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Dear Editor and Reviewers, 

Thank you for your detailed comments and suggestions about our manuscript entitled “Stochastic daily 

rainfall generation on tropical islands with complex topography”. 

Following your suggestions and the propositions of improvement we made in the public discussion, we 

thoroughly revised our manuscript. The main changes are the following: 

1) A new paragraph has been added to the Introduction to explain why some features of tropical island 

rainfalls challenge existing stochastic rainfall generators, and therefore justify the need for a new 

modeling framework. 

2) The section 2.2.1 Model overview has been entirely re-written in order to better justify and 

contextualize our modeling choices. 

3) A new section 3.2 Simulation of site-specific rainfall time series has been created to display 

observed and simulated rainfall time series in addition to evaluation statistics, and therefore help 

readers better grasp the main features of Hawaiian rainfalls. 

4) A new figure 7 has been added to the section 3.5 Model versatility to better illustrate the flexibility 

of our model, and invites readers to check the case study of Tahiti presented in Supplementary 

material 4. 

In addition to these major changes, every reviewer comment has been addressed as detailed in the 

following point-by-point responses. In these responses, "RC" (in blue) denotes a reviewer comment, 

"AR" (in black) denotes our response to the comment, and the text in italic corresponds to the 

modifications implemented in the revised manuscript. If no change has been implemented in the 

revised manuscript we repeat our answer from the public discussion preceded by the mention "Same 

response as in public discussion". In the point-by-point responses, the line numbers in the reviewer 

comments refer to those from the original manuscript, and the line numbers in the author responses 

refer to the revised manuscript.  

We hope that our responses will address your concerns, and that our proposed improvements will 

meet your expectations. 

Best regards, 

Lionel Benoit, on behalf of the authors. 

 

 

Response to the comments of Reviewer#1 

Reviewer comment (RC 1.1): Some of the ideas in the paper are potentially interesting. However, the 

existing literature on weather generators (particularly for daily precipitation) is vast: to justify yet 

another new approach therefore, it is necessary to demonstrate that it improves on existing methods 

in some way (it could be the performance of the method, its ease of implementation, its range of 

applicability, its computational feasibility etc.). The authors do not provide any such demonstration, 

perhaps because they don’t seem aware of the state of the art in the area. 

Authors’ response (AR 1.1): To demonstrate the need for a new modeling framework we added a 

paragraph in our introduction (l 66-80). This new paragraph details the specificities of rainfall in the 

context of tropical islands, and discusses how these features challenge existing modeling approaches 

based on literature review. 
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It reads as follow: “Orographic effects lead to non-stationary (i.e., non-homogeneous) rain statistics in both space and 

time, which challenges most existing stochastic rainfall models [Nerini et al., 2017]. In the context of high tropical islands, the 

first difficulty arises from the long term patterns of orographic rain enhancement that create non-stationarities in space. 

Rainfall generators must therefore account not only for the correlation between locations [Leblois and Creutin, 2013] 

[Paschalis et al., 2013], but also for the location of the rain within the island. When orographic effects are directly related to 

topography, Generalized Linear Models (GLMs) have been leveraged to account for spatial rain patterns by linking model 

parameters to local topographic information such as altitude or slope aspect [Ambrosino et al., 2014] [Chandler, 2020]. In 

tropical islands however, the complexity of the rain-topography relationships (e.g., successive mountain ridges becoming drier 

at similar altitude) hinder the direct regression of model parameters on topographic data. An attractive option to overcome 

the non-uniqueness of topography-rainfall relationships is to interpolate the parameters of the rainfall model in space in order 

to let data inform non-stationarity [Kleiber et al., 2012] [Bennett et al., 2018]. This however increases model complexity, and 

therefore requires training datasets with high spatial resolution, which are not yet available in most target areas [Benoit et 

al., 2021]. Finally, the difficulty of accounting for orographic effects in the context of high tropical islands is further enhanced 

by the temporal variability of rainfall patterns (e.g., wet leeward slopes during Kona storms), which calls for the development 

of models able to identify and capture the main modes of variability of orographic effects over time.” 

RC 1.2: Literature that seems particularly relevant includes that on Hidden Markov Models (e.g. Hughes 

et al. 1999; Ailliot et al. 2009): this uses the same basic idea of classifying each day on the basis of the 

joint spatial distribution of precipitation, but does so in what seems to be a more principled way than 

the present paper. 

AR 1.2: The reason of choosing an explicit rain typing approach instead of a Hidden Markov Model is 

now discussed in section 2.2.1 (l145-156), which has been revised in depth to better justify and 

contextualize our modeling choices.  

It reads as follows: “The temporal variability of rain statistics and its relationships with the state of the atmosphere are 

modeled following a rain typing approach (Fig. 2a) [Ailliot et al., 2015] [Benoit et al., 2018b]. In this framework, days with 

similar rain statistics are first pooled together in a finite number of rain types, which represent summaries of island-scale daily 

rain statistics. Next, rain type occurrence is modeled by a Markov chain describing how rain types transition to each other 

[Bárdossy and Plate, 1991] [Wilby, 1994]. To preserve climatological consistency and model the influence of atmospheric 

circulation on orographic rain enhancement, rain type occurrence is conditioned to local meteorological covariates [Benoit et 

al., 2020] making the Markov chain non-homogeneous [Hughes and Guttorp, 1999] [Vrac et al., 2007]. It is important to note 

here that we do not use the widespread Hidden Markov Model (HMM) approach [Ailliot et al., 2009] [Greene et al., 2011] to 

introduce rain types in our stochastic rainfall model, but rather resort to a two-step approach in which rain types are first 

determined by a direct classification of rain gauge observations, and subsequently a statistical rainfall model is built for each 

rain type. This choice has been motivated by the use of non-parametric methods to model the distribution of rainfall 

conditional to rain types, which prevents the formulation of the likelihood of the full statistical model and in turn the use of a 

HMM to model rain types.” 

