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Abstract. 

Mountain seasonal snow cover is undergoing major changes due to global climate change. Assessments of future snow cover

usually rely on physical based models, and often include post-processed meteorology. Alternatively,  here we propose a

direct  statistical  adjustment  of  snow cover  fraction  from  regional  climate  models  by  using  long-term  remote  sensing

observations. We compared different bias adjustment routines (delta change, quantile mapping, and quantile delta mapping)

and explored a downscaling based on historical observations for the Greater Alpine Region in Europe. All bias adjustment

methods  account for  systematic  biases,  for  example due to  topographic  smoothing, and reduce  model  spread in  future

projections. The trend-preserving methods delta change and quantile delta mapping were found more suitable for snow cover

fraction than quantile mapping. Averaged over the study region and whole year, snow cover fraction decreases from 12.5 %

in 2001-2020 to 10.4 (8.9, 11.5; model spread) % in 2071-2100 under RCP2.6, and to 6.4 (4.1, 7.8) % under RCP8.5 (bias

adjusted estimates  from quantile  delta  mapping).  In  addition,  changes  strongly depended on season and  elevation.  The

comparison of the statistical downscaling to a high-resolution physical based model yields similar results for the elevation

range covered by the climate models, but different  elevation  gradients of change above and below. Downscaling showed

overall potential but requires further research. Since climate model and remote sensing observations are available globally,

the proposed methods are potentially widely applicable, but are limited to snow cover fraction.

1 Introduction

Mountain regions store large amounts of precipitation in form of snow and ice, which provide essential water supply for

downstream regions,  affecting an estimated quarter  of humanity (Immerzeel  et  al.,  2020).   Global warming resulted in

significant changes of the cryosphere with melting glaciers and shifts in the timing and abundance of snow (Huss et al.,

2017), which already affected the hydrological cycle  (Morán-Tejeda et al., 2014) and will continue to do so in the future

(Hanzer et al., 2018). These changes imply consequences on water supplies for domestic use, hydropower, and agriculture.

Seasonal snow cover responds rapidly to climate variability and change, in contrast to glaciers, which are out of balance with
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current  climate and will, to some extent, continue to melt even if climate targets are achieved (Marzeion et al.,  2018).

Finally,  besides acting as  water  storage,  snow cover  causes  a  significant  atmospheric feedback  due to its  high albedo,

modulating mountain weather (Wallace and Minder, 2021) and causing large uncertainties in climate projections of northern

hemisphere land warming (Thackeray et al., 2018).

Snow cover can be modelled using a large variety of models, which can be roughly grouped into conceptual  empirical

models (e.g., temperature index models such as Hock, 2003), complex energy-balance models with snow physics (Brun et

al., 1989), and simplified energy-balance models with few layers, which are used in land-surface schemes of climate and

hydrological models (e.g., Zanotti et al., 2004). In order to estimate future snow cover, conceptual empirical models can fail

because climate change violates the assumption of stationarity, while the most complex energy balance models might be

computationally unfeasible or accumulate artefacts in long-term simulations. 

Recently, regional climate models (RCMs) have become a feasible alternative to study large scale snow cover (Räisänen and

Eklund, 2012), even in complex terrain such as the European Alps (Steger et al., 2013), owing to increases in resolution and

modelling performance. RCMs dynamically downscale global GCMs (general circulation models) for a limited domain but

with higher resolution. Using snow cover output directly from RCMs, instead of taking meteorological forcing from RCMs

and feeding it  into dedicated snow models, has some benefits.  First,  it  provides a consistent  physical  signal  with land-

atmosphere feedbacks. Second, it removes the need to perform bias  adjustment of meteorological input for the dedicated

snow model. The main downside of RCMs is their coarse resolution and limited representation of snow processes, which can

be a limiting factor especially for mountain areas. For example, the EURO-CORDEX (European branch of the Coordinated

Regional Climate Downscaling Experiment) scenarios for Europe are available at 0.11° horizontal spacing. However, single

higher resolution runs of RCMs at 1-5km are available  (Warscher et al., 2019; Lüthi et al., 2019), but they still lack the

breadth of the EURO-CORDEX ensemble with up to 55 members (Coppola et al., 2021), which allows to assess multiple

scenarios and model uncertainty. 

Additionally, RCMs suffer from biases, for instance in temperature and precipitation (Vautard et al., 2021), which would be

the meteorological forcing for dedicated snow models, but also from biases caused by the relatively simple snow schemes of

RCMs. In high mountain regions, evaluations of snow from RCMs are challenging because of  a general lack of suitable

reference data and scale mismatches between observations and models. The arguably most relevant snow parameter, snow

water equivalent (SWE), is also the most difficult to estimate. In-situ observations are sparse, and estimates based on remote

sensing suffer from large uncertainties (Largeron et al., 2020). For the European Alps, Terzago et al. (2017) evaluated SWE

from  EURO-CORDEX RCMs using an  array  of  remote  sensing  and reanalysis  products,  and  found a  large  spread  in

reference data sets, locally large overestimation of SWE, and differences between GCM and renalysis driven RCMs. Using

an interpolated SWE data set based on in-situ data in Switzerland, Steger et al. (2013) found a general underestimation of

SWE for elevations below 1000 m and overestimation above 1500 m. On the other hand, Matiu et al. (2020b) focused on

different snow parameters, namely snow depth from in-situ observations and snow cover fraction from remote sensing, and

found a  good agreement  between RCMs and observations,  when accounting  for  elevation  and  temperature  differences
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between observations and models. It is likely that scale mismatches (low vs. high resolution grids or point vs. grid cell),

associated elevation biases, and the different reference data set uncertainties are causing these contradicting results.

Before climate model output can be used for climate change assessments or impact models, it usually undergoes some post-

processing, such as bias adjustment and downscaling. These serve to overcome systematic biases between observations and

model output, which can be caused by model inadequacies, inherited biases in RCMs from their driving GCMs, or biases

associated to the mismatch between spatial resolution of reference observations and model. The reference observations can

be points or grids, are often limited in extent compared to RCMs, and feature, in case of grids, typically higher resolutions. 

The simplest form of bias  adjustment is the delta-change (DC) approach, where the mean climate change signal (e.g., in

temperature) is superimposed on the observation series. However, DC cannot reflect any change in the future distribution of

the  considered  variable.  The  most  widely  used  approach  for  bias  adjustment is  quantile  mapping  (QM),  which  can

simultaneously perform downscaling, too. QM matches observed and modelled distributions and the non-parametric variant

performs better in reproducing observed climatology than parametric versions (Gudmundsson et al., 2012).  Since QM has

been show to modify trends in a few cases (Maurer and Pierce, 2014), quantile delta mapping (QDM) was developed, which

represents a trend-preserving QM approach (Cannon et al., 2015). The flexibility, performance, and ease-to-use has made

QM or QDM a standard approach for national climate change assessments, see, for example, Switzerland  (CH2018, 2018)

or Germany (Krähenmann et al., 2021).

