with 10-20% during the day in non-stressed conditions, and the effect on backscatter was significant.

Diurnal variations of internal VWC and nocturnal dew formation affected vertically polarized backscatter most. Moreover,

:::::::
multiple

:::::
linear

:::::::::
regression

:::::::::
suggested

:::
that

:::
the

:::::::
diurnal

:::::
cycle

::
of

::::::
VWC on a typical dry day , backscatter variations were 1.5

(HH-pol) to 3
::::
leads

::
to

:
a
::::
two

:::::
(HH-

:::
and

:::::::::
cross-pol)

::
to

::::::
almost

:::
four

:
(VV-pol) times more sensitive to VWC than to soil moisture15

:::::
higher

::::::
diurnal

::::::::::
backscatter

::::::::
variation

::::
than

:::
the

::::
soil

:::::::
moisture

::::::::
drydown

::::
does. These results demonstrate that radar observations

have the potential to provide unprecedented insight into the role of vegetation water dynamics in land-atmosphere interactions

at sub-daily timescales.

1 Introduction

The long heritage of research on remote soil moisture and biophysical parameter retrieval has shown that backscatter is sensitive20

to dielectric properties of vegetation, which is strongly related to its water content (Konings et al. (2019); Steele-Dunne et al.

(2017)). For a long time, this sensitivity to vegetation water content (VWC),
::::
here

:::::::
defined

::
as

:::
the

:::::::
weight

::
of

:::::
water

::::::::
captured

:::::
inside

:::
the

::::
plant

:::::::
material

:::::
above

::
a
:::::
square

:::::
meter

:::
of

::::::
ground [

::
kg

:::
m-2],

:
was considered a barrier to soil moisture retrieval. In the last
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decade however, backscatter sensitivity to VWC has been used for studies on plant hydraulics and water stress in agriculture

and ecosystems (e.g. Frolking et al. (2011); Steele-Dunne et al. (2012); Schroeder et al. (2016); Emmerik et al. (2017); Konings25

et al. (2017); Steele-Dunne et al. (2019); El Hajj et al. (2019)).

The increasing temporal and spatial resolution of spaceborne radar observations creates opportunities for more detailed

and extensive (eco)hydrological studies. In addition to the frequent C-band Synthetic Aperture Radar (SAR) observations

from Sentinel-1 (Torres et al. (2012)) and the Radar Constellation Mission (Thompson (2015)), other frequencies such as

the L- and S-band mission NISAR (launch planned in 2023), the L-band mission ROSE-L (2028), and the P-band mission30

BIOMASS (2023) will be available within the next decade (Rosen et al. (2017); Pierdicca et al. (2019); Quegan et al. (2019)).

Moreover, commercial providers such as CapellaSpace and Iceye are building satellite constellations with X-band instruments

(Farquharson et al. (2021); Ignatenko et al. (2020)). These constellations will ensure multiple observations per day. As a result,

the availability of spaceborne backscatter observations in the near future will offer a unique possibility to study vegetation

water dynamics on different spatio-temporal scales.35

However, we currently lack crucial knowledge on backscatter sensitivity to vegetation water dynamics. Soil moisture re-

trieval algorithms, for example, generally consider the confounding effects of vegetation water as time invariant or seasonally

variant only (Kim et al. (2017)). Well-established electromagnetic models have been developed and calibrated based on sea-

sonally variant VWC only (e.g. Bracaglia et al. (1995)). Moreover, the effect of surface canopy water (SCW), i.e. dew or

rainfall interception, is also usually ignored (?Xu et al. (2021)
::::::::::::::::::::::::::::::
Vermunt et al. (2020); Xu et al. (2021)). The omission of sub-40

daily vegetation water dynamics causes potential retrieval errors (Brancato et al. (2017)), and more importantly, hinders our

understanding of the extent to which radar backscatter could be used to monitor vegetation water dynamics. Without this

knowledge, the upcoming spaceborne observations cannot be used to their full potential.

Several studies have related observed diurnal backscatter cycles to vegetation water dynamics. Clear diurnal cycles were

found in tower-based observations from forest stands (e.g. Hamadi et al. (2014); Monteith and Ulander (2021)) and agricultural45

cropland (e.g. ?
:::::::::::::::::
Vermunt et al. (2020)), as well as in aggregated satellite observations from larger forested areas (Paget et al.

(2016); Emmerik et al. (2017); Konings et al. (2017)). These studies have made important contributions to the understanding of

sub-daily backscatter behaviour. However, a persistent challenge is the lack of in-situ data for ground-truth validation. In-situ

soil moisture can be routinely measured using a variety of sensors (Dobriyal et al. (2012); Cosh et al. (2016)). Surface canopy

water can be measured continuously using leaf wetness sensors (Cosh et al. (2009); ?
:::::::::::::::::::::::::::::::::
Cosh et al. (2009); Vermunt et al. (2020)50

). However, internal VWC is still generally measured using laborious destructive sampling, particularly in agricultural fields

(e.g. Vreugdenhil et al. (2018); Emmerik et al. (2015); Ye et al. (2021)). This is unavoidable
::::::::
acceptable

:
for monitoring seasonal

changes, but is prohibitively time-consuming and labor-intensive for sub-daily variations. Hence, it is crucial to find a more

efficient way to obtain continuous, quantitative estimates of sub-daily VWC variations.

In this study , we aim to gain a better understanding of
:::
For

::::::
woody

::::::::::
constituents

::
in

:::::
trees,

:::::::::::
dendrometers

::::
have

::::
been

:::::
used

::
to

::::
infer55

::::
water

:::::::
content

::::::::::::::
non-destructively

:::::
after

:::::::::
detrending,

::::
and

::::::::
similarly,

:::::::::::
reflectometry

::::::
(TDR

:::
and

:::::
FDR)

::::
and

::::::::::::::
capacitance-style

:::::::
sensors

::::
have

::::
been

:::::
used

::
to

:::::
derive

::::::
water

::::::
content

:::::::::
indirectly

::
by

:::::::::
measuring

:::::::::
dielectric

::::::::::
permittivity

::::::::::::::::::
(Konings et al. (2021)

:
).
:::::::::
Moreover,

::
a

::::
water

::::::::::::
balance-style

::::::::
approach

:::::
using

:::
sap

::::
flow

:::::::
sensors

::::
have

:::::
been

::::
used

:::
by

:::
the

:::
tree

::::::::::
physiology

::::::::::
community

::
to

:::::::
estimate

:::::::
diurnal
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::::::
changes

::
in
::::
tree

::::
stem

:::::
water

::::::
storage

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Goldstein et al. (1998); Meinzer et al. (2004); Čermák et al. (2007); Phillips et al. (2008); Köcher et al. (2013)

:
).
:

60

:::
The

:::::::::
objectives

::
of

::::
this

:::::
study

::::
were

:::
to

:::
test

:::
the

::::::::
potential

::
of

::::
this

:::::::::::::
non-destructive

:::
sap

:::::
flow

::::::::
approach

:::
for

:::::::::
estimating

::::::::
sub-daily

:::::
VWC

::::::::
variations

:::
in

:::::::::
herbaceous

::::::
plants,

::::
and

::
to

::::
use

:::::
these

::::::::
estimates

::
to

:::::
better

::::::::::
understand

:
what controls sub-daily backscatter

variations from a corn field by using unique estimates of moisture fluctuations in the vegetation and soil. This is achieved

by first estimating continuous records of VWC using field sensors.
::::::::
variations

::
of

:::::::
L-band

::::::::::
backscatter. Specifically, we adapted

a methodologydeveloped by the tree physiology community
:::
this

::::
sap

::::
flow

:::::::::::
methodology, described in section 2, to estimate65

15-minute changes in corn VWC using sap flow sensors and a weather station. We used data from in-situ sensors to account

for the influence of surface
:::
An

::::::::
extensive

::::
data

:::
set

:::::
from

:
a
::::
field

:::::::::
campaign

::
in

:::
the

:::::::::::
Netherlands

::
in

:::::
2019

::::
was

::::
used

::
to
::::::::

evaluate

::
the

:::::::
adapted

:::::::
method

::::::
against

:::::::
diurnal

:::::
cycles

:::
of

:::::
VWC

:::::::
obtained

:::
by

:::::::::
destructive

:::::::::
sampling.

:::::::
Finally,

:::
the

::::::::
technique

::::
was

:::::::
applied

::
to

:::::::::
reconstruct

::::::::
sub-daily

:::::
VWC

:::::::::
variability

::
of

::::::::
multiple

::::::::::
consecutive

::::
days

:::::
from

::::::
another

::::
field

:::::::::
campaign

::
in

:::::::
Florida

::
in

:::::
2018.

::
In

::::
this

::::::::
campaign,

::::
high

::::::::
temporal

:::::::::
resolution

::::::::::
tower-based

::::::::::
polarimetric

::::::
L-band

::::::::::
backscatter

::::
was

::::::::
collected.

::::
The

:::::::::::
reconstructed

:::::
VWC

::::
was70

::::
used,

:::::::
together

:::::
with

::::::::::::
simultaneously

::::::::
collected

:
soil moisture and surface canopy water (SCW). Finally, we used tower-based

L-band backscatter observations and the resulting VWC records to demonstrate the effect of ,
:::
to

::::
gain

:::::
better

::::::::::::
understanding

::
of

::::
what

:::::::
controls sub-daily VWC variations on backscatter

:::::::::
backscatter

::::::::
behaviour.

2 Estimating diurnal variations in internal vegetation
::::
tree water content

:::::
using

:::
sap

::::
flow

:::::::
probes

Diurnal variations of internal VWC have been estimated in trees before, mainly in studies focused on understanding the75

functional role of stem water reserves on daily tree water use. A well-established in situ method uses sap flow probes at the

base of the stem and in the crown (e.g. Goldstein et al. (1998); Meinzer et al. (2004); Čermák et al. (2007); Phillips et al.

(2008); Köcher et al. (2013)). This method is based on the time lag between transpiration and basal sap flow, as a result of a

tree’s hydraulic capacitance, which is the change in water content per unit change in water potential (e.g. kg MPa−1) (Goldstein

et al. (1998); Oguntunde et al. (2004)). Morning transpiration, driven by the atmospheric evaporative demand, causes depletion80

of internal VWC in the crown, and, depending on the hydraulic capacitance, a drop in water potential. In response to the

resulting potential gradient, sap flow rates increase to replenish the depleted VWC. As long as transpiration rates exceed basal

sap flow rates, water is withdrawn from internal VWC, and when basal sap flow exceeds transpiration, internal VWC is refilled.

Consequently, the diurnal variation in tree VWC could be calculated from the cumulative differences between
::::
basal

::::
sap

::::
flow

:::
and whole-crown transpiration and

::::
(see

:::
the

::::::
second

::::
term

::
of

:::::::
equation

:::
1).85

+,� (C) =+,� (C
::::::::::::::

0) +
C∑
8=C0

(�8 −)8)ΔC
::::::::::::::

(1)

:
,
:::::
where

:::::::
+,� (C)

::
is

:::
the

::::::::
estimated

:::::
VWC

::
at

::::
time

::
t,

::::::::
+,� (C0) :is::

a
::::::::
reference

:::::
VWC

::
at

:::
t=0,

::
�
::
is

:
basal sap flow,

::
)

::
is

:::::::::::
whole-crown

:::::::::::
transpiration,

::::
both

::
in

::::
mass

:::
per

::::
unit

::
of

:::::
time,

:::
and

::
Δt

::
is
:::
the

:::::::
duration

::
of

::
a
::::
time

::::
step.
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Whole-crown
:
In

:::::
these

::::::
studies

:::
on

:::::
trees,

:::::::::::
whole-crown

:
transpiration was estimated from branch and basal sap flow, based

on two assumptions. First, time lags between branch sap flow in the crown and transpiration were assumed to be negligible90

compared to time lags between branch and basal sap flow. Hence, the averaged daily cycles of sap flow in the monitored

branches were assumed to approximate the cycles of whole-crown transpiration. Secondly
::::::
Second, most studies assumed the

:::
that

:::
the

:::::::
24-hour

::::
sums

:::
of whole-crown transpiration to equal

::
and

:
basal sap flow during a 24 hour period

::::
were

:::::
equal (Goldstein

et al. (1998); Čermák et al. (2007); Phillips et al. (2008); Köcher et al. (2013)). This assumption made it possible to estimate

whole-crown transpiration rates by first dividing averaged branch sap flow by its daily sum, and then multiplying by the daily95

sum of basal sap flow. The corresponding assumption is that all water that is withdrawn from internal VWC is replaced within

24 hours.

Here, we investigate the potential of this

3
::::
Data

::::
and

::::::::
Methods

::::::
Section

:::
3.1

::::::
relates

::
to

::
the

::::::::::
adjustments

::::
and

::::
data

:::::::
required

::
to

::::
make

:::
the

:::
sap

::::
flow

::::::::
approach

:::::::
(section

::
2)

:::::::::
applicable

::
to

::::
corn.

::::
Data

:::::
from100

:
a
::::
field

::::::::
campaign

::
in

::::
The

::::::::::
Netherlands

::
in

::::
2019

:::::
were

::::
used

::
to

:::::::
evaluate

:::
the

:::::::
adjusted

:::::::
method.