RC 1.3: Moreover, approaches using generalised linear models with topographical indices as covariates 

(e.g. Ambrosino et al. 2014; Chandler 2020) address the issue of topographical variability directly: it’s 

not obvious to me that such approaches would fail in a tropical island setting. 

AR 1.3: The difficulty of applying Generalized Linear Models (GLMs) in the present context is now 

discussed in details in the revised introduction (l 66-80), cf AR 1.1. 

 

RC 1.4: I am also surprised that the paper doesn’t cite Maraun et al. (2010) which has become almost 

the canonical reference for anyone working in this area. 

 

AR 1.4: In the revised manuscript we cite this reference in the first paragraph of the introduction, when 

we mention stochastic downscaling of climate projection as an application of stochastic rainfall models 

(l 41-44). 

 

RC 1.5: In view of the concerns above, as well as some technical issues (see detailed comments below), 

I don’t think the paper merits publication in its current form. To make the case, the authors need to 
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demonstrate that their approach improves on existing methods in some way as described above. 

Ideally, this would be done by carrying out an informed and fair comparison with a leading alternative 

method: if this isn’t possible then the authors should explain why, and should offer some informed 

discussion of how their approach might reasonably be expected to compare. 

 

AR 1.5: As mentioned above (AR 1.1 to AR 1.3), we improved the contextualization of our work and 

the justification of our modeling choices by (1) adding a new paragraph in the introduction to justify 

the need of a new stochastic rainfall model for tropical islands (l 66-80), and (2) completely rewriting 

the section 2.2.1 to explain the choices of the different components of our model (l 134-172). 

In addition to better contextualization, model assessment has been improved to highlight the 

performance and the flexibility of the proposed model. Two main changes have been implemented: 

1) Following Reviewer#1’s advice to focus on realism of the simulations, we added the new section 

3.2: Simulation of site-specific rainfall time series, which reads as follows: 
“Figure 4 displays stochastic rainfall generation outputs for the four rain gauges of Fig 1.a which experience different rainfall 

climatologies. Visual inspection of the simulated time series shows that our stochastic rainfall generator is able to simulate 

synthetic rains that are almost indistinguishable from the observed ones. The dry-wet ratio as well as the marginal distribution 

of daily rain accumulation seem properly replicated, except for the dry leeward gauge (first row in Fig. 4) where the 20-year 

maximum tends to be overestimated (see also Fig. 5.d). In terms of temporal variability, simulated time series properly capture 

the seasonal cycle visible for the two leeward gauges (rows 1-2 in Fig. 4), as well as the inter-annual variability visible for the 

two coastal gauges (rows 1 and 4 in Fig. 4). Finally, the rainfall generator captures the relatively steady behavior of the wet 

gauge located in the Ko‘olau range (row 3 in Fig. 4). 

  

 

Figure 4: Ability of the model to simulate realistic rainfall time series on O‘ahu. (a) Target locations. (b) Observed rainfall 

time series for the period 1991-2011. (c-e) Simulated time series. For readability, only the three first realizations of the 50-

member ensemble are displayed.”  

 

2) Following Reviewer#2’s advice to better highlight the flexibility of our model, we added the 

following figure to section 3,5 Model versatility: 
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Figure 7: Overview of stochastic daily rainfall simulation for the island of Tahiti, French Polynesia. (a-e) Site-specific 

statistics: (a) Target locations. (b) Observed (red) and simulated (black) monthly rain accumulation. (c) Observed (red) and 

simulated (black) annual rain accumulation. (d) Q-q plot of daily rain percentiles. (e) Q-q plot of wet-spell duration percentiles. 

(f-i) Island-scale statistics: (f) proportion of dry gauges; (g–h) mean and max daily rain; (i) coefficient of variation. 
  

RC 1.6: Line 31: this dismissal of “detailed physical modelling of rain generation processes” seems quite 

one-sided and poorly informed. It is true that stochastic models are computationally faster than 

physical ones, but physical models do have their own advantages which are not acknowledged here. 

 

AR 1.6: The previous formulation was indeed one-sided, and we therefore reformulated the 

comparison between physical and statistical models in a fairer way, with a focus on how physical 

models can (and should) inspire the design of stochastic models (l 45-50). 

The new paragraph reads as follows: “To enable fast and computationally efficient simulations, and thereby allow for 

investigation of rainfall variability and associated uncertainty through the simulation of large ensembles, stochastic rainfall 

generators adopt an empirical approach that bypasses the detailed physical modeling of rain generation processes [Bauer et 

al., 2015]. To avoid the pitfall of physically unrealistic simulations, stochastic rainfall models embed a significant part of our 

conceptual knowledge about rainfall behavior in their parameterization (i.e. they implement statistical relationships that 

reflect as closely as possible the physical processes at work).” 

 

RC 1.7: Line 79: what proportion of the data have been "gap-filled"? How is the gap-filling distributed 

across time and between stations? How was the filling done?  

 

AR 1.7: More information about gap-filling, including the proportion of gap-filled data and a reference 

about the method used in practice have been added to the description of the study dataset (l 100-

102). 

