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Abstract. Stochastic rainfall generators are probabilistic models of rainfall space-time behavior. During parameterization and 10 

calibration, they allow the identification and quantification of the main modes of rainfall variability. Hence, stochastic rainfall 11 

models can be regarded as probabilistic conceptual models of rainfall dynamics. 12 

 As with most conceptual models in Earth Sciences, the performance of stochastic rainfall models strongly relies on 13 

their adequacy in representing the rain process at hand. On tropical islands with high elevation topography, orographic rain 14 

enhancement challenges most existing stochastic models because it creates localized rains with strong spatial gradients, which 15 

break down the stationarity of rain statistics. To allow for stochastic rainfall modeling on tropical islands, despite non-16 

stationarity, we propose a new stochastic daily rainfall generator specifically for areas with significant orographic effects. 17 

 Our model relies on a preliminary classification of daily rain patterns into rain types based on rainfall space and 18 

intensity statistics, and sheds new light on rainfall variability at the island scale. Within each rain type, the spatial distribution 19 

of rainfall through the island is modeled following a meta-Gaussian approach combining empirical spatial copulas and a 20 

Gamma transform function, which allows us to generate realistic daily rain fields. 21 

 When applied to the stochastic simulation of rainfall on the islands of O‘ahu (Hawai‘i, United States of America) and 22 

Tahiti (French Polynesia) in the tropical Pacific, the proposed model demonstrates good skills in jointly simulating site specific 23 

and island scale rain statistics. Hence, it provides a new tool for stochastic impact studies in tropical islands, in particular for 24 

watershed water resources management and downscaling of future precipitation projections. 25 

1 Introduction 26 

 Stochastic rainfall generators are probabilistic tools aiming at simulating synthetic rains that mimic as closely as 27 

possible the statistical signature of rain observations [Richardson, 1981] [Wilks and Wilby, 1999] [Ailliot et al., 2015]. More 28 

specifically, stochastic rainfall modeling consists of statistical learning (i.e., inference) of the joint space-time probability 29 

density function (pdf) of rainfall at all sites and times of interest, and sampling this pdf to generate synthetic rains. This 30 
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empirical approach bypasses the detailed physical modeling of rain generation processes [Bauer et al., 2015], which enables 31 

fast and computationally efficient simulations.  32 

 The ability of stochastic rainfall generators to emulate long and realistic rainfall sequences makes them an appropriate 33 

tool for the simulation of design storms [Niemi et al., 2016]. Simulated rains can then be used as inputs for impact models 34 

assessing the effects of rainfall on different environmental processes including hydrology [Paschalis et al., 2014], water 35 

resources [Cappelaere et al., 2020], geomorphology [Peleg et al., 2020], and agronomy [Mavromatis and Hansen, 2001]. The 36 

probabilistic approach followed by stochastic rainfall generators enables a comprehensive study of rainfall variability and, in 37 

turn, the assessment of uncertainty propagation along the whole modeling chain [Gabellani et al., 2007]. This makes stochastic 38 

rainfall generation a key tool for management of rain-induced risk, in particular, for flood [Caseri et al., 2016] and drought 39 

risks [Supit et al., 2012]. In addition, the focus of stochastic rainfall models on the statistical signature of rainfall creates new 40 

ways to characterize rainfall space-time behavior [Marra and Morin, 2018], and assess the impact of rainfall variability on the 41 

hydrosphere [Morin et al., 2019]. Finally, when conditioned to climate model outputs, stochastic rainfall generation can be 42 

used for the downscaling of future precipitation projections, resulting in local-scale and high-resolution scenarios of the 43 

possible evolution of rainfall in the context of climate change [Jha et al., 2014] [Volosciuk et al., 2017]. 44 

 To capture and reproduce rainfall statistics and space-time variability, stochastic rainfall models embed a significant 45 

part of our conceptual knowledge about rainfall behavior in their parameterization. However, rainfall properties [Krajewski et 46 

al., 2003] and, in turn, the performance of stochastic rainfall generators [Breinl et al., 2017] [Vu et al., 2018] strongly depend 47 

on the climate of the area of interest. Hence, different models have been proposed for different climates with each model 48 

focusing on a specific aspect of rainfall, for instance: rainfall seasonality in monsoonal climates [Greene et al., 2011]; rainfall 49 

spatial-temporal correlation in temperate climates [Paschalis et al., 2013]; or rainfall occurrence and extreme intensities in 50 

arid regions [Wilcox et al., 2021]. 51 

 On high tropical islands, or islands with high elevations and significant topography, rainfall is strongly location 52 

dependent due to complex interactions between atmospheric circulation and island topography, which trigger different 53 

mechanisms of orographic rain enhancement [Houze, 2012]. This makes tropical island rain statistics non-stationary in space 54 

[Benoit et al., 2021] because the fixed topography of the islands induces the orographic lifting of relatively steady trade winds, 55 

which generates well defined rain patterns [Lyons, 1982]. This leads to wetter windward slopes than leeward sides, and wetter 56 

highlands than lowlands [Giambelluca et al., 2013] [Laurent et al., 2019]. To this first order quasi-static picture is added the 57 

important variability of daily rainfall patterns associated with processes ranging from synoptic-scale disturbances [Hopuare et 58 

al., 2018] [Longman et al., 2021] to large-scale atmospheric circulations [Hopuare et al., 2015] [Frazier et al., 2018] [Brown 59 

et al., 2020]. This variability brings stochasticity on top of the relatively deterministic long-term patterns of orographic rain 60 

enhancement.  61 

 To account for both the long-term quasi-static patterns of rain accumulation and the day-to-day fluctuations of the 62 