::::::
Section

:::
3.1

::::::
relates

::
to

:::
the

:::::::::::
methodology

:::
and

::::
data

::::
used

::::
from

:::
our

::::
field

:::::::::
campaign

::
in

::::::
Florida

::
in

:::::
2018

::
for

::::::::::
interpreting

::::::::
sub-daily

::::::::::
backscatter

:::::::::
behaviour.

3.1
:::::::

Applying
::::
the

:::
sap

::::
flow

:::::::::
approach

::
to

:::::::
estimate

:::::::
diurnal

:::::::::
variations

::
in

:::::
corn

:::::
VWC

3.1.1
:::::::::::
Adjustments

::::
and

:::::::::
evaluation

::
of

:::
the

::::
sap

::::
flow

::::::::
approach

:::
We

::::::::::
investigated

:::
the

::::::::
potential

::
of

:::
the

:
sap flow method

::::::
(section

::
2)
:

for estimating diurnal VWC
::::::::
variations in corn plants. The105

largest differences between corn plants and trees are related to hydraulic capacitance and structure. Corn plants have much

lower hydraulic capacitance than most trees (Langensiepen et al. (2009)), and hence shorter time lags between transpiration

and basal sap flow. As a consequence, installing a sap flow sensor as a surrogate for transpiration would be problematic, since

the assumption of negligible time lag between
::::::::::
transpiration

::::
and

:
upper sap flowand transpiration compared to ,

:::::::::
compared

::
to

::
the

::::
lag

::::
with basal sap flow,

:
is invalid. Moreover, transpiring corn leaves are somehow evenly distributed across the stem, in110

contrast to trees with a crown, which makes the placement of a second sensor to represent transpiration nearly impossible. For

these reasons, we derived transpiration from
:::::::
estimated

:::::::::::
transpiration

:::::
using

:
indirect estimates of reference evapotranspiration

instead.
::::
(ETo)

:::::::
instead.

::::::
Details

:::::
from

:::
sap

::::
flow

::::::::::::
measurements

:::
and

::::
ETo

::::::::
estimates

:::
are

:::::
given

::
in

::::::
section

:::::
3.0.1.

:
A
:::::::

widely
::::
used

::::::::
approach

:::
to

:::::
derive

:::::::::::
transpiration

:::::
from

::::
ETo

::
is

::
a

:::::
linear

:::::::::
conversion

:::::
using

:::::
crop

::::::
factors,

::::
e.g.

:::
the

::::::::
FAO-56

::::
dual115

::::
crop

:::::::::
coefficient

:::::
model

::::::::::::::::
Allen et al. (1998).

::::::::
However,

:::
in

:::::
many

:::::
cases,

:::::
these

::::::::::
estimations

::::::::::::
systematically

:::::
over-

::
or

::::::::::::
underestimate

:::::
direct

::::::::::
observations

::
of

:::::::::::
transpiration

::::::::::::::::::::::::::::::
(Ding et al. (2013); Rafi et al. (2019))

:::
or

:::
sap

::::
flow

::::::::::::::::::::::
(Langensiepen et al. (2009)

:
),
:::::
while

:::::
basal

:::
sap

::::
flow

:::
and

:::::::::::
transpiration

::
at

:::
the

::::::
leaves

::::
must

:::::
equal

::::
over

::
a
:::::::::
sufficiently

:::::
long

::::
time

:::::
period

:::::::::::::::
(Swanson (1994)

:
).
:::
For

::::
our

::::
data

::::
sets,

::::::::::::::
Penman-Monteith

:::::::
derived

::::::::::
transpiration

::::::::::::::::
(Allen et al. (1998)

:
)
::
is

::::::::::::
systematically

:::::
lower

::::
than

::::::::
measured

:::
sap

::::
flow.

::::::::
Because

:::
sap

::::
flow
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:
is
::::
our

::::
most

:::::
direct

::::::::::::
measurement,

:::
we

:::::
chose

::
to

:::::::
estimate

:::::::::::
transpiration

::
by

::::::::
rescaling

::::
ETo

::::::::
estimates

:::::
using

:::
sap

::::
flow

:::::::::::::
measurements.120

::::
This

:::::
means

::::
that

::::::::::
information

::
on

::::
the

::::::
diurnal

:::::
shape

::
of

::::
ETo

::
is

:::::::
derived

::::
from

:::
the

:::::::::::::::
Penman-Monteith

::::::::
equation,

::::
and

:::
that

:::::
these

::::
ETo

:::::::
estimates

:::
are

::::
then

::::::
scaled

::
so

::::
that

:::
the

:::::::
resulting

:::::::::::
transpiration

::::::::
estimates

:::
are

::::::::
consistent

::::
with

:::
sap

::::
flow

::::
over

::
a

:::::
given

:::::
period

::
of

:::::
time.

4 Materials and Methods

3.1 Experimental sites

The data for this study were collected during two field campaigns conducted in 2018 (Florida, USA)
:::
We

:::::
tested

::::
three

::::::::
different125

:::::::::
approaches

::
to

::::::
rescale

::::
ETo

::::::::
estimates

::::
using

:::
sap

::::
flow

:::::::::::::
measurements.

:::
The

::::
first

::::::::
approach

:::
was

::::::
similar

::
to

:::
the

::::::::
rescaling

::
of

::::::
branch

:::
sap

::::
flow

::
to

:::::::::::
whole-crown

::::::::::
transpiration

::
in

:::::
trees,

::::::::
described

::
in
:::::::
section

::
2.

:::::::::::
Transpiration

:::
was

::::::::
assumed

::
to

:::::
equal

::::
basal

::::
sap

::::
flow

:::::
during

::
a

::
24

::::
hour

::::::
period,

:
and 2019 (The Netherlands)

::::::::
15-minute

::::
ETo

::::::::
estimates

::::
were

:::::::
divided

::
by

:::::
their

:::::::
24-hour

:::
sum

::::
and

::::
then

:::::::::
multiplied

::
by

:::
the

:::::::
24-hour

::::
sum

::
of

::::
basal

::::
sap

::::
flow

:::
(see

:::
eq.

::
2

::
in

:::::
Table

::
1).

:

::::::::
However,

:::
the

:::::::::
assumption

:::
of

::::::::
complete

::::::::::
replacement

:::
of

:::::::::
withdrawn

:::::
water

::::::
within

::
24

:::::
hours

::::
may

::::
not

::::::
always

:::::
hold.

::::
This

::
is

:::
for130

:::::::
example

:::
the

::::
case

::::
when

:::::
water

:::::::::::
accumulates

::
as

:
a
:::::
result

::
of

:::::::
growth,

::
or

::::
when

::
a
::::
plant

::
is

::::::
unable

::
to

::::::
replace

:::
the

::::::::
transpired

:::::
water

::::::
within

:
a
:::
day

:::
as

:
a
:::::
result

:::
of

:::::
stress.

:::::::::
Therefore,

:::
we

::::
also

:::::
tested

:::
the

::::::
effect

::
of

:::::::
relaxing

::::
this

::::::::::
assumption,

:::
and

:::::
using

::::::::
multiple

::::
days

:::::::
instead:

:
3, both concerned with microwave observations of corn. The field campaign in Florida was conducted in Citra (29.410N,

82.179W), at the Plant Science Research and Education Unit (PSREU)of the University of Florida and the Institute of Food

and Agricultural Sciences (UF|IFAS)
:
5
::
or

::
7
::::::::::
consecutive

::::
days

::::::::::
surrounding

:::
the

::::
day

::
of

:::::::
interest,

::
or

::
all

:::::::::
measured

::::
days

::
in

:::
the

::::
data135

:::
set.

::::
Both

::::::::::
approaches

::::::
assume

::
a
:::::::
simple,

:::::
linear

:::::::
relation

:::::::
between

::::
ETo

:::
and

::::::::::::
transpiration.

::
It

:::
will

:::
be

::::::
shown

:::
that

::::
this

::::::::::
assumption

:::
can

:::::
cause

::
an

::::::
offset

:::::::
between

:::
the

::::::
timing

::
of

:::
the

:::::::
diurnal

:::::
cycles

::
of
::::::::

sampled
:::
and

::::::::::::
reconstructed

::::::
VWC.

::::
This

::::
issue

::::
was

:::::::::
addressed

::
by

::::::::
adopting

:::
the

:::::::::
cumulative

::::::::::
distribution

:::::::
function

::::::
(CDF)

::::::::
matching

:::::::
method,

:::::::::
previously

::::
used

::
to

::::::
rescale

:::::::::::::
satellite-derived

:::::::
surface

:::
soil

:::::::
moisture

::
to
:::::::::::
observations

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Reichle and Koster (2004); Drusch et al. (2005); Brocca et al. (2011)

:
).
::::
This

:::::::::
non-linear

::::::::
approach

:::::::
removes

:::::::::
systematic

:::::::::
differences

::::::::
between

:::
two

::::
data

::::
sets

::
by

::::::::
matching

:::
the

::::::
CDF’s

:::
of

::::
both

::::
data

:::
sets

::::::::::::::::::
(Brocca et al. (2011)

:
).

:::::
Here,140

::
we

::::::::
matched

:::
the

::::::
CDF’s

::
of

:::
the

::::
ETo

::::
and

:::
sap

::::
flow

:::::
data.

::::
This

::::
was

:::::::
achieved

:::
by

::::
first

::::::
ranking

:::
all

:::::::::
15-minute

::::
data

:::::
from

::::
both

::::
data

:::
sets

::::
from

::::
low

::
to

::::
high

::::::
values,

::::
and

::::
then

:::::
fitting

:
a
:::::::::::

second-order
::::::::::

polynomial
:::::::
function

:::::::
through

:::
the

::::::
scatter

::::
plot

::
of

::::
both

::::::
ranked

::::
data

:::
sets.

::::::::::::
Subsequently,

::::
this

:::::::
function

::::
was

::::
used

::
to

::::::
convert

:::
the

:::::::
15-min

::::
ETo

:::
data

:::
to

::::::::::
transpiration

:::::::::
estimates.

::::::::::::
CDF-matching

::::
was

::::
also

::::::::
performed

:::
for

::
1,

::
3,

::
5,

:
7
:::::::::::
consecutive,

:::
and

:::
all

:::::::
available

:::::
days.

:::
Fig.

::
4
::::::::
illustrates

:::::::::::::
CDF-matching

:::
and

::
its

::::::
results

:::
for

::::
three

::::
days

:::
of

:::
our

::::
data.145

:::::
VWC

:::::::
samples

:::::::
obtained

:::
by

:::::::::
destructive

::::::::
sampling

::::::
during

:::
the

:::::::::::::
2019-campaign

:::::::
(section

:::::
3.0.1)

::::
were

:::::
used

::
to

:::::::
validate

:::
the

:::::::
method.

:::
For

:::
the

:::::::
selected

::::
days

::::
(Fig.

:::
1),

::
we

::::
used

::::
one

::
of

:::
the

:::
five

::::::::
sampling

:::::
times

::
to

:::::::
constrain

:::
the

:::::
daily

::::
cycle

:::::::::
(+,� (C0)::

in
:::
eq.

:::
1).

:::
The

:::::
other

:::
four

:::::::::::
independent

:::::::
samples

::::
were

::::::::
compared

:::::::
against

:::
the

::::::::
estimated

::::::
diurnal

:::::
cycle

::
of

:::::
VWC

:::::::::
variations.

:::
For

::::
each

::::
day,

:::
we

:::::::::
calculated

::
the

:::::
Root

:::::
Mean

::::::
Square

:::::
Error

:::::::
(RMSE)

:::::::
between

:::
the

::::
four

::::::::::
independent

:::::::
samples

::::
and

:::::::::::
reconstructed

:::::
VWC

:::
on

::::
these

::::
four

::::::
times.

:::
All

:::
five

:::::::
samples

::::
were

::::
used

:::
as

:::::::::
(+,� (C0))::::

once
::
to
:::::::::
determine

:::
the

::::
best

::::
time

::
to

::::::::
constrain

::
the

:::::::::::::
reconstruction.150

::
In

::::::::
summary,

:::
we

::::::
adapted

::::
and

::::::::
evaluated

::
the

::::
sap

:::
flow

:::::::::::
methodology

::
to
:::::::
estimate

:::::::
diurnal

:::::
cycles

::
of

::::
corn

:::::
VWC

:::::::
through

:::
the

::::::::
following

5



Table 1.
:::
The

::::
three

:::::
tested

::::::::
approaches

::
to

::::::
estimate

::::::::::
transpiration

:::
(T)

::::
using

:::::::::::::
Penman-Monteith

::::::
derived

:::
ETo

:::::::
estimates

:::
and

:::
sap

::::
flow

:::::::::::
measurements.

:::::::
Approach

: :::::::::
assumptions

: :::::::
equations

:

::::::::
Linear-24h

: ::::::::
withdrawn

::::
water

::
is

::::::
replaced

::::::
within

::::::
24-hours. Sweet corn was planted on a sandy soil with a density of 7.9 plants m-2,

) (C) = �)>(C) �24ℎ/�)>24ℎ★
::::::::::::::::::::::

(2)

:
T
::
is

::::::
linearly

:::::
related

::
to

:::
ETo

:

:::::
Linear-

:::::::
multiple

::::
days

::::::::
withdrawn

::::
water

::
is

::::::
replaced

::::::
within

:
=
::::
days.