The updated description reads as follows: “The available rain gauge observation dataset consists of daily records 

from a network of 86 rain gauges spread over the island (Fig. 1a), and covers a 20-year period 1991–2011. It corresponds to 

a compilation of quality controlled and gap-filled daily observations [Longman et al., 2018]. Gap-filling was performed using 

the normal ratio method [Paulhus and Kohler, 1952], and only stations with less than 5% gap-filled data are kept for this study 

in order to minimize the impact of gap-filling on our results.” 

 

RC 1.8: I will add that gap-filling in highly variable situations is, in my view, difficult and potentially 

dangerous because it will tend to underestimate variability. In my view therefore, for a stochastic 

rainfall model to be suitable for widespread use, it must be capable of handling incomplete datasets. 
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AR 1.8: [Same response as in public discussion]. We agree that incomplete datasets must be easily 

handled, that is why we selected (and implemented in our software) a pattern-preserving gap-filling 

method [Oriani et al., 2020] for cases where no case-specific gap-filling has been performed (e.g., the 

Tahiti dataset, see supplementary material 2). This method has the advantage of being compatible 

with our modelling framework focusing on rainfall patterns. When a case-specific gap-filling has 

already been applied and validated (as is the case for the O‘ahu dataset [Longman et al., 2018]), we 

chose to base our study on gap-filled datasets. 

 

RC 1.9: (in particular, what would you do if you needed to generate precipitation at a site for which 

you have no data? This requirement is common in many realistic applications). Lines 216-217 suggest 

that the proposed methodology cannot handle incomplete datasets: this is a serious limitation that 

needs to be acknowledged clearly and openly. 

 

AR 1.9: In the revised manuscript, we acknowledge clearly and several times that the proposed model 

is multi-site (l 85, l 170, l 468, l 504). We also mention it as a limitation of the model, and acknowledge 

the need for spatial interpolation in case gridded outputs are required (l 507-509). 

We therefore added the following paragraph to our concluding remarks: “The main limitations are (i) the 

inaccurate simulation of extreme rainfalls, which calls for caution when using our model for flood risk assessment, and (ii) the 

restriction to multi-site simulation, which calls for an additional step of stochastic interpolation of the multi-site patterns when 

gridded outputs are required.” 

 

RC 1.10: Lines 101-105: although the spatial variation in precipitation statistics initially seems dramatic 

here, a more considered inspection reveals that the statistics are more or less constant along NW-SE 

transects and that the predominant variation is basically along the axis of the trade winds. If one were 

to scale the seasonal cycles at the specimen locations to a common scale (e.g. proportion of annual 

rainfall falling in each month), I doubt whether they would be dramatically different. I don't see 

anything here that really challenges state-of-the-art multisite weather generators, therefore – and 

hence nothing that really necessitates the development of a new modelling framework. 

 

AR 1.10: To avoid misinterpretation of Fig. 1, and in particular the wrong impression that rain statistics 

are almost constant along NW-SE transects, we added a sentence in the description of O‘ahu’s rainfalls 

to explain that successive mountain ranges along the trade winds become drier (l 108-110): “Note some 

important details of this annual rainfall pattern, in particular that the rain maximum is observed leeward from the main crest 

of the Ko‘olau range, and that the Ko‘olau mountains are significantly wetter than the Wai‘anae range despite higher 

elevation.” 
In addition, we would like to mention here that Fig. 1a displays annual rain patterns to give a broad 

picture of orographic effects, but that daily patterns show way more variability than this temporally-

integrated picture. This is why we discuss daily rainfall patterns when we describe fig. 1 in the main 

text (l 111-117). This aspect has been reinforced in the revised introduction (l 62-66) to clearly make 

the point that daily spatial patterns can dramatically diverge from the annual ones: “To this first order 

quasi-static picture is added the important variability of daily rainfall patterns associated with processes ranging from 

synoptic-scale disturbances [Hopuare et al., 2018] [Longman et al., 2021] to large-scale atmospheric circulations [Hopuare et 

al., 2015] [Frazier et al., 2018] [Brown et al., 2020]. Large deviations from the long term rainfall patterns are thus observed, 

and usually dry leeward slopes can become the wettest part of the island, like during Kona storms (seasonal cyclones) in the 

Hawai‘i archipelago [Caruso and Businger, 2006].” 

Regarding the difficulty of using GLMs in the context of tropical islands, this is now discussed in the 

revised introduction (l 70-76). 
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RC 1.11: Line 133: what's the justification for the formulation in equation (1)? It seems a bit ad hoc. 

Also, as defined, Zi isn't latent because it's directly connected to observable quantities. 

 

AR 1.11: The choice of a Meta-Gaussian framework to model multi-site rainfall conditional to rain types 

as well as the associated terminology (incl. the latent field) is now discussed in details in section 2.2.1 

Model overview (l 157-172). 

