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Abstract. Soil erosion reduces the sustainability of agricultural sector by loss of productive soil and through negative impacts 

on surface waters. In Finland, considerable efforts have been made to reduce soil erosion, but the suspended sediment loads to 

surface waters have not markedly reduced. A major limitation has been the lack of high-resolution data on erosion risk for 

efficient targeting of the erosion management efforts. In this study, by using the Revised Universal Soil Loss Equation 

(RUSLE) a two-meter resolution erosion risk data was developed and consequently the spatial distribution of the erosion risk 10 

of Finnish agricultural land was analysed. With agricultural management practices of 2019, the average erosion of agricultural 

land was estimated to be 430 kg ha-1 yr-1, and it varied at the municipality scale from 100 to 1290 kg ha-1 yr-1. At more local 

scales the erosion risk had even greater variability, and areas with high erosion risk were differently located in terms distances 

to water bodies. The results also suggest that the past erosion management efforts have not been well-targeted according to the 

actual erosion risk. Altogether, the results indicate that erosion mitigation measures can be improved by inclusion of high-15 

resolution data in the planning and implementation of the measures, by considering the spatial variability of the erosion risk 

over multiple spatial scales, and by implementation of location specific erosion reduction measures. 

1 Introduction 

Soil erosion has a central role in the sustainability of agricultural sector, as it has significant negative impacts on soil 

productivity, surface water quality and aquatic ecosystems (Wuepper et al., 2020; Borrelli et al., 2017; Montgomery, 2007; 20 

Pimentel et al., 1995). It contributes to eutrophication, and to increased turbidity and siltation of surface waters (Ulén et al., 

2012). Erosion causes harmful structural changes in the soil surface, and in the long-term, it can reduce soil fertility through 

loss of the most fertile top soil (Pimentel et al., 1995). Soil erosion is also linked to climate regulation through transport and 

storage of carbon (Lugato et al., 2018) and altogether, it is a cross cutting issue in the land use sector (Montanarella and 

Panagos, 2021).  25 

The key process causing soil erosion is hydrological, and soil particles are detached from the surface by the kinetic energy 

of rain drops and surface runoff causing slaking, swelling and dispersion (Bissonnais, 2016; Ulén et al., 2012; Jarvis et al., 

1999; Wicks and Bathurst, 1996). This process is affected by multiple connected factors, including hydrometeorological 

conditions, varying particle detachment mechanisms, farming practices, soil physical characteristics and chemical conditions 
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(Turunen et al., 2017; Bechmann, 2012; Ulén et al., 2012; Turtola et al., 2007; Øygarden et al., 1997) leading to high spatial 30 

variability in erosion and further in the transport of suspended sediment loads from different sites and catchments (Röman et 

al., 2018; Ulén et al., 2012). 

In Finland, the total area of agricultural land is 2.3 million ha (7.6 % of total land area) and the main crops are cereals (45% 

of total area) and grass type crops (31%) (data of Finnish Food Authority for 2019). The erosion process is affected by short 

growing period (140-180 days) and long winter, with highest erosion during rainy autumn months and spring snowmelt 35 

(Puustinen et al., 2007). Experimental studies have estimated the average erosion from fields to vary from 55 to 2100 kg ha-1 

yr-1 (Lilja et al., 2017a; Puustinen et al., 2010) and earlier modelling approaches have estimated the average erosion of all 

agricultural lands to be 418-485 kg ha-1 yr-1 (Lilja et al., 2017b; Puustinen et al., 2010). These Fig.s are relatively low in 

global and European scales (Borrelli et al., 2017; Panagos et al., 2015c), however, in respect to the ecological state of water 

bodies in northern latitudes, they result in significant negative impacts in surface waters and in the Baltic Sea (Ulén et al., 40 

2012), particularly through transport of phosphorus along with the eroded soil particles (Röman et al., 2018). 

The management of environmental impacts of agriculture in Finland is guided by the EU’s Common Agricultural Policy 

(CAP) (European Commission, 2021) and the Water Framework Directive (European Commission, 2020) and is implemented 

through national programmes, such as the Rural Development Programme (Ministry of Agriculture and Forestry, 2014). The 

management focuses largely on the main agricultural areas in southern and western Finland (Ministry of Agriculture and 45 

Forestry, 2014), where major river basins drain to the Baltic Sea, and includes targeting of erosion mitigation measures, such 

winter-time vegetation cover, reduced soil tillage, vegetated buffer zones along streams and rivers, and perennial grass type 

vegetation covers. The targeting of these measures is implemented through natural constraint and environment payments to 

the farmers. 

Despite the considerable management efforts, the agricultural loading to surface waters has not reduced substantially (Räike 50 

et al., 2020; Tattari et al., 2017). In the case of erosion, a major limitation has been the lack of spatial data on distribution of 

erosion risk, which have led to formulation of agricultural policies and programmes with limited knowledge on spatial 

variability of erosion risk. For example, the current targeting of mitigation measures is based on broad regions of eight river 

basin districts (Alahuhta et al., 2010) with less consideration of local conditions. The modest achievements in the erosion 

control are also partially influenced by changes in climate and weather (Räike et al., 2020), and it is likely that the erosion 55 

rates will be further influenced by the climate change (Panagos et al., 2021). These highlight the importance of improving the 

erosion management, and a country-wide understanding of spatial distribution of erosion risk through high-resolution data is 

paramount in such efforts. 

Local erosion risk can be reliably estimated with various methods but generating reliable and spatially extensive erosion 

data is still a challenge. Direct empirical measurement campaigns provide the most accurate information on erosion and 60 

sediment loads but are costly and infeasible for production of large-scale data. Process-based computational models have 

shown reasonable capability to describe the erosion and sediment transport process dynamics at monitored sites (e.g. Borrelli 

et al., 2021; Turunen et al., 2017; Warsta et al., 2013; Jarvis et al., 1999; Wicks and Bathurst, 1996), but they are also infeasible 
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for large scale data production due to high computational requirements. In contrast, simplified models, which aim to estimate 

erosion based on a few dominating factors, provide efficient means to estimate large scale spatial distribution of erosion. These 65 

include models such as the empirical Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 1978) and the revised 

USLE (RUSLE) (Renard et al., 1997), which have been widely applied in different regions and have shown capability to 

reproduce annual loads in different land-use, topographic and hydrometeorological conditions (Batista et al., 2019; Estrada-

Carmona et al., 2017), including the high-latitude boreal conditions (Lilja et al., 2017a). 

Based on the above premises, the goal of this study was to produce a publicly available high-resolution erosion risk data 70 

for agricultural lands of Finland, and thereby to demonstrate the importance of considering the variability of the erosion risk 

for achieving effective erosion management outcomes. The goal was achieved by 1) estimating erosion risk at two-meter 

resolution using RUSLE, 2) analysing spatial variability of erosion risk and its management over different spatial scales, and 

finally 3) providing recommendations for policy development and future research. This work was well in line with targets of 

the national programme on enhancing the effectiveness of water protection (Ministry of the Environment, 2021), and with the 75 

targets of EU’s Common Agricultural Policy (European Commission, 2021), Water Framework Directive (European 

Commission, 2020), and the European Green Deal (Montanarella and Panagos, 2021). 

2 Methodology 

The estimation of agricultural erosion was based on the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997; 

Wischmeier and Smith, 1978), and three different types of average erosion estimates were calculated for the Finnish 80 

agricultural lands, based on average weather during 2007-2013 (Fig. 1): 

• Erosion susceptibility (kg ha-1yr-1) of all land areas, which describes the erosion risk according to rainfall erosivity, 

topography and soil erodibility, excluding the effects of vegetation cover and soil management 

• Potential erosion risk (kg ha-1yr-1) of agricultural lands, which describes the highest potential erosion corresponding 

to bare fallow land without sub-surface drainage.  85 

• Actual erosion risk (kg ha-1yr-1) of agricultural lands, which describes the erosion under agricultural practices of the 

year 2019, including the prevailing sub-surface drainage 

These estimates were derived through a modelling framework consisting of calculation of soil erosion susceptibility in two-

meter resolution for all land areas (A, Fig. 1), calibration of RUSLE at seven experimental fields (B), testing of calibrated 

RUSLE at five small catchments and at fourteen large river basin (C), estimation of potential erosion risk for all arable lands 90 

(D), and estimation of the actual erosion risk of all arable lands (E). In addition, an Erosion Management Index (EMI) (-) was 

developed and used to estimate the effectiveness of erosion mitigation measures. 
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Figure 1: The RUSLE modelling framework. See Tab. 1 for description and sources of data needed for the different RUSLE factors 

R, K, L, S, C and P. 95 

The resulting data were then analysed spatially. The potential erosion risk was analysed at sub-basin scale, to identify 

differences in erosion risks within the landscape.  The actual erosion risk and the EMI were analysed at municipal level to 

provide administratively relevant information for managing erosion.  

The following sections provide general introduction to RUSLE and a detailed explanation of the modelling framework and 

the used data. Additional information is presented in supplementary material.  100 

2.1 Revised Universal Soil Loss Equation (RUSLE) 

The RUSLE (Eq. 1) is an empirical model for estimating soil loss due to water erosion (Renard et al., 1997; Wischmeier and 

Smith, 1978). The RUSLE equation is (Eq. 1)  

E = R × K × L × S × C × P ,          (1) 

where E is the annual average erosion (t ha-1 yr-1), R is the rainfall erosivity factor [MJ mm ha-1 h-1 yr-1], K is the soil erodibility 105 

factor (t ha h ha-1 MJ-1 mm-1), L is slope length factor (dimensionless) and S is the slope steepness factor (dimensionless), C 

is the cover-management factor, and P is the support practices factor which accounts for erosion control practices, such as 

buffer zones, contour tillage and sub-surface drainage. The dimensionless C and P factors vary from near 0 to 1. 