: ) (C) = �)>(C) �=3/�)>=3★
::::::::::::::::::::

(3)

:
T
::
is

::::::
linearly

:::::
related

::
to

:::
ETo

:

:::::::
Nonlinear

:
-
::::::::::::
CDF-matching

::::::::
withdrawn

::::
water

::
is

::::::
replaced

::::::
within

:
=
::::
days.

: ) (C) = 0† �)>(C) + 1† �)>(C)2
::::::::::::::::::::::

(4)

:::
CDF

::
of
::
T
:::::
equals

::::
CDF

::
of

:
F
:

::::::::
★subscripts

:::
24ℎ

:
and harvested after 66 daysin mid-June for human consumption. The climate of this area in Florida is humid subtropical,

::
=3

::::
relate

::
to
:::
the

::::::
24-hour

::::
sum

:::
and

:::::
=-days

::::
sum,

:::::::::
respectively.

:

:
†
:
0
:
and the 2018 spring growing season was characterized by high temperatures, high-intensity rainfall and thunderstorms.

:
1
:::
are

::::
found

::
by

::
a

:::
2nd

::::
order

::::::::
polynomial

::
fit
::::::

through
::::::

ranked
:
F
:::
and

::::
ETo

::::
data,

:::::::
illustrated

::
in

:::
Fig.

::::
4(c)

:
.

::::
three

:::::
steps.

::
1©

::::
The

::::::
diurnal

::::
cycle

:::
of

::::::::::
transpiration

::::
was

::::::::
estimated

::::
from

::::
ETo

::::
and

:::
sap

::::
flow

::::
data,

:::::
using

::::
three

::::::::
different

:::::::::
approaches

::::::
(Table

::
1).

::
2©

::::::::
Sub-daily

:::::::::
variations

::
in

:::::
VWC

:::::
were

::::::::
estimated

:::
by

:::::::::
calculating

:::
the

::::::::::
cumulative

::::::::
difference

::::::::
between

:::::::::
15-minute

::::
basal

::::
sap

::::
flow155

:::
and

::::::::::
transpiration

::::::::
estimates

::::
(eq.

:::
1).

::
3©

::::
The

:::::::
resulting

::::::::
estimates

::
of

::::::
diurnal

::::::
VWC

::::::::
variations

::::
were

:::::::::
compared

::::::
against

:::::::::
destructive

::::::::::::
measurements

::
of

::::::
VWC.

3.0.1
::::::::::::
Experimental

:::
site

::::
and

::::
data

:::::::::
collection

:::::::::::
Experimental

:::
site

:::::
2019160

The field campaign in The Netherlands was conducted in Reusel (51.319N , 5.173E), at Van den Borne Aardappelen. There,

field corn , with a typical longer growing season, was planted on a sandy soil with a density of 8 plants m-2, and harvested for

silage after the required senescence, 148 days after planting. The Netherlands has a more temperate maritime climate. However,

maximum
::::::
national

:
temperature records were broken close to the field site during the growing season of 2019, and it was the

second anomalously dry summer in a row (Bartholomeus et al. (2020)).165

3.1 Data collection

3.0.1 Sampling vegetation water content and monitoring crop growth
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Vegetation water content (VWC) was measured by destructive sampling. Six to eight field-representative samples were taken

from designated sampling areas. Any present dew or interception was removed with paper towels before the samples were

weighted to determine average fresh biomass per plant in kg (< 5 ). Samples were oven-dried at 60 ◦C for 4-8 days, depending on170

growth stage. These dried samples were weighed again to determine average dry biomass per plant in kg (<3). Field-representative

VWC kg m-2was estimated by multiplying the evaporated water per plant kgwith the number of plants per m2 (d?;0=C ), see

equation 5.

+,� = (< 5 −<3)d?;0=C

In order to minimize the effect of day-to-day weather variations, seasonal VWC variations were monitored by predawn175

sampling: three times per week in 2018, and one or two times per week for the slower growing corn in 2019. In 2018, predawn

(6am) measurements were supplemented with 6pm measurements once a week, to capture differences between morning and

evening passes for a sun-synchronous satellite such as SMAP (Entekhabi et al. (2010)). In 2019, we aimed to capture full

diurnal cycles of VWC. Hence, we sampled on five equally distributed times between sunrise and sunset, on 14 days.

In both campaigns, crop development was monitored 1-3 times per week. In addition, leaf areas were estimated using regular180

measurements of leaf widths and lengths and the assumption that corn leaves are perfectly elliptically shaped. Leaf area index

(LAI) was calculated by multiplying a single plant’s estimated leaf area with plant density.

3.0.1 Sap flow

Sap flow was monitored

185

:::
Sap

::::
flow

:::
Sap

::::
flow

::::
was

:::::::::
monitored

::::
near

:::
the

::::
base

::
of

:::
the

:::::
stem using stem-flow gages

::::::
gauges produced by Dynamax Inc. (Houston, TX,

USA). The measurement is based on the stem heat balance theory (Sakuratani (1981)). A flexible collar strap with built-in

heater strip and thermocouples is wrapped around a corn stem, about 20 cm above the ground, and then isolated and protected

from environmental conditions such as rain and radiation. The entire circumference of the stem receives a constant heat input190

from the heater strip. As sap movement carries heat, thermal dissipation corresponds to the sap flow rate. Therefore, the change

in temperature is used as a tracer for sap flow [g hr−1], thereby taking into account the heat transfer to the stem tissue and the

ambient air. Conversion to mm 15-minute[
:::
mm

::::::
15-min−1] was performed using the density of liquid water and the planting

density. Because the collar straps are designed to fit a certain range of stem diameters, we collected data in mid- and late

season.In 2018, four sensors were installed simultaneously on four different plants and data were averaged. In195

::
In 2019, only

:
a
:::::::::
maximum

::
of

:
two sensors were installed due to power limitations, and one failed

:
.
:::::::
Because

:::
one

::::::
sensor

::::::
failed,

::
the

:::::
used

:::
data

::
is
:::::
from

:
a
:::::
single

::::::
sensor. Gaps in the time series were caused by disturbances in the connection with the batteryor

solar panel. Because of these battery issues, there were only three matches for full day sap flow and full day sampling in 2019:

July 25, August 23, and August 28.
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3.0.1 Transpiration200

In 2018, 15-min meteorological data were obtained from the nearby Florida Automated Weather Network (FAWN) weather

station , located within 600 m from the experimental field. Observations of rainfall, air temperature (2m), solar radiation,

relative humidity and wind speed were downloaded from the Report Generator 1. In 2019, a weather station .
:

::::::::
Reference

::::::::::::::::
evapotranspiration205

:
A
:::::::
weather

::::::
station was installed on the edge of the experimental site, with a ECH2O Rain Model ECRN-100 rain gauge, Apogee

SP-212 pyranometer (solar radiation), a Davis Cup anemometer (wind and gust speed, and wind direction), and a HOBO Tem-

perature/RH Smart Sensor Model S-THB-M008 (temperature and relative humidity). Reference evapotranspiration (ETo) was

estimated using the Penman-Monteith approach described by Zotarelli et al. (2010).

210

::::::::
Sampling

:::::::::
Vegetation

:::::
water

::::::
content

:::::::
(VWC)

::::
was

::::::::
measured

:::
by

:::::::::
destructive

:::::::::
sampling.

:::
Six

::::::::::::::::
field-representative

:::::::
samples

:::::
were

:::::
taken

:::::
from

:::::::::
designated

:::::::
sampling

:::::
areas.

::::
Any

:::::::
present

:::
dew

:::
or

::::::::::
interception

:::
was

::::::::
removed

::::
with

::::
paper

::::::
towels

::::::
before

:::
the

:::::::
samples

::::
were

::::::::
weighted

::
to

::::::::
determine

:::::::
average

::::
fresh

:::::::
biomass

:::
per

:::::
plant

::
in

::
kg

:::::
(< 5 ).

:::::::
Samples

:::::
were

:::::::::
oven-dried

::
at

::
60

:::

◦C
:::
for

:::
4-8

::::
days,

:::::::::
depending

:::
on

::::::
growth

:::::
stage.

:::::
These

:::::
dried

:::::::
samples

::::
were

::::::::
weighed

:::::
again

::
to

::::::::
determine

:::::::
average

:::
dry

::::::::
biomass

:::
per

::::
plant

:::
in

::
kg

:::::
(<3).

:::::::::::::::::
Field-representative215

:::::
VWC [

::
kg

:::
m-2]

:::
was

::::::::
estimated

:::
by

:::::::::
multiplying

::::
the

:::::::::
evaporated

:::::
water

:::
per

:::::
plant [

::
kg]

::::
with

:::
the

::::::
number

:::
of

:::::
plants

:::
per

:::
m2

::::::::
(d?;0=C ),

:::
see

:::::::
equation

::
5.

A widely used approach to derive transpiration from ETo is a linear conversion using crop factors, e. g. the FAO-56 dual

crop coefficient model Allen et al. (1998). However, in many cases, these estimations systematically over- or underestimate

direct observations of transpiration (Ding et al. (2013); Rafi et al. (2019))or sap flow (Langensiepen et al. (2009)), while basal220

sap flow and transpiration at the leaves must equal over a sufficiently long time period (Swanson (1994)). For our data sets,

Penman-Monteith derived transpiration (Allen et al. (1998)) is systematically lower than measured sap flow. Consequently, we

chose to estimate transpiration from ETo and sap flow measurements.

+,� = (< 5 −<3)d?;0=C
::::::::::::::::::::

(5)

The approach is similar to rescaling branch sap flow as described in section 2. First, transpiration was assumed to equal225

basal sap flow during a 24 hour period, and 15-minute ETo estimates were divided by their 24-hour sum and then multiplied

by the 24-hour sum of basal sap flow. However, the assumption of complete replacement of withdrawn water within 24 hours

may not always hold. Therefore, we also tested the effect of relaxing this assumption, and using multiple days instead: 3,

5 or 7 consecutive days surrounding the day of interest, or all measured days in the data set. Both approaches assume a

simple, linear relation between ETo and transpiration. It will be shown that this assumption can cause an offset between230

the timing of the diurnal cycles of sampled and reconstructed VWC . This issue was addressed by adopting the cumulative

1https://fawn.ifas.ufl.edu/data/reports/
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distribution function (CDF) matching method, previously used to rescale satellite-derived surface soil moisture to observations

(Reichle and Koster (2004); Drusch et al. (2005); Brocca et al. (2011)). This non-linear approach removes systematic differences

between two data sets by matching the CDF’s of both data sets (Brocca et al. (2011)). Here, we matched the CDF of ETo to
::
In

:::::
2019,

::
we

::::::
aimed

::
to

::::::
capture

::::
full

::::::
diurnal

::::::
cycles

::
of

:::::
VWC.

:::::::
Hence,

:::
we

:::::::
sampled

::
on

::::
five

::::::
equally

:::::::::
distributed

:::::
times

:::::::
between

:::::::
sunrise235

:::
and

::::::
sunset,

::
on

:::
12

::::
days

::::::
spread

:::::::::
throughout

:::
the

::::::
season.

::::::::
Seasonal

:::::
VWC

::::::::
variations

:::::
were

:::::::::
monitored

::
by

:::::::
predawn

::::::::
sampling

:::::
only.

:::::
Figure

::
1
::::::
shows

:::
the

::::::::::
availability

::
of

:
the CDF

:::
data

::::::::
required

::
to

:::::::
evaluate

::::
the

:::::::
adjusted

:::::::::::
methodology

::::
for

:::::::::
estimating

:::::::::
15-minute

:::::
VWC

:::::::::
variations.

:::
The

::::::::::
availability

:
of sap flow. This matching was achieved by first ranking both data sets from low to high

values, and then fitting a second-order polynomial function through the scatter plot of both ranked data sets. Subsequently, this240

function was used to convert the 15-min ETo data to transpiration estimates. CDF-matching was also performed for 1, 3, 5, 7

consecutive, and all available days. ,
::::
ETo,

::::
and

:::::
VWC

::::::::
sampling

::::
data

:::::::
matched

::
on

::::
July

:::
25,

::::::
August

:::
23,

::::
and

::::::
August

:::
28.

3.0.1 Surface canopy water and soil moisture245

Jun  9 Jun 23 Jul  7 Jul 21 Aug  4 Aug 18 Sep  1 Sep 15
sap flow data ETo data diurnal VWC samples

Figure 1.
:::::::::
Availability

::
of

::
the

::::
data

::::::
required

::
to
:::::::
evaluate

::
the

:::::::
adjusted

::::::::::
methodology

::
for

::::::::
estimating

::::::::
15-minute

:::::
VWC

::::::::
variations.

:::
The

:::::::::
availability

:
of
:::

sap
::::
flow,

::::
ETo,

:::
and

:::::::
sampling

::::
data

::::::
matched

::
on

::::
July

:::
25,

:::::
August

:::
23,

:::
and

::::::
August

::
28.