The updated description of the Meta-Gaussian framework reads as follows: “Conditional to each rain type, 

the distribution of rain across the island is modeled following a meta-Gaussian approach (also referred to as trans-Gaussian 

or transformed Gaussian) [Allard and Bourotte, 2015] [Baxevani and Lennartsson, 2015] [Papalexiou and Serinaldi, 2020]. In 

this framework, a latent field with standardized Gaussian marginal distribution is non-linearly transformed to match the 

marginal distribution of daily rainfall across the island, and the spatial dependencies of the latent field are used to encode the 

spatial distribution of rainfall (Fig. 2b-c). The latent field is often assumed to follow a multivariate-Gaussian distribution, which 

allows for a parsimonious modeling of the spatial dependencies using geostatistics [Lantuéjoul, 2002], and in turn the spatial 

interpolation of rain gauge observations [Benoit et al., 2018a]. In this study however, a careful investigation of inter-gauges 

spatial dependencies (Supplementary material 1) shows the inadequacy of the multivariate-Gaussian distribution to model 

the latent field. Instead, a non-parametric resampling of past analogs [Gangopadhyay and Clark, 2005] [Yiou, 2014] of the 

daily latent field is used to model spatial dependencies. Aside from the choice of the marginal distribution of the latent field 

(Gaussian vs. uniform), this model is comparable to the use of empirical spatial copulas [Bárdossy and Pegram, 2009] coupled 

with a parametric marginal distribution of non-zero rain accumulation. This approach has the advantage of faithfully 

reproducing the complex spatial distribution of rainfall due to orographic effects, but at the expense of the ability for spatial 

interpolation. The present model should therefore be regarded as a multi-site stochastic rainfall generator (and not a rain field 

generator), and the spatial interpolation of the simulated multi-site rainfall is kept out of the scope of this paper.” 

 

RC 1.12: Line 142: similarly, what's the justification for the distance-weighting in equation (2)? This 

again seems a bit arbitrary, although it's certainly true that what is sometimes called the "spatial 

intermittence" problem is hard to resolve satisfactorily. Nonetheless, in my view it's not clear that the 

authors' proposal improves on that by, say, Stehlík and Bárdossy (2002) – another example of literature 

that they seem unaware of, or at least haven't considered as carefully as they should have done. And 

once again, it's not a "latent" field if it's defined in terms of interpretable quantities. 

 

AR 1.12: Equation 2 is indeed an application-specific attempt to deal with spatial intermittence. This is 

now clearly-stated and better explained when we introduce Eq. 2 (l 188-191): “The idea behind this 

application-specific solution to deal with the spatial intermittence of rainfall is that a location far from any wet gauge should 

remain dry even after combining the associated latent field with slightly different parameters of the transform function (Eq. 

1-2) during the simulation step (Sect. 2.3.3).” 
 

RC 1.13: Lines 149-150: there's a claim here that the complex spatial distribution "prevents the use of 

a simple parametric form ... for the spatial copulas". It's not entirely clear to me what this means, but 

I assume it's something like: you can't find a "standard" spatial covariance model to represent the 

dependence structure between the Zi. I'm prepared to believe this (although it could be partly an 

artefact of the artificial and deterministic distance-dependence structure of equation (2)), but it would 

be helpful to see some plots to justify it. 

 

AR 1.13: Yes, we mean that the joint distribution of copulas between sites does not follow a stationary 

multi-variate Gaussian distribution, which implies that we cannot find easily a “standard” spatial 

covariance model to represent the dependence structure between the Zi. This is now discussed l 161-

170 (and reminded l 201-203): “In this study however, a careful investigation of inter-gauges spatial dependencies 

(Supplementary material 1) shows the inadequacy of the multivariate-Gaussian distribution to model the latent field. Instead, 

a non-parametric resampling of past analogs [Gangopadhyay and Clark, 2005] [Yiou, 2014] of the daily latent field is used to 

model spatial dependencies.”  
In addition, the following figure illustrating the non-multi-Gaussian behavior of the latent field has 

been added in Supplementary Material 1: 
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Figure SM1.1: Bivariate scatterplots of latent values in the island of O‘ahu (same target stations as in Fig. 1 of the main 

paper). One can observe that bivariate spatial dependences are neither bivariate Gaussian (i.e., scatterplots do not have an 

elliptical shape) nor stationary (i.e., scatterplots are centered on different means, and have different spreads). 

 

RC 1.14: Lines 158-159: the ability to calculate principal components of the "latent" field shows that it 

isn't latent. See earlier comments on this. 

 

AR 1.14: Please refer to our response AR 1.11 above. 

 

RC 1.15: Sec 2.2.3: I find this "rain typing" approach, which seems to be derived from techniques that 

are popular in the machine learning community, to be rather clumsy compared with the much more 

principled approach taken by other authors using HMMs. Even if one were to accept that the approach 

is worth considering, the classification in lines 172-174 is inappropriate because it fails to account for 

the uncertainty in each day's weather type (e.g. if you had three states then you could find that the 

probabilities are always (0.34, 0.33, 0.33) in which case you would assign every day to state 1 which is 

clearly nonsense – exactly like the electoral system in some recently failed democracies). 

 

AR 1.15: [Same response as in public discussion]. As mentioned in AR 1.2, we adopted ‘explicit’ rain 

types (i.e., not hidden) to enable the non-parametric steps of our framework, which are justified by 

the complexity of rainfall patterns in tropical islands. This choice of explicit rain types requires in turn 

finding an alternative to HMM for rain typing, and for this study we chose a Gaussian Mixture Model 

(GMM) classification. This classification approach is widely used for clustering (e.g., [Fraley and Raftery, 

2002]), and has been applied successfully in the context of weather and rain typing (e.g., [Vrac et al., 

2007b] [Benoit et al., 2018a]). 

Regarding the classification (lines 172-174) we do not see anything wrong in our equations 4 and 5, 

which follow the usual GMM classification framework (e.g., [Fraley and Raftery, 2002]). We are not 

sure to understand the concern of reviewer#1. If we imagine that the probabilities of the three states 

(rain types) are 0.34, 0.33, 0.33 for all values of the feature-space, it means that the (multivariate 



8 
 

Gaussian, in our case 6-dimensional) distributions of these three types are almost identical, in which 

case the model will automatically detect that only one single type exists (𝑁𝐶 = 1). And therefore this 

problematic case of rain type non-identifiability will not occur. 