For assessing future changes in snow cover based on climate model scenarios, two methods are mainly employed. The first

is to use downscaled and bias adjusted meteorological forcing from climate models to drive dedicated snow or hydrological

models (DeBeer et al., 2021; Hanzer et al., 2018). The second is to use directly snow cover output from climate models (see

above). However, the availability of long-term high-resolution satellite imagery has enabled a third option: To use remote

sensing for bias  adjustment and downscaling of RCM snow cover. To the best of our knowledge, this has not yet been

performed. We restrict the study to snow cover fraction, which is, in contrast to snow depth and SWE, globally available on

a high spatial resolution and with high accuracy. The presented method has therefore a global potential for application.

The aims of this study are to bias adjust and downscale snow cover fraction from RCMs using remote sensing observations

for the European Alps, and to compare this, for a limited area, to the use of a dedicated snow model forced by downscaled

RCM  output. The motivation  behind the statistical adjustment of snow cover fraction from RCMs is that the biases are

systematic.  They were shown to be mainly caused by orography and temperature,  partly also precipitation, mismatches

(Matiu et al., 2020b). These systematic biases seem to be predominantly constant are consistent across time, and thus future

change estimates can be statistically adjusted. While bias adjustment cannot add information beyond what is contained in the

RCM, it can reduce model spread. Additionally, it can make information on future projections more meaningful compared to

solely providing change estimates, which are sometimes hard to interpret. Unbiased absolute values are better for climate

change information and for impact assessments, which often depend on absolute thresholds, and for which biased estimates

would not be representative. By exploiting the morphological dependence of snow cover on topography, downscaling can
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improve local spatial patterns of RCM snow cover fraction. Finally, the comparison between downscaling RCMs and using a

snow model shall highlight benefits and limitations of the presented methodboth approaches.

The study combines the proof-of-concept of applying bias  adjustment and downscaling to snow cover fraction with its

application  to  assess  future  scenarios  of  snow cover  fraction  over  the  European  Alps.  The  remainder  of  the  paper  is

structured as follows. Section 2 introduces the study region and data sets. Section 3 explains the methods used for bias

adjustment and downscaling. Section 4 presents results and discussion, and Section 5 the conclusion.

2 Data

2.1 Study area

The study region (Fig. 1) encompasses the European Alps and approximately spans from 43 to 48.5° N and from 5 to 17° E,

which  roughly corresponds  to  the Greater  Alpine Region (Auer  et  al.,  2007). The large-scale  climatic  setting includes

influences from the Atlantic Ocean, the Mediterranean Sea, and the European continent. The region is characterized by

complex topography with strong elevational gradients. The comparison of statistical downscaling to a dedicated snow model

is performed for a small subset, the Ötztal Alps region in Austria (1850 km2, 862–3770 m a.s.l., Fig. 1b and 1d); see Hanzer

et al. (2018) for a detailed description of the Ötztal Alps region.
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Figure 1: Topography (a-b) and average annual snow cover duration (c-d) of the study region, the European Alps, (a, c) as well as
the Ötztal Alps region (b, d). The bias adjustment and downscaling has been performed on the whole area denoted in (a) and (c).
Dedicated snow model (AMUNDSEN) simulations were available for the Ötztal Alps region (b, d), which is also indicated with a
tiny square in (a) and (c). Snow cover duration maps are based on remote sensing and averaged over the hydrological years 2001-
2020 (see also SectionSec. 2.2).

2.2 Observed snow cover fraction from remote sensing

As for remote sensing observations, we relied on MODIS (Moderate Resolution Imaging Spectroradiometer),  because it

offers  the best  tradeoff  between temporal  availability (two decades,  daily)  and spatial  resolution (250 m) to perform a

downscaling – in contrast to coarser products such as based on AVHRR (Advanced Very-High-Resolution Radiometer),

which have a longer period into the past (starting in the 1980s), but are of coarse resolution and less quality for complex

mountain terrain than higher resolution sensors. A cloud filtered product was used (Matiu et al., 2020a) , which is based on

the snow maps developed in Notarnicola et al. (2013a). The processing included a sequence of spatial and temporal filters to

remove nearly all cloud coverage. More specifically, it included a mean filter to correct for errors in misclassifications of

snow vs. clouds, which sometimes occurred at the edges of cloudy and snowy areas. This was followed by a conservative
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temporal filter, which is based on the persistence of snow, and which filled short gaps between periods of snow or absence of

snow. Then an elevational  filter was applied  that filled cloud pixels above a snow line and below  a land line with the

respective classes. Finally, a greedy temporal filter was applied, which filled values with the next available observation in

time. This was often achieved within three to seven days, but if the next available observations was more than ten days away,

the pixel remained cloud. For more specific details, we refer to Matiu et al. (2020a), where an additional step is described,

namely the merging of Terra and Aqua acquisitions. Here, we only used Terra, in order to extend the temporal extent to

2000. 

Consequently, nearly cloud-free binary (snow/land) snow cover maps were available at daily scale for the complete period

2000-02-24 to 2020-08-23 at 250 m resolution in Lambert azimuthal equal-area projection for the domain denoted in Fig. 1.

While  the  actual  horizontal  resolution  of  the  maps  is  232  m,  the  approximation  250  m will  be  used  throughout  the

manuscript  for  simplicity.  Nearly  cloud-free  means that  less  than  0.1% of  observations  (over  all  pixels  and  all  days)

contained clouds. These cloudy pixels were removed from the subsequent analysis.  

The high-resolution binary snow maps were aggregated into low-resolution snow cover fraction maps that match the RCM

resolution of 0.11°, which is approximately 8.6 by 12.2 km for the Alps. Each low-resolution grid cell then contained 1961

(37*53) high-resolution pixels. From now on, the term pixel shall refer to the high-resolution area (250 m by 250 m) and

grid cell to the coarse-resolution area (0.11° by 0.11°), for both MODIS and RCMs.

To derive annual snow cover duration (SCD) maps, we used hydrological years defined such as to maximize the available

data within the MODIS period. The split was in summer, which is anyway the least important period for seasonal snow in

mountains. A hydrological year is defined here as starting August 1 and ending July 31, and designated by the year it ends.

The past SCD climatology (Fig. 1) is thus based on the (hydrological) years 2001 to 2020, which covers the period 2000-08-

01 to 2020-07-31. For simplicity, the term year will be used as substitute for hydrological year from now on, thus also when

referring to the climate model data. 

2.2.1 Scale issues in the study area

The aggregation of maps of snow cover duration  from 250 m pixels to 0.11° grid cells creates scale issues that hinder

comparisons  between  high  and  low resolution.  The  aggregation  smoothens  the  spatial  patterns  and  creates  systematic

differences between high and low elevations (Fig. S1). When the SCD maps are then further aggregated by elevation, the

resulting SCD differs substantially between high and low resolutions, especially between 1000 and 2000 m (Fig. S2), and

despite the fact that the distribution of pixel/grid cell elevations is almost identical between high and low resolutions (Fig.