While the other factors are described with single factor values, the cover-management factor (C) consists of sub-factors 

(Eq. 2), 110 

C = Ccrop × Cmanagement            (2) 

where Ccrop accounts for the influence of crops on erosion, and Cmanagement accounts for the influence of management practices 

on erosion (Panagos et al., 2015b). The Ccrop and Cmanagement sub-factors are dimensionless and vary from near 0 to 1.  
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The Cmanagement is further divided to sub-factors (Eq. 3) 

Cmanagement = Ctillage × Cresidues × Ccover ,         (3) 115 

where Ctillage, Cresidues and Ccover quantify the effects of tillage, plant residues and cover crops on erosion, respectively (Panagos 

et al., 2015b). In this study, the Cresidues was not considered due to lack of data.  

2.2 Erosion susceptibility 

The erosion susceptibility is described with the R, K, L, S factors, and their values were set for all land areas of Finland at two-

meter scale using spatial data as described below. The calculated erosion susceptibility was used in calibration at experimental 120 

fields, testing at catchments and river basins, and in estimation of the potential and actual erosion data (Fig. 1). 

The R factor was taken from a 1 km resolution gridded European scale dataset that is based on observational data (Panagos 

et al., 2015a). For Finland, R is calculated from hourly precipitation data measured at 64 stations covering a period of 2007-

2013. The average R-value for Finland is 273 MJ mm ha-1 t-1yr-1 with annual average precipitation of 660 mm, while the 

European average is 722 MJ mm ha-1 t-1yr-1. 125 

The K factor was taken from Finnish Soil Database (Lilja et al., 2017c; Lilja and Nevalainen, 2006) supplemented with 

soil specific K values (Lilja et al., 2017a, 2017b). The soil database is a vector data with scale of 1:200 000 and the smallest 

feature in the data is 6,25 ha. The K values are based on calibration of ICECREAM model for Finnish soils (Rekolainen and 

Posch, 1993), except for clay soils. For the clay soils, the K value is derived from field studies in Poland (Lilja et al., 2017a; 

Święchowicz, 2012). The soils of Finnish Soil database and the soil specific K values are shown in Tab. S1. 130 

The L and S factors were calculated in this study from a two-meter resolution LiDAR-based digital elevation model (DEM) 

of Finland (National Land Survey of Finland, 2020). A combined LS-factor was calculated with SAGA-GIS Module LS Factor 

(Conrad, 2003) using the method of Desmet and Govers (1996) with default settings. The DEM was used as such and it was 

not treated for sinks, as it would have introduced more errors. For example, filling of sinks would fill fields up to the level of 

nearby roads, and breaching would create artificial erosion areas in the fields. For the LS calculations Finland was divided in 135 

301 units and these were based on river basins, sub-basin groups (Finnish Environment Institute, 2010), and in offshore areas 

on groups of multiple islands (Fig. S1).  

The R factor was resampled, and the K factor was rasterised to the same two-meter resolution as the LS factor data using 

bilinear (R) and nearest neighbour (K) interpolation methods. The rasterised K-factor data was also extrapolated (nearest 

neighbour method) to account for finer details of shorelines of water bodies, as the scale of the Finnish Soil Database does not 140 

describe the shorelines in detail.  

The erosion susceptibility for all land areas of Finland was then calculated by multiplying the R, K and LS factor data. The 

erosion susceptibility data for agricultural areas was thereafter extracted using the field parcel data from Finnish Food 

Authority. The calculations were done in high-performance computing environment (CSC - IT Center for Science, Finland) 

using RSAGA (Brenning et al., 2018) and terra (Hijmans et al., 2021) libraries of the R (R Core Team, 2020). The used data 145 

is summarized in Tab. 1.  
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Table 1: Summary of the data used for RUSLE factors R, K, LS, C and P. 

Data Description and source 

Rainfall erosivity (R) European rainfall erosivity data with 1 km resolution (Panagos et al., 2015a). Data for Finland 

is calculated using 60 min precipitation data from 64 stations over the period 2007-2013.  

Soil erodibility (K) A Finnish soil database (Lilja et al., 2017c; Lilja and Nevalainen, 2006) with soils classified 

according to World Reference Base for soil Resources (IUSS Working Group WRB, 2015) and 

with soil specific K factor values (Lilja et al., 2017a, 2017b) (Tab. S1).  

Topography (LS) Calculated in this study from LiDAR-based two-meter resolution digital elevation model 

(DEM) (National Land Survey of Finland, 2020) using the method of Desmet and Govers 

(1996).  

Cover-management (C) Calibration: Crops and management from the experimental field data (Finnish Environment 

Institute, 2019; The Field Drainage Research Association) (Tab. 2).  

Actual erosion risk: Crops and management from the field parcel data for 2019 (Finnish Food 

Authority). The data contains the crop and vegetation cover for over two million georeferenced 

field parcels. The erosion reduction measures of reduced autumn tillage and winter-time 

vegetation cover are also indicated.  

Support practices (P) Sub-surface drainage status of fields based on drainage plans up to year 2017 (Finnish Field 

Drainage Association).  

2.3 RUSLE calibration and testing 

The RUSLE was calibrated at seven monitored field sites with year-round soil loss measurements (Tab. 2, Fig. S2). Aurajoki, 150 

Liperi, Kotkanoja, Nummela and Toholampi sites are experimental fields with multiple plots and practices, while Gårdskulla 

and Hovi sites are single field areas in normal agricultural use. The fields have varying soil and topographical conditions, and 

all, except Aurajoki site, were subsurface drained during the measurement campaigns (Tab. 2). 

The fields were under different crops and management practices during the measurements, including spring cereals (wheat, 

oat, barley) with conventional autumn ploughing, shallow autumn stubble tillage, autumn cultivator tillage, no autumn till 155 

(winter-time stubble) and direct sowing (winter-time stubble); winter cereals (wheat, rye); perennial grass; and perennial 

pasture. From the data, each crop and management practice with a minimum of four years of measurements was included in 

the calibration. This provided 20 crop and management cases that were divided to six treatment groups for the calibration: 

cereals with autumn ploughing, cereals with reduced autumn tillage, cereals with winter-time stubble, winter cereals, perennial 

grass and perennial pasture (Tab. 4).  160 

The model was calibrated against the average annual soil loss of the measurement periods. The sum of soil loss via surface 

and sub-surface drainage was considered, as a large share of the eroded material can be transported from the soil surface via 
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subsurface drains in structured soils (Warsta et al., 2013; Uusitalo et al., 2001; Øygarden et al., 1997; Turtola and Paajanen, 

1995). 

The C factor was chosen as the calibration parameter as the sensitivity analyses show that the C factor is the largest source 165 

of uncertainty (Estrada-Carmona et al., 2017) and it can vary by location depending on cultivation practices (Hudson, 1993). 

Therefore, in the calibration the difference between the RUSLE erosion estimates and the measured soil losses was minimized 

by adjusting the C value of each treatment group with least squares method.   

The sub-surface drainage was considered in the P factor. The research on the effect of sub-surface drainage on erosion is 

limited, but studies in the North-Western US found a reduction effect of 28-51% (Formanek et al., 1987; Istok et al., 1985). A 170 

study in Finland in turn found that substituting of old drainage pipes with new ones reduced erosion up to 15% on a clay soil 

(Turtola and Paajanen, 1995). In this study, however, a reduction effect of 40% (P=0.6) was used, following Lilja et al. (2017a).  

 

Table 2: Fields with soil loss (kg ha-1 yr-1) measurements used for calibrating RUSLE.  

Field Description More detailed field description / 

data source  

Aurajoki (F1) Southwestern Finland (60.4815°N 22.3678°E), slope 7.0%, Stagnosol 

(clay), experimental field with 12 plots (each 18×51 m), data period 1989-

2002, erosion 570 (perennial grass) - 2100 kg ha-1 yr-1 (cereals with autumn 

ploughing) 

Puustinen et al. (2005) / Finnish 

Environment Intitute (2019) 

Gårdskulla (F2) Southern Finland (60.1766°N, 24.1726°E), slope 5.0%, Stagnosol (clay), 

single field (4,7 ha), sub-surface drained, data period 2011-2020, erosion 

751 kg ha-1 yr-1 (perennial pasture)  

Turunen et al. (2017) / The Field 

Drainage Research Association 

Hovi (F3) Southern Finland (60.4232°N, 24.3711°E), slope 1.7%, Stagnosol (clay), a 

section of a larger field (12 ha), sub-surface drained, data period 1990-2001, 

erosion 640 kg ha-1 yr-1 (cereals with autumn ploughing) 

Bengtsson et al. (1992) / Finnish 

Environment Intitute (2019) 

Kotkanoja (F4) Southern Finland (60.8157°N, 23.5110°E), slope 2.6% Stagnosol (clay), 

experimental field with 4 plots (each 33×132 m), sub-surface drained, data 

period 1993-2010, erosion 541 (perennial grass) - 987 kg ha-1 yr-1 (cereals 

with autumn shallow stubble tillage) 