 

RC 1.16: Line 179: there seems to be something wrong with this equation. If I understand correctly, it 

is something like a kernel estimate of the transition probabilities based on the Mahalanobis distance 

in the space of meteorological covariates; but if so, then summing the right-hand side over j should 

give 1 for any value of i or MCd (it's supposed to define a conditional probability distribution). It doesn't, 

at least if γij is a "baseline" transition probability (which isn't stated here, but seems to be the case 

based on a later description – if that's the case, then it’s true that ∑j γij = 1 for all i but the exponential 

factor in line 179 messes things up). 

 

AR 1.16: Thanks a lot for spotting this typo in equation 6, the sign ‘’ must indeed be replaced by ‘∝’. 

We corrected this error in the revised manuscript and added a reference to better contextualize non-

homogeneous Markov Chains (l 228-230). 

 

RC 1.17: Line 184: how does the conditioning inform seasonality? This is another slightly dangerous 

assertion: relationships between precipitation and meteorological covariates can themselves be 

seasonally varying, for good physical reasons (think precipitation and temperature in temperate 

latitudes - they are positively associated in winter but negatively associated in summer). 

 

AR 1.17: To avoid misinterpretation, the revised manuscript mentions conditioning to meteorological 

covariates as an indirect way to inform seasonality (l 241-242): “the temporal variations of the covariates are 

correlated with variations in rain type occurrence (Supplementary Material 2), which indirectly informs the seasonality and 

interannual variability of rainfall patterns” 
 

RC 1.18: Lines 189-192: if the models are to be used for downscaling climate model projections, there 

are other requirements as well e.g. that the covariates are well represented by climate models and 

capture the climate change signal (see, for example, Maraun and Widmann 2018, Section 11.5). 

 

AR 1.18: We fully agree with this comment, and in the revised manuscript the evaluation of the 

simulation of the meteorological covariates is mentioned as the main future work before being able to 

use the proposed model in the context of downscaling climate projections (l 514-517). 

It reads as follows: “An essential future investigation in this direction will be to assess how well GCMs simulate the set of 

meteorological covariates we selected to drive our stochastic rainfall generator, in particular the vertical temperature gradient 

used to inform shallow convection.” 

 

RC 1.19: Lines 224 and 226: "GMM model" is a tautology. See also my previous comment about the 

allocation to the "most probable" state. 

 

AR 1.19: “GMM model” has been changed to GMM throughout the paper. 

 

RC 1.20: Lines 232-233: I don't understand what you're doing here. In lines 218-220 you said that you 

already estimated the parameters of ψ: why are you doing it again, therefore? Also, any simplistic 

method of bandwidth selection such as equation (7) is almost guaranteed to fail in a large proportion 

of applications: the authors' use of such an approach suggests that they don't really understand the 

potential pitfalls of such an approach – or, indeed, the availability of alternatives 

. 
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AR 1.20: [Same response as in public discussion]. In lines 218-220 we estimate the parameters of 𝜓 for 

each day of the training dataset, which allows us to derive the empirical joint pdf of p0, k and θ from 

observations. In contrast, in lines 232-233, we propose a non-parametric approach to sample this joint 

pdf and therefore simulate p0(d), k(d) and θ(d) for a given target day d. In a very schematic way we 

could therefore say that lines 218-220 correspond to inference and lines 232-233 correspond to 

simulation. 

Regarding the choice of the simulation method, we also tested a parametric approach in which the 

parameters p0, k and θ followed independent parametric distributions (we picked Gamma distributions 

for flexibility) that we inferred using a maximum likelihood approach. However, p0, k and θ are 

correlated, which made this parametric approach leading to not fully satisfactory results. Hence the 

choice of a joint inference and simulation. The selection and inference of a flexible tri-variate 

distribution being cumbersome, we have decided to adopt a non-parametric approach. Although 

simple, this approach gives good results in practice as shown in the sections 3.2 and 3.3 where we can 

see that the marginal distributions of site-specific and island scale daily rain (i.e., the summary statistics 

that are the most impacted by p0, k and θ) are both very well simulated by our model (Fig 4d, 5c, 

SM2.3d, SM2.4c). 

 

RC 1.21: Line 244: here, for the first time (I think) we discover that separate empirical copulas are being 

estimated for each day. What's the basis / justification for this? Are you not just resampling the original 

data, with a bit of smoothing? [actually this is mentioned on line 351, but I think it should be 

acknowledged upfront in the methodology]. 

 

AR 1.21: The resampling of separate empirical latent fields as well as the link with empirical copulas is 

now described in details in section 2.2.1 (l 157-172). We therefore acknowledge the resampling of the 

original latent fields upfront in the methodology (l l165-166), and repeat this information when we 

describe the simulation step (l292-294). We also added some references to the description of analog-

based simulation in order to better contextualize our simulation method (l 293). 

 

RC 1.22: Line 281: do you really believe there are 22 distinct rainfall regimes on the island? You've only 

got 86 stations, so this classification doesn't seem to be reducing the spatial dimension as much as one 

might hope. As a slightly peripheral (but important) comment: Figure 3(b) will be inaccessible to the 

~5% of male readers who suffer from red-green colourblindness. 

 

AR 1.22: The large number of rain types is now discussed in details in the revised manuscript (l 332-

337).  