::::::
Surface

::::::
canopy

:::::
water

::::
and

:::
soil

::::::::
moisture

::::::::::::
Measurements

::
of

::::::
surface

:::::::
canopy

:::::
water

:::::
(dew,

:::::::::::
interception)

::::
and

:::
root

:::::
zone

::::
soil

:::::::
moisture

:::::
were

::::
used

:::
as

:::::::
ancillary

::::
data

::::
sets,

:::
to

::::::
support

:::
the

:::::::::
evaluation

::
of

:::
the

::::::::::::
reconstructed

:::::
VWC

::::::::::
estimations.

:
Surface canopy water (dew, interception

:::::
SCW) was monitored

using PHYTOS 31
:::::::::::
PHYTOS-31 Leaf Dielectric Wetness sensors. Three sensors were installed on different heights in the

vegetation layer. Details of sensors and sensor output conversion to
:
,
:::
and

::::
one

:::::
sensor

:::::
failed

::::::
during

:::
the

:::::::
season.

::::::::
Measured

::::
leaf250

::::
areas

:::::
were

::::
used

::
to

:::::::
convert

:::::
sensor

::::::
output

::
to

::::::::::
full-canopy

:
SCW [kg m−2].

:::::::
Details

::
of

::::
this

:::::::::
conversion

:::
and

::::::
sensor

:::::::::
properties are

described in ?
:::::::::::::::::
Vermunt et al. (2020).

Soil moisture (\) was observed in two pits with 15-minute resolution, using EC-5 sensors on 5, 10, 20, 40 and 80 cm

depth. These measurements were averaged based on depth. The averaged measurement at 5 cm depth was used as estimate of

surface soil moisture for interpreting backscatter data. In addition, root
::::
Root zone soil moisture was estimated by integrating255

the measurements from all depth over a soil column of 100 cm, based on the thickness of the soil layer associated with the

depth of the sensor.

9



3.1
::::::::::

Interpreting
:::
the

:::::::::
behaviour

::
of

:::::::::
sub-daily

:::::::
L-band

::::::::::
backscatter

3.1.1 L-band scatterometer
:::::::::
Approach

:::
and

:
data

:::::::::::
requirement

::
To

::::
gain

:::::
better

::::::::::::
understanding

::
of

:::::
what

:::::::
controls

::::::::
sub-daily

::::::
L-band

:::::::::
backscatter

:::::::::
behaviour,

:::
we

::::::::
analyzed

::::::::::
tower-based

:::::::::::
observations260

::::
using

::::::::::
continuous

::::
time

:::::
series

::
of

:::
the

::::
three

:::::::
moisture

::::::
stores

::
in

::
the

::::
corn

:::::
field:

:::
(1)

:::::
VWC,

:::
(2)

:::::
SCW,

::::
and

::
(3)

:::::::
surface

:::
soil

:::::::
moisture

::::
(\).

::::::
Details

::
of

:::
the

::::::::
collection

::
of

:::::
these

::::
time

:::::
series

:::
are

:::::
given

::
in

::::::
section

:::::
3.1.2.

::::
The

::::::
longest

::::::
period

:::
for

:::::
which

:::
we

::::
had

::
all

::::
data

::::::::
available

:::
was

:::::
from

::::
June

:
4
::::::

00:00
::
to

::::
June

:::
13

:::::
10:15.

:::::::
During

:::
this

::::::
period,

:::
the

::::
corn

::
is
::
at
:::::::::

maximum
::::::
height

:::
and

:::::
LAI,

:::
and

:::
1-2

::::::
weeks

::::::
before

::::::
harvest

::
on

::::
June

:::
18.

:::
All

::::::::
analyses

::::
were

:::::::::
conducted

:::
for

:::
this

::::::
period.

:

::::::
Insights

:::
in

:::
the

:::::::
separate

::::::
effects

::
of

:::
the

:::::
three

:::::::
different

::::::::
moisture

:::::
stores

:::
on

::::::::
sub-daily

::::::::::
backscatter

::::
(f0)

::::::::
variations

:::::
were

::::::
gained265

::
by

::::::::::
quantifying

::::
their

::::::::
relations

:::::::
through

:::::::
multiple

:::::
linear

::::::::::
regression.

::::
The

::::::
relation

::::::::
between

::::::::
sub-daily

::::::::::
backscatter

::::::::
variations

::::
and

::::::
changes

::
in
:::::
these

:::::::
dynamic

::::::::
moisture

:::::
stores

::::
was

::::::::
described

:::
by:

f0 (C) = f0
C0 + 0(\C − \C0) + 1(+,�C −+,�C0) + 2((�,C − (�,C0)

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(6)

:::::
,where

::
C0::

is
:::
the

::::
first

:::::
radar

:::::::::
acquisition

::::
time

::
of

:::
the

::::
day

:::::::
(01:00),

:::
and

::::::::
assuming

:::::
linear

::::::::
relations

:::::::
between

:::
f0

:::
and

:::
the

:::::::::
individual

:::::::
moisture

::::::
stores.

::::
The

:::::::::
regression

::::::::::
coefficients

:
0
::::::::::::
[3�/<3<−3],

::
1
::::::::::::
[3�/:6<−2],

:::
and

::
2
:::::::::::
[3�/:6<−2]

:::::
were

::::
used

::
to

::::::::
quantify

:::
the270

::::::
change

::
in

:::::::::
backscatter

::::::
within

:
a
::::
day

::
as

:
a
:::::
result

::
of

::::::
change

::
in
::::::::
moisture,

::::
and

::::
were

:::::::
derived

:::
for

::::
each

::::::::::
polarization

:::::::::
separately.

3.1.2
::::::::::::
Experimental

:::
site

::::
and

::::
data

:::::::::
collection

:::::::::::
Experimental

:::
site

:::::
2018

:::
The

::::
field

::::::::
campaign

::
in

:::::::
Florida,

:::::
USA,

:::
was

:::::::::
conducted

::
in

:::::
Citra

::::::::
(29.410N,

:::::::::
82.179W),

::
at

:::
the

::::
Plant

:::::::
Science

::::::::
Research

:::
and

:::::::::
Education

::::
Unit

::::::::
(PSREU)

::
of

:::
the

:::::::::
University

:::
of

::::::
Florida

::::
and

:::
the

:::::::
Institute

::
of

:::::
Food

:::
and

:::::::::::
Agricultural

::::::::
Sciences

:::::::::
(UF|IFAS).

::::::
Sweet

::::
corn

::::
was275

::::::
planted

::
on

::
a
:::::
sandy

:::
soil

::::
with

::
a
::::::
density

::
of

:::
7.9

::::::
plants

::::
m-2,

:::
and

::::::::
harvested

::::
after

:::
66

::::
days

::
in

::::::::
mid-June

:::
for

::::::
human

:::::::::::
consumption.

::::
The

::::::
climate

::
of

:::
this

::::
area

::
in

::::::
Florida

::
is

:::::
humid

::::::::::
subtropical,

:::
and

:::
the

:::::
2018

:::::
spring

:::::::
growing

::::::
season

:::
was

:::::::::::
characterized

:::
by

::::
high

:::::::::::
temperatures,

:::::::::::
high-intensity

::::::
rainfall

::::
and

::::::::::::
thunderstorms.

:

:::::::::
Backscatter280

High temporal resolution L-band backscatter data were collected with the polarimetric University of Florida L-band Automated

Radar System (UF-LARS) throughout the growing season of 2018. This system was mounted on a Genie manlift at a height of

14 m above the ground. The scatterometer scanned the corn field with an incidence angle of 40◦, and acquired 16 observations

per
:::::
spread

:::::::::
throughout

:::
the

:
day in the late season. The previously mentioned installation of sensors and vegetation sampling was

performed outside the arc swept by the radar. A comprehensive description of the observations and the UF-LARS system can285

be found in ?
::::::::::::::::::
Vermunt et al. (2020) and Nagarajan et al. (2014), respectively. Cross-pol is used to refer to the average of the

HV- and VH-polarized backscatter.
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3.2 Reconstructing 15-minute variations of Vegetation Water Content in corn

The methodology used to estimate 15-minute changes in corn VWC is based on the method used for trees described in section

2, with the difference that we derived transpiration from indirect estimates of reference evapotranspiration (see ?? and equation290

1).

+,�A42 (C) =+,�C0 +
C−C0∑

:=15<8=
((�: −): )ΔC)

, where +,�A42 (C) is the reconstructed VWC at time t, and +,�C0 is the reference VWC (e.g. the predawn measurement)

which serves as a constraint

295

::::::::::::
Reconstruction

::
of

:::::::
diurnal

::::
VWC

:::::::::
variations

:::
for

:::::::
multiple

::::::::::
consecutive

::::
days

::
To

::::::
support

:::
the

:::::::
analysis

::
of

::::::::
variations

::
in

:::
the

::::::
L-band

::::::::::
backscatter,

:
a
::::::
10-day

::::
time

:::::
series

::
of

::::::
diurnal

:::::
VWC

::::::::
variations

::::
was

:::::::::::
reconstructed

::
for

::::
the

::::
2018

:::::
data.

::::
The

:::::::::::
methodology

::::
used

:
for the reconstruction

:::
was

:::::
based

:::
on

::::::::::
adjustments

::::
and

:::::::::
evaluation

::
of

:::
the

:::
sap

:::::
flow

:::::::
approach

:::::::::
presented

::
in

::::::
section

:::::
3.1.1.

:::
The

::::::::
required

:::
sap

::::
flow

:::
and

::::
ETo

::::
data

:::
sets

:::::
were

::::::
similar,

:::
but

:::::::
slightly

::::::::
different.

::
In

:::::
2018,

::::
four

:::
sap

::::
flow

::::::
sensors

:::::
were

:::::::
installed

:::::::::::::
simultaneously

::
on

::::
four

::::::::
different

:::::
plants

::::
and

:::
data

:::::
were

::::::::
averaged.

:::::
Gaps

::
in

:::
the

::::
time

:::::
series

:::::
were300

:::::
caused

:::
by

::::::::::
disturbances

::
in
:::
the

::::::::::
connection

::::
with

:::
the

::::::
battery

::
or

::::
solar

:::::
panel. � is sap flow , ) is transpiration, both converted to kg

m−2 per 15 minutes, Δt is the

::::::::::::
Meteorological

::::
data

::::
with

:
15-minute time step, and C − C0 is the time between t and C0 in minutes.

::::::::
resolution

::::
were

::::::::
obtained

::::
from

:::
the

::::::
nearby

::::::
Florida

::::::::::
Automated

:::::::
Weather

::::::::
Network

:::::::
(FAWN)

:::::::
weather

::::::
station,

:::::::
located

:::::
within

::::
600

::
m

:::::
from

:::
the

:::::::::::
experimental

::::
field.

:::::::::::
Observations

::
of

:::::::
rainfall,

:::
air

::::::::::
temperature

:::::
(2m),

::::
solar

::::::::
radiation,

:::::::
relative

::::::::
humidity

:::
and

:::::
wind

:::::
speed

::::
were

::::::::::
downloaded

:::::
from305

::
the

::::::
Report

:::::::::
Generator 1

:
.
:::
ETo

::::
was

::::::::
estimated

:::::
using

:::
the

:::::
same

:::::::::::::::
Penman-Monteith

:::::::
approach

:::::::::
described

::
by

::::::::::::::::::
Zotarelli et al. (2010).

:

The sampled diurnal VWC cycles from the 2019-campaign (Section ??) were used to validate the method. July 25, August

23 and August 28 were
:
In
:::::::

contrast
:::

to
:::
the

::::
2019

::::
data

::::
set,

:::::
VWC

:::::::
samples

:::::
were

:::
not

::::::::
collected

::
to

:::::::
capture

:::
the

:::
full

::::::
diurnal

::::::
cycle.

::::::
Instead,

:::::
these

:::::::
samples

::::
were

:::::::
obtained

::::
four

:::::
times

:::
per

:::::
week.

:::::
Three

::::
days

::
at
:::::
6:00,

:::
and

::::
one

::
of

::::
these

::::
days

::::
also

::
at

:::::
18:00,

:::::::::
originally

::
to

::::::
capture

:::::::::
differences

:::::::
between

:::::::
morning

::::
and

::::::
evening

::::::
passes

:::
for

:
a
::::::::::::::
sun-synchronous

::::::
satellite

::::
such

::
as
::::::
SMAP

::::::::::::::::::::
(Entekhabi et al. (2010)310

:
).
:::::::::
Moreover,

:
the days for which both these samples and the other input data for the reconstruction were available. For these

days, we used one of the five sampling times to constrain the daily cycle (+,�C0 in eq. 1). The other four independent samples

were compared against the reconstructed VWC cycle. For each day, we calculated the Root Mean Square Error (RMSE)

between the four independent samples and reconstructed VWC on the four sampling times. All five
::::::::
presented

:::::
VWC

::::
data

:::
for

::::
2018

:::
are

:::::::
averages

:::
of

::::
eight

:::::
plants

::::::
instead

:::
of

:::
six.

:::
The

:
samples were used as +,�C0 once to determine the best time to constrain315

the reconstruction
::
to

::::::::
constrain

:::
the

:::::::::::
reconstructed

:::::
VWC

::::::::
variations.