Uusitalo et al. (2018) / Finnish 

Environment Intitute (2019) 

Liperi (F5) Eastern Finland (62.5297°N, 29.3669°E), slope 1.0%, Stagnosol (silt), 

experimental field with 4 plots (each 20×126 m), sub-surface drained, data 

period 1989-1999, erosion 55 (perennial grass) - 125 kg ha-1 yr-1 (cereals 

with autumn ploughing) 

Kukkonen et al. (2004) / 

Puustinen et al. (2010)  

Nummela (F6) Southern Finland (60.8660°N, 23.4300°E), slope 0.8%, Stagnosol (clay), 

single field 9 ha, sub-surface drained, data period 2007-2016, erosion 1245 

kg ha-1 yr-1 (cereals with autumn cultivator tillage) 

Äijö et al. (2018) / The Field 

Drainage Research Association 
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Toholampi (F7) Central-Western Finland (63.8209°N, 24.1598°E), slope 1.0%, Regosol 

(sand), experimental field with 16 plots (each 16×100 m), sub-surface 

drained, data period 1997-2009, erosion 195 (no autumn till) - 380 kg ha-1 

yr-1 (cereals with autumn ploughing) 

Turtola ja Kemppainen (1998) / 

Finnish Environment Institute 

(2019) 

 175 

The validation of erosion models, such as the RUSLE, is typically difficult and rarely done mainly due to limitations in data 

availability (Batista et al., 2019). To get an indication of the performance of the RUSLE on larger spatial scales, the current 

model was tested at river basin and small catchment scales against total suspended solid measurements (TSS) from streams 

and rivers. The test was done by analysing the statistical relationship of estimated potential erosion risk (t yr-1) of agricultural 

lands by RUSLE and measured average TSS (t yr-1). However, this test is considered only indicative of RUSLE’s performance 180 

due to three reasons. First, the potential erosion risk describes only erosion from agricultural lands, whereas TSS measurements 

account for erosion from all land uses. Second, potential erosion risk emphasizes the source of erosion rather than later phases 

of the erosion-transport-sedimentation process that affect actual TSS quantities in rivers. Third, the agricultural practices have 

varied in the catchments and basins over the TSS measurement periods that could not be accounted for, and therefore, the 

potential erosion risk was used. Despite these limitations, the test provides useful information for understanding the 185 

performance of the RUSLE beyond the calibration conditions and in a larger scale, but it is noteworthy that it does not equal 

model validation. 

The test catchments and basins were selected so that the share of agricultural land was higher than 10% of total and large 

lakes and major dams with reservoirs were absent, since these surface water features reduce the transport of sediments and 

would reduce the commensurability between the measurements and the model outputs. Data was available for five small 190 

catchments with sizes varying from 5.3 to 15.2 km2 and share of agricultural land varying from 17 to 63% (Tab. S2 and Fig. 

S2) (Finnish Environment Institute, 2019). For river basins, data was available for 32 river basins from which 14 filled the 

criteria defined above. The 14 selected basins varied in size from 566 to 3095 km2 and the share of agricultural land varied 

from 11 to 43% (Tab. S2 and Fig. S2) (Finnish Environment Institute, 2019). The measurements spanned from one to three 

decades and the agricultural practices in the catchments varied and evolved in time. 195 

2.4 Potential erosion risk 

The potential erosion risk (kg ha-1 yr-1) describes the maximum potential erosion of agricultural land, which was defined here 

as bare fallow land without sub-surface drainage. Bare fallow is as land that is not under crop rotation and has no planted 

vegetation cover. The potential erosion risk was calculated from the erosion susceptibility data by multiplying it with a C factor 

value of 0.5 suggested for bare fallow land by the literature (Panagos et al., 2015b). The resulting two-meter resolution potential 200 

erosion risk data allows a spatially consistent analysis of erosion risk without the effects of crops and management.  
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In this study, the data was analysed at 2 m resolution at two case study areas, and at sub-basin scale for the whole Finland. 

In addition, the potential erosion risk was analysed in the proximity (< 50 m) of main water bodies that were defined according 

to the stream network, river area, and lake area data (Finnish Environment Institute, 2010). 

2.5 Actual erosion risk 205 

The actual erosion risk (kg ha-1 yr-1) was calculated using the erosion susceptibility data and by considering the agricultural 

practices of 2019 in the C factor and the sub-surface drainage in the P factor. The calculation of the actual erosion risk was 

done by using average value of the erosion susceptibility for each field parcel and by multiplying this with field parcel specific 

C and P values. The resulting data is a vector data with actual erosion risk estimate for each field parcel.  

The agricultural practices of 2019 were taken from the field parcel data of Finnish Food Authority, which contains field 210 

parcel specific information on cultivated crops and erosion reduction measures, including reduced autumn tillage, winter-time 

vegetation cover and buffer zones.  The data are collected annually from farmers through government controlled self-reporting 

process, and it is also the basis for payment of agricultural and environmental subsidies.  According to this data, Finland had 

2,34 million hectares of agricultural land with 1,09 million field parcels with 212 different crop and vegetation cover types. 

The crops in the field parcel data were parametrised in the Ccrop, and the calibration provided values for 89% of the 215 

agricultural area (cereals and grasses). The literature (Panagos et al., 2015b) provided further Ccrop values for many crops, but 

not for all. Remaining crops were divided to groups according to their similarities and a Ccrop value of most similar crop in the 

RUSLE calibration or literature were assigned for those. For example, all large root vegeTab.s were placed in the same group 

and they were given the Ccrop value of potato and sugar beet in the literature (Panagos et al., 2015b). There were still few annual 

crops that could not be given Ccrop values according to calibration and literature, and for these, calibrated Ccrop value of cereals 220 

was used. The parameterisation is summarized in Tab. 3. 

The erosion reduction measure of reduced autumn tillage was parametrised in the Ctillage. The Ctillage of normal, conventional 

autumn ploughing was assumed to have a value of 1, similarly to Panagos et al. (Panagos et al., 2015b), and the Ctillage for 

reduced autumn tillage was defined as the ratio of calibrated C value of cereals with reduced autumn tillage (cultivator, shallow 

stubble tillage) and C value of autumn ploughing.  225 

The winter-time vegetation cover was parametrised in the Ccover and it was defined as the ratio of calibrated C value of 

cereals with winter-time stubble (no autumn till, direct sowing) and C value of normal autumn ploughing. Thus, in the 

calculation of actual erosion risk the winter-time vegetation corresponds to winter-time stubble. However, in the field parcel 

data the winter-time vegetation cover can consist of different types, including grasses, stubble, vegetation covered fallow, 

over-wintering vegetation and perennial plants, but these were not distinguished in the data.   230 

The subsurface drainage data was from the Finnish Field Drainage Association and it contained information on drainage 

status of field parcels. It is based on regional reporting that has been arranged into a database. The data is the best available on 

field parcel level with adequately comprehensive coverage, but it may lack information on drainage status of some individual 

fields. The P factor value of 0.6 was used for the sub-surface drainage, similarly to Lilja et al. (2017a) and RUSLE calibration. 
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The retention effect of buffer zones is typically considered in the P factor, but due to limitations in the data this could not 235 

to be considered in the calculation of actual erosion risk. The retention effect refers to retention of eroded soil and solids that 

are transported by overland flow from the uphill field area over the buffer zone. The field parcel data identifies buffer zones 

as individual field parcels, but it does not identify the field parcel from which the buffer zone is intended to capture the eroded 

and transported soil and solid material. In addition, entire fields have been classified as buffer zones in the field parcel data 

due to regulatory issues. Therefore, an analytical and systematic approach for quantifying retention effect was not possible. 240 

The vegetation cover of buffer zone areas themselves was, however, considered in the Ccrop, and calibrated Ccrop value of grass 

was used. 

After the calculation of actual erosion risk data, it was analysed on municipal level, which is a suitable administrative level 

from policy perspective. The vector data was first rasterized to 10 m resolution before calculating zonal statistics for municipal 

areas. 245 

 

Table 3: Summary of the parametrisation of C and P factors for calculation of actual erosion risk.  

Field parcel variable Factor Description 

Crops and vegetation cover Ccrop Calibration provided 89% of Ccrop values for crops while literature 

(Panagos et al., 2015b) provided values for several crops. Some crops 

were given Ccrop according to their similarity with crops for which Ccrop 

was available (e.g., large root vegetables). For a few crops Ccrop values 

could not be given according to calibration or literature, and calibrated 

Ccrop value of cereals was used.  

Reduced tillage Ctillage Ctillage was defined as ratio of calibrated C of cereals with reduced tillage 

(shallow stubble tillage, cultivator) and calibrated C of cereals with 

autumn ploughing. 

Winter-time vegetation cover Ccover Ccover was defined as ratio of calibrated C of cereals with winter-time 

stubble (no autumn till, direct sowing) and calibrated C of cereals with 

autumn ploughing. 