It reads as follows: “Figure 3 displays the 22 rain types identified for O‘ahu Island during the period 1991–2011. Although 

this number may seem high compared to the number of rain types inferred for mid-latitude continental climates (usually less 

than 10 types, see e.g. [Vrac et al., 2007] [Benoit et al., 2018b]), we believe that it reflects the tremendous variability of rains 

observed in the Hawai‘i archipelago [Giambelluca et al., 2013], which led Hawaiians to use more than one hundred different 

words to describe rainfall [Akana and Gonzalez, 2015].” 
In addition, we changed the colors of figure 3(b) (as well as its equivalent for Tahiti in supplementary 

material, Fig SM4.1) to make it accessible to color-blind peoples. 

 

RC 1.23: Lines 321-326: although it's good to test the model using a variety of measures, I'm not always 

convinced by the way that this has been done here – and I don't fully understand all aspects of the 

plot. What are the grey bands in column (b)? What do you mean by "each statistic is estimated as the 

median across the 50 realizations"? [I ask this because you have dashed lines indicating the quantiles, 

suggesting that you're showing the distribution rather than the median – in any case, it isn't 

appropriate to compare a single observation to the median of 50 simulations because they will have 
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different statistical properties even if the model is correct]. There are published papers that deal with 

this issue correctly: the authors need to familiarise themselves with the literature. The issue is 

particularly acute in the Q-Q plots of column (d): if you really understood what a Q-Q plot represents, 

you'd realise that you don't need to duplicate the observations 50 times (I hope you haven't used the 

median of the simulations here as well ...). Similar comments apply to Figure 5. 

 

AR 1.23: To avoid misunderstanding, we re-designed Fig. 5b-c and the associated caption (l 391-395). 

We also corrected the error in the caption where simulations and observations were inverted. The new 

figure is displayed hereafter: 

 
Figure 5: Ability of the model to simulate site-specific rain statistics on O‘ahu. (a) Target locations. (b) Observed (red) and 

simulated (black) monthly rain accumulation. Dashed lines denote quantiles 10% and 90%, and solid lines denote the 

quantile 50%. In the case of simulations (black), for readability, we report in the figure only the median of each quantile 

(10%, 50%, 90%) instead of 50 simulated quantiles. (c) Observed (red) and simulated (black) annual rain accumulation. In 

the case of simulations (black), for readability, we report in the figure only the median of the 50 simulations. (d) Q-q plot of 

daily rain percentiles. (e) Q-q plot of wet-spell duration percentiles. Black dots line up vertically in q-q plots (d–e) because for 

each percentile, 50 simulations are compared to a single observation. 
 

Regarding the relevance of our plots, we would like to mention that there are not new in the literature 

related to stochastic weather generators, and that Fig 5b is similar to e.g., Fig 4 of [Peleg et al., 2017], 

and the q-q plots of Fig 5d-e and Fig 6b-e are similar to e.g., Fig 1 of [Allard and Bourotte, 2015].  

 

RC 1.24: Lines 340-341: I don't know what are the likely applications of precipitation modelling in this 

location, but if the potential stakeholders include farmers then I think they may be justifiably sceptical 

of your claim that underestimation of persistence can be tolerated for mathematical convenience. 

Precipitation modelling is not a mathematical exercise, it relates to lives and livelihoods. 
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AR 1.24: The discussion of the underestimation of persistence has been modified to acknowledge its 

impact on applications (409-411): “Although the resulting errors are of low magnitude, they should be kept in mind in 

case of applications requiring a precise estimation of rain persistence, for example crop models in semi-arid environments that 

can be found in some leeward areas of the target islands.” 
 

RC 1.25: Lines 362-364: I'm not convinced by this dismissal of the curvature in the Q-Q plot of Figure 

5(b). It is well-known that by compressing the tails of both observed and simulated distributions, Q-Q 

plots can make it hard to see discrepancies in the tails that may have substantial implications in 

applications. It would be helpful to consider alternative approaches to visualising this particular 

comparison (e.g. my guess is that if you were to plot the observed and simulated densities of 

proportions of dry gauges then you would be a bit more concerned about the simulation performance). 

 

AR 1.25: To avoid one-sided interpretation of the cross-validation results, the results displayed as q-q 

plots in Fig 6 are also shown as pdfs in Supplementary material 3. Based on these two displays, we 

improved the discussion of the curvature in the q-q plot (l 433-438): “Results show a slight underestimation 

of the low percentiles of the proportion of dry gauges (Fig. 6b), which corresponds to a slight overestimation of the frequency 

of proportions of dry rain gauges below 5% (i.e., 4 gauges over 86 in the present setting). That is, our model tends to simulate 

rain at all 86 gauges when a very small number of gauges (less than 4) actually records no rain, leading to a slight drizzle 

effect in space. A careful examination of the spatial patterns of daily rain percentiles (Fig 6a) shows that the patterns of spatial 

intermittency are properly simulated, which suggests that the drizzle effect is randomly distributed amongst locations, thus 

reducing its potential impact for applications.” 
 

RC 1.26: Line 388: in what sense is the model structure "hierarchical"? It may be worth noting that 

"hierarchical modelling" has a precise technical meaning in statistics: this isn't what you are doing here. 

It's probably worth rephrasing for avoidance of ambiguity, therefore. 

AR 1.26: To avoid ambiguity and confusion, we replaced “hierarchical modelling” by “two-step model 

based on rain typing” throughout the revised manuscript. 

 

RC 1.27: Line 392: here, the definition of weather types "based on rain features only" is offered as an 

apparent advantage of the proposed methodology. I would say that this is a distinct disadvantage 

because it ignores the physical processes that are operating. In my view, one of the key challenges in 

stochastic weather generation is to find mathematically tractable ways of capturing the footprints of 

the fundamental physical processes: this remark from the authors suggests that they either haven't 

thought about this, or that they consciously disagree with me. At the very least, some more 

explanation is needed as to why this feature may be considered desirable and defensible. 