Finally, a 10-day time series of VWC from the 2018-campaign was reconstructed to support the analysis of variations in

the
:::
The

::::::
period

::
of

::::::::::
consecutive

::::
days

:::
for

:::
the

:::::::
analysis

::::
was

::::::
limited

::
by

:::
the

::::::::::
availability

::
of

:::
sap

::::
flow

:::::
data.

::
A

::::::
10-day

::::
time

:::::
series

::::
was

1
:::::::::::::::::::::::
https://fawn.ifas.ufl.edu/data/reports/
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:::::
found

::
in

:::::::::
mid-to-late

::::::
season

::::::
which

::::::::
contained

:::::::::
continuous

::::
sap

::::
flow

:::
and

:::::::
weather

:::::
data, L-band backscatter collected during that

campaign (Section 3.1.1). This time series contained
::::::::::
backscatter,

:::
and

:
five sampling days. On these days, samples were used to320

constrain the VWC record. On the five days without sampling, the VWC records were constrained either at the end of previous

sampling day (forward reconstruction), or the start of next sampling day (backward). In case these
::::
there

:::
was

::
a
:::
gap

::::::::
between

forward and backward reconstructionsdid not overlap, the average of both was considered the best estimate of VWC.

3.2 Interpreting the behaviour of sub-daily L-band backscatter

Sub-daily325

:::
Soil

::::::::
moisture

:::
and

::::::
surface

:::::::
canopy

:::::
water

:::
For

:::
the

:::::::
analysis

::
of

::::::::
sub-daily

::::::::
variations

:::
in

:::
the L-band backscatter behaviour was analyzed by using continuous time series of

: (1) VWC inside the corn plants, (2) surface canopy water (SCW), and (3) surface soil moisture(\). The longest period for

which we had all data available was from June 4 00:00 to June 13 10:15. During this period, the corn is at maximum height330

and LAI, and 1-2 weeks before harvest on June 18. All analyses were conducted for this period.

The separate effects of the different moisture stores (VWC, soil moisture, and SCW) on backscatter(f0) were quantified

through multiple linear regression. The relation between backscatter and these dynamic moisture stores was described by:

f0 (C) = f0
C0 + 0(\C − \C0) + 1(+,�C −+,�C0) + 2((�,C − (�,C0)

,where C0 is the first measurement time of the day (01:00), and assuming linear relations between f0 and the individual335

moisture stores. The regression coefficients 0 [3�/<3<−3]
:::::::::
backscatter,

:::
we

::::
also

::::::::
collected

::::::::
15-minute

:::::::::
variations

::
in

::::::
surface

::::
soil

:::::::
moisture, 1 [3�/:6<−2], and 2 [3�/:6<−2] were used to quantify the change in backscatter as a result of change in moisture,

and were derived for each polarization separately
::
at

:
5
:::
cm

::::::
depth,

:::
and

:::::
SCW.

::::::::
Together

::::
with

::::::
VWC,

::::
they

::::
form

:::
the

::::::::
moisture

:::::
stores

::
of

:
a
::::
corn

::::
field

::::::
which

:::
are

:::::::::
considered

::
to

:::::
affect

::::::::
sub-daily

::::::::::
backscatter.

:::::
Details

:::
of

:::
the

::::::
sensors

:::
and

::::::::::::
measurements

:::
are

:::::::::
described

::
in

::::::
section

::::
3.0.1

::::
and

:::::::::
extensively

::
in

::::::::::::::::::
Vermunt et al. (2020).

:
340

4 Results

4.1 Seasonal and diurnal variation of vegetation water content

Fig. 2 illustrates the seasonal and diurnal variations of VWC [kg m−2] as a result of
::::
from destructive sampling in the 2018 and

2019 campaigns. From early to mid-season, VWC increased as a result of biomass accumulation. The field corn from 2019 was

allowed to senesce before harvest, resulting in a significant reduction of water storage in the plants from August 23 onward.345

The sweet corn from 2018 was harvested before considerable senescence.

The open markers are the non-predawn measurements, which were at 18:00 (2018) and at four evenly distributed times

between sunrise and sunset (2019). The range of these latter diurnal measurements gives an indication of the amplitude of the
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Figure 2. Vegetation Water Content (VWC), crop height and leaf area index (LAI) from the field experiments in Citra (2018) and Reusel

(2019). Filled red markers indicate predawn measurements, while open markers indicate non-predawn measurements at 18:00 (2018) and

morning to sunset (2019).

daily cycle of VWC. On most days, the diurnal minimum was 10-20% lower than predawn water storage. An exception was July

23, on which predawn water storage was depleted by 35.4% during the day. Fig. 3 zooms in to mid-season measurements, and350

illustrates the difference between water depletion in the non-stressed conditions compared to the stressed date. The photograph

was taken around the third measurement on July 23. This picture shows leaf ‘rolling’, a mechanism to reduce the leaf area

exposed for transpiration, and a sign of drought stress. Normal-shaped leaves were observed again as a result of irrigation,

which was applied right after the last sampling on July 23 in order to ensure the crop’s survival.
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Figure 3. Sampled vegetation water content (VWC) in the mid-season, 2019 (left), and a picture of ’rolled’ leaves (right), taken around the

third measurement on July 23, as a sign of drought stress.
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4.2 Reconstructions of
::::::::::
continuous, sub-daily variations in vegetation water content355

::
As

:::::::::
described

::
in

::::::
section

:::::
3.1.1,

:::
we

:::::
tested

:::::
three

::::::::::
approaches

::
to

:::::::
estimate

:::::::::::
transpiration

::::
from

::::
ETo

::::
and

:::
sap

::::
flow.

::::
An

:::::::::
alternative

::
to

::
the

:::::::::::::
straightforward

::::::
linear

::::::::::
conversions,

:::
we

::::::::
proposed

:::
to

:::
test

:::
the

:::::::::
non-linear

:::::::::::::
CDF-matching

::::::::
principle

::::::
(Table

::
1).

:
Fig. 4 shows

::::::::
illustrates the procedure of estimating transpiration using the non-linear CDF-matching principle, as an alternative to the linear

correction shown in Fig. 5. Again, we
:::
this

::::::::
principle,

:::::
using

::::::
3-days

:::
of

:::
sap

::::
flow

::::
and

::::
ETo

::::
data.

:::
We

:
take July 25, 2019, as an

example, with the difference that we
:::
and

:
use the data from July 24 and 26 as well (a).

::
On

::::
July

:::
25,

::::::
which

:::
was

::::::::::
particularly

:::::
warm360

:::
and

:::::
sunny,

:::
we

::::::::
measured

::
a
::::::::
maximum

::::::::::
temperature

:::
of

::::
39.0

::

◦C
::
in

:::
the

:::::
field. Fig. 4(b) illustrates the difference between the CDF’s

of sap flow and ETo, which is particularly evident at the 35% highest rates. At lower rates (<0.07 mm 15-minute−1), ETo rates

were slightly higher than sap flow rates. As these systematic differences between both rates may be unrealistic, a second-order

polynomial was fitted through the scatter plot with ranked ETo and sap flow data (c), and was used to match the CDF’s (d).

The resulting ETo-cdf
::::
T-cdf

:
(e) was used to estimate ΔVWC at any point in time using the approach described in Fig. 5.365

:::
The

:::::::::
procedure

::
to

:::::::::
reconstruct

:::::::::
15-minute

:::::::
changes

::
in
::::::

VWC
::
is

:::::::
depicted

::
in

::::
Fig.

::
5,

:::::
again

:::
for

::::
July

::
25

:::
as

::
an

::::::::
example.

::::
Fig.

::::
5(a)

::::::::
illustrates

:::
the

:::::
effects

::
of

:::
the

:::::
three

:::::::::
approaches

::
to

:::::::
estimate

:::::::::::
transpiration

::::
from

::::
ETo

:::
and

:::
sap

::::
flow

:::::
(Table

:::
1).

:::::
T-cdf

:::
and

::::
T-3d

::::::::
represent

::
the

::::::::::::
CDF-matched

::::
and

:::::
linear

::::::::
estimates

::
of

:::::::::::
transpiration,

:::
for

:::::
which

:
3
:::::
days

::
of

::::
data

::::
were

:::::
used:

:::
July

::::::
24-26.

:::::
What

:::::
stands

:::
out

::
is
::::
that

::
the

::::::::::::
CDF-matched

::::::::
rescaling

:::::::
(T-cdf)

:::::::
provides

::
a

::::::::::
significantly

::::::
higher

:::::
peak,

::::::::
compared

:::
to

:::
the

:::::
linear

::::::::
rescaling

::::::
(T-24h

:::
and

::::::
T-3d).

::
On

::::
the

::::
other

:::::
hand,

::::::
when

::::
ETo

::::
rates

:::
are

::::
0.09

::::
mm

::::::::
15min−1

::
or

::::::
lower,

:::::
T-cdf

:::
was

::::::
lower

::::
than

:::
the

:::::
linear

:::::::::
estimates.

::::
Both

::::::
linear370

::::::::::
transpiration

::::::::
estimates

:::::
were

:::::
close

::
in

::::
this

::::::::
particular

:::::
case,

:::::
which

::::::
means

::::
that

:::
the

::::
ratio

:::
of

:::
the

::::
24h

::::
sum

::
of

:::
sap

:::::
flow

::::
over

::::
ETo

:::
was

:::::
close

::
to

:::
the

:::::
ratio

::
of

:::
the

:::::
3-day

::::
sum

:::
of

:::
sap

::::
flow

::::
over

:::::
ETo.

::::
Fig.

::::
5(b)

:::::
shows

:::
the

:::::::
diurnal

:::::
cycles

:::
of

:::::
basal

:::
sap

::::
flow

:::
(F)

::::
and

:::::::::::
transpiration.

:::::
Here,

::
the

::::::::
simplest

:::::
linear

::::::::::
transpiration

:::::::
estimate

:::::::
(T-24h)

::::
was

:::::::
depicted

::
as

::
an

::::::::
example.

::::
The

::::::::
difference

::::::::
between

:::
sap

::::
flow

:::
and

::::::::::
transpiration

::::
gave

:::
the

::::::::
estimated

::::::::
depletion

::::
and

::::::
refilling

:::
of

::::::
internal

:::::
water

::::::
storage

:::
(c).

::
If

:::::::::::
transpiration

::::
rates

::::::::
exceeded

:::
sap

::::
flow

::::
rates

::
at

:::::
some

::::
point

::
in
:::::

time,
:::
the

::::
line

::
is

:::::
below

:::::
zero,

:::::
which

::::::::
indicates

:
a
::::::::
depletion

::
of

:::::
water

:::::::
storage.

:::::::
Positive

::::::
values

:::::::
indicate375

:::::::
refilling.

:::::::
Finally,

:::
the

:::::::::
cumulative

:::::::::
difference

:::::::
between

::::
sap

::::
flow

:::
and

:::::::::::
transpiration

:::::::::
represents

:::
the

::::::
diurnal

:::::::
change

::
in

:::::
plant

:::::
water

::::::
storage,

::
or
:::::::
ΔVWC

:::
(d).

::::
The

::::::::
minimum

::::::
VWC

:::
was

:::::::
reached

::::::
around

::::::
12:45,

:::::
when

::::
0.87

::
kg

::::
m−2

::
of

:::
the

::::::::
predawn

:::::
water

::::::
storage

::::
was

:::::::
depleted.

::::
This

::
is

:::::
close

::
to

:::
the

::::::::
maximum

::::::
diurnal

:::::::::
difference

::
of

::::
0.82

::
kg

::::
m−2

::::::::
observed

::
on

::::
that

:::
day

::::
from

::::::::::
destructive

:::::::
sampling

:::::
(Fig.

::
3).

:

Diurnal cycles of VWC were reconstructed for both linear and non-linear approaches to estimate transpiration
::::::::::
transpiration380

:::::::
estimates, using ΔVWC (Fig. 5(c

:
d)) and one destructive sample (Fig. 2,3) per day as a constraint. Results were compared

against destructive samples from both field campaigns
::
the

:::::
other

:::::::::
destructive

::::::
samples. The effect of both the time of the constraint,

as well as the number of days considered for transpiration estimation, on the VWC reconstructions were evaluated. The RMSE’s

of the 2019 data are presented in tables A1-A2 in the Appendix. A general optimal combination of time of constraint and

number of days to consider could not be found. However, in general, better agreements between samples and reconstructions385

were found when the reconstructed estimates were not constrained with samples taken at the limits of the diurnal cycle (i.e.

predawn and sunset), but rather with morning, afternoon or evening samples. An exception to this rule was July 25, when all

available data for the CDF-matching were used. Using CDF-matched transpiration estimates resulted in a better agreement with
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the destructive sampling data than using linear correction in 80% of the cases. The best reconstructions from 2019 (Tables A1

and A2), are presented in Fig. 6, differentiated by the approach to estimate transpiration. Differences between environmental390

conditions are shown in Fig. 7. Fig. 6 illustrates the improvement of the reconstruction when using more than one day of data for

the estimation of transpiration (second and third row).
:::
The

:::::
upper

::::
row

::::::
clearly

:::::
shows

::::
that

::
the

:::::::::
linear-24h

::::::::
approach

::::
does

:::
not

:::::
allow

::
for

::
a
::::::::
difference

:::::::
between

:::
the

::::
start

::::
and

:::::::::
end-of-day

::::::
VWC,

:::::
while

:::
the

:::::::
inclusion

:::
of

:::::::
multiple

::::
days

:::::
does. Besides, the reconstruction

on July 25 illustrates the possible improvement CDF-matching can have. On July 25 and August 28, the RMSE’s of the lowest

plots were 8 and 12% of the amplitude of the diurnal cycles, respectively. On August 23, the agreement is poor, especially later395

in the day, and this percentage is 36.9%. On this day, reconstructions and samples disagree for all three approaches to estimate

transpiration, but less so for the CDF matching procedure.