Sub-surface drainage P P value of 0.6 was used similarly to Lilja et al. (2017a) 

Buffer zones Ccrop Calibrated Ccrop of grass was used for buffer zone areas. The retention 

effect could not be considered.  
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2.6 Erosion Management Index 

A quantitative Erosion Management Index (EMI) was developed to estimate the level of erosion management over specific 250 

areas. The index is dimensionless, and it varies from 0 to 1. Higher values indicate that the area is closer to minimum potential 

erosion and thus the erosion management efforts are more effective. The EMI can be calculated as (Eq. 4) 

EMIi = (Emax,i-Ei )/( Emax,i – Emin,i),          (4) 

where EMIi is the index value for an area i, Emax,i is the maximum and Emin,i is the minimum potential erosion (kg/ha/yr), and 

Ei is the crop and management specific erosion (kg/ha/yr). The Emax, Emin and Ei can be defined case specifically. The strength 255 

of the index is that it can be used for spatially and temporally consistent evaluation of erosion management. 

In this study, the Emax was defined as the calculated potential erosion risk, corresponding to field conditions with bare 

fallow land and with no sub-surface drainage. Emin was defined as erosion under field conditions with perennial grass cover 

and with sub-surface drainage. The Ei was defined as the calculated actual erosion risk, which meant that the erosion 

management measures considered in the EMI were crop and vegetation cover type, winter-time vegetation cover, reduced 260 

tillage, and sub-surface drainage. The buffer zones were considered only partially, as in the actual erosion risk. 

The calculated EMI was then analysed on municipal level together with the agricultural area data from field parcel data 

(Finnish Food Authority) and with the calculated actual erosion risk data. The used methods included Pearson’s linear 

correlation (Pearson, 1920), Kendal’s rank correlation (Kendall, 1975) and Welch’s t-test (Welch, 1951). 

3 Results 265 

3.1 RUSLE performance 

The overall RUSLE performance was reasonable, although with some limitations. The calibrated RUSLE estimated erosion 

relatively accurately at five experimental fields – Aurajoki, Gårdskulla, Hovi, Liperi and Toholampi – and underestimated it 

at two clayey experimental fields – Kotkanoja and Nummela – as shown in Tab. 4. The mean error at the five accurately 

estimated fields was -2% and varied from -43 to +22%, and at the two underestimated fields the errors were -90 and -49%. 270 

The R2 for all seven fields was 0.75 (p-value < 0.000) (Fig. S3A), and for the five relatively accurately estimated fields 0.98 

(p-value < 0.000). The average ratio of all estimated to measured erosion rates of the seven fields was 0.83.  

 

Table 4: Measured and estimated erosion rates at seven experimental fields (Tab. 2 and Fig. S2). 

Crop and tillage management Field Treatment Measured Estimated Error    
[kg ha-1 yr-1] [kg ha-1 yr-1] [%] 

Spring cereals with autumn ploughing Aurajoki Normal ploughing 2100 2213 5 % 

Liperi Normal ploughing 125 146 16 % 

Toholampi Normal ploughing 380 329 -13 % 

Kotkanoja Normal ploughing 968 489 -49 % 

Hovi Normal ploughing 640 638 0 % 
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Cereals with reduced autumn tillage Aurajoki Shallow stubble tillage 1420 1699 20 % 

Aurajoki Cultivator 1760 1699 -3 % 

Kotkanoja Shallow stubble tillage 987 379 -62 % 

Nummela Cultivator 1246 125 -90 % 

Winter cereals Aurajoki Winter wheat 1555 1566 1 %  
Liperi Winter rye 90 103 14 % 

Cereals with winter-time stubble Aurajoki No autumn till 790 754 -5 % 

Liperi No autumn till 80 50 -38 % 

Toholampi No autumn till 195 112 -43 % 

Aurajoki Direct Sowing 620 754 22 % 

Kotkanoja Direct sowing 541 168 -69 % 

Perennial grass Aurajoki Grass ley 570 571 0 %  
Liperi Grass ley 55 38 -32 % 

 Kotkanoja Grass ley 631 262 -58 % 

Perennial pasture Gårdskulla Pasture 720 720 0 % 

 275 

The calibrated C values are shown in Tab. 5, and they provide estimates for the effect of crops and management on erosion. 

According to the C factor values for cereals, winter-time stubble reduces erosion by 66%, reduced autumn tillage by 23%, 

winter cereals by 29% compared to autumn ploughing. The perennial grass and pasture have 69% and 54% lower erosion than 

the cereals with normal ploughing, respectively.  The Ccover for winter-time vegetation and Ctillage for reduced autumn tillage 

that were calculated from calibrated C factor values, are 0.341 and 0.768, respectively (Tab. 5).  280 

 

Table 5: The calibrated C factor values, and calculated Ccover value for winter-time vegetation cover and Ctillage values for autumn 

ploughing and reduced autumn tillage. 

Crop and management Calibrated Calculated  Panagos et al. (2015b)  
C  Ccrop Ccover Ctillage 

 

Cereals with normal autumn ploughing 0.211 0.211 - 1 Ccrop: 0.2, Ctillage: 1 

Cereals with reduced autumn tillage  

(cultivator, shallow stubble tillage) 

0.162 0.211 - 0.768 - 

Winter cereals 0.149 - - - - 

Cereals with winter-time stubble  

(no autumn tillage, direct sowing) 

0.072 0.211 0.341 - Ctillage: 0.25 (no till) 

Perennial grass 0.065 - - - C: 0.0273 

Perennial pasture 0.097 - - - C: 0.0971 

 

The testing of RUSLE against TSS measurements at the five small catchments and fourteen river basins (Tab. S2) indicated 285 

good performance at large spatial scales. At the small catchments the R2 for estimated potential erosion risk and TSS 

measurements was 0.49 (p-value = 0.1896), but the tau of Kendall’s rank correlation was 1.00 (p-value=0.0167). This indicates 

that while the estimated potential erosion risk deviated from the measurements, RUSLE was able to rank the magnitude of 

erosion correctly between the catchments. At the river basins the R2 was 0.90 (p-value < 0.000) and the Kendall’s tau 0.78 (p-

value < 0.000) (Fig. S3B).  290 
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3.2 Potential erosion risk 

Samples of the estimated two-meter resolution potential erosion risk data from two neighbouring basins – Karjaanjoki and 

Paimionjoki – in the Southern coast of Finland are shown in Fig. 2, to exemplify how the potential erosion risk varies in the 

landscape and between basins. At the Karjaanjoki basin, the average potential erosion risk was estimated to be 4530 kg ha-1 

yr-1, the average field slope varies between 1.5-5.0° by sub-basin, and high erosion areas are scattered in the landscape. At the 295 

Paimionjoki basin, in turn, the average potential erosion risk was estimated to be lower, 2020 kg ha-1 yr-1, with lower average 

slope of 0.4-2.1°, and the areas of highest erosion are concentrated near the river and stream channels.  

 

Figure 2: Samples of estimated two-meter resolution potential erosion risk data (kg ha-1 yr-1) for agricultural lands in two river 

basins in the Southern Finland: a) Karjaanjoki and b) Paimionjoki. White areas are non-agricultural land. 300 

On the country scale, the average potential erosion risk of agricultural lands was estimated to be 2,010 kg ha-1 yr-1, and it varied 

between 110 and 14,030 kg ha-1 yr-1 by sub-basin, as shown in Fig. 3. Two high erosion risk regions were identified, one in 

the central Southern Finland and the other at the coastal area in the South-Western Finland. A large region with relatively low 

potential erosion risk in turn was found in the coastal area of the central Western Finland.   
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 305 

Figure 3: Estimated potential erosion risk (kg ha-1 yr-1) of agricultural lands by sub-basins. Potential erosion risk corresponds to 

bare fallow land without planted vegetation cover and any erosion mitigation measures (e.g. buffer zones, sub-surface drainage).  

The topography of the fields was the most influential factor in the estimation of potential erosion risk. The linear correlation 

between slope length and steepness factor (LS) and the potential erosion risk at sub-basin level was 0.67 (p-value < 0.000) 

whereas it was it was 0.51 (p-value < 0.000) for soil erodibility (K) and 0.39 (p-value < 0.000) for rainfall erosivity (R).  310 

The LS factor was also a major contributing factor in the two regions of high erosion risk identified in Fig. 3. The LS factor 

had heightened values in those same regions as shown in Fig. 4. Similarly, the lower LS factor values in the western coast 

were contributing to the lower erosion risk in those areas. According to the K factor, large areas of erosive soils were found in 

the Southwest, and highly erosive soils were found in the western coast, and particularly in the river valleys (Fig. 5b). The 

areas with highest rainfall erosivity were found in the western coast of Southern Finland (Fig. 5a).    315 
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Figure 4: The RUSLE factors for agricultural lands by sub-basin: a) Rainfall erosivity (R) (Panagos et al., 2015a), b) soil erodibility 

(K) (Lilja et al., 2017b, 2017a) and c) estimated slope length and steepness (LS) factors.  

The potential erosion risk within 50 m distance from main water bodies was estimated to be on average 3,140 kg ha-1 yr-1, 320 

which is 1.6 times the average of all agricultural lands. In 10% of the sub-basins this ratio was higher than 2.3, as shown in 

Fig. 5. The agricultural areas within 50 m distance from main water bodies account for 6% of arable land, but their total erosion 

risk (t/yr) was 9% of all agricultural lands, which demonstrates their importance as sources of erosion. 