 

AR 1.27: [Same response as in public discussion]. We agree with Reviewer#1 that one of the key 

challenges in stochastic weather generation is to find statistical models able to capture the footprints 

of physical processes, but we don’t see in which ways our rain-typing approach might be in 

contradiction with this aim. To go one step further, we would argue that if the main variable of interest 

is rainfall (which is the case of the present model), our approach allows a better identification of rainfall 

- climate interactions than a weather type approach, which would mix information about several 

meteorological variables during the classification step. In contrast, the choice of typing rainfall alone, 

and subsequently trying to relate rain type occurrence to meteorological covariates allows us to 

investigate (from a statistical point of view) the links that exist between the state of the atmosphere 

and the physical processes responsible for rain generation (incl. orographic effects). This is what we 

discuss in lines 395-401, and we think that this discussion is in line with the goal of statistically 

capturing physical processes stated by Reviewer#1. 
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RC 1.28: Line 424: I disagree that the authors' model represents "a new tool". I think it represents a 

first step towards reinventing some existing tools (e.g. HMMs), but without acknowledging their 

existence (or perhaps not understanding what they're capable of). 

 

AR 1.28: We hope that the thorough revision of our manuscript following the advices of the two 

referees have convinced Reviewer#1 that (1) tropical island rainfalls are complex and very variable in 

both space and time, (2) these rains are different from the ones for which most stochastic rainfall 

models have been designed, (3) direct transposition of existing models is not easy, and (4) our 

modelling choices are reasonable and properly capture the main features of rainfall in tropical islands. 

In practice, to better justify these modeling choices, a paragraph has been added to the introduction 

(l 66-80), and the model overview section that introduces the proposed model has been entirely 

rewritten (l 134-172). 

 

 

 

Response to the comments of Prof. Geoff Pegram (Reviewer#2) 

Reviewer comment (RC 2.1): What a pleasure to read a hydrometeorological article bringing innovation 

and appropriate explanation in estimating, through resampling using valuable tools, spatially and 

temporarily highly variable precipitation on O’ahu, ready to be used in other counties with variable 

topography.   I have enjoyed the journey and am pleased to have reviewed it.  

There is nothing much else to add, so I am returning my marked-up copy of the document. In addition, 

I am repeating a few of the less trivial remarks below my signature, which is my wont. 

I recommend resubmission of a revised version in due course. 

 

Authors’ response (AR 2.1): [Same response as in public discussion]. We would like to thank Prof. 

Pegram for his thoughtful review, and we are glad to read that our approach, initially designed for 

tropical islands, could find applications in different regions with complex topography. 

 

RC 2.2: L 71 A very useful introduction 

 

AR 2.2: [Same response as in public discussion]. Thank you, we’re glad that you agreed with our choice 

to focus our introduction on the adaptation of stochastic rainfall models to the climate at hand. 

 

RC 2.3: L 89 storm (seasonal cyclones) 

 

AR 2.3: We added this clarification in the revised manuscript (l 64 and 114). 

 

RC 2.4: L 101 Figure 1: Main features of rainfall observed over the island of O‘ahu. Nice informative 

figure caption as are all of the others. 

 

AR 2.4: [Same response as in public discussion].  Thank you. 

 

RC 2.5: L 112 Figure 2: Overview of the structure of the stochastic rainfall model. Explain what you are 

doing more fully - also, how do you explain the almost perfect antithesis? What do the 'covariates' 

mean?  What do you mean by: "will be discussed in detail later" in line 110 above? - Where? Aha - you 

refer to Fig. 2 (not Figure 2) in the following paragraphs –confusing. 
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AR 2.5: The caption of figure 2 has been modified to explain the ‘almost perfect antithesis’: “Figure 2: 

Overview of the structure of the stochastic rainfall model. (a) Meteorological covariates (here Geopotential at 950hPa and 

Temperature difference between 950hPa and 700hPa) driving the occurrence of rain types, which summarize daily rain 

statistics. (b) Latent field modeling of the spatial distribution of rainfall across the island. (c) Transform function linking latent 

values with actual rain accumulations. (d) Back-transform combining (b) and (c) to obtain daily rain simulations.” 
 

In addition, we modified the confusing paragraph mentioned by Reviewer#2 in order to avoid 

ambiguity. The updated sentence reads as follows: “Figure 2 summarizes the structure of the model, which is 

briefly introduced in the subsequent part of this subsection, and will be discussed in detail in sections 2.2.2 to 2.2.4.” 
 

RC 2.6: 2.2.2 Meta-Gaussian representation. 'Meta' can be used as an acronym for “most effective 

tactics available”, so how you define it in this context, as it is unusual and I had to hunt for it in the 

web? 

AR 2.6: The description of the meta-Gaussian model has been improved, and the terminology is now 

better defined.  

The updated description of the meta-Gaussian model reads as follows:  “Conditional to each rain type, the 

distribution of rain across the island is modeled following a meta-Gaussian approach (also referred to as trans-Gaussian or 

transformed Gaussian) [Allard and Bourotte, 2015] [Baxevani and Lennartsson, 2015] [Papalexiou and Serinaldi, 2020]. In this 

framework, a latent field with standardized Gaussian marginal distribution is non-linearly transformed to match the marginal 

distribution of daily rainfall across the island, and the spatial dependencies of the latent field are used to encode the spatial 

distribution of rainfall (Fig. 2b-c).” 
 