rainfall spatial distribution, this paper proposes a new stochastic rainfall model dedicated to high tropical islands with 63 

significant and complex topography. The goal is to develop a daily resolution stochastic rainfall generator able to simulate: (1) 64 
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site specific rain occurrence, persistence, intensity and seasonality; (2) spatial patterns of daily rain accumulation; and (3) areal 65 

rain statistics at the island scale. 66 

 To achieve these objectives, the remainder of the article is structured as follows. Section 2 briefly reviews the main 67 

features of tropical island rainfall and describes our stochastic rainfall model. Section 3 illustrates the performance of the model 68 

for the island of O‘ahu (Hawai‘i, USA) in the tropical Pacific, and a similar test study is repeated in supplementary material 69 

for the island of Tahiti (French Polynesia) to demonstrate the versatility of the model. Finally, section 4 discusses how the 70 

focus on orographic rain enhancement has influenced the design of the model and provides concluding remarks. 71 

2 Data and methods 72 

2.1 Rainfall features of interest 73 

 Because stochastic rainfall models are data-driven, their structure depends on the rain features one wants to reproduce 74 

in simulations. Hence, the identification of the main features of daily rainfall in high tropical islands is a prerequisite for the 75 

design of the present model. For illustration purposes, we focus throughout the main text on the island of O‘ahu, Hawaiʻi (lon 76 

= 158°W, lat = 21.5°N, area = 1545 km2, max altitude = 1220 m). The available rain gauge observation dataset consists of 77 

daily records from a network of 86 rain gauges spread over the island (Fig. 1a), and covers a 20-year period 1991–2011. It 78 

corresponds to a compilation of quality controlled and gap-filled daily observations [Longman et al., 2018]. To contextualize 79 

the observed rain patterns, several meteorological covariates (e.g., pressure, temperature, humidity and wind) are investigated 80 

at the island scale. We use the ERA5 reanalysis dataset [Hersbach et al., 2018] at 12:00 PM HST to inform these covariates 81 

and average the values of the 12 grid cells (pixel size = 0.25° x 0.25°) encompassing the island of O‘ahu. 82 

 Figure 1 displays the main features of daily rainfall over the island of O‘ahu. It shows the strong impact of trade wind 83 

induced orographic rain enhancement on the spatial distribution of annual rains (Fig. 1a), with windward (northeast) sides 84 

significantly wetter than leeward (southwest) ones, and highlands generally wetter than lowlands. In addition to prevailing 85 

orographic rains triggered by the interactions of trade winds with island topography (east-northeasterly trade winds blow more 86 

than 280 days per year over the Hawaiian archipelago [Longman et al., 2015]), the island of O‘ahu also experiences widespread 87 

rain events, mostly triggered by regional atmospheric disturbances such as cold fronts originating from mid-latitudes and Kona 88 

storms [Longman et al., 2021]. These atmospheric disturbances mostly occur during (boreal) winter, which corresponds to the 89 

local rainy season (spanning from October–March). They represent the main source of precipitation for dry leeward locations 90 

and are responsible for the enhanced seasonality of rain accumulation in these areas (Fig. 1a). 91 

 The diversity of rain generation mechanisms (e.g., orographic lifting, cold fronts, or Kona lows) coupled with the 92 

steep island topography of volcanic origin result in a complex distribution of rainfall in space, which produces highly variable 93 

island-scale rain statistics (i.e., statistics summarizing rain behavior throughout the island for a given day). Figure 1 b–d shows 94 

that at the scale of the island of O‘ahu, daily rainfall is strongly intermittent in space (only 3% of the days record rain at all 95 

gauge locations, and half of the time at least 20% of the gauges measure no rain, Fig. 1b), highly skewed (island-scale rain 96 
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accumulation average < 2.25mm/day 50% of the time, but island-scale maximum accumulation  97 

> 15mm/day 50% of the time and reaches 500 mm/day, Fig 1c), and strongly variable in space (coefficient of variation > 1.3 98 

50% of the time, and > 2.9 10% of the time). 99 

 100 

Figure 1: Main features of rainfall observed over the island of O‘ahu. (a) Mean annual rainfall (central panel) and seasonality of rain 101 

accumulation for four specific rain gauges (outer panels). (b) Cumulative distribution function (cdf) of the proportion of gauges measuring 102 

no rain for a given day. (c) Cdf of the mean and maximum daily rain accumulation computed over the whole observation network (abscissa 103 

is in log-scale). (d) Cdf of the coefficient of variation (i.e., standard deviation/mean) of daily rain accumulation throughout the rain gauge 104 

network. 105 

2.2 Model description 106 

2.2.1 Model overview 107 

 To account for the above features of daily rainfall, the proposed model splits rainfall behavior into three components: 108 

temporal variability; spatial distribution; and intensity (i.e., marginal distribution). Figure 2 summarizes the structure of the 109 

model, which will be discussed in detail later. 110 
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 111 

Figure 2: Overview of the structure of the stochastic rainfall model. (a) Meteorological conditions driving the occurrence of rain types, 112 

which summarize daily rain statistics. (b) Latent field modeling of the spatial distribution of rainfall across the island. (c) Transform function 113 

linking latent values with actual rain accumulations. (d) Back-transform combining (b) and (c) to obtain daily rain simulations. 114 