S2b). At 1500 m, SCD from the low resolution map is more than 15 d (i.e., approximately 18%) higher than in the high

resolution map. Consequently, also for the future maps, future estimates of SCD cannot be compared between high and low

resolutions without introducing the same errors from scale issues. This holds for  the absolute numberabsolute numbers of

SCD, i.e., how many days with snow cover are there at a specific location/elevation. However, ; however, it’s still possible
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to compare future absolute and relative change estimates, i.e., how many less or more days with snow cover are there. These

change estimates should be unbiased, since subtracting past from future values also subtracts the biases introduced by scale

mismatches.  

2.3 Snow cover fraction from regional climate models

The EURO-CORDEX ensemble consists of 11 RCMs driven by 8 GCMs from CMIP5 (Coupled Model Intercomparison

Project Phase 5); see Coppola et al. (2021) for more information on the general ensemble setup. However, not all models

provide all variables and/or all emission scenarios. For instance, temperature and precipitation are available from all models,

but snow parameters such as SWE or snow cover fraction are only available for a subset of models. Regarding scenarios, we

used the RCP2.6 (representative concentration  pathway)  and RCP8.5 scenarios,  where  RCP2.6 is likely to  keep  global

warming below 2° C until 2100, while RCP8.5 corresponds to approximately 4 to 5° C global warming. Regarding snow

cover fraction (SNC), the available ensemble for this study included, for RCP8.5, 6 RCMs driven by 6 GCMs with a total of

29 simulations, and, for RCP2.6, 4 RCMs driven by 5 GCMs with a total of 8 simulations (Table S1). The list of used RCMs

is  CLMcom-CCLM4-8-17,  CLMcom-ETH-COSMO-crCLIM-v1-1,  CNRM-ALADIN63,  IPSL-WRF381P,  KNMI-

RACMO22E, and SMHI-RCA4. Even though DMI-HIRHAM5 also provides SNC, we excluded it because the SNC values

over the Alps were unrealistically low, although snow depths were well reproduced (Matiu et al., 2020b).

The RCM SNC maps were reprojected onto the low-resolution MODIS maps using nearest neighbor resampling in order to

have a one-to-one correspondence of grid cells in the spatial domain. Nearest neighbor was favored over other resampling

methods, such as bilinear, because it preserves the two-sided bounded nature of SNC, which goes from 0 to 1, and thus keeps

the same limits, while bilinear resampling can introduce lower maxima or higher minima.

Some models display snow accumulation issues (Terzago et al., 2017; Matiu et al., 2020b; EURO-CORDEX Errata, 2021)

and affected grid cells were removed based on thresholds on snow water equivalent or snow depth, as described in Matiu

(2020b). These were mostly grid cells with the highest elevation and the number of affected cells was between 0 and 233,

depending on model, out of a total of approximately 5000 land grid cells in the study domain (see Fig. S3 and Table S2 for

location and number of affected cells by RCM). Spatial averages and ensemble means are based on the common subset of

grid cells available to all models. KNMI-RACMO22E was strongly affected by snow accumulation, and thus we removed it

from  results  that  show  spatial/ensemble  means,  since  otherwise  too  many  grid  cells would  have  to  be  removed.

Consequently, for calculating ensemble means, 23 simulations were available for RCP8.5, but only 4 for RCP2.6.  This

imbalance between future scenarios was unfortunately unavoidable. While it would have been possible to restrict the number

of simulations to the same GCM-RCM pairs for both RCP2.6 and RCP8.5, we still decided to take all possible simulations in

order to have a better estimate of the model spread. However, model spread is likely underestimated for RCP2.6 due to the

low number of available simulations.

7

165

170

175

180

185

190



2.4 Snow cover fraction from AMUNDSEN

The  fully  distributed  snow  and  hydroclimatological  model  AMUNDSEN  (Strasser,  2008),  now  available  as

openAMUNDSEN in Python (Warscher et al., 2021), has been previously applied to study the future snow and ice evolution

in the Ötztal Alps region in Austria (Hanzer et al., 2018); see Fig. 1b and 1d for the area. AMUNDSEN dynamically resolves

the mass and energy balance of snow and ice and has been driven by projected meteorological datafuture meteorology based

on EURO-CORDEX RCMs, which includes a subset of the same RCMs mentioned above. The input meteorology has been

bias  adjusted  and downscaled using QM to point scale, and further temporally disaggregated and spatially distributed to

provide 3 hourly forcing at 100 m horizontal resolution for the whole catchment. For more details, see Hanzer et al. (2018).

The modelled snow water equivalents were converted into binary snow/land indicators using a threshold of 5 mm. We also

evaluated a threshold of 15 mm but found differences to be negligible. Snow cover fraction was then calculated by averaging

over time (e.g., months),  space (which includes elevation bands), or both.

For the comparison, we decided to focus on ensemble means, and not compare results between individual GCM-RCM pairs

directly. Only few GCM-RCM pairs overlap between Hanzer et al. (2018) and this study. In addition, the QM in Hanzer et

al. (2018) has been applied using the period 1970 to 2005 as baseline, while the baseline in this study was 2001 to 2020.

Finally, the ensemble size is similar, since Hanzer et al. (2018) used 14 GCM-RCM for RCP8.5 and 3 GCM-RCM pairs for

RCP2.6,  compared  to  19  and  3  here,  respectively  (CNRM-ALADIN63  was  removed  only  from  the  comparison  to

AMUNDSEN, because half of the Ötztal Alps area was affected by snow accumulation). 
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Figure 2.  (a)  Overview of  methodology.  (b)  Downscaling exemplified at one low-resolution (lr)  grid cell.  The SNCp50 values
determine the conversion from lr SNC to hr binary snow, which is shown for three example SNC valuesDetailed view of the
estimation of SNCp50 based on CP curves. CP curves show the probability of the respective pixel being snow covered as a function
of the encompassing grid cell  SNC. (c)  Detailed view of the estimation of SNCp50 based on CP curves.  CP curves show the
probability of the respective pixel being snow covered as a function of the encompassing grid cell SNCDownscaling exemplified at
one low-resolution (lr) grid cell. The SNCp50 values determine the conversion from lr SNC to hr binary snow, which is shown for
three example SNC values. Abbreviations: lr (low-resolution), hr (high-resolution), SNC (snow cover fraction), RCM (regional
climate model).
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3 Methods

The overall methodology is summarized  in Figure 2a. It consists of two separate steps, bias adjustment and downscaling,

which are both explained in detail below. MODIS observations are used overarchingly: as reference climatology, for bias

adjustment, to derive the downscaling relationship, and to validate the downscaling approach.