RC 2.7: L 142  Eq. (2)  That’s clever. 
 
AR 2.7: [Same response as in public discussion]. Thank you. 

 

RC 2.8: 286 Figure 3: Rain types identified for the island of O‘ahu. Figure 3(a) is too crushed for a person 

to read the busy text in comfort.  Please enlarge it and relocate 3(b) below. Your paper is short enough 

not to force the shrinkage. 

 

AR 2.8: Figure 3 has been redesigned following these guidelines:  
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Figure 3: Rain types identified for the island of O‘ahu. (a) Spatial distribution of daily rain and frequency of occurrence of 

each rain type. (b) Contribution of each rain type to the annual rain accumulation for a selection of 20 gauges spread 

throughout the island. 
 

RC 2.9: L 295  … (Fig. 3, rain types h–q)… Types h–q are labelled above by fading green captions an r-v 

are fading red - why?  A distraction - please change them to monochrome black. 

 

AR 2.9: Figure 3 has been redesigned following these guidelines, cf updated figure above. 

 

RC 2.10: L 321 Figure 4: Ability of the model to simulate site-specific rain statistics on O‘ahu. I do not 

understand why you have a column (in (d)) of simulated values of near 125 mm/day and your simulated 

range is up to about 450 - same comment for the rest of the panels.  (a), (b) & (c) are easy to follow ... 

AR 2.10: [Same response as in public discussion]. This is because for the highest quantile (i.e., the 20-

year maximum at the station of interest), the variability between the 50 realizations (i.e., independent 

simulations) becomes very large. For instance, in the first row of Fig. 4d, the observed 20-year 

maximum is 125mm/day and the simulated 20-year maximum varies between 125mm/day and 

450mm/day depending on the realization, hence an overestimation of the 20-year maximum in this 

case. It should be noted that this large variability of simulated maximum is not seen as a negative 

result, but rather as an indication that this feature is poorly constrained in our model and should 

therefore be handled with care (see the discussion about the ability of our model to simulate extreme 

rainfalls, lines 370-376).  
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RC 2.11: L 334 covariates properly capture rain type occurrence in a tropical marine climate. That's 

pretty convincing. 

 

AR 2.11: [Same response as in public discussion]. Thank you. 

 

RC 2.12: L 355 Figure 5: Assessment of island-scale statistics simulation in O‘ahu. Good work - the 

spread of mean and max daily rainfall are interesting - how do you account for the bias of the top-end 

in (d) with the max observed at 500mm? The text below does not comment on this. 

AR 2.12: [Same response as in public discussion], This bias means that our model overestimates the 

island-scale 20-year daily rain maximum, which is actually the main limitation of our model. This is 

discussed l 445-451 and restated in the conclusion lines 506-507.  

 

RC 2.13: Comment on the Supplementary material: Figure SM2.4: Assessment of island-scale statistics 

simulation in Tahiti. This image is confirmation that the techniques were a success on Tahiti, 

transferred from your work on O’ahu.  I suggest that you take a clip of the image [from (b) to (e)] to 

show us the value of your technique; the supplementary material is likely to be checked by few readers, 

so you need a teaser! 

AR 2.13: Thank you for this suggestion. We added the figure 7 below as a teaser for the supplementary 

material 4. 

 

Figure 7: Overview of stochastic daily rainfall simulation for the island of Tahiti, French Polynesia. (a-e) Site-specific statistics: 

(a) Target locations. (b) Observed (red) and simulated (black) monthly rain accumulation. (c) Observed (red) and simulated 

(black) annual rain accumulation. (d) Q-q plot of daily rain percentiles. (e) Q-q plot of wet-spell duration percentiles. (f-i) Island-

scale statistics: (f) proportion of dry gauges; (g–h) mean and max daily rain; (i) coefficient of variation. 

 

RC 2.14: L 415 4.2 Concluding remarks. I think that this model will not be confined to tropical islands. I 

can see applications in my country, South Africa, where we have high coastal mountains in the East 

rising to 3000m flattening through dryer areas towards the North West. Check the figure from our 
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work ; precip. max of 2000mm: "The gridded Mean Annual Precipitation averaged over each of the 

1946 quaternary catchments in the region" in: Pegram GGS, Scott Sinclair and András Bárdossy (2016).  

New methods of infilling Southern African raingauge records enhanced by Annual, Monthly and Daily 

Precipitation estimates tagged with uncertainty.  Water Research Commission, WRC Report No. 

2241/1/15 ISBN. 

AR 2.14: [Same response as in public discussion]. Thank you for sharing this insight and possible 

application. We are glad to read that our method can potentially be used in other areas with complex 

topography. It is true that orographic effects look impressive, in particular in Cape Town and 

Drakensberg areas. The main challenge we see to adapt the present framework to another climate 

(e.g., South Africa) is the selection of appropriate meteorological covariates to guide rain type 

occurrence. 

 

RC 2.15: L 455 References. Please include doi's where available. 

 

AR 2.15: Doi’s have been added in the revised manuscript every time this information is available. 

 

RC 2.16: L 561 Scott, D. W. (2010), Scott’s rule, WIREs Computational Statistics, 2, 497-502. 

doi:10.1002/wics.103. This find required a wild goose chase through the net but, eventually for your 

information, I found the original:-  SCOTT, DAVID W. (1979). On optimal and data-based histograms. 

Biometrika, 66(3), 605–610. doi:10.1093/biomet/66.3.605 

 

AR 2.16: Thanks a lot for this original reference. We added it to the revised manuscript. 

 