 115 

 The temporal variability of rain statistics and its relationships with the state of the atmosphere is modeled following 116 

a rain typing approach (Fig. 2a). In this framework [Ailliot et al., 2015] [Benoit et al., 2018a], days with similar rain statistics 117 

are pooled together in a finite number of rain types. Rain types represent summaries of island-scale daily rain statistics. To 118 

preserve climatological consistency and convey rainfall seasonality and interannual variability, rain type occurrence is 119 

conditioned to meteorological covariates [Benoit et al., 2020]. 120 

 Conditional to each rain type, the distribution of rain across the island and site-specific rain intensity are modeled 121 

following a meta-Gaussian approach [Allard and Bourotte, 2015] [Baxevani and Lennartsson, 2015]. In this framework, rain 122 

accumulation at rain gauge locations is modeled as a non-linear transform (Fig. 2b) of a latent field (with standardized normal 123 

marginal distribution, Fig. 2c) whose spatial dependencies are used to encode the spatial distribution of rainfall throughout the 124 

island. This leads to a realistic representation of the complex distribution of daily rain accumulation across the island (Fig. 2d) 125 

and, in particular, rain intermittency at leeward locations and high daily accumulations in windward and mountain areas. 126 
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2.2.2 Meta-Gaussian representation of island-scale daily rainfall 127 

 As introduced in Fig. 2b–c, rain intensity and spatial distribution are modeled jointly following a meta-Gaussian 128 

approach. For a given day, the observed rain accumulations 𝑅𝑖=1 … 𝑁𝑇
 across a network of 𝑁𝑇 gauges are linked to their latent 129 

counterparts 𝑍𝑖 (which follow a standardized Gaussian marginal distribution, i.e., 𝑍~𝒩(0,1)) through a non-linear transform 130 

function 𝜓. This transformation is performed by first assuming that non-zero rain accumulations observed throughout the 131 

island in a given day follow a Gamma distribution: 132 

 𝑍𝑖 = 𝜓(𝑅𝑖) = Φ−1 (
𝑁𝑑

𝑁𝑇
+

𝑁𝑤

𝑁𝑇
× 𝐺𝑎𝑚𝑚𝑎(𝑅𝑖; 𝑘, 𝜃))  𝑖𝑓 𝑅𝑖 > 0 (1) 133 

where 𝑁𝑑, 𝑁𝑤 are the number of dry and wet gauges, Φ−1 is the inverse cumulative distribution function (cdf) of the univariate 134 

standardized Gaussian distribution, and 𝐺𝑎𝑚𝑚𝑎(𝑅𝑖; 𝑘, 𝜃) is the cdf of the Gamma distribution with shape parameter 𝑘 > 0 135 

and scale parameter 𝜃 > 0. 136 

 In many instances, gauges measuring no rain (i.e., 𝑅𝑖=0) represent a significant part of the network, which creates a 137 

concentration of zero values in rain accumulation distribution, and prevents a correct Gaussian transform using the function of 138 

Eq. (1). To circumvent this problem, the latent values corresponding to dry gauges are assigned based on the distance of the 139 

dry gauges to the closest wet gauge, such as the marginal distribution of the latent values matches the left portion of a 140 

standardized normal distribution: 141 

 𝑍𝑖 = 𝜓(𝑅𝑖) = Φ−1 ((1 −
𝐷𝑤𝑖

𝑚𝑎𝑥𝑗=1:𝑁𝑑
(𝐷𝑤𝑗)

) ×
𝑁𝑑

𝑁𝑇
)  𝑖𝑓 𝑅𝑖 = 0  (2) 142 

where 𝐷𝑤𝑖 is the distance of the gauge 𝑖 observing no rain to the closest gauge measuring non-zero rain. This transformation 143 

has the advantage of creating spatial patterns of censored latent values (i.e., corresponding to dry gauges) that are coherent 144 

with the ones of non-censored latent values (i.e., corresponding to wet gauges), and create smooth transitions between wet and 145 

dry domains. 146 

 Once latent values (𝑍𝑖) are derived from rain observations (𝑅𝑖), the spatial distribution of rain across the island is 147 

defined by the copulas of the latent field [Bárdossy and Pegram, 2009], i.e., the joint cdf of 𝑍𝑖. As mentioned in section 2.1, 148 

the spatial distribution of daily rainfall in high tropical islands is complex and strongly non-stationary due to orographic effects, 149 

which prevents the use of a simple parametric form (such as the multivariate Gaussian distribution used in most meta-Gaussian 150 

models of precipitation [Benoit et al., 2018b] [Papalexiou and Serinaldi, 2020]) for the spatial copulas. Hence, in the present 151 

case, empirical copulas are used to model the spatial distribution of rainfall [Rüschendorf, 2009]. 152 

2.2.3 Rain typing 153 

 Based on the above meta-Gaussian representation of daily rain fields, days with similar rain statistics are pooled into 154 

rain types (Fig. 2a) using a non-supervised clustering applied on the six-dimensional feature-space defined by the following: 155 
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- The three parameters of the transform function (𝜓) (i.e., p0 = 
𝑁𝑑

𝑁𝑇
, k, θ), which inform the marginal distribution of daily 156 

rainfall. 157 

- The first three components of the Karhunen-Loève expansion [Huang et al., 2001] of the latent field Z 158 

(𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3), which inform the spatial distribution of rainfall across the island. 159 

 Based on this feature-space 𝒀 = (𝑝0, 𝑘, 𝜃, 𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3)𝑇 , the clustering is performed using a Gaussian Mixture 160 