3.1 Bias adjustment of snow cover fraction 

We compared four different bias adjustment methods, which are routinely applied for temperature and precipitation series,

in  their  applicability  for  snow cover  fraction:  DC,  QM (Gudmundsson et  al.,  2012),  QDM (Cannon et  al.,  2015),  and

multivariate QDM (Cannon, 2018). In all cases, the past refers to years with MODIS observations available, that is 2001 to

2020.

For the climate model runs, the historical period, which goes from 1950/70 to 2005, was merged with the RCP scenario run,

which covers 2006 to 2100, in order to have the same common period for the past as available from MODIS (2001 to 2020).

Thus, for applying the bias correction, each scenario had its own past time series (i.e., for each RCP scenario), while usually

the calibration is performed on the same historical  run for all scenarios.  However,  this was not possible here,  since the

overlap between historical period and MODIS is only 5 years, which is too little to derive robust distributional estimates of

the snow cover climatology. As future period, we considered 2071 to 2100. The bias  adjustment was applied at the same

spatial (0.11°) and temporal scale (daily).

For the DC approach, we calculated the multiplicative change ratios between the past and future from RCMs and applied it

to the observations from MODIS. This was done separately for each grid cell and each month. For QM and QDM, we

employed the standard routines  with empirically derived distribution functions (Gudmundsson et al., 2012; Cannon et al.,

2015),  as available in the R packages qmap and MBCn, again month by month and  grid cell  by grid cell.  For QDM,

multiplicative change ratios were used. The multivariate  QDM was applied in the spatial  domain, thus the multivariate

component was to account for the spatial correlation in SNC between  grid cells. However, we found results to be almost

identical to standard univariate QDM, and we do not show it further in results. We assume this similarity to be caused by the

high spatial correlation in SNC, and the fact that this spatial correlation is similar in both model and observed series.

Because SNC is bounded not only at the minimum 0 but also at the maximum of 1, the standard QM and QDM algorithms

were both modified as follows. The trace condition, which sets all values below a threshold (here: 0.001, also called trace

value) to exact zeros,  has also been applied to the maximum, so that all values above 0.999 were set to exact  ones. In

addition, the distribution of RCM SNC contained many exact zeros and ones in comparison to observed SNC, which was

more regularly distributed across the [0, 1] interval, caused by the sub-grid variability in observations. This caused problems

in estimating and matching the modelled and observed quantiles. To alleviate this issue, we added a random component to

all SNC values near 0 and 1, where near means half of the trace value. The random values were randomly sampled from a

uniform  distribution  with  minimum  the  machine  epsilon  (the  lowest  value  without  rounding  issue  in  floating  point
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arithmetic) and maximum half the trace value, i.e., effectively from the [0, 0.0005] interval. This random component helps in

matching quantiles (and thus distributions) but breaks the temporal consistency in the bias adjusted SNC time series. Since

it’s applied in a distributional manner over all days in each month for a 20/30 year period, the monthly climatologies are

fine. But at the daily scale, the random component might lead to inconsistencies, such as sudden jumps in the snow cover

fraction  time  series  or  increasing  snow  cover  fraction  in  the  melt  season.  Consequently,  no  estimates  of  interannual

variability can be calculated.

3.2 Downscaling of snow cover fraction to binary snow

The proposed downscaling approach converts low-resolution snow cover fraction (SNC) from RCMs into high-resolution

binary snow cover (snow/land), from which we extracted monthly and annual snow cover duration (SCD). The downscaling

is based on the morphological  dependence of snow cover (Premier  et al.,  2021).  It  uses a conditional probability (CP)

approach (Dong and Menzel, 2016) to define the relationship between snow cover fraction of a low-resolution grid cell and

the  probability  of  a  high-resolution  pixel  being  snow-covered  or  snow-free.  The  procedure  first  estimates  these  CP

maps/curve, which are then used to derive the SNCp50 threshold (Figure 2c2a). SNCp50 is the SNC value, for which the

probability of a pixel being snow covered is higher than 0.5. These SNCp50 values then convert continuous SNC from a grid

cell into high-resolution binary snow pixels (Figure 2b2c).

We used the 20 years of daily MODIS snow maps to calculate the CP that a high-resolution pixel is snow-covered depending

on the SNC of the low-resolution MODIS grid cell  (which itself has been aggregated from the high-resolution maps). For

this, we split the maps by grid cells. For each grid cell, the 20 years of daily SNC observations were divided into 22 bins

with breaks 0, 0.001, 0.05, 0.1, … 0.95, 0.999, 1. These are SNC bins of width 0.05 with additional bins at the minimum and

maximum to catch nearly exact zeros and ones. For each bin, we defined the CP of each high-resolution pixel as the fraction

of days each pixel was snow covered divided by the total number of days in the respective bin. Bins that contained less than

30 days were omitted, which were mostly with low SNC at high elevations and high SNC at low elevations (see Figure S4).

For  each  pixel,  this  results  in  up  to  22  empirically  estimated  probabilities  that  a  pixel  is  snow-covered  based  on  the

encompassing SNC value (derived as the average of the range of the SNC bins). These correspond to the 22 CP maps (all

pixels, one bin; e.g, Figure 2a or Figure S4) or CP curves (one pixel, all bins; e.g., Figure 2c2b or Figure S5d). The CP curve

with up to 22 points can be considered an empirical approximation to a smooth function that gives the probability of a pixel

being snow-covered as a function of the encompassing grid cell SNC.

From these CP estimates, SNCp50 was derived in three ways. First, with a linear approximation (64 % of cases); if this

failed,  then  using  a  similar  pixel  approach  (7  % of  cases);  if  this  also  failed,  then  with  a  similar  elevation  approach

(remaining 29 % of cases). These steps are described in detail below.
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SNCp50  is the x-value (SNC) at which the CP curve crosses y=0.5. This value can be extracted from the empirical CP

curves  via  linear  approximation.  A sufficient  condition for  a  unique  solution  is  a  monotonically  increasingnon-strictly

monotonic relationship between low-resolution SNC and probability of high-resolution snow, which is a physically valid

assumption for any given high-resolution pixel. A non-monotonic curve could imply that the y=0.5 lines is crossed multiple

times, thus resulting in multiple SNCp50 values.  But because of noise and errors in the MODIS time series,  monotonicity

was  not  always  the  case,  so  we selected  the  longest  non-strictly  increasing  subsequence.  Additionally,  to  have  robust

estimates of this SNCp50 threshold, we removed points with probability exactly zero and one, thus requiring some points

that identify the curve (Figure 2c2b last row). The linear approximation worked for 64% of pixels. 

In the remaining 36%, the linear approximation failed to estimate SNCp50, because either no empirical  estimates were

available (except  for ones and zeros) or all were above/below 0.5 (see,  e.g.,  point (3) in Figure S5d). For these pixels,

SNCp50 was imputed in two steps, first using a similar pixel approach and if this failed, with a simpler elevational filter.