Two regions with considerably higher potential erosion risk near the water bodies were identified, and both are situated by 

the coast of the Baltic sea (Fig. 5). The largest one is in the Southwest Finland and the smaller in South Finland (Fig. 5). Also, 325 

the western coast seems to have several sub-basins with higher potential erosion risk near the water bodies. Southeast Finland 

in turn has a large region where the erosion is more uniform in all agricultural areas and where lakes form a large proportion 

of the area. In the Northern Finland, with low proportion of agricultural land, the situation is mixed. 
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 330 

Figure 5: Potential Erosion risk near the main water bodies (<50 m) compared to potential erosion risk of all agricultural lands by 

sub-catchments. The map values are the ratio of these two, and the values above (below) one refers to higher (lower) erosion risk 

within 50 m distance from the main water bodies. The main river basins and lakes (>10 km2) are also shown in the map. 

3.3 Actual erosion risk 

RUSLE estimate for the actual erosion risk with management practices of 2019 was on average 426 kg ha-1 yr-1 and it varied 335 

by municipality from 102 to 1288 kg ha-1 yr-1 as shown in Fig. 6A (Fig. S4, Tab. S4). The spatial distribution of the actual 

erosion risk resembled the erosion risk in Fig. 3. The two areas with the highest erosion were similarly detected in central and 

coastal area in Southern Finland, and a large area with low erosion was also identified in the coastal area in central Western 

Finland.  

The estimate for the actual total erosion risk of agricultural land was 985,942 t yr-1, and it varied by municipality from 13 340 

to 33,088 t yr-1 (Tab. S4).  Majority of the total erosion occurs in Southwest Finland, as shown in Fig. 6B. Agriculture is most 

intensive in Southern and Western Finland, where over 50% of the land area of some municipalities can be agricultural land. 
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Individual municipalities with high actual total erosion are also situated in the inland parts of Central Finland. Altogether, 37% 

of actual total erosion occurred in 10% of the municipalities (n=31) with highest total erosion risk. 

 345 

 

Figure 6: a) Agricultural land area to total land area (%), and estimated b) actual erosion risk (kg ha-1 yr-1), c) actual total erosion 

risk (t yr-1) and d) Erosion Management Index (EMI) at municipal level in 2019.  Higher EMI values indicate more effective erosion 

management. 
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3.4 Erosion Management Index 350 

The average EMI of municipalities was 0.84, and the variability between the municipalities was high, ranging from 0.60 to 

0.99, as shown in Fig. 6D and Fig. 7 (Tab. S4). The visual examination of EMI values, contrasted with ranked municipalities 

in Fig. 7 does not reveal strong patterns that would indicate better erosion management in areas with high field area (%), high 

actual erosion risk (kg ha-1 yr-1) or high actual total erosion risk (t yr-1). However, in areas with very low field area (<10%) and 

actual total erosion risk (<160,000 t yr-1), the EMI values were lower. Most interestingly, the EMI values tend to be lower in 355 

municipalities with high actual erosion risk (Fig. 7B), indicating that the erosion management measures have not been targeted 

according to the erosion risk. Many municipalities with high field area, high actual erosion risk and high actual total erosion 

risk have also below average EMI values. 
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 360 

 

Figure 7: Erosion Management Index (EMI) of municipalities contrasted with ranked a) field area (share of total area, %) b) actual 

erosion risk (kg ha-1 yr-1) and c) actual total erosion risk (t yr-1). Higher EMI values indicate more effective erosion management. 

EMI data is smoothed with moving average window (window size=31). 

The statistical analyses support the visual interpretation of EMI, but they also reveal some statistically significant patterns.  365 

Pearson’s and Kendal’s correlation analyses show statistically significant but weak relationships between EMI (-) and field 

area (%), and between EMI and actual total erosion risk (t yr-1), but there was no statistically significant relationship between 
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EMI and actual erosion risk (kg ha-1 yr-1), as shown in Tab. 6. This can indicate that erosion management efforts have been 

targeted slightly more to intensive agricultural areas, but not specifically to areas with high erosion risk.   

 370 

Tab. 6. Correlation of the erosion management index (EMI) with field area (%), actual erosion risk (kg ha-1 yr-1) and actual total 

erosion risk (t yr-1) on municipal level (n=309). 

 Pearsons’ r (p-value) Kendal’s tau (p-value)  

Field area (%) 0.36 (< 0.000) 0.3 (< 0.000) 

Actual erosion risk (kg ha-1 yr-1) -0.05 (0.341) 0.06 (0.09) 

Actual total erosion risk (t yr-1) 0.24 (< 0.000) 0.2 (< 0.000) 

 

Also, Welch’s t-test suggests that the 10% of the municipalities with highest field area (%) and actual total erosion risk (t yr-

1) have slightly higher (+2.5% and +4.5%, respectively) EMI values than the rest of the municipalities, but in the case of  actual 375 

erosion risk (kg ha-1 yr-1) the EMI values did not differ between the ranked top 10% and rest of the municipalities, as shown 

in Tab. 7. This also supports the interpretation that erosion management efforts have been targeted slightly more to intensive 

agricultural areas, but not to areas with highest erosion risk.   

 

Tab. 7. Comparison of average erosion management index (EMI) of top 10% of municipalities having highest field area, highest 380 
actual erosion risk, and highest actual total erosion risk with the average EMI of the rest of the municipalities using Welch’s t-test. 

Ranking of municipalities Average EMI of 90th 

percentile of the 

municipalities (n=31) 

Average EMI of the 

municipalities below 90th 

percentile (n=278) 

t-value p-value 

Field area (%) 0.865 0.836 4.287 <0.000 

Actual erosion risk (kg ha-1 yr-1) 0.845 0.838 1.140 0.261 

Actual total erosion risk (t yr-1) 0.858 0.837 4.050 <0.000 

4 Discussion 

4.1 Earlier erosion estimates 

Large scale model-based erosion research is limited in Finland, but at least three earlier studies exist. A European scale study, 

based on RUSLE2015, estimated the average erosion of agricultural lands in Finland to be on average 460 kg ha-1 yr-1, and 385 

one of the lowest in Europe (Panagos et al., 2015c). National scale studies, based on RUSLE2015 and VIHMA models and 

crop and management data for 2010, estimated the average erosion to be on average 418 and 485 kg ha-1 yr-1, respectively (Lilja 

et al., 2017b; Puustinen et al., 2010). In our study, the average erosion was estimated to be 425 kg ha-1 yr-1, and thus the 

modelling approaches agree on the average magnitude of erosion in agricultural lands of Finland.   
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The performance of RUSLE in this study was also similar to previous evaluation of RUSLE that was based on calibration 390 

with partially same experimental fields (Lilja et al., 2017a). There the model passed the ± 50% error criteria in 72% of the 19 

cover and management cases, while in this study, the model passed the same criteria in 76% of the 20 cases. The evaluation 

of (Lilja et al., 2017a) focused only on erosion via surface runoff and sub-surface drainage was excluded, and therefore, the C 

factor values were also lower than in our study. The C factor values in the European scale study (Panagos et al., 2015b) were 

similar, although slightly lower, than in this study, as shown in Tab. 5.     395 

4.2 Uncertainties 

The strength of the RUSLE is in its capability to estimate spatial distribution of erosion magnitude within landscapes, and it is 

shown in this study and in earlier research (Renard et al., 1997; Wischmeier and Smith, 1978) that the emergent long-term 

bulk erosion magnitude can be a result of the a few dominant controlling factors. However, it is also recognized that the model 

includes uncertainties rising from a range of generalizations and simplifications in its description of the erosion process, and 400 

even validated models are subject to uncertainties when model predictions are conducted (e.g., Højberg and Refsgaard, 2005; 

Refsgaard et al., 2006). The quantification of the total uncertainties remains as a challenge regarding the large spatial estimates, 

as well as for model applications at large (Batista et al., 2019; Beven, 2016). 

According to sensitivity analyses, the LS and C factors are the largest sources of uncertainty in RUSLE (Estrada-Carmona 

et al., 2017). The resolution of DEM for computing the LS factor is known to affect the estimation of slope in gently sloping 405 

areas and the estimation of up-slope contributing area in steep areas, and high-resolution DEM’s reduce the resulting 

uncertainty (Gertner et al., 2002). The choice of computation method of LS factor is also found to affect the magnitude of the 

erosion estimates (Hrabalíková and Janeček, 2017) and the emphasis between rill and inter-rill erosion (Erskine et al., 2006). 

In this study, the LS factor was computed using a high-resolution DEM (National Land Survey of Finland, 2020) and with a 

well-established method (Desmet and Govers, 1996), and is therefore expected to provide an adequate description of the LS-410 

factor and a reasonable estimate of the location of high erosion areas within the fields for erosion management purposes. 

The C factor values for crops and management vary by location depending on local conditions and practices (Panagos et 

al., 2015b) and they may contain uncertainties. However, 89% of the crop area was parameterised according calibration at 

Finnish experimental fields and, therefore, the parameterisation is largely expected to be representative of Finnish conditions 

and practices. The parametrisation of winter-time vegetation was, however, based on winter-time stubble (no autumn till), 415 

whereas the crop and management data (Finnish Food Authority) considers various cover types as winter-time vegetation 

cover, but does not specify them.   