Model (GMM, [Fraley and Raftery, 2002]) which approximates the pdf of Y as a weighted sum of multivariate Normal 161 

distributions: 162 

 𝑝𝒀(𝐘 = 𝐲) = ∑ 𝑏𝑙 × 𝒩(𝒚| 𝝁𝑙 , 𝚺𝑙)𝑙=1:𝑁𝐶
  (3) 163 

where 𝑝𝒀 is the joint pdf of the random vector 𝒀, 𝑁𝐶  is number of components in the GMM, 𝑏𝑙 is a weight assigned to the lth 164 

component, and 𝝁𝑙  and 𝚺𝑙  are the mean vector and covariance matrix of the multivariate normal distribution of the lth 165 

component. Here, the parameters embedded in the vector 𝒀 are assumed to be only slightly correlated and the covariance 166 

matrices (𝚺𝑙) are therefore assumed to be diagonal. The number of components of the GMM (𝑁𝐶) is selected by minimization 167 

of the Bayesian Information Criterion (BIC [Schwartz, 1978]) estimated for different numbers of components in order to select 168 

a parsimonious classification (i.e., with as few rain types as possible) while properly fitting the pdf of Y (i.e., 𝑝𝒀). Once the 169 

pdf 𝑝𝒀 is known, the probability that an observed vector 𝒚𝑜𝑏𝑠 belongs to the lth component 𝐶𝑙 is given by: 170 

 𝑝(𝒚𝑜𝑏𝑠 ∈ 𝐶𝑙) =
𝑏𝑙×𝒩(𝒚𝑜𝑏𝑠| 𝝁𝑙,𝚺𝑙)

∑ 𝑏𝑘×𝒩(𝒚𝑜𝑏𝑠| 𝝁𝑘,𝚺𝑘)
𝑁𝐶
𝑘=1

 .  (4) 171 

And the classification is obtained by assigning each day (𝑑𝑖) with a rain type (RT) that corresponds to the most probable 172 

mixture component: 173 

 𝑅𝑇(𝑑𝑖) = 𝑚𝑎𝑥𝑙∈1..𝑁𝐶
(𝑝(𝒚𝑖 ∈ 𝐶𝑙)). (5) 174 

2.2.4 Rain type occurrence 175 

 Once rain types have been defined based on rainfall statistical properties, their occurrence is conditioned to the vector 176 

𝑴𝑪𝑑 of meteorological covariates observed at day d (Fig. 2a) is modeled by a non-homogeneous Markov Chain of order 1 177 

[Vrac et al., 2007]: 178 

 𝑝(𝑅𝑇𝑑 = 𝑗|𝑅𝑇𝑑−1 = 𝑖, 𝑴𝑪𝑑) = 𝛾𝑖𝑗  exp (−
1

2
(𝑴𝑪𝑑 − 𝝁𝑖𝑗)𝚺𝑖𝑗

−1(𝑴𝑪𝑑 − 𝝁𝑖𝑗)
𝑇

)  (6) 179 

Where 𝑅𝑇𝑑 is the state of the Markov chain (i.e., the rain type) at day d, 𝑝(𝑅𝑇𝑑 = 𝑗|𝑅𝑇𝑑−1 = 𝑖, 𝑴𝑪𝑑) is the probability to 180 

transition from rain type i to rain type j, 𝚺𝑖𝑗 and 𝝁𝑖𝑗 are the covariance matrix and the mean vector of the meteorological 181 

covariates when the transition from type i to type j occurs, and 𝛾𝑖𝑗 is the baseline (i.e., long term average) probability of 182 

transition from type i to type j. This model allows the transition probability 𝑝(𝑅𝑇𝑑 = 𝑗|𝑅𝑇𝑑−1 = 𝑖, 𝑴𝑪𝑑) to vary proportionally 183 

to the conditional density of 𝑴𝑪𝑑 given the transition and conditions the occurrence of rain types to the state of the atmosphere 184 

characterized by the covariates. Conditioning rain type occurrence to meteorological covariates informs the seasonality and 185 

the interannual variability of rain type occurrence. 186 
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2.3 Model implementation 187 

2.3.1 Selection of meteorological covariates 188 

 The set of meteorological covariates used for the conditioning of the non-homogeneous Markov Chain must be chosen 189 

so that: (i) the covariates are only weakly correlated to each other, which ensures model parsimony (i.e., minimal redundancy 190 

between covariates); and (ii) the temporal variations of the covariates are correlated with variations in rain type occurrence, 191 

which informs the seasonality and interannual variability of rainfall patterns. Note that the conditioning to covariates (i.e., the 192 

non-homogeneous part of the Markov chain) is used to inform the low frequency fluctuations of rain type occurrence (seasonal 193 

to interannual time scales), with higher frequencies (weekly to daily time scales) being informed by the baseline transition 194 

probabilities (𝛾𝑖𝑗). Hence, meteorological covariates are aggregated at the monthly scale prior to use for the conditioning of 195 

the non-homogeneous Markov chain. The monthly-aggregated covariates inform monthly anomalies in atmospheric conditions 196 

and, in turn, the likelihood of rain types to occur during a given month. In addition to linking monthly atmospheric circulation 197 

conditions to daily rain patterns, this aggregation leads to a conditioning scheme that is compatible with the temporal resolution 198 

of General Circulation Model (GCM) projections [Eyring et al., 2016] [Copernicus, 2021], which paves the way for the use 199 

of the present model for stochastic precipitation downscaling of GCM projections. 200 

 In the present case, we selected the meteorological covariates according to our initial knowledge about rain generation 201 

mechanisms in high tropical islands, and their links with the state of the atmosphere [Elison Timm et al., 2014] [Réchou et al., 202 

2019] [Sanfilippo, 2020]; this led to the following five covariates. 203 

1) Geopotential height at 700 hPa (m2.s-2). This covariate is correlated with the presence of synoptic-scale weather systems 204 

at the vicinity of the island and identifies regional atmospheric disturbances. 205 