For the similar pixel approach (Li et al., 2020), we selected another reference pixel with available SNCp50 that is similar

with  respect  to,  first,  the  sub-grid  topography  of  the  encompassing  low-resolution  grid  cell and,  second,  to  the  high-

resolution probability curves. For the first, similarity between low-resolution grid cells was assessed with the Wasserstein

distance (also called earth-mover distance) using the high-resolution pixel elevations. We expect While it would be possible

to match pixels of two grid cells to be similar, if the two distributions of pixel elevations within the respective grid cells are

similar. The Wasserstein distance is especially designed for comparing distributions: If the two distributions are thought of

as earth piles, it calculates how much and how far “earth” has to be moved, such that the two distributions agree. Other

distance metrics, such as Euclidean(by, for example, taking the topleft pixels of both grid cells, then the next pixels to the

right,  etc.  up  to  the  bottomright  pixel)  and  then  calculating  the  Euclidean  distance,  this  would  not  be  a  reasonable

approximation of the difference in sub-grid topography between the two grid cells. If, hypothetically, a grid cell were flipped

horizontally or vertically,  its sub-grid topography variability would be identical,  but the Euclidean distance from above

would be different. The Wasserstein distance, on the other hand, would in this case require to have a pairing of all values

(pixel elevations) between the two grid cells, and are not well suited to compare distributionsbe zero for a flipped grid cell,

since it is based on distributions. Consequently, it is a suitable metric to estimate the similarity of the  variability of pixel

elevations between two grid cells. See Figure S6 for example elevation distributions and Wasserstein distances. 

For each high-resolution pixel with missing SNCp50, we selected the 50 nearest low-resolution grid cells (including the low-

resolution grid cell with missing high-resolution SNCp50); nearest in terms of the Wasserstein distance. Then, we calculated

the mean absolute error (MAE) between CP curves for pixels that deviate at most 150 m of the missing pixel elevation and

have at least 5 values to compare CP curves. The SNCp50 from the pixel with minimal MAE was used to fill the gap. The

similar pixel approach filled an additional 7% of SNCp50 values. 

The remaining 29% of missing SNCp50 were mostly located above 3000 or below 500 m. For these, the second imputation

step involved a simpler elevation filter, and no comparison of probability curves. Again, we selected the 50 most similar

low-resolution grid cells in terms of the Wasserstein distance. All high-resolution pixels in these 50 grid cells were ordered
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by their elevation difference to the gap pixel and up to 100 pixels with at most 150 m elevation difference were selected. The

average SNCp50 from these up to 100 pixels was then used to fill the gap. After this step, <0.001% pixels were missing and

these were omitted from the rest of the analyses. 

We excluded glacierized pixels with more 10% glacierized area from the further analysis of the downscaling, because of a

systematic bias (see validation in  Section 4.2Sec. 4.4) in addition to the difficulties of distinguishing snow and ice with

MODIS (Fugazza et al., 2021). In addition, they had a strong overlap with the already removed low-resolution RCM grid

cells with snow accumulation (SectionSec. 2.3). Glacier extents were extracted from the Randolph Glacier Inventory 6.0

(RGI Consortium, 2017).

An example of the SNCp50 values is shown in Figure S5, which shows the expected negative relationship between SNCp50

and elevation, which implies that, as SNC increases from 0 to 1, the snow cover is more likely to be found going from high

to low elevations. But while elevation is the main influence, SNCp50 can vary considerably for similar elevations (e.g.,

points (1), (3), and (4) in Figure S5 are approximately the same elevation) due to local terrain factors. 

For the validation of the downscaling, we applied the procedure to the upscaled MODIS snow cover fraction maps and

compared  the downscaled maps with the original  maps,  which have been  used in  the upscaling,  too. This  comparison

involves a contingency table for a binary classification (snow/land), where we define snow as positive outcome. From the

numbers of true positives (TP,  correctly downscaled snow), false positives (FP, downscaled snow, but actually land), true

negatives (TN, correctly downscaled land), and false negatives (FN, downscaled land, but actually snow) we calculated the

following metrics: Accuracy, which is the overall fraction of correct values (TP+TN)/(TP+FP+TN+FN), positive predictive

value (PPV), which is the fraction of correctly downscaled snow of all snow TP/(TP+FP), and the negative predictive value

(NPV), which is the fraction of correctly downscaled land of all land TN/(TN+FN). The PPV and NPV are similar to the

sensitivity and specificity metrics, but adjust for the prevalence of each category. 

The downscaling was applied  for QDM bias  adjusted low-resolution snow cover fraction only, and not  for the other bias

adjustment methods. QM showed artificial modification of trends (see SectionSec. 4.1), and DC is theoretically inferior to

QDM, since DC only adjusts the mean, while QDM adjusts the whole distribution. 

4 Results and Discussion

4.1 Bias adjustment and future changes in snow cover fraction

The RCMs reproduced overall seasonal and large-scale spatial patterns of past snow cover fraction well (cf. RAW in Fig. 3

and 4). For instance, Winter (December-February) snow cover fraction spatial patterns agreed not only for the high-elevation

Alpine region, but also for lower elevation mountains, such as the northern Alpine foreland, Dinarides,  or the Northern
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Apennines. However, because of the coarse resolution and smoothed model orography, the RCMs did not capture the fine

scale complex patterns found in the Alps (Fig. 4). Additionally, the monthly areal averages of snow cover fraction were

over- and underestimated, depending on both RCM and GCM (Fig. 3), as has also been shown previously (Terzago et al.,

2017; Matiu et al., 2020b). This model bias depended stronger on the RCM and only secondly on the driving GCM. 

Applying DC, QM and QDM bias adjustment to past RCM output enforced it to match the distribution of observed SNC and

consequently also reduced the model spread for the future (Fig. 3). In addition, it introduced the fine-scale spatial patterns

into the smoothed model output (Fig. 4). QM and QDM, by definition, resulted in the same patterns for the past. Bias

adjusted future estimates were similar for the two trend preserving approaches DC and QDM, which themselves differed

substantially from QM. For example, QM showed less reduction in SNC under the RCP8.5 scenario for spring (March-May)

than DC and QDM (Fig. 3 and 4).

Figure 3. Average monthly snow cover fraction over the whole study domain before and after bias adjustment. Black points denote
observations from remote sensing for the period 2001-2020 (the same in all panels), and colored lines the regional climate model
(RCM) simulations with associated general circulation model (GCM). First row shows monthly averages for the past (2001-2020),
while the middle and last row are for 2071-2100 averages for two emission scenarios (RCP, representative concentration pathway).
Column RAW is for original RCM output, DC is the delta change approach, QM is quantile mapping, and QDM quantile delta
mapping. Panel for DC and 2001-2020 shows no lines, since DC has no past RCM observations of its own. 
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Figure 4. Average seasonal snow cover fraction (SNC), as observed from remote sensing (OBS) and simulated with the CLMcom-
CCLM4-8-17  regional  climate  model  driven  by  CNRM-CERFACS-CNRM-CM5  under  the  RCP8.5  emission  scenario.
Abbreviations: remotely sensed observations (OBS), raw climate model output (RAW), quantile mapping (QM), quantile delta
mapping (QDM), delta change approach (DC), December-January-February (DJF), March-April-May (MAM). For maps of the
other climate models and emission scenarios, see (Matiu, 2021).