The used K factor was based on national 1:200,000 scale soil data (Lilja et al., 2017c; Lilja and Nevalainen, 2006) and it 

does not capture all local heterogeneities affecting the erosion process. The estimation of K factor values of different soils is 

also limited in Finland, and the underestimation of erosion observed at Kotkanoja and Nummela fields suggest further research 420 

is needed, particularly in the case of heavy clay soils. Likely the soil structure dynamics of clay soils (e.g., Bissonnais, 2016; 

Turunen et al. 2017) is one source of uncertainties in the estimates regarding the cohesive soils.  
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The sub-surface drainage was parameterised in the P factor with the support of literature, but the empirical research on the 

effect of sub-surface drainage on erosion is scarce. The effect of sub-surface drainage is likely to vary depending on the soil 

and catchment properties as well as the type, condition, and design parameters of the drainage system.  425 

Furthermore, the exclusion of the retention effect of buffer zones in the P factor may have led to overestimation of erosion 

risk, although the overestimation in this study is expected to be small. A study in Finland, on the effect of 10-m-wide buffer 

zones at the lower end of a subsurface drained field on clay soil, found that the buffer zones reduced erosion loading via 

overland flow by 11-58% depending on crop and management types (Uusi-Kämppä and Jauhiainen, 2010). However, 

according to the experimental field data (clayey soils of Gårdskulla, Kotkanoja, Nummela and sandy soil of Toholampi) used 430 

in this study 50-92% of erosion matter is transported via sub-surface drain flow, which corresponds findings in earlier research 

(Turunen et al., 2017; Warsta et al., 2013; Uusitalo et al., 2001; Turtola and Paajanen, 1995; Øygarden et al., 1997). Thus, at 

sub-surface drained fields the retention effect is likely smaller than in non-subsurface drained fields, but the effect may vary 

considerably between fields. Buffer zones can, however, have a significant role in preventing erosion from their own area, as 

they are often located in sloping lands near water bodies. 435 

Despite these limitations, the calibration of RUSLE at field parcel scale and testing at catchment and basin scales indicate 

that the results and the developed data are of reasonable quality, and they markedly improve the understanding of distribution 

of erosion and the possibilities of erosion management in Finland. One of the most promising features of the model application 

was that the calibration of the RUSLE differentiated well between crops and management types, which provides a good basis 

development and assessment of different crop and management scenarios. However, certain level of care is needed in the 440 

interpretation of data, particularly at the field parcel scale, as the RUSLE underestimated erosion at two of the seven fields.  

4.3 Policy and management implications 

The results showed considerable spatial variability in erosion risk over multiple spatial scales and this heterogeneity includes 

large potential to be accounted for in the Finnish agricultural policy and environmental programmes. The results also suggest 

that the erosion reduction measures have not been targeted efficiently to high erosion risk areas, which is also largely due to 445 

lack data on erosion risk. These limitations call for improvements in policy and management, and this study formulates how 

improvements can be made through an erosion management approach, where  

1) the erosion management is guided by spatially explicit erosion risk data, 

2) the spatial distribution and magnitude of erosion risk is considered in addition to location and total area of the fields, 

3) the high erosion risk areas and their sizes and locations are identified with systematic data analysis over multiple 450 

spatial scales and erosion management measures are targeted accordingly, and 

4) the erosion management measures are chosen and implemented according to the local erosion conditions. 

In addition to these, the study provides a generalisation of the effect of different management practices on erosion, that is based 

on RUSLE calibration with measurement data from seven Finnish experimental fields. In cereal cultivation, the most effective 

erosion reduction measure was found to be winter-time stubble (-66%), whereas winter cereals (-29%) and reduced autumn 455 
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tillage (-23%) were found to be less effective. Perennial grass type vegetation cover, in turn, was found to reduce erosion even 

more (-69%) than cereals with winter-time stubble. Therefore, in the targeting of environmental measures, winter-time stubble 

could be preferred over winter cereals as a winter-time vegetation cover. Perennial grass type vegetation cover could be 

emphasized at field parcels with high erosion risk and potentially highest off-site impacts, such as those with steep slopes near 

water bodies. 460 

4.4 Future research directions 

The uncertainties in the RUSLE erosion estimates can be reduced with further empirical data and consequently by improving 

the parameterization and model testing approaches. In the Finnish case, the improvement of spatial accuracy of soil data and 

its parameterisation in the K factor would yield more accurate erosion estimates. Improvements in the parameterisation of 

erosion mitigation measures in the C and P factor would improve the estimation of the effect of erosion reduction measures.  465 

The RUSLE does not consider sediment transport and approaches, such as the sediment connectivity (Najafi et al., 2021; 

Heckmann et al., 2018; Bracken et al., 2015) would complement the RUSLE erosion risk estimates and improve the targeting 

of erosion reduction measures. Sediments are likely to be transported differently from each field parcel to water bodies and to 

the outlet of the basin, and this may have influence on how the erosion management efforts should be targeted. 

The developed data enables improved location specific erosion management strategies, and this potential should be further 470 

investigated. The current study revealed that the targeting of erosion management measures can be improved, but the erosion 

reduction potential of such improvements is yet to be quantitatively evaluated.  

In addition, the developed RUSLE data provides a basis for estimation of losses of soil bound phosphorous and carbon, 

and research in these directions would further improve understanding of agricultural loading to water bodies and carbon 

balances in agricultural soils. 475 

5 Conclusions 

A major impediment for efficient agricultural erosion management in Finland has been the lack of comprehensive spatial data 

on erosion risk, which has affected the formulation of policy and targeting of the erosion reduction measures. This limitation 

was addressed in this study by developing a two-meter resolution erosion risk data for Finland using RUSLE, and by analysing 

the spatial distribution of erosion risk and its management in agricultural lands.  480 

The developed data considerably improves the understanding on erosion risk in Finland, and it was found that erosion risk 

varies substantially in the landscape over multiple spatial scales. The average erosion of agricultural lands was estimated to be 

430 kg ha-1 yr-1 with agricultural practices of 2019, and it varied from 100 to 1290 kg ha-1 yr-1 by municipality. On more local 

scales, the erosion risk had even greater variability. The findings also suggest that erosion management has not been well-

targeted according to the erosion risk. 485 
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The produced data opens a possibility for the policies and programmes aiming for erosion reduction to (1) take advantage 

of the estimate on spatial distribution of erosion risk, (2) have greater emphasis on erosion risk, (3) consider erosion risk over 

multiple spatial scales, and (4) support more location specific erosion reduction measures to achieve more effective outcomes. 

Additionally, the produced data opens possibilities for new research, including the assessment of the loss of soil bound 

phosphorous and carbon through soil erosion. These directions are applicable also in other regions, in addition to Finland.   490 

The benefits of including modelling approaches in the formulation of policy and planning of are well demonstrated by this 

study, but the modelling related uncertainties also need to be considered and communicated. Therefore, the inclusion of models 

is best implemented as part of broader framework, which includes empirical data, comparative models, expertise from different 

areas, and uncertainty management. The uncertainty in erosion modelling can be reduced by new empirical measurement 

campaigns, more accurate soil maps, and by further model development.   495 

 

Data availability. The erosion risk data for agricultural lands will be publicly available through data repositories of Natural 

Resources Institute Finland (www.luke.fi). 

 

Author contributions. TAR, SP, and ET conceptualised the study. TAR collected and prepared all data, performed all 500 

calculations and analyses, and wrote the initial draft manuscript. MT provided expertise on modelling the erosion processes. 

JU-K, and ET provided expertise on field measurements data, agricultural practices, erosion processes and erosion mitigation 

measures. All authors contributed to the writing of the manuscript. 

 

Competing interests. The authors declare no conflict of interest. 505 

 

Acknowledgements. The work was funded by Ministry of Agriculture and Forestry of Finland and Natural Resources Institute 

Finland. The authors also want to acknowledge the work of Harri Lilja on application of RUSLE in Finland, as it provided the 

basis for the work presented in this paper; Anders Munck at the Finnish Food Authority for preparing and providing the field 

parcel data; and Helena Äijö and Jyrki Nurminen from Finnish Field Drainage Association/The Field Drainage Research 510 

Association for preparing and providing the measurement data for Gårdskulla and Nummela fields and the data on national 

sub-surface drainage coverage. 

References 

Äijö, H., Numminen, J., Myllys, M., Sikkilä, M., Salo, H., Paasonen-Kivekäs, M., Turunen, M., Koivusalo, H., Alakukku, L., 

Puustinen, M., 2018. Toimivat salaojitusmenetelmät kasvintuotannossa (Feasible subsurface drainage methods in crop 515 

production) (TOSKA). The Field Drainage Research Association, Helsinki. 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

Alahuhta, J., Hokka, V., Saarikoski, H., Hellsten, S., 2010. Practical integration of river basin and land use planning: lessons 

learned from two Finnish case studies. Geogr. J. 176, 319–333. https://doi.org/10.1111/j.1475-4959.2010.00365.x 

Batista, P.V.G., Davies, J., Silva, M.L.N., Quinton, J.N., 2019. On the evaluation of soil erosion models: Are we doing enough? 

Earth-Sci. Rev. 197, 102898. https://doi.org/10.1016/j.earscirev.2019.102898 520 

Bechmann, M., 2012. Effect of tillage on sediment and phosphorus losses from a field and a catchment in south eastern 

Norway. Acta Agric. Scand. Sect. B — Soil Plant Sci. 62, 206–216. https://doi.org/10.1080/09064710.2012.715183 

Bengtsson, L., Seuna, P., Lepistö, A., Saxena, R.K., 1992. Particle movement of melt water in a subdrained agricultural basin. 

J. Hydrol. 135, 383–398. https://doi.org/10.1016/0022-1694(92)90097-F 

Beven, K., 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and 525 

communication. Hydrol. Sci. J. 61, 1652–1665. https://doi.org/10.1080/02626667.2015.1031761 

Bissonnais, Y.L., 2016. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. 