2) Temperature difference between 950 hPa and 700 hPa (K). This covariate is correlated with the lower atmospheric 206 

instability and identifies days prone to shallow convection. 207 

3) Specific humidity at 700 hPa (kg.kg-1). This covariate informs the presence of humidity above the height of the trade wind 208 

inversion and is negatively correlated with the strength of the inversion and positively correlated with the potential for 209 

deep convection and cold rain. 210 

4) Meridional and 5) longitudinal humidity fluxes at 950 hPa (i.e., specific humidity multiplied by the u (east-west) or v 211 

(north-south) components of the wind field, m.s-1.kg.kg-1). These covariates provide the amount of moisture crossing over 212 

the mountain barrier available for precipitation and are a proxy for orographic precipitation. 213 

2.3.2 Model calibration 214 

 The model is calibrated from a training dataset made of N days of rain accumulation recorded by a network of NT rain 215 

gauges (Fig. 1a). Data must be available for all stations and all days of the calibration period, and a preliminary gap-filling 216 

step is required in case of incomplete data [Longman et al., 2018] [Oriani et al., 2020]. Once a complete training dataset is 217 

available, the first step of model calibration consists of inferring the parameters of the transform function (𝜓) for each day of 218 
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the training period. This is performed by calculating the proportion of dry gauges and then estimating the parameters of the 219 

gamma distribution of the wet gauges using a maximum likelihood approach. Once the three parameters of 𝜓 are known, this 220 

function can be inverted to derive the latent values at each gauge location. 221 

 After calibration of the transform function and derivation of the latent values for each day of the calibration dataset, 222 

days with similar rain statistics are pooled together by rain typing. The first three principal components of the latent field are 223 

preliminarily derived from the Karhunen-Loève transform of all latent values. Next, the parameters of the GMM model are 224 

inferred using an expectation-minimization approach [Fraley and Raftery, 2002]. Finally, rain typing (i.e., clustering) is 225 

performed by assigning to each day the type that corresponds to the most probable component of the GMM model. 226 

 After rain typing, the time series of observed rain types is analyzed in relation to observations of the meteorological 227 

covariates to calibrate the non-homogeneous Markov chain. The baseline transition matrix (𝛾𝑖𝑗) is first estimated by counting 228 

the transitions between each pair of rain types occurring during the calibration period and normalizing the result by the total 229 

number of transitions. Next, the parameters of the mean vector (𝝁𝑖𝑗) and the covariance matrix (𝚺𝑖𝑗) used to make the Markov 230 

chain non-homogeneous are estimated by the method of moments applied to covariates observations. 231 

Conditional to each rain type, the joint distribution of the parameters of 𝜓 is inferred by multivariate kernel density estimation 232 

using a trivariate Gaussian kernel. The bandwidth of the kernel is selected following the Scott’s rule [Scott, 2010], i.e., in the 233 

present case: 234 

 √𝑯𝑖𝑖 = 𝑁−
1

7 × 𝜎𝑖  (7) 235 

where 𝑯 is the bandwidth matrix of the kernel, 𝑁 the number of days in the calibration dataset, and 𝜎𝑖 the standard deviation 236 

of the ith parameter (here i=1..3). Finally, because the spatial copulas of the latent field are simulated using an analog approach 237 

(cf next sub-section for details), they do not require formal estimation of their pdf. 238 

2.3.3 Stochastic rainfall generation 239 

 After model calibration, stochastic rainfall generation is performed following the steps summarized in Fig. 2. Starting 240 

from a time series of meteorological covariates, rain types are first simulated using the non-homogeneous Markov chain 241 

described in Eq. (6). Next, conditional to this simulated rain type time series, the parameters of the transform function are 242 

sampled from their joint distribution defined by Eq. (7). Then, the spatial copulas of the latent field are simulated by randomly 243 

picking the empirical copulas of a day belonging to the same rain type as the day to simulate from the calibration dataset. 244 

Finally, the simulated rain field is obtained by back-transformation of the simulated latent field (Eq. 1–2) using the simulated 245 

parameters of the transform function. 246 

2.4 Model assessment 247 

 The ability of the model to identify climatologically relevant rain types is first assessed qualitatively by applying rain 248 

typing to the full study dataset of section 2.1 and scrutinizing the emergent spatial-temporal rainfall patterns for each type. The 249 
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resulting classification is subsequently interpreted in terms of rain generation processes by confronting rain types with co-250 

occurring meteorological covariates. However, in doing so, one should keep in mind that the rain typing procedure is fully 251 

statistical and that the rain type description is based on emerging statistical patterns, not on physical modeling (e.g., using a 252 

numerical weather model to reproduce the observed patterns).  253 

 When discussing rain types and their link to rain generation processes, special attention is paid to: 254 

(1) The emergence of spatial patterns in relation with orographic effects; 255 

(2) The seasonality of rain type occurrence in relation with the regional annual rain cycle; 256 

(3) The relationship of rain types with the state of the atmosphere quantified by the set of climate covariates described in 257 

section 2.4 and used here at a daily resolution (i.e., not aggregated at the monthly scale as is the case for the conditioning 258 

of the non-homogeneous Markov chain). 259 

 After the qualitative assessment of the climatological realism of rain types, the ability of the model to stochastically 260 

generate rainfall is assessed quantitatively using a leave-one-year-out cross-validation procedure. Data from one year are 261 

iteratively removed from the study dataset of section 2.1 and the stochastic model is calibrated using the remaining data (i.e., 262 

19 years of data are used for model calibration). The model is fully recalibrated, which includes rain typing, inference of the 263 

transform function, and creation of a training dataset of spatial copulas. After model calibration, daily rainfall is simulated for 264 

each day of the target year, i.e., the year excluded from the calibration dataset. Fifty simulations are generated to assess the 265 

uncertainty associated with stochastic rainfall generation. The same procedure is repeated for each year of the study dataset, 266 

which leads to a 20-year long validation set made of 50 simulations for each gauge of the O‘ahu rain-monitoring network. 267 