Average winter SNC over the whole study domain was 29.3 % for the past (2001-2020) from MODIS observations, and the

raw model mean was 30.2 (23.4, 43.3; model spread) %. For 2071-2100 under the low emission scenario RCP2.6, SNC

decreased by 4.1 (2.4, 8.1) percentage points (pp) based on QDM, which corresponds to a relative reduction of 14.0 %.

Under the high emission scenario RCP8.5 the reduction was 14.2 (10.1, 19.1) pp, which corresponds to 48.5 %. Observed

past spring SNC was 13.5 %, while the raw model mean was 13.0 (7.7, 21.7) %. Future changes under RCP2.6 were -2.7 (-

4.5, 0.1) pp, in relative terms 20.8 %, while under RCP8.5 changes were -6.5 (-9.2, -4.6) pp, in relative terms 50.0 %. The

estimates for  RCP2.6 are based on a much  smaller ensemble of  only 4 GCM-RCM combinations,  compared to 23 for

RCP8.5, and thus are less likely to represent model uncertainty well. 

Projected changes until the end of the century depended strongly on elevation, and the strongest  absolute reductions in

winter SNC were observed between 400 and 2000 m and in spring above 1000 m (Figures S7 and S8, Tables S3 and S4). On
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the  other  hand,  relative  reductions  were  strongest  at  the  lowest  elevations,  and  became gradually  less  with increasing

elevation (Figure S9, Tables S5 and S6). Under RCP2.6, winter SNC decreased approximately 7 pp (15 %) at 1000 m

elevation , while above 2000 m it’s less than 2 pp (< 2 %) and the model uncertainty includes no change (Tables S3 and S5).

Under RCP8.5, winter SNC decreases more than 15 pp between 400 and 2000 m elevation (corresponding to -21.1 % at 400

m and -3.4% at 2000 m), with strongest absolute changes at 1200 to 1400 m, which amount to -25.1 (-35.0, -17.7) pp or -

12.0 (-27.3, -4.5) %. In spring under RCP2.6, strongest absolute reductions in SNC were observed at 1400 to 2000 m with

more than 10 pp decreases in SNC (16 to 23 %). On the other hand, under RCP8.5, reductions in SNC were almost twice as

large and remained high also above 2000 m compared to RCP2.6, where they gradually diminished, for example, at 2 200 to

2400 m, changes were -23.3 (-43.2, -4.7) pp or -27.3 (-50.9, -5.5) % under RCP8.5 and -6.0 (-12.1, -1.2) pp or -7.1 (-14.2, -

1.4) % under RCP2.6 (Tables S4 and S6). In addition, a high model uncertainty in projected changes of spring SNC above

2000 m under RCP8.5 was observed: The model spread ranged from almost no change to an approximate halving of SNC

(Figures S7 and S9).

This model spread in spring SNC under RCP8.5 is likely caused by the snow schemes in the climate model’s land surface

schemes in combination with the projected temperature and precipitation changes, which directly affect SWE, and, since

SNC is parametrized on SWE, also SNC. Higher uncertainties are expected in spring because potential errors accumulate

over the snow season. However, a detailed discussion on snow model processes and uncertainties is beyond the scope of this

study, and better addressed in dedicated projects, such as ESM-SnowMIP (Krinner et al., 2018).

An in-depth view of the bias  adjustment results at a single grid cell highlights the main differences between raw climate

model SNC and observations as well as between QM and QDM (Figure S10). RCMs have more saturated SNC at both 0

(snow free) and 1 (snow covered) and thus display  more often fully snow free or snow-covered conditions over time as

compared to MODIS. This is likely caused by sub-grid variability, which is prominent in MODIS, since it’s based on 250 m

information. The trend-preserving attribute of QDM keeps the distribution of SNC identical between past and future when

raw model SNC does not change, e.g., for the fraction of time, where the grid cell is fully snow covered (Figure S10). In the

same situation, QM shows reductions in SNC. Additionally, QM has spurious breaks caused by applying the method month-

by-month, but not QDM. While these breaks could be alleviated by applying the bias  adjustment with a moving window

approach (e.g., 3-6 months) or using the whole year, QM still suffers from artificial modification of trends, as has been partly

shown before for precipitation  (Maurer and Pierce, 2014; Maraun, 2013). Consequently, it should be treated with caution for

snow cover fraction, too. For the downscaling below, we thus only used results from QDM.

4.2 Validation of the downscaling

The downscaling approach was validated by applying it to the upscaled MODIS snow cover fraction, and then compare it to

the original maps, which have been used for upscaling. This comparison involved the whole domain and all daily maps,
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resulting in approximately 71 billion pixels (7305 days times 9.8 million pixels per  map).  The overall  accuracy  of the

downscaling was 96.4%, the PPV 89.1%, and the NPV 97.4%. Consequently, snow was downscaled less correctly than land,

but still accuracies are high. In addition, there was a seasonal and elevational dependence of the downscaling errors. Lowest

accuracies were found for the elevation at which the transition from land to snow occurs, and this elevation varied by season

(Figure S11). For example, in December, the lowest accuracy was 83 % at1400 m, but in May, the lowest accuracy was 87

% at 2000 m. In absolute terms, the number of correctly downscaled pixels outweighs the errors by large (Figure S12).

To evaluate the errors in downscaled climatologies of SCD, we compared the downscaled QDM bias adjusted past RCM to

the observed high-resolution climatology from MODIS. By definition of QDM, the empirical distribution of past snow cover

fraction at the 0.11° resolution is identical between RCMs and MODIS. Thus, the difference between downscaled average

annual snow cover duration (SCD) and observed high-resolution MODIS SCD is an indicator of the downscaling error. The

mean downscaling bias was -3.0 d and the MAE 5.2 d. In addition, there was an elevation dependence of the bias (Figure

S13). A negative bias was found for elevations below 1000 m, almost no average bias between 1000 and 3000 m, and

positive bias above 3000 m. Glacierized surfaces exhibited strong positive bias, except if SNCp50 was imputed by the

second elevational step. 

The  downscaling  procedure  assumes  seasonal  stationarity.  Across  the  snow  season,  the  processes  governing  snow

accumulation and ablation differ substantially, so seasonal stationarity is questionable. However, the downscaling procedure

employed in this study is based on terrain morphology, which stays constant across the season. For the spatial scales used

here with 250 m spacing, this resolves to mostly elevation and only partly aspect and slope. For higher spatial spacings, such

as tens of metres,  preferential  deposition of snow, terrain shading, and wind start  to play strong roles,  and stationarity

becomes increasingly less plausible. We evaluated the stationarity assumption for our study by calculating two different

SNCp50 values, one for the start of season (September to February) and one for the end of season (March to August). The

average bias between the seasonal and annual SNCp50 values was -0.018 for the start and 0.007 for the end of season, with

an MAE of 0.057 and 0.041, respectively. Most of the bias was confined to lowest elevations (below 1000 m), which do not

have a proper start and end of season, but multiple intermittent episodes. Given these low differences between seasonal

SNCp50 values, the seasonal stationarity assumptions seems justified.