For the 2018 campaign, we had a maximum of two VWC samples per day. Table A3 shows the offset between one of the

samples and the reconstructed VWC, which was constrained by the other sample, for June 4, 8 and 11. The lowest offsets were

found when transpiration was estimated using all data (12 days), and when CDF-matching was applied. Consequently, we used400

the transpiration calculated based on this combination for further use of reconstructed VWC.

4.3 Reconstructing a record of multiple days

Fig. 8 shows the procedure for reconstructing the 10-day VWC record from 2018-data. On June 4, 8 and 11, evening samples

(18:00) were used as constraints rather than predawn samples (6:00), which resulted in smaller gaps between consecutive days

(Fig. 8(c)). On days without sampling, VWC records were the averages of forward (dashed blue line) or backward (dashed405

orange line) reconstructions. One
::
or

::::::::
backward

:::::::::::::
reconstructions.

:::
On

:
June 9 and 10, the weighted average based on the distance

to the sampling date was considered the best estimate of VWC.

The diurnal VWC pattern on June 5 and 6 seems physically implausible, because one would not expect an enormous increase

of VWC on the warmest and driest day (June 5), and a drop on the most rainy/cloudy day (June 6). This may be an artefact of

applying
::::::
Despite

:::
the

::::::::
advantage

:::
of CDF-matchingwhen ET is very limited (e.g. June ,

:::::::
opposed

:::
to

:::::
linear

:::::::::
conversion,

:::
to

:::::
better410

:::::
reflect

::::::
diurnal

::::::::
extremes,

:::
the

::::::::::
anomalous

::::::::
dynamics

::
of

::::
June

::
5
:::
and

:
6 ), and therefore markedly different to the rest of the period

(see Fig. 4(d)).
:::
are

:::
not

:::::::
captured

::::::::::
sufficiently.

:

4.4 The effect on sub-daily L-band backscatter

Fig. 9 illustrates the potential value of reconstructing VWC records for interpreting time series of microwave remote sensing

data, in this case L-band backscatter. The upper three panels show the VV-, HH- and cross-polarized backscatter coefficients,415

respectively. Fig. 9(d) shows the sampled and reconstructed VWC, together with the total canopy water (CW), which is the

sum of the reconstructed VWC and surface canopy water
::::
SCW [kg m−2]. The latter is either rainfall interception, characterized

by rapid increases and often transient because of daytime evaporation, or dew formation, which accumulates gradually during

the night and dissipates quickly after sunrise. Fig. 9(e) shows the volumetric soil moisture at -5 cm depth.

Sub-daily variability of >2dB was found in all three polarizations. A sharp backscatter increase after rainfall was observed420

in all polarizations. Slow downward trends were also found corresponding with drydown in soil moisture. However, on a
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sub-daily time scale, backscatter variability shows strong similarities with diurnal patterns of canopy water (d). These diurnal

cycles are most clearly visible in VV-pol.
:::
Fig.

:::
10

:::::
zooms

::
in

::
to

:::
the

::::::
diurnal

::::::::
variations

:::
for

:::::
three

::::
days

::::::
without

:::::::
rainfall:

::::
June

::
7,

:
9
::::
and

:::
11.

:::::
These

::::
days

::::::::::
demonstrate

:::::
clear

:::::::::
similarities

:::::::
between

:::
the

::::::
diurnal

:::::::::
behaviour

::
of

:::
the

::::::::::
backscatter,

::::::
mainly

::::
VV-

:::
and

::::::::
cross-pol,

::::
and

::::::
canopy

:::::
water.

:::::
These

::::::::::
similarities

:::
are

:::::::::
particularly

:::::::
present

::
in

:::
the

:::::
period

::::::::
between

:::::::
midnight

::::
and

::::::::::::
mid-afternoon,

:::::
when

::::::
surface

::::
soil425

:::::::
moisture

::
is

::::::::
relatively

:::::
stable.

:
In fact, when randomly occurring rain events are excluded, the sub-daily backscatter behaviour can

be analyzed using three distinct sub-daily periods: (1) from midnight to early morning, (2) from early morning to afternoon,

(3) from afternoon to midnight. The aggregated data in Fig. 11 help to visualize the dynamics in these periods. Because rain

fell more often in the afternoon and evening, the exclusion of periods with rainfall led to data aggregation across 9, 6 and 4

days in these three periods, respectively. Around midnight, dew started to form until its peak between 7:00 and 7:30, which is430

within an hour after sunrise around 6:30. In this same period, VWC was stable and surface soil moisture decreased slightly.

VV and cross-polarized backscatter increased, following dew formation, while HH-polarized stayed relatively stable. From

early morning (7:30) to afternoon (14:00), dew dissipated and VWC dropped significantly. The same holds for backscatter in

all polarizations, while surface soil moisture was still relatively stable. Finally, the last period of the day is characterized by re-

filling of the plant’s internal water storage, and a decrease of soil moisture. The fact that backscatter in all polarizations remain435

relatively constant at first illustrates the the
::::::
remains

::::::::
relatively

::::::::
constant

:::::::
between

:::::
15:00

::::
and

:::::
19:30

:::::::
suggests

:
counterbalancing

effects of soil moisture and VWC on backscatter in this period. During the last four aggregated acquisitions
::::::
between

:::::
19:00

::::
and

:::::
21:30, VV- and cross-polarized backscatter show an

:
a
::::::
slightly

:
increasing trend similar to VWC.

The separate effects of the different moisture stores on backscatter (f0) were quantified through multiple linear regression.440

Because we considered the VWC reconstructions from June 5 and 6 as less reliable, the period between June 7 and 13 was

used for the regression. Table 2 presents the estimated regression coefficients found for this period (see equation 6). These

coefficients show
::
A

::::::::
summary

::
of

:::
the

:::::::
multiple

::::::
linear

::::::::
regression

::::::::
statistics

::
is

:::::
given

::
in

:::::
Table

::
??

::
in

:::
the

:::::::::
Appendix.

::::
The

:::::::::
regression

:::::::::
coefficients

:::::::
suggest that from all polarizations, VV-pol was most sensitive to internal vegetation water storage, and least sensi-

tive to soil moisture. Compared to other polarizations, HH-pol was least sensitive to VWC and SCW, and most sensitive to soil445

moisture. Cross-pol was more sensitive to SCW than co-pol
::::::
co-pols. Note that the coefficients from soil and vegetation water

stores (Table 2) have non-homogeneous physical units. However
::::::::::
Nonetheless, these coefficients tell us that on

::::::
indicate

::::
that

::
for

:
a typical dry day , a soil moisture content reduction of 0.02

:::::
during

:::
the

::::::::
campaign

:::
of

:::::
2018,

:::
e.g.

::::
June

::::
9th,

:::
the

:::
soil

::::::::
moisture

::::::::
reduction

::
of

:::::
0.015

:
m3m−3 decreases

::::::::
translates

::
to

::
a
::::
-0.4,

::::
-0.6

:::
and

::::
-0.6

:::
dB

:::::::
change

::
in VV, HH and cross-polarized backscat-

terwith -0.5, -0.8 and -0.8 dB, respectively. Similarly, a typical VWC cycle amplitude of ,
:::::::::::

respectively.
::::::
During

:::
the

:::::
same

::::
day,450

:::::
VWC

:::::::
changed

::::
with 0.5 kg m−2affects f0 with ,

::::::
which

:::::
would

::::::::
translate

::
to

:
a
::::::
change

:::
of 1.5 dB (VV), 1.1

:::
1.2 dB (HH) , and 1.2

dB (cross). That means that the
::::
This

:::::::
indicates

::::
that

:::
on

:::
this

::::::
typical

:::
dry

::::
day,

::
a diurnal variation in VV-pol is three times more

sensitive to variations in VWC than soil moisture on a typical dry day
:::::
VWC

:::::
leads

::
to

:::
an

::::::
almost

::::
four

::::
times

::::::
higher

:::::::
change

::
in

:::::::::::
VV-polarized

:::::::::
backscatter

:
[
:::
dB]

:::
than

::
a
::::::
diurnal

::::::
change

::
in

::::
soil

:::::::
moisture

::::
does. On the same day, diurnal variations

:::
the

:::::::
changes in

HH- and cross-polarized backscatter are 1.5 times more sensitive to the VWC cycle than [
::
dB]

::::
were

:::
two

:::::
times

::::::
higher

:::
for

:::
the455
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::::::
diurnal

:::::
VWC

::::::::
variations

::::
than

:::
for

:::
the soil moisture drydown. Dew formation and dissipation of 0.3

:::
The

:::
0.4 kg m−2 causes

::::
dew

::::::::
formation

:::
and

:::::::::
dissipation

::::::
caused

:
f0 to vary with 0.2 , 0.1 and

:::
dB

:::::
(VV), 0.2 dB , respectively.

::::
(HH)

:::
and

:::
0.3

:::
dB

::::::
(cross).

:

:::
Fig.

:::
12

:::::::
presents

::::
the

::::::
results

::
of

:::::
using

:::
the

:::::::::
regression

::::::::::
coefficients

::::::
(Table

:::
2),

::::
and

:::
the

::::
time

::::::
series

::
of

::::::
VWC,

:::::
SCW

::::
and

::::
soil

:::::::
moisture,

:::
to

:::::::
describe

::::::
diurnal

:::::::::
variations

::
in

::::::::::
backscatter.

:::::
Each

::::
day

::
is

::::::::::
constrained

::
by

:::
the

::::
first

:::::
radar

::::::::::
observation

::
of
::::

the
::::
day,

::
at

:::::
01:00.

:::::
Note

::::
from

:::
the

:::
R2

::::::
values

::
in

:::::
Table

:::
??

:::
that

:::::::
68-71%

:::
of

:::
the

:::::::
variance

::
in

::::::::::
backscatter

::
is

::::::::
explained

:::
by

:::
the

:::::
three

:::::::::
predictors.460

:::
The

:::::::
P-values

:::
for

:::::
SCW

:::
are

::::::
always

::::::
higher

::::
than

:::::
those

::
for

::::::
VWC

:::
and

::::
soil

::::::::
moisture.

::::::::::
Nonetheless,

::::
with

:::
the

:::::::::
exception

::
of

:::
the

:::::
SCW

::::::::
coefficient

:::
in

:::
the

::::
case

::
of

:::::::::::::
HH-backscatter

:::::::::::::
(P> |C |=0.286),

::
all

::
P
::::::
values

:::
are

::
<

::::
0.05,

:::::::::
indicating

::::::::
statistical

:::::::::::
significance. However,

note from Fig. 12that particularly the effect of SCW on backscatteris still underestimated
::
(a)

:::
and

:::
(c)

:::
that

:::
the

::::::::
observed

::::::::
nocturnal

:::::::::
backscatter

:::::::
increase

::
as

:
a
:::::
result

::
of

::::
dew

::::::::
formation

::
is
::::::
barely

:::::
visible

::
in
:::
the

:::::::::
calculated

::::::::::
backscatter.

::::
This

:::::::
suggests

:::
that

:::
the

:::::::::
regression

::::::::::::
underestimates

:::
the

:::::
effect

::
of

::::
dew

::
on

::::::::::
backscatter.465

Table 2. Estimated regression coefficients per polarization for the period June 7-13, 2018 (equation 6).

VV-pol HH-pol Cross-pol

0[3�/<3<−3] 24.06 39.47 38.83

1[3�/:6<−2] 2.93 2.29 2.45

2[3�/:6<−2] 0.62 0.38 0.73

5 Discussion

5.1 Sub-daily Vegetation Water Content estimates: observations and reconstructions

Our results showed that in non-stressed conditions, VWC depleted by 10-20 % during the day. This internal VWC withdrawal

is approximately 10-20 % of total daily transpiration, which is similar to findings from tropical and temperate broad-leaved

trees (Meinzer et al. (2004); Köcher et al. (2013)). In stressed conditions, we found a 35% drop of VWC during the day.470

Our reconstruction results confirm that it is possible to estimate 15-min changes
:::
We

:::::
tested

:::
the

:::::::
potential

:::
of

:
a
:::::::::::::
non-destructive

:::
sap

::::
flow

::::::::
approach

::
to

:::::::
estimate

::::::::
sub-daily

:::::
VWC

:::::::::
variations

::
in

::::
corn

::::
with

::::
data

:::::
from

:::
our

:::::::::::::
2019-campaign.