Finally, simulation results are compared to observations. The following evaluation statistics are used to assess the ability of 268 

the model to simulate daily rainfall. 269 

(1) Site-specific rainfall time series. The following statistics are considered for the four target stations of Fig. 1a: quantiles 270 

10%, 50% and 90% of monthly rain accumulation to assess seasonality; annual rain accumulation to assess interannual 271 

variability; quantile-quantile (q-q) plot of the percentiles of daily rain accumulation to assess the probability distribution 272 

of daily rainfall; and q-q plot of the percentiles of wet-spell duration to assess rain persistence.   273 

(2) Spatial patterns of rain distribution across the island. The following statistics are mapped to investigate the spatial 274 

distribution of rainfall: quantiles 10%, 30%, 50%, 70% and 90% of daily rain to assess how the probability distribution 275 

of rainfall varies in space. 276 

(3) Areal rain statistics. Q-q plots of the percentiles of (i) the proportion of dry rain gauges, (ii) mean and (iii) max of daily 277 

rain, and (iv) the coefficient of variation of rain accumulation across the island to assess island-scale statistics. 278 
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3 Results 279 

3.1 Rain types in O‘ahu 280 

 Figure 3 displays the 22 rain types identified for O‘ahu Island during the period 1991–2011. The key attribute of the 281 

resulting classification is that although no information is given to the classifier about geographical coordinates, time of 282 

occurrence, or meteorological covariates, the identified rain types display well-defined patterns of spatial rain distribution (Fig. 283 

3a), seasonality of occurrence (Fig. 3a), and correlation with the regional state of the atmosphere (Supplementary Material 1).  284 

 285 

Figure 3: Rain types identified for the island of O‘ahu. (a) Spatial distribution of daily rain and frequency of occurrence of each rain type. 286 

(b) Contribution of each rain type to the annual rain accumulation for a selection of 20 gauges spread throughout the island. The color code 287 

of the pie charts in (b) is the same as the names of the types in (a). 288 

 289 

 To better identify the main modes of rainfall variability over O‘ahu, rain types are pooled into three hyperclasses (H1-290 

3) that can be linked to the three main rain generation processes in the area (Fig. 3): 291 

• (H1) Almost dry days (Fig. 3, rain types a–g). During these days, most rain gauges report no rain, and no gauge 292 

reports more than 5 mm/day on average. These types of weather conditions are associated with a stable atmosphere 293 

and a low moisture flux (Fig. SM 1.1). 294 
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•  (H2) Trade wind days (Fig. 3, rain types h–q). This category displays well-defined spatial patterns of rain 295 

accumulation caused by orographic lifting, and are associated with a stable atmosphere, a well-defined trade wind 296 

inversion, and an important influx of moisture below the inversion layer under the influence of east-northeasterly 297 

trade winds (Fig. SM 1.1). When scrutinizing inter-type variability within this category, note that the location of the 298 

rain maximum shifts westward with increasing moisture flux, likely due to stronger trade winds causing an overshoot 299 

of orographic rain enhancement whereby rain forms over the mountains but falls further downwind on the leeward 300 

side [Daly et al., 2017]. In addition, for similar wind conditions and, therefore, spatial patterns (compare for instance 301 

types j, k and l), rain intensity is correlated to the instability of the atmosphere (Fig. SM 1.1). 302 

• (H3) Regional atmospheric disturbance days (Fig. 3, rain types r-v). These types display either unstructured (types r–303 

t) or relatively homogeneous (types u–v) spatial patterns of rain accumulation and are associated with low pressure, 304 

unstable atmosphere, and absent (or weak) trade wind inversion. This allows high moisture content at high altitude 305 

(Fig. SM 1.1). These rain types mostly occur during winter, i.e., the local rainy season. When scrutinizing inter-type 306 

variability within this category note that rain intensity increases with atmospheric instability and the presence of 307 

humidity at high altitude, and that the spatial patterns tend to become more structured when the low-level moisture 308 

influx increases (probably due to stronger and more uniform winds). 309 

 Hence, rain typing provides new insights on island-scale rain climatology (Fig. 3b). In particular, this step helps us 310 

gain a better understanding of how different atmospheric conditions lead to different rain generation processes that, when 311 

interacting with island topography, generate contrasting orographic effects. In the case of the island of O‘ahu, orographic rain 312 

enhancement occurring during days influenced by trade winds is the main explanation for the high annual rain accumulations 313 

in the Ko‘olau mountains (up to 5000 mm annual rainfall), while widespread rainfall linked to regional atmospheric 314 

disturbances is the main source of rain at leeward locations despite their relative temporal scarcity. 315 

 316 

3.2 Simulation of site-specific rainfall time series 317 

 Figure 4 displays the results of the cross-validation procedure (50 realizations are drawn) for four rain gauges 318 

experiencing different rainfall climatologies (Fig. 1).  319 
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 320 

Figure 4: Ability of the model to simulate site-specific rain statistics on O‘ahu. (a) Target locations. (b) Observed (black) and simulated 321 

(red) monthly rain accumulation. Dashed lines denote quantiles 10% and 90%, and solid lines denote the median value. For simulated values, 322 

each statistic is estimated as the median across the 50 realizations. (c) Observed (black) and simulated (red) annual rain accumulation. For 323 

simulations, dashed lines denote the minimum and maximum of the 50 realizations, and the solid line denotes the median of simulations. (d) 324 