4.32 Downscaled projections of snow cover duration 

Downscaled projections of high-resolution snow cover duration (SCD) based on low-resolution snow cover fraction (SNC)

showed  decreases  in  annual  SCD under  both  emission  scenarios,  but  much stronger  under  the  high  emission  RCP8.5

scenarios (Figure 5). Similar to Section 4.1, changes strongly depended on elevation (Figure S14S11, Table S7). In absolute

terms, SCD decreased stronger with increasing elevation, while in relative terms, the reductions were highest at the lowest

elevations (Table S8). For example, averaged over all pixels between 800 and 1000 m in the study area, SCD decreased by 9
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d (3, 17) under RCP2.6 and by 26 d (19, 33) under RCP8.5. At higher elevations of 1800 to 2000 m, SCD decreased by 25 d

(11, 47) under RCP2.6 and by 68 d (41, 106) under RCP8.5, while at 2800 to 3000 m SCD decreased by 35 d (21, 56) under

RCP2.6 and by 92 d (49, 163) under RCP8.5. In relative terms, these reductions amount to 22 %, 15 %, and 11 % under

RCP2.6 for 800-1000 m, 1800-2000m, and 2800-3000m, respectively, and 64 %, 41 %, and 30 % under RCP8.5. 

Figure 5. Future 2071-2100 annual snow cover duration (SCD) maps and differences to past (dSCD). (a) Downscaled SCD maps
for low and high emission scenarios (RCP, representative concentration pathway) based on an ensemble of 4 models for RCP2.6
(regional climate models driven by general circulation models) and 23 models for RCP8.5. Empty areas denote pixels removed
because of snow accumulation issues (see methods), glaciers, or water bodies. (b) Differences between future (2071-2100) and past
(2001-2020) model output in absolute days. (c) Relative differences; pixels with > +100% difference omitted, because low values of
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observed SCD caused noise in relative estimates for low SCD (most of the remaining positive changes are for areas with SCD <= 5
d, too).

The European Alps have a prominent north-south climatic divide (Auer et al., 2007), which manifests itself in snow cover

duration, too. Taking anomalies of SCD by elevation shows, on average, higher SCD north of the main ridge and lower SCD

south (Figure  S15aS12a).  These patterns  were reproduced in RCMs, too, and changed in the future period: Comparing

RCP2.6 to RCP8.5, the north-south gradient in SCD was less strong for lower elevations and more pronounced for higher

elevations  (Figure  S15S12).  In  addition,  a  stronger  relative  decline  in  SCD was observed  south and  west  of  the Alps

compared to north and east (Figure 5c) under RCP2.6. An analysis of station snow depth and SCD trends over the last five

decades in the Alps similarly showed stronger declines south than north (Matiu et al., 2021). Consequently, this trend might

continue in the future given the findings in this study.

The downscaling introduced some bias at elevations below 1500 m, while above the procedure is largely unbiased (Figure

S14bS11b and c, left panel). But even at the lower elevations, the bias was lower than the model spread and future change

estimates. Thus, the largest part of uncertainty of future projections was less because of the downscaling method, but more

caused by the spread in GCM forcing together with RCM snow schemes. Since there is no single “best” climate model

(Vautard et al., 2021) and no single best snow model (Etchevers et al., 2004; Rutter et al., 2009; Menard et al., 2021), we

conclude it is safe to take model spread as representative of model uncertainty for future projections. 

The employed statistical  downscaling method extrapolates  information beyond the elevation coverage of the RCMs. At

0.11°, and not considering the grid cells with snow accumulation, the highest grid cell from low-resolution RCMs was at

approximately  3000 m,  which  contained  single  high-resolution  pixels  with  elevations  up  to  4105  m.  The  downscaled

estimates above 3000 m thus should be treated with caution, even though the observed stronger reductions at elevations

above 3000 m from downscaling are similar to the results of the simulations from a high-resolution RCM, which explicitly

resolved elevations up to 3500/4000 m (Lüthi et al., 2019). 

A benefit of the proposed downscaling approach is that is based on the truly local features, which were derived from 20

years of observations. In contrast, the final imputation step of SNCp50 is based on a simple elevational dependence of snow

cover, and could thus directly be estimated from a low-resolution RCM signal. At least, the initial derivation of SNCp50 and

the first imputation step can be assumed to provide downscaled estimates based on local features, while the results of pixels

that were subject to the final elevation imputation are more generalized. On the other hand, applying the downscaling grid

cell by grid cell introduced artefacts at the low-resolution  grid cell boundaries (see, e.g., Figure 5c). For the future, other

downscaling techniques could be explored, such as analogue, perfect prog, or weather typing methods (Zorita and Storch,

1999; Gutiérrez et al., 2013), as well as, spatially explicit gridded downscaling approaches (Werner and Cannon, 2016).

One assumption in the downscaling is that the remotely sensed observations from MODIS are true, but these also have errors

and noise. Generally, accuracies in determining binary snow information (snow or land) are largely above 90% for MODIS
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(Parajka and Blöschl, 2006; Gafurov and Bárdossy, 2009). However, considerable uncertainty and lower accuracies were

found for forested areas and locations affected by terrain shading (Notarnicola et al., 2013b). Specific to this study is the use

of a cloud filtered product, which provides gap-free spatiotemporal series. The used filtering techniques resulted in only

slightly lower overall accuracies of 91.5% compared to 93% for the original images (Matiu et al., 2020a). However, the

spatial and temporal filters that were applied to remove clouds might miss short snow episodes at low elevations and are

difficult to validate at higher elevations, because of low ground station coverage. A pixel with erroneous information from

MODIS  will  translate  to  an  erroneous  downscaled  pixel,  so  relying  on  single  pixels  without  consulting  the  spatial

surrounding is not advised.

In addition, the downscaling assumes no land cover change, which might be problematic, for example, where the tree line

increases, and forests migrate to higher elevation. This comes on top to the already challenging estimation of snow cover

fraction from remote sensing for forested areas. Under a warming climate, complex vegetation-snow interactions can occur,

such as opposing effects on the interception and subsequent melting of snow in forests (DeBeer et al., 2021).