::::
The

::::::
results

:::::::
confirm

:::
the

::::::::
possibility

:::
to

:::::::
estimate

:::::::::
15-minute

::::::::
variations

:
in corn VWC with only sap flow sensors ,

:::
and

:
a weather stationand occasional

destructive samples.
:
.
:::::
While

:::
the

:::::::
indirect

:::::::::
estimation

::
of
:::::::::::

transpiration
:::::

could
:::

be
:::::::::
considered

::
a
::::::::
drawback

:::
of

:::
the

:::::::
method,

::::
Fig.

::
6

:::
has

::::::
shown

:::
that

::::
the

::::::
diurnal

:::::
VWC

:::::
cycle

::::
was

::::::::::
represented

::::::::
generally

:::::
well.

:
In general, we found the best agreement between475

reconstructed and sampled VWC when the daily cycle of transpiration was estimated from multi-day sap flow observations

and ETo estimates. Moreover, the application of CDF-matching improved the reconstruction substantially on July 25, while on

August 28, a good agreement was already found after linear correction (Fig. 6). This difference could partly be explained by the

suppressing effect of
:::
that dew, observed on July 25 (Fig. 7), has on transpiration (Dawson and Goldsmith (2018)), which is not

captured by ETo (Langensiepen et al. (2009)). When ETo rates are low, estimated transpiration is lower after CDF-matching480

than after linear correction (see Fig. 4(d)). Consequently, CDF-matching mimicked the suppressing effect of dew due to the
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reduction in transpiration rates in the morning. When we look at the period between the peak of dew (06:00) and full dissipation

(08:15) on July 25 in Fig. 6, we see that ΔVWC is 0.17 kg m−2 in the second row, while ΔVWC is 0.1 kg m−2 in the third row.

This means that CDF-matching in this case led to reduction of transpiration of 0.07 kg m−2. This is comparable to estimated

dew evaporation in this period, which was 0.09 kg m−2 .
::::
(Fig.

::
7).

:
The same holds for August 23, when we found a transpiration485

reduction of about 0.18 kg m−2 between 6:45 and 09:45 after CDF-matching and an estimated dew evaporation of 0.20 kg m−2

in the same period. On August 28, all dew had already dissipated before sunrise and did thus not affect transpiration. Therefore,

a reduction of transpiration rates did not improve the reconstruction of VWC. These results illustrate that the suppressing effect

of dew on transpiration should be taken into account when one estimates transpiration with a weather station or flux tower.

Another effect of CDF-matching was that the highest ETo rates resulted in higher estimates of transpiration compared to490

those obtained using linear corrections (see Fig. 4(d)). This was particularly apparent under sunny conditions such as on July

25 and August 23. This means that transpiration rates exceeded sap flow rates for a longer period. Together with the gradual

depletion of internal VWC in the morning, this led to a much better agreement, and a shift of a diurnal minimum towards the

afternoon. However, the poor agreement between sampled and reconstructed VWC in the evening of August 23 could not be

explained by extreme hydrometeorological conditions, growth stage or drought stress. Other potential contributors to the poor495

agreement could be unaccounted for errors in the sap flow, weather data or samples. The cloudier conditions on August 28

(Fig. 7) could explain the small difference between linear corrections and CDF-matching.

The observed period in
:::::
When

:::
the

:::::::::::
methodology

:::::
with

::::::::::::
CDF-matching

::::
was

::::::
applied

:::
to

:::
the

::::::
10-day

::::::
period

::::
from

:::
our

:
2018 was

characterized by daily dew formation and high temperatures, which could explain why
::::::::
campaign,

:
the diurnal minima of recon-500

structed VWC , obtained through the CDF-matching approach, matched excellently with the diurnal minima in the backscatter

in most cases (Fig. 9).
::::
This

:::::
could

::
be

:::::::::
explained

::
by

:::
the

:::::
daily

::::
dew

:::::::::
formation

:::
and

::::
high

:::::::::::
temperatures

:::
in

:::
this

::::::
period.

:
However,

discontinuities were observed between consecutive days (Fig. 8), which might be related to the temporal resolution of the

observations and the estimation of transpiration fluxes. The temporal resolution of the sensor observations was 15 minutes. At

the same time, we found phase differences between ETo and sap flow in the order of 15-45 min, which was consistent with505

previous studies on corn (e.g. Langensiepen et al. (2009)). Increasing the ratio between phase difference and observation reso-

lution would increase the robustness of the method. A potential solution would therefore be to increase the temporal resolution

of the sensor observations. Another potential solution is related to the estimation of transpiration fluxes. Ideally, a flux tower

would be used for ET estimates through the eddy covariance method, as it is a more direct measurement and widely considered

as the most accurate technique for ET measurements at field scale (Zhang et al. (2014); Maltese et al. (2018); Oguntunde et al.510

(2004)). Improved ET estimates may also reduce or eliminate the need to include CDF-matching. As direct ET measurements

also include evaporation from SCW and soil, it is advised to include leaf wetness sensors and micro-lysimeters (Ding et al.

(2013)) to provide quantitative estimates of evaporation and determine transpiration from ET measurements. Including several

in situ sensors of each type (e.g. leaf wetness, sap flow etc.) ensures that the quantities capture field-scale dynamics.
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5.2 Interpreting sub-daily backscatter515

In ?
:::::::::::::::::
Vermunt et al. (2020), sub-daily L-band backscatter variations were attributed to VWC, SCW and soil moisture. However,

the lack of sub-daily VWC data points complicated quantifying the relation between backscatter and the individual mois-

ture stores. The VWC records generated in the current study allowed us to understand sub-daily backscatter variations with

unprecedented detail, and to describe the relative backscatter sensitivity to the different moisture stores.

The results presented here confirm
::::::
indicate

:
that the effects of sub-daily variations in VWC on backscatter are significant.520

For our 10-day time series we found
:::::::::::
considerable.

::::
Our

:::::::::
regression

:::::::
analysis

::::::::
suggested

:
that, on typical dry days, variations in

backscatter were 1.5
:
a
::::::
typical

:::
dry

::::
day,

:::
the

::::::
diurnal

:::::
cycle

::
of

:::::
VWC

::::
led

::
to

:
a
::::
two (HH- and cross-pol) to 3

:::::
almost

::::
four (VV-pol)

times more sensitive to the diurnal cycle of VWC than to soil moisture variations
:::::
higher

::::::
change

::
in

::::::::::
backscatter

::::
than

:::
the

::::
soil

:::::::
moisture

::::::::
drydown

:::
did. Note that these ratios can be different when either VWC or soil moisture content substantially change

(Brisco et al. (1990)), or when crop structure changes during the day Kimes and Kirchner (1983)
:::::::::::::::::::::::
(Kimes and Kirchner (1983)).525

Backscatter sensitivity to VWC dynamics were most clearly observed in the period between sunrise and mid-afternoon, when

both dropped significantly. During mid-afternoon to sunset, refilling of VWC and drop in soil moisture had opposite effects on

backscatter, which led to
:::
we

::::::::
observed

:
a
:
constant to slightly increasing VV- and cross-polarized backscatter

:
,
:::::
which

:::::::::
illustrated

::
the

::::::::
opposite

:::::
effects

:::
of

:::::
VWC

:::::::
refilling

:::
and

:::
soil

::::::::
moisture

::::
drop

::
on

::::::::::
backscatter. Nocturnal backscatter dynamics demonstrated the

sensitivity of VV- and cross-pol to SCW.530

In general, our results showed that VV-pol was more sensitive to variations in VWC than HH-pol, and less sensitive to

variations in soil moisture. This is in agreement with Joseph et al. (2010), who described a larger attenuation of the soil

return by vegetation for VV-pol compared to HH-pol in a study on the L-band backscattering of corn. An explanation for

this difference was given by Stamenković et al. (2015), who described that at VV and HV polarizations, vertical corn stems

attenuate the double-bounce scattering at L-band, which results in lower contribution from the soil. As a consequence, volume535

scattering and the corresponding contribution from vegetation becomes dominant. At HH-pol, there is less attenuation of the

double bounce effect, which explains a higher sensitivity to soil moisture
:::::
(Table

::
2).

Moreover,
::
the nocturnal VV- and cross-polarizated backscatter increase could be assigned

::
in

:::
Fig.

::
9
:::
and

:::
11

::::
could

:::
be

::::::::
attributed

to dew formation only, because VWC was stable during the night and soil moisture was constant or slightly decreased. Stable

nocturnal VWC can be expected for crops with a hydraulic capacitance similar to or lower than corn, and sufficient soil540

moisture availability. For vegetation with a larger hydraulic capacitance or low soil moisture availability, nocturnal refilling of

VWC could be expected (Maltese et al. (2018)), which could complicate the separation of signals from VWC and SCW.

Our time series
::::
Fig.

::::
9-11

::::
and

:::::
Table

:
2
:

showed that, compared to HH-pol, VV- and cross-polarized backscatter were not

only more sensitive to changes in VWC, but also to changing SCW. This is in agreement with previous findings from Bran-

cato et al. (2017), who found a stronger effect of SCW on S- and C-band differential interferometric observables in VV545

polarization compared to other polarizations, particularly for vertically oriented crops as corn. This could be related to in-

creased scattering from wet leaves in combination with the dominance of volume scattering in VV and cross polarizations. The

different sensitivities to VWC and SCW suggest that other scattering mechanisms are affected by the presence of SCW as well.
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Additional
::::::::
However,

:
it
::::::
seems

:::
that

:::
the

:::::
SCW

:::::::::
coefficients

:::
(c)

:::
for

:::
VV

::::
and

:::::::
cross-pol

::
in
:::::
Table

::
2

:::::::::::
underestimate

:::
the

:::::
effect

:::
of

:::
dew

:::
on

:::::::::
backscatter,

:::
as

:::
the

::::::::
nocturnal

::::::::
increases

::
in

::::::::
calculated

:::::
f0
++ :::

and
::::::
f0
2A>BB::

in
::::
Fig.

:::
12

:::
are

:::::
lower

::::
than

::::::::
observed.

::::
This

:::::
could

:::::
partly

:::
be550

::::::::
addressed

::
by

:::::::::
improved

::::
SCW

:::::::::
estimates,

:::
for

:::::::
example

:::::::
through

::::::::
inclusion

::
of

:::::
more

:::
leaf

:::::::
wetness

::::::
sensors

:::::::::
distributed

::
in
:::
the

:::::::
canopy

::::::::::::::::::
(Vermunt et al. (2020)

:
).

:::::::::
Moreover,

::::::::
additional

:
research is needed to provide more insight into these

::
the

:
scattering mechanisms

under the presence of SCW,
:::
for

::::::::
example

::
by

::::::::::
considering

:::::
SCW

::
in

:::::::
physical

::::::::::::
backscattering

::::::
models.

6 Conclusions

The potential of using radar for (eco)hydrological studies is limited by the challenge to separate signals from soil and vegetation555

on a sub-daily timescale. To gain better understanding of what controls sub-daily backscatter behaviour, we analyzed tower-

based polarimetric L-band observations from a corn field using unique estimates of moisture fluctuations in vegetation and

soil.

A method developed by the tree physiology community was adapted to estimate continuous variations in corn plant water

content with unprecedented detail. The adaptations were related to the estimation of transpiration. The best agreement between560

sampled and estimated VWC was found when transpiration estimates were obtained after the removal of systematic differences

between ETo and sap flow. In non-stressed conditions, predawn VWC decreased by 10-20% during the day.

Complementing the resulting record of VWC with records of soil moisture and previously estimated surface canopy water

allowed us to interpret the sub-daily behaviour of polarimetric L-band observations. The results showed a significant effect of

diurnal VWC cycles on L-band backscatter when the plants reached their maximum size. The highest and lowest sensitivity565

to VWC was found in VV- and HH-polarized backscatter, respectively. The
::::::::
regression

::::::
results

::::::::
suggested

::::
that

:::
the

:
backscatter

behaviour on typical dry days was 1.5
:
a

::::::
typical

:::
dry

:::
day

::::
was

:::
two

:
(HH, cross-pol) to 3

::::
four (VV) times more determined by the

VWC cycle than by soil moisture. Nighttime increases in VV- and cross-polarized backscatter were a result of dew formation

only.

The results presented here provide unique insight into the potentially confounding influence of surface and internal vegeta-570

tion water content variations on backscatter, particularly in the interpretation of sub-daily radar observations. These findings

are directly relevant for current and upcoming L-band missions, but also for the design of future spaceborne SAR missions

for land applications. In particular, this study highlights the potential difference in relative importance of VWC, SCW or soil

moisture dynamics depending on the overpass time. This is particularly relevant given the imminent availability of sub-daily

observations from e.g. the Iceye and CapellaSpace constellations. Moreover, the method for reconstructing VWC from sparse575

ground data

::
As

:::::
radar

:::::::::::
observations

:::
are

::::::::::
increasingly

::::
used

::
to

:::::
study

:::::
plant

:::::
water

::::::
status,

:::
the

::::::::
presented

:::
sap

::::
flow

:::::::
method

::
is

:
a
:::::::::
promising

::::
way

::
to

:::::::
validate

::::::::
sub-daily

:::::::
satellite

::::::::::
observations

:::::
with

:::
just

:::::::::::::
meteorological

::::
data

::::
and

:::
sap

::::
flow

::::::::
sensors,

::::::
without

:::::::::
laborious

::::::::
sub-daily

:::::::::
destructive

::::::::
sampling.