Q-q plot of daily rain percentiles. (e) Q-q plot of wet-spell duration percentiles. Black dots line up vertically in q-q plots (d–e) because for 325 

each percentile, 50 simulations are compared to a single observation. 326 

 327 

 The results in Fig. 4 show that the proposed model correctly simulates rainfall seasonality (Fig. 4b) and interannual 328 

variability (Fig. 4c). Note that simulations capture both the stronger seasonality at leeward locations (compared to windward 329 

locations) as well as the near absence of seasonality at the wettest gauge located in Ko‘olau Mountains (Fig. 4, third row). The 330 
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interannual variability of rain accumulation is also properly simulated, in particular, at leeward locations where the impact of 331 

winter storms is the highest. These results suggest that the non-homogeneous Markov chain of order 1 conditioned to monthly-332 

aggregated meteorological covariates adequately models the long-term variability of rain accumulation, and that the selected 333 

covariates properly capture rain type occurrence in a tropical marine climate. 334 

 However, rain persistence is slightly underestimated at some locations, especially for the high percentiles, i.e., long-335 

lasting wet spells (Fig. 4e). This result exposes limitations in the use of the non-homogeneous Markov chain of order 1 for 336 

modeling weekly- to monthly-scale temporal variability of rainfall. This may be explained by the fact that daily-scale and 337 

seasonal-scale rainfall fluctuations are informed, respectively, by the Markov chain of order 1 and conditioning to monthly-338 

aggregated meteorological covariates, but that the weekly- to monthly-scale is not explicitly included in the model. 339 

Nevertheless, the resulting errors are of low amplitude and the simplicity of the selected order 1 non-homogeneous Markov 340 

chain model justifies this small underestimation of persistence. 341 

 The simulations properly reproduce site-specific marginal distributions of daily rain accumulation (Fig. 4d). The 342 

satisfactory simulation of rainfall distribution at several sites suggests that a type-dependent gamma distribution is an adequate 343 

model for the non-zero daily rain accumulations across the island. It is noteworthy that all percentiles of the marginal 344 

distribution of rain accumulation are properly reproduced in simulations (for all four gauges), which suggests that our model 345 

is able to simulate the whole spectrum of daily rains, from dry days to intense rains. 346 

3.3 Simulation of island-scale rain fields 347 

 Figure 5 displays the results of the cross-validation procedure focusing on island-scale features. Figure 5a compares 348 

observed and simulated spatial patterns for five quantiles of daily rain accumulation across the island of O‘ahu. Results show 349 

very good model performance in reproducing the spatial patterns of daily rainfall. This result was expected because the use of 350 

empirical copulas combined with rain typing is almost equivalent to resampling the observed spatial patterns conditional to 351 

meteorological covariates. However, satisfactory simulation results ensure that the rain-type-based resampling of spatial 352 

copulas is unbiased and that the choice and calibration of the meta-Gaussian model are relevant for the study island. 353 

https://doi.org/10.5194/hess-2021-453
Preprint. Discussion started: 8 September 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

 354 

Figure 5: Assessment of island-scale statistics simulation in O‘ahu. (a) Spatial patterns of observed (upper row) and simulated (lower 355 

row) percentiles of daily rain accumulation. From left to right: 10%, 30%, 50%, 70% and 90% percentiles. (b–d) Q-q plots of key rain 356 

statistics aggregated over the whole rain gauge network: (b) proportion of dry gauges; (c–d) mean and max daily rain; (e) coefficient of 357 

variation. 358 

 359 

 Figure 5b–e assesses the ability of the model to simulate four key rain statistics—the proportion of dry gauges, mean 360 

and max of daily rain accumulation, and coefficient of variation of daily rain across the island—aggregated over all rain gauges 361 

of the rain monitoring network of O‘ahu. Results show a slight underestimation of the low percentiles of the proportion of dry 362 

gauges, which is compensated by the slight overestimation of the high percentiles (Fig. 5b). This level of accuracy in the 363 

simulation of the rain fraction shows that a truncated Gaussian latent field is an appropriate model for rain intermittency. In 364 

addition, the correct simulation of the spatial patterns of dry locations in Fig. 5a suggests that the distance-based modeling of 365 

the censored latent values (Eq. 2) coupled with empirical copulas is a proper model for the spatial distribution of dry locations. 366 

Similarly, the good agreement between observed and simulated coefficients of variation (Fig. 5e) coupled with the correct 367 

simulation of spatial patterns of non-zero daily rain accumulation in Fig. 5a suggest that the selected meta-Gaussian framework 368 

captures the spatial distribution of non-zero rain accumulations. 369 

 Finally, Fig. 5c–d shows that island-scale daily mean and maximum rain accumulation are properly simulated, despite 370 

an overestimation of the last percentile of the maximum, i.e., the 20 year maximum observed over the whole island. This result 371 
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suggests that the meta-Gaussian framework coupled with the kernel estimation of the transform function parameters performs 372 

reasonably well to reproduce the marginal distribution of island-scale rain accumulation. However, the attempt to reproduce 373 

both island scale statistics and site-specific marginal distributions (from dry days to heavy rains) results in an inaccurate 374 

simulation of the island-scale 20-years extreme precipitation. This limitation calls for additional developments before the 375 

proposed model can be used for simulating extremes in a spatial context [Opitz et al., 2021]. 376 

3.4 Model versatility 377 

 To investigate the flexibility of the above model, the case study performed in sections 3.1–3.3 for the island of O‘ahu 378 

(Hawai‘i, USA) located in the North Pacific was repeated in supplementary material 2 for the island of Tahiti (French 379 

Polynesia) located in the South Pacific. This additional cross-validation shows that our model also performs very well for 380 