Eur. J. Soil Sci. 67, 11–21. https://doi.org/10.1111/ejss.4_12311 

Borrelli, P., Alewell, C., Alvarez, P., Anache, J.A.A., Baartman, J., Ballabio, C., Bezak, N., Biddoccu, M., Cerdà, A., Chalise, 

D., Chen, S., Chen, W., De Girolamo, A.M., Gessesse, G.D., Deumlich, D., Diodato, N., Efthimiou, N., Erpul, G., Fiener, 530 

P., Freppaz, M., Gentile, F., Gericke, A., Haregeweyn, N., Hu, B., Jeanneau, A., Kaffas, K., Kiani-Harchegani, M., 

Villuendas, I.L., Li, C., Lombardo, L., López-Vicente, M., Lucas-Borja, M.E., Märker, M., Matthews, F., Miao, C., Mikoš, 

M., Modugno, S., Möller, M., Naipal, V., Nearing, M., Owusu, S., Panday, D., Patault, E., Patriche, C.V., Poggio, L., 

Portes, R., Quijano, L., Rahdari, M.R., Renima, M., Ricci, G.F., Rodrigo-Comino, J., Saia, S., Samani, A.N., Schillaci, C., 

Syrris, V., Kim, H.S., Spinola, D.N., Oliveira, P.T., Teng, H., Thapa, R., Vantas, K., Vieira, D., Yang, J.E., Yin, S., Zema, 535 

D.A., Zhao, G., Panagos, P., 2021. Soil erosion modelling: A global review and statistical analysis. Sci. Total Environ. 

780, 146494. https://doi.org/10.1016/j.scitotenv.2021.146494 

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., 

Ferro, V., Bagarello, V., Oost, K.V., Montanarella, L., Panagos, P., 2017. An assessment of the global impact of 21st 

century land use change on soil erosion. Nat. Commun. 8, 2013. https://doi.org/10.1038/s41467-017-02142-7 540 

Bracken, L.J., Turnbull, L., Wainwright, J., Bogaart, P., 2015. Sediment connectivity: a framework for understanding sediment 

transfer at multiple scales. Earth Surf. Process. Landf. 40, 177–188. https://doi.org/10.1002/esp.3635 

Brenning, A., Bangs, D., Becker, M., Schratz, P., Polakowski, P., 2018. RSAGA: SAGA Geoprocessing and Terrain Analysis 

[WWW Document]. Compr. R Arch. Netw. URL https://CRAN.R-project.org/package=RSAGA (accessed 6.8.21). 

Conrad, O., 2003. SAGA-GIS Module Library Documentation (v2.2.0) [WWW Document]. Syst. Fo Autom. Geosci. Anal. 545 

SAGA. URL http://www.saga-gis.org/saga_tool_doc/2.2.0/ta_hydrology_22.html (accessed 6.8.21). 

Desmet, P.J.J., Govers, G., 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically 

complex landscape units. J. Soil Water Conserv. 51, 427–433. 

Erskine, R.H., Green, T.R., Ramirez, J.A., MacDonald, L.H., 2006. Comparison of grid-based algorithms for computing 

upslope contributing area. Water Resour. Res. 42. https://doi.org/10.1029/2005WR004648 550 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



26 

 

Estrada-Carmona, N., Harper, E.B., DeClerck, F., Fremier, A.K., 2017. Quantifying model uncertainty to improve watershed-

level ecosystem service quantification: a global sensitivity analysis of the RUSLE. Int. J. Biodivers. Sci. Ecosyst. Serv. 

Manag. 13, 40–50. https://doi.org/10.1080/21513732.2016.1237383 

European Commission, 2021. The common agricultural policy at a glance [WWW Document]. Eur. Comm. URL 

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en (accessed 555 

7.26.21). 

European Commission, 2020. Introduction to the EU Water Framework Directive - Environment - European Commission 

[WWW Document]. URL https://ec.europa.eu/environment/water/water-framework/info/intro_en.htm (accessed 2.22.21). 

Finnish Environment Institute, 2019. Sediment and nutrient loading to surface waters in 3 different scales [WWW Document]. 

Finn. Environ. Inst. SYKE. URL 560 

https://metasiirto.ymparisto.fi:8443/geoportal/catalog/search/resource/details.page?uuid=%7B15893DD0-0193-40AD-

9E21-452D271DB791%7D (accessed 1.25.21). 

Finnish Environment Institute, 2010. Ranta10 - rantaviiva 1:10 000 - SYKE [WWW Document]. URL 

https://ckan.ymparisto.fi/dataset/%7BC40D8B4A-DC66-4822-AF27-7B382D89C8ED%7D (accessed 3.25.21). 

Formanek, G.E., ROSS, E., Istok, J., 1987. Subsurface drainage for erosion reduction on croplands in northwestern Oregon. 565 

In: Irrigation Systems for the 21st Century, in: Proceedings of the Irrigation and Drainage Division Special Conference. 

American Society of Civil Engineers, New York, New York, pp. 25–31. 

Gertner, G., Wang, G., Fang, S., Anderson, A.B., 2002. Effect and uncertainty of digital elevation model spatial resolutions 

on predicting the topographical factor for soil loss estimation. J. Soil Water Conserv. 57, 164–174. 

Heckmann, T., Cavalli, M., Cerdan, O., Foerster, S., Javaux, M., Lode, E., Smetanová, A., Vericat, D., Brardinoni, F., 2018. 570 

Indices of sediment connectivity: opportunities, challenges and limitations. Earth-Sci. Rev. 187, 77–108. 

https://doi.org/10.1016/j.earscirev.2018.08.004 

Hijmans, R.J., Bivand, R., Forner, K., Ooms, J., Pebesm, E., 2021. terra: Spatial Data Analysis [WWW Document]. Compr. 

R Arch. Netw. URL https://CRAN.R-project.org/package=terra (accessed 6.8.21). 

Højberg, A.L., Refsgaard, J.C., 2005. Model uncertainty – parameter uncertainty versus conceptual models. Water Sci. 575 

Technol. 52, 177–186. https://doi.org/10.2166/wst.2005.0166 

Hrabalíková, M., Janeček, M., 2017. Comparison of different approaches to LS factor calculations based on a measured soil 

loss under simulated rainfall. Soil Water Res. 12 (2017), 69–77. https://doi.org/10.17221/222/2015-SWR 

Hudson, N.W., 1993. Field Measurement of Soil Erosion and Runoff (No. 68), FAO Soils Bulletin. Food and Agriculture 

Organization of the United Nations, Rome. 580 

Istok, J.D., Boersma, L., Kling, G.F., 1985. Subsurface drainage: An erosion control practice for Western Oregon (No. 729), 

Special report. Agricultural Experiment Station, Oregon State University, Cornvallis. 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



27 

 

IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015. International soil 

classification system for naming soils and creating legends for soil maps (No. 106), World Soil Resources Reports. FAO, 

Rome. 585 

Jarvis, N.J., Villholth, K.G., Ulén, B., 1999. Modelling particle mobilization and leaching in macroporous soil. Eur. J. Soil 

Sci. 50, 621–632. https://doi.org/10.1046/j.1365-2389.1999.00269.x 

Kendall, M.G., 1975. Rank Correlation Methods. Oxford University Press, New York, NY. 

Kukkonen, M., Niinioja, R., Puustinen, M., 2004. Viljelykäytäntöjen vaikutus ravinnehuuhtoutumiin Liperin koekentällä 

Pohjois-Karjalassa. Abstract: Leaching of nutrients under different cultivation in the Liperi test field in North Karelia, 590 

Finland., Alueelliset ympäristöjulkaisut 367. Pohjois-Karjalan ympäristökeskus, Joensuu, Finland. 

Lilja, H., Hyväluoma, J., Puustinen, M., Uusi-Kämppä, J., Turtola, E., 2017a. Evaluation of RUSLE2015 erosion model for 

boreal conditions. Geoderma Reg. 10, 77–84. https://doi.org/10.1016/j.geodrs.2017.05.003 

Lilja, H., Nevalainen, R., 2006. Chapter 5 Developing a Digital Soil Map for Finland, in: Lagacherie, P., McBratney, A.B., 

Voltz, M. (Eds.), Developments in Soil Science, Digital Soil Mapping. Elsevier, pp. 67–603. 595 

https://doi.org/10.1016/S0166-2481(06)31005-7 

Lilja, H., Puustinen, M., Turtola, E., Hyväluoma, J., 2017b. Suomen peltojen karttapohjainen eroosioluokitus (Map-based 

classificication of erosion in agricultural lands of Finland ). Nat. Resour. Inst. Finl. Luke 36. 

Lilja, H., Uusitalo, R., Yli-Halla, M., Nevalainen, R., Väänänen, R., Tamminen, P., Tuhtar, J., 2017c. Suomen 

maannostietokanta: Käyttöopas versio 1.1 (Finnish Soil Database: Manual, version 1.1) (No. 6), Luonnonvara- ja 600 

biotalouden tutkimus. Luonnonvarakeskus (LUKE) (Natural Resources Institute Finland). 