:::
The

:::::::
method

:
is
::::::::
expected

::
to

::
be

::::
most

::::::
robust

::::
when

:::
the

::::::::
temporal

::::::::
resolution

::
of

:::
the

:::
sap

::::
flow

:::
and

:::
ET

:::::::::::
observations

::
are

:::::::::::
significantly

:::::::
smaller

::::
than

:::
the

:::::
phase

:::::::::
difference

:::::::
between

:::
the

:::::
two,

:::::
which

:::::::
depends

:::
on

:::
the

:::::::
species.

::::
The

:::::::
number

::
of

:::::::
sensors580

:::::::
required

::
to

::::::
capture

:::::
VWC

:::::::::
variations

::
at

:::::::
footprint

:::::
scale

:
is
::::::::
expected

::
to

::::::
depend

:::
on

:::
the

:::::::
footprint

::::
size,

::::
and

:::
the

:::::
spatial

::::::::::::
heterogeneity
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::
of

:::::::::
vegetation

::::
type

:::
and

:::::::
factors

:::::::::
influencing

::::::::
moisture

::::::
supply

::::
and

:::::::
demand.

::::::::::
Potentially,

::::::
global

:::::::
database

::::::::
networks

:::
for

::::
sap

::::
flow

::::::::::::
measurements,

:::
i.e.

:::::::::
Sapfluxnet 2

:
,
:::
and

::::
flux

:::::
tower

::::::::::::
measurements,

:::
e.g.

:::::::
Fluxnet 3

:::
and

::::::::
Ameriflux 4

:::
can

::::
play

::
an

::::::::
important

::::
role

::::
here.

:

::::::::
Moreover,

:::
the

::::::
utility

::
of

:::
the

:::::
tested

::::
sap

::::
flow

:::::::
method

::::
goes

::::
well

::::::
beyond

:::::
radar

::::::
remote

::::::::
sensing.

:
It
::::

also
:
has huge potential for

validating and interpreting a wide range of other remotely sensing techniques that are sensitive to vegetation water, such as585

passive microwave remote sensing, Global Navigation Satellite Systems (GNSS) and Cosmic Ray Neutron Sensors.

2
::::::::::::::::
http://sapfluxnet.creaf.cat

3
::::::::::::
https://fluxnet.org/

4
::::::::::::::::
https://ameriflux.lbl.gov/
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Figure 4. Three step procedure
::::::
Example

::
of

::::
ETo

:::::::
rescaling

:
to reconstruct the diurnal variation in VWC: example for July 25

:::::::::
approximate

:::::::::
transpiration

:::::
(2019

::::::::
campaign), 2019. Fig

:::
using

:::
the

::::::::::::
CDF-matching

:::::::
approach. (a) shows the daily cycles of sap flow (F) ,

::
and

:
reference

evapotranspiration (ETo)
:::
data

::::
from

:::
July

:::::
24-26, and the linearly corrected ETo (ETo-corr)

:::
2019, which is the transpiration estimate, (b) is

the difference between sap flow and transpiration, where negative values indicate depletion
::::::::
cumulative

:::::::::
distribution

::::::
function

:::::
(CDF)

:
of water

storage
:::
both

::::
data

:::
sets

::
in
:::
this

::::::
period,

::
(c)

:::
2nd

::::
order

:::::::::
polynomial

::
fit

::::::
through

:::::
ranked

::
F
:
and positive values indicate refill

:::
ETo

:::
data, and

::::
used

::
to

::::
derive

:::
the

:::::::::::
CDF-matched

:::::::::
transpiration

:::::::
estimate (c

::::
T-cdf)illustrates ,

:::::
which

:::
was

:::::
added

::
to

:
the resulting cumulative change

::::
CDF

:::
plot in stored

water (ΔVWC
:
d)during .

:::
(e)

:::::
shows the day

:::
final

::::
result

::
of

:::
the

:::::::::::
CDF-matching.

The procedure to reconstruct 15-min changes in VWC is depicted in Fig. 5. Here, the simplest, linear estimate of transpiration (see ??) was

used. Fig. 5(a) shows the diurnal cycles of basal sap flow (F), reference evapotranspiration (ETo ), and the corrected ETo (ETo-corr), which

is the transpiration estimate, on July 25, 2019. On this day, which was particularly warm and sunny, we measured a maximum temperature

of 39.0 ◦C in the field. The difference between sap flowand transpiration gave the estimated depletion and refilling of internal water storage

(b). If transpiration rates exceeded sap flow rates at some point in time, the line is below zero, which indicates a depletion of water storage.

Positive values indicate refilling. Finally, the cumulative difference between sap flow and transpiration represents the diurnal change in plant

water storage, or ΔVWC (c). The minimum VWC was reached around 12:45, when 0.87 kg m−2 of the predawn water storage was

depleted. This is close to the maximum diurnal difference of 0.82 kg m−2 observed from destructive sampling (Fig. 3).

Example of ETo rescaling to approximate transpiration (2019 campaign), using the CDF matching approach. (a) sap flow (F) and reference

evapotranspiration (ETo) data from July 24-26, 2019, (b) cumulative distribution function (CDF) of both data sets in this period, (c) 2nd

order polynomial fit through ranked F and ETo data, used to derive the CDF-matched ETo (ETo-CDF), which was added to the CDF plot in

(d). (e) shows the final result of the CDF-matching.
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Figure 5.
:::::::
Four-step

::::::::
procedure

::
to

::::::::
reconstruct

:::
the

::::::
diurnal

:::::::
variation

:
in
::::::

VWC:
::::::
example

:::
for

:::
July

:::
25,

:::::
2019.

:::
Fig.

::
(a)

:::::
shows

:::
the

::::::
diurnal

:::::
cycles

::
of

:::::::
reference

::::::::::::::
evapotranspiration

::::
(ETo)

:::
and

:::
the

::::
three

::::::::::
transpiration

:::::::
estimates

:::
(see

:::::
Table

::
1),

:::
(b)

:::::
shows

:::
the

:::::
diurnal

:::::
cycles

::
of

:::
sap

::::
flow

::
(F)

::::
and

:::
one

:
of
:::

the
::::::::::
transpiration

:::::::
estimates

:::::::
(T-24h),

::
(c)

::
is

:::
the

:::::::
difference

:::::::
between

:::
sap

:::
flow

::::
and

::::::::::
transpiration,

:::::
where

::::::
negative

:::::
values

::::::
indicate

::::::::
depletion

::
of

::::
water

::::::
storage,

:::
and

::::::
positive

:::::
values

::::::
indicate

:::::
refill,

:::
and

::
(d)

::::::::
illustrates

::
the

:::::::
resulting

::::::::
cumulative

::::::
change

::
in

:::::
stored

::::
water

:::::::
(ΔVWC)

:::::
during

:::
the

:::
day.
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Figure 6. Best diurnal VWC reconstructions for July 25, August 23 and August 28 (2019) for three different methods of estimating transpira-

tion. The upper row shows the results for using the simplest, linear estimate of transpiration. The middle row shows the reconstructions using

linear estimates of transpiration, but now considering three, five and seven days rather than 24 hours. The lower row shows the results after

cdf-matching, considering all data, five days and three days for the CDF-matching, respectively. The dashed green lines respresent one RMSE

above and one RMSE below the reconstructed VWC.
:::
The

::::::::::
measurement

::::
which

::
is
::::
used

::
to

:::::::
constrain

::
the

::::::::::
reconstructed

::::
line

:
is
:::::::::
accentuated

::::
with

::
an

::::
open

::::::
marker.
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Figure 7. Environmental conditions on the sampling days July 25, August 23 and August 28 (2019). The upper row shows air temperature

(T) and solar radiation (Rs), and the lower row shows root zone soil moisture (θ) and surface canopy water (SCW).
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Figure 8. 10-day reconstruction of VWC, with (a) sap flow (F), and estimated transpiration (ETo-cdf), (b) the difference between sap flow

and transpiration, and (c) the sampled and reconstructed VWC. In between sampling days, VWC estimates are the weighted average between

forward and backward reconstructions from the consecutive sampling days (based on the time to the closest sampling day).
:::
The

:::::::::::
measurements

::::
which

:::
are

::::
used

::
to

:::::::
constrain

::
the

::::::::::
reconstructed

::::
line

::
are

:::::::::
accentuated

::::
with

::::
open

:::::::
markers.
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Figure 9. Full polarimetric L-band backscatter and separated effects for a 10-day period near the end of the growing season in 2018, with (a)

VV-polarized scattering coefficient, (b) HH-polarized scattering coefficient, and (c) averaged VH and HV-polarized scattering coefficients,

(d) sampled and reconstructed VWC, and total canopy water, which is the sum of reconstructed VWC and SCW, and (e) soil moisture at 5

cm depth.
::

The
:::::::::::
measurements

:::::
which

:::
are

:::
used

::
to

:::::::
constrain

:::
the

::::::::::
reconstructed

:::
line

:::
are

:::::::::
accentuated

:::
with

::::
open

:::::::
markers.
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Figure 10.
::::::
Diurnal

:::::::
behaviour

::
of

:::::::::
backscatter

:::
(VV,

::::
HH,

:::::::
cross-pol)

::::
and

::::::
moisture

::::
(soil

:::::::
moisture,

:::::
VWC,

:::::
SCW)

::
for

::::
three

::::::::
individual

::::
days

::::::
without

::::::
rainfall.

::::
These

::::
days

::::
were

::::::
selected

::::
from

:::
the

:::::
period

:::::::
presented

::
in

:::
Fig.

::
9.
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Figure 11. Backscatter (VV, HH, cross-pol) and moisture (VWC, CW, \) data aggregated across multiple days, and separated by part of

the day: midnight-morning, morning-afternoon, and afternoon-midnight. Periods with disturbing rain events are excluded, which means that

data in (a,d), (b,e), and (c,f) are aggregated across 9, 6 and 4 days, respectively. Canopy Water (CW) is SCW displayed on top of VWC.
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:::
The

::::::::::
observations

::::
which

:::
are

::::
used

::
to

:::::::
constrain

::
the

:::::::::
predictions

::
of

:::::::
sub-daily

:::::::::::
f0-variability

:
,
:::
f0
C0,

:::
are

:::::::::
accentuated

::::
with

::::
open

::::::
markers.

::::::::
Sub-daily

::::::::
backscatter

:::::::
variation

::
is

::::::::
calculated

::::
using

:::::::
equation

:
6,
:::
the

:::::::::
coefficients

::::
found

:::
by

::::::
multiple

:::::
linear

:::::::
regression

:::::
(Table

:::
2),

:::
and

:::
the

:::
time

:::::
series

::
of

:::::
VWC,

::::
SCW

:::
and

:::
soil

:::::::
moisture.
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Appendix A

Table A1. Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent time of constraining the recon-

struction, while the columns represent the considered period for linear ETo correction

July 25 August 23 August 28

1 day 3 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days 7 days all data

predawn 0.212 0.272 1.107 0.369 0.310 0.256 0.282 0.547 0.178 0.097 0.095 0.063 0.352

morning 0.314 0.369 1.082 0.500 0.444 0.389 0.416 0.655 0.176 0.110 0.108 0.078 0.315

afternoon 0.187 0.220 0.704 0.375 0.346 0.318 0.331 0.468 0.129 0.090 0.089 0.075 0.227

evening 0.266 0.321 1.036 0.446 0.392 0.337 0.364 0.601 0.206 0.138 0.136 0.106 0.351

sunset 0.247 0.311 1.131 0.516 0.448 0.379 0.413 0.706 0.150 0.074 0.072 0.047 0.317

Table A2. Root mean squared error (RMSE) between reconstructed and sampled VWC. The rows represent time of constraining the recon-

struction, while the columns represent the considered period for CDF-matching

July 25 August 23 August 28

1 day 3 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days 7 days all data

predawn 0.155 0.140 0.070 0.303 0.380 0.295 0.310 0.458 0.135 0.112 0.153 0.149 0.379

morning 0.114 0.104 0.124 0.296 0.390 0.313 0.331 0.508 0.121 0.078 0.100 0.088 0.286

afternoon 0.140 0.136 0.125 0.309 0.351 0.311 0.319 0.402 0.091 0.060 0.075 0.067 0.212

evening 0.094 0.081 0.113 0.244 0.333 0.259 0.276 0.451 0.142 0.084 0.103 0.083 0.306

sunset 0.177 0.162 0.083 0.471 0.548 0.460 0.474 0.623 0.102 0.070 0.106 0.097 0.325

Table A3. Offset between reconstructed and sampled VWC. The rows represent the method used for transpiration estimation, while the

columns represent the considered period.

June 4 June 8 June 11

1 day 3 days 5 days all data 1 day 3 days 5 days 7 days all data 1 day 3 days 5 days all data

linear 0.202 0.250 0.149 0.055 0.412 0.071 0.241 0.022 0.022 0.556 0.790 0.739 0.543

cdf 0.134 0.180 0.185 0.063 0.292 0.106 0.209 0.147 0.128 0.456 0.476 0.521 0.267
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