Tahiti, despite a wetter (annual rain reaches 10 000 mm in Tahiti) and more seasonal climate than the O‘ahu case study. In 381 

addition, the model adapts automatically to different dataset sizes (86 rain gauges x 21 years for O‘ahu, 26 gauges x 11 years 382 

for Tahiti) due to the selection of different numbers of rain types. The above results suggest that our model may be adapted to 383 

most high tropical islands across the globe. 384 

4 Discussion and conclusion 385 

4.1 Discussion: stochastic modeling of orographic rainfall patterns 386 

 Validation results in section 3 show that the proposed model is able to accurately reproduce site-specific and island-387 

scale daily rain statistics for two different tropical islands. This has been made possible by a hierarchical model structure with 388 

two main components (rain typing and meta-Gaussian representation of island-scale daily rainfall), which replicates the spatial 389 

rainfall patterns caused by orographic effects. 390 

 The first component consists of rain types, which summarize island-scale rain statistics. Unlike weather type based 391 

approaches [Ailliot et al., 2015] [Réchou et al., 2019], we define rain types based on rain features only, i.e., no information 392 

about meteorological covariates or large-scale circulation are included during the classification step. This leads to a 393 

classification centered on rainfall intensity and spatial distribution, which allows us to explore how island-scale rainfall 394 

variability is impacted by orographic effects (section 3.1). The links between rain types and local climate are established in a 395 

second step by conditioning the non-homogeneous Markov model of rain type occurrence to meteorological covariates. We 396 

conceptualize rain types as the main modes of island-scale daily rainfall variability, which is assumed to be primarily 397 

influenced by orographic effects caused by interactions between changing atmospheric conditions and fixed island topography. 398 

In this context, one interesting contribution of this study is the refinement of the meteorological predictors proposed by 399 

[Sanfilippo, 2020] for rain type occurrence in a tropical marine climate, in particular, to distinguish between shallow convection 400 

occurring during typical trade wind situations and deeper convection in the vicinity of atmospheric disturbances. 401 
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 The second component of the model consists of a meta-Gaussian representation of island-scale daily rainfall. By 402 

explicitly separating rain intensity and spatial distribution, this representation contributed to the performance of the rain typing 403 

procedure detailed above and in the identification of rain types with well-defined spatial patterns. When used for stochastic 404 

rainfall generation, the adopted meta-Gaussian representation performed well in simulating site-specific rain statistics as well 405 

as island-scale spatial patterns of daily rain accumulation. This good performance can be explained by two factors. First, the 406 

determination of the censored latent values based on the distance to the closest wet gauge (Eq. 2) generates realistic spatial 407 

patterns of dry areas and dry-wet transition [Schleiss et al., 2014]. This contributes to the proper modeling of the spatial 408 

intermittency of daily rain fields in tropical islands, which is caused by the drying effect of sinking air masses after crossing 409 

mountains. The second innovation of the model is the joint use of empirical copulas and a parametric transform function to 410 

model the spatial patterns of non-zero rains. It has the advantage of faithfully preserving the spatial rainfall patterns while 411 

generating unobserved values through the kernel density estimation of the transform function parameters distribution. The 412 

choice of mimicking the observed spatial rainfall patterns as closely as possible is justified by the complexity of orographic 413 

effects and associated rain gradients in tropical islands [Giambelluca et al., 2013] [Laurent et al., 2019] [Benoit et al., 2021]. 414 

4.2 Concluding remarks 415 

 In this paper we presented a new stochastic daily rainfall generator dedicated to high tropical islands. The combination 416 

of (i) a hierarchical approach based on rain typing, (ii) a non-homogeneous Markov model of rain type occurrence conditioned 417 

to meteorological covariates, and (iii) a meta-Gaussian representation of the spatial distribution of daily rainfall allowed us to 418 

generate realistic daily rain fields honoring both site-specific and island-scale rain statistics. The performance of the model 419 

was carefully tested and illustrated for the islands of O‘ahu (Hawai‘i, USA) and Tahiti (French Polynesia), both located in the 420 

tropical Pacific. Cross-validation results prove the ability of the model to capture and simulate the main features of daily 421 

rainfall over these two high tropical islands. 422 

 The main strength of our model is its ability to simulate diverse spatial patterns of daily rainfall, as well as their 423 

linkage with regional atmospheric conditions. It represents a new tool for stochastic investigation and modeling of orographic 424 

rain enhancement on tropical islands with complex topography. The main limitation is the imperfect simulation of spatial 425 

extremes, which calls for caution when using our model for flood risk assessment. 426 

 Because of the above strengths and limitations, the main envisioned applications relate to impact studies that require 427 

detailed knowledge of daily precipitation in tropical islands, in particular, when the spatial distribution of rainfall plays an 428 

important role. This includes watershed water resources management and eco-hydrological studies. Our model can also be 429 

used for the stochastic downscaling of future precipitation projections and can contribute to the current efforts to better 430 

understand, manage, and secure tropical island water resources in a changing climate. 431 

 432 
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Code and data availability. 433 

The implementation of the proposed stochastic rainfall model is open source (MATLAB implementation) and freely available 434 

in the following repository (https://github.com/LionelBenoit/StochasticRainfallGenerator_TropicalIslands). The dataset of 435 

daily rainfall observations on O‘ahu is open data and freely available on the Hawai‘i Climate Data Portal 436 

(https://www.hawaii.edu/climate-data-portal/data-portal/). An extract of this dataset is available in MATLAB format as a code 437 

demo in the same repository as the source code of the model. The dataset of daily rainfall observations on Tahiti is available 438 

upon request from Météo France (contact.polynesie-francaise@meteo.fr) and Groupement d’Etudes et de Gestion du Domaine 439 

Public de Polynésie Française (secretariat@equipement.gov.pf). 440 
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