Lugato, E., Smith, P., Borrelli, P., Panagos, P., Ballabio, C., Orgiazzi, A., Fernandez-Ugalde, O., Montanarella, L., Jones, A., 

2018. Soil erosion is unlikely to drive a future carbon sink in Europe. Sci. Adv. 4, eaau3523. 

https://doi.org/10.1126/sciadv.aau3523 

Ministry of Agriculture and Forestry, 2014. Rural Development Programme for Mainland Finland 2014–2020. Ministry of 605 

Agriculture and Forestry of Finland, Availabe at: https://www.maaseutu.fi/uploads/rural_development_programme_2014-

2020.pdf. 

Ministry of the Environment, 2021. Water resources and marine protection [WWW Document]. Minist. Environ. URL 

https://ym.fi/en/water-resources-and-marine-protection (accessed 7.26.21). 

Montanarella, L., Panagos, P., 2021. The relevance of sustainable soil management within the European Green Deal. Land 610 

Use Policy 100, 104950. https://doi.org/10.1016/j.landusepol.2020.104950 

Montgomery, D.R., 2007. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. 104, 13268–13272. 

https://doi.org/10.1073/pnas.0611508104 

Najafi, S., Dragovich, D., Heckmann, T., Sadeghi, S.H., 2021. Sediment connectivity concepts and approaches. CATENA 

196, 104880. https://doi.org/10.1016/j.catena.2020.104880 615 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



28 

 

National Land Survey of Finland, 2020. Elevation model 2 m [WWW Document]. URL 

https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/expert-users/product-descriptions/elevation-model-2-m 

(accessed 5.29.20). 

Øygarden, L., Kværner, J., Jenssen, P.D., 1997. Soil erosion via preferential flow to drainage systems in clay soils. Geoderma 

76, 65–86. https://doi.org/10.1016/S0016-7061(96)00099-7 620 

Panagos, P., Ballabio, C., Borrelli, P., Meusburger, K., Klik, A., Rousseva, S., Tadić, M.P., Michaelides, S., Hrabalíková, M., 

Olsen, P., Aalto, J., Lakatos, M., Rymszewicz, A., Dumitrescu, A., Beguería, S., Alewell, C., 2015a. Rainfall erosivity in 

Europe. Sci. Total Environ. 511, 801–814. https://doi.org/10.1016/j.scitotenv.2015.01.008 

Panagos, P., Balladio, C., Himics, M., Scarpa, S., Matthews, F., Bogonos, M., Poesen, J., Borelli, P., 2021. Projections of soil 

loss by water erosion in Europe by 2050. Environ. Sci. Policy 124, 380–392. https://doi.org/10.1016/j.envsci.2021.07.012 625 

Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L., 2015b. Estimating the soil erosion cover-

management factor at the European scale. Land Use Policy 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021 

Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., Alewell, C., 2015c. The new 

assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 54, 438–447. 

https://doi.org/10.1016/j.envsci.2015.08.012 630 

Pearson, K., 1920. Notes on the History of Correlation. Biometrika 13, 25–45. https://doi.org/10.2307/2331722 

Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., McNair, M., Crist, S., Shpritz, L., Fitton, L., Saffouri, R., 

Blair, R., 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science 267, 1117–1123. 

https://doi.org/10.1126/science.267.5201.1117 

Puustinen, M., Koskiaho, J., Peltonen, K., 2005. Influence of cultivation methods on suspended solids and phosphorus 635 

concentrations in surface runoff on clayey sloped fields in boreal climate. Agric. Ecosyst. Environ. 105, 565–579. 

https://doi.org/10.1016/j.agee.2004.08.005 

Puustinen, M., Tattari, S., Koskiaho, J., Linjama, J., 2007. Influence of seasonal and annual hydrological variations on erosion 

and phosphorus transport from arable areas in Finland. Soil Tillage Res. 93, 44–55. 

https://doi.org/10.1016/j.still.2006.03.011 640 

Puustinen, M., Turtola, E., Kukkonen, M., Koskiaho, J., Linjama, J., Niinioja, R., Tattari, S., 2010. VIHMA—A tool for 

allocation of measures to control erosion and nutrient loading from Finnish agricultural catchments. Agric. Ecosyst. 

Environ. 138, 306–317. https://doi.org/10.1016/j.agee.2010.06.003 

R Core Team, 2020. R: A Language and Environment for Statistical Computing (https://www.R-project.org/). R Foundation 

for Statistical Computing, Vienna, Austria. 645 

Räike, A., Taskinen, A., Knuuttila, S., 2020. Nutrient export from Finnish rivers into the Baltic Sea has not decreased despite 

water protection measures. Ambio 49, 460–474. https://doi.org/10.1007/s13280-019-01217-7 

Refsgaard, J.C., van der Sluijs, J.P., Brown, J., van der Keur, P., 2006. A framework for dealing with uncertainty due to model 

structure error. Adv. Water Resour. 29, 1586–1597. https://doi.org/10.1016/j.advwatres.2005.11.013 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



29 

 

Rekolainen, S., Posch, M., 1993. Adapting the CREAMS Model for Finnish Conditions. Hydrol. Res. 24, 309–322. 650 

https://doi.org/10.2166/nh.1993.10 

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting Soil Erosion by Water: A Guide to 

Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. 703 US Dep. Agric. Wash. 

DC Pp 404. 

Röman, E., Ekholm, P., Tattari, S., Koskiaho, J., Kotamäki, N., 2018. Catchment characteristics predicting nitrogen and 655 

phosphorus losses in Finland. River Res. Appl. 34, 397–405. https://doi.org/10.1002/rra.3264 

Święchowicz, J., 2012. Water erosion on agricultural foothill slopes (Carpathian Foothills, Poland). Z. Fr Geomorphol. Suppl. 

Issues 56, 21–35. https://doi.org/10.1127/0372-8854/2012/S-00102 

Tattari, S., Koskiaho, J., Kosunen, M., Lepistö, A., Linjama, J., Puustinen, M., 2017. Nutrient loads from agricultural and 

forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen? Environ. 660 

Monit. Assess. 189, 95. https://doi.org/10.1007/s10661-017-5791-z 

Turtola, E., Alakukku, L., Uusitalo, R., 2007. Surface runoff, subsurface drainflow and soil erosion as affected by tillage in a 

clayey Finnish soil. Agric. Food Sci. 16, 332–351. https://doi.org/10.2137/145960607784125429 

Turtola, E., Kemppainen, E., 1998. Nitrogen and phosphorous losses in surface runoff and drainage water after application of 

slurry and mineral fertilizer to perennial grass ley. Agric. Food Sci. Finl. 7, 569–581. https://doi.org/10.23986/afsci.5614 665 

Turtola, E., Paajanen, A., 1995. Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from 

a heavy clay soil. Agric. Water Manag. 28, 295–310. https://doi.org/10.1016/0378-3774(95)01180-3 

Turunen, M., Warsta, L., Paasonen-Kivekäs, M., Koivusalo, H., 2017. Computational assessment of sediment balance and 

suspended sediment transport pathways in subsurface drained clayey soils. Soil Tillage Res. 174, 58–69. 

https://doi.org/10.1016/j.still.2017.06.002 670 

Ulén, B., Bechmann, M., Øygarden, L., Kyllmar, K., 2012. Soil erosion in Nordic countries – future challenges and research 

needs. Acta Agric. Scand. Sect. B — Soil Plant Sci. 62, 176–184. https://doi.org/10.1080/09064710.2012.712862 

Uusi-Kämppä, J., Jauhiainen, L., 2010. Long-term monitoring of buffer zone efficiency under different cultivation techniques 

in boreal conditions. Agric. Ecosyst. Environ., Special section Harvested perennial grasslands: Ecological models for 

farming’s perennial future 137, 75–85. https://doi.org/10.1016/j.agee.2010.01.002 675 

Uusitalo, R., Lemola, R., Turtola, E., 2018. Surface and Subsurface Phosphorus Discharge from a Clay Soil in a Nine-Year 

Study Comparing No-Till and Plowing. J. Environ. Qual. 47, 1478–1486. https://doi.org/10.2134/jeq2018.06.0242 

Uusitalo, R., Turtola, E., Kauppila, T., Lilja, T., 2001. Particulate Phosphorus and Sediment in Surface Runoff and Drainflow 

from Clayey Soils. J. Environ. Qual. 30, 589–595. https://doi.org/10.2134/jeq2001.302589x 

Warsta, L., Taskinen, A., Koivusalo, H., Paasonen-Kivekäs, M., Karvonen, T., 2013. Modelling soil erosion in a clayey, 680 

subsurface-drained agricultural field with a three-dimensional FLUSH model. J. Hydrol. 498, 132–143. 

https://doi.org/10.1016/j.jhydrol.2013.06.020 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.



30 

 

Welch, B.L., 1951. On the Comparison of Several Mean Values: An Alternative Approach. Biometrika 38, 330–336. 

https://doi.org/10.2307/2332579 

Wicks, J.M., Bathurst, J.C., 1996. SHESED: a physically based, distributed erosion and sediment yield component for the SHE 685 

hydrological modelling system. J. Hydrol. 175, 213–238. https://doi.org/10.1016/S0022-1694(96)80012-6 

Wischmeier, W., Smith, D., 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agric. Handb. No 537 

Wash. DC USA US Dep. Agric. 

Wuepper, D., Borrelli, P., Finger, R., 2020. Countries and the global rate of soil erosion. Nat. Sustain. 3, 51–55. 

https://doi.org/10.1038/s41893-019-0438-4 690 

https://doi.org/10.5194/hess-2021-457
Preprint. Discussion started: 20 September 2021
c© Author(s) 2021. CC BY 4.0 License.