4.43 Comparison of downscaling to a dedicated snow model

For the Ötztal Alps region in Austria (Figure 1), we compared results from bias adjustment and downscaling of RCM snow

cover fraction (SNC) to running a dedicated snow model (AMUNDSEN), which has been forced by output from RCMs. For

the past period (2001-2020), the downscaling resulted in lower SNC than AMUNDSEN up to approximately 2000 m, similar

SNC from 2100 to 2600m, and higher SNC for elevations above 2700 m (Figures  S16 and S17S13 and S14). However,

elevations  above  2700  m  are  challenging  to  compare,  since  many  pixels  were  removed  from  bias  adjustment and

downscaling at these elevations because of snow accumulation issues and glaciers, while AMUNDSEN resolved the whole

domain and explicitly considered ice-snow transitions. Consequently, comparisons above 2700 m are not based on the same

pixels.

The change estimates for the future period (2071-2100) under RCP8.5 agreed between bias  adjustment, downscaling, and

AMUNDSEN for elevations  between 1800  and 2800 m, considering model ensemble uncertainty (Figure 6). But strong

disagreement was observed above and below. For elevations below 1500 m, AMUNDSEN showed much stronger reductions

in  SNC  than  downscaling.  The  elevation  gradient  of  projected  changes  under  RCP8.5  differed  substantially  between

AMUNDSEN and downscaling (Figure 6). While AMUNDSEN showed mostly constant absolute change across elevation,

with slightly stronger decreases between 1500 and 2000 m under RCP8.5, the bias adjusted or downscaled SNC from RCM

showed a strong elevational gradient, such that absolute decreases in SNC became stronger with increasing elevation. In

relative terms, AMUNDSEN had the highest change rates at lowest elevations and lowest change rates at highest elevations,

while for downscaling the opposite was true.

This elevation gradient in the relative SNC changes from downscaling for the Ötztal Alps is counter-intuitive. It is also

different from the gradients for bias adjustment and downscalingdowscaling for the whole study area, which themselves are
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similar to the results from AMUNDSEN for the Ötztal Alps (Figure 6). One reason for this discrepancy might be that the

Ötztal Alps region comprises only 15 RCM grid cells with a very limited elevation range (1800 to 2800 m), which has to be

extrapolated to a much wider elevation range (900 to 3700 m) in the finer spatial resolution. In the case of AMUNDSEN,

this extrapolation is performed on the surface meteorology, which seems to work better than the extrapolation performed in

the SNC downscaling approach. 

A further cause of the strong differences in SNC changes especially at lower elevations might be due to the consideration of

forest snow processes in the AMUNDSEN simulations, where a canopy submodule accounts for the interception of snow by

the  trees  –  from  where  the  snow  can  subsequently  sublimate  or  melt  without  reaching  the  ground  –  as  well  as  the

modification  of  the  meteorological  variables  for  sub-canopy  conditions;  for  details  see  (Strasser  et  al.,  2011).  As  the

AMUNDSEN SNC results considered in this study only correspond to snow on the ground, this can cause differences with

the RCM-based SNC changes, considering the large proportion of forested areas in the affected elevation bands (61  % forest

coverage for elevations < 2000 m compared to only 2 % for elevations >= 2000 m).

Given this study’s setup, it’s not possible to disentangle how climate change signals and uncertainties flow through the

modelling chain of both approaches with their different statistical post-processing and physical models. But we propose that

such an assessment would be beneficial for highlighting important aspects of the modelling uncertainty of future mountain

snow cover. A related issue is that for the bias adjustment of SNC in this study RCMs caused more of the overall variability

than their driving GCMs, while in Hanzer et al. (2018) it was the opposite. It seems that, for a small high-elevation area such

as  the  Ötztal  Alps,  the  RCMs  cannot  demonstrate  their  full  potential  and  the  large-scale  forcing  from  GCMs  takes

precedence.
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Figure 6. Change in future annual snow cover fraction (SNC) for the Ötztal Alps region and the whole study area (GAR, Greater
Alpine Region) by elevation band. Colored lines and transparent regions denote model means and model spread from running a
snow and hydroclimatological model (AMUNDSEN), forced by downscaled meteorology from regional climate models (RCMs),
from bias adjusted SNC from RCMs, and from downscaled SNC from RCMs. Shaded grey area in the Ötztal Alps panels (above
2700 m) indicates elevations, where >20 % of the pixels entering the average per elevation band were removed from MODIS and
Downscaling but remained included in AMUNDSEN: these consist of glacierized pixels or pixels subject to snow accumulation in
RCMs, while AMUNDSEN resolved the whole domain. (a) shows absolute changes and (b) relative changes.

To conclude  the  comparison  of  bias  adjusment and  downscaling  to  using  a  dedicated  snow model,  Table  1  offers  an

overview of their main features. Both approaches enable to assess climate model uncertainty by using model ensembles.

Both suffer from the potential need to extrapolate the RCM signal (surface meteorology or snow cover) beyond its elevation

coverage, especially in complex mountain terrain.  Both approaches decouple surface meteorology and snow cover in the

climate  change signal.  The main differences  between  the two approaches  are  in  their  spatial  extent,  spatial  detail,  the

representation of snow and ice processes, and the availability of observations.

Table  1.  Non-exhaustive  comparison  of  benefits  (denoted with  a  +)  and  drawbacks  (denoted with  a  –)  of  the  two methods
considered in this study. Abbreviations: regional climate model (RCM), snow cover fraction (SNC).

Dedicated model forced by RCM meteorology Bias adjustment (and downscaling) of RCM SNC

+ Strong local (topographic) detail possible – Limited by RCM resolution; artefacts at grid cell boundaries

+ Detailed representation of snow and ice processes – Limited by adequacy of RCM snow scheme
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Dedicated model forced by RCM meteorology Bias adjustment (and downscaling) of RCM SNC

+ All snow cover variables (water equivalents, depths, area covered) – Only snow cover fraction

– Limited spatial extent + Applicable at large spatial scales

– Requires surface meteorology (in situ data, downscaling of RCM 

output)
+ Observations from remote sensing globally available

(–) Requires extensive snow modelling experience (+) Mostly statistical and computational skills required

Previous studies  on the future  of  snow cover  in  the  European  Alps found differing  trend  magnitudes,  but  quantitative

comparisons are hampered by different study extents and emission scenarios. 

Marty et al. (2017) found decreases of snow cover duration until the end of the century from 100 to 14-18 d at 1000 m, 157

to 49 d at 1500 m, and 254 to 163 d at 2700 m (cf. Table S2 in Marty et al. (2017)), while here we found reductions that were

much lower: 30, 47, and 82 d at the respective  elevations (Table S8). Their estimates were based on the Alpine3D snow

model for subregions of Switzerland, forced by RCM meteorology from the ENSEMBLES project, under the A2 emission

scenario, which has less GHG concentrations at the end of the century compared to the RCP8.5 in this study. The differences

in change estimates might partly be caused by different reference periods for the past. 

Lüthi et  al. (2019) found a decrease of 60% in SWE and a two months shorter snow cover duration by analyzing one

regional climate model at 2 km spacing over the Alpine region under RCP8.5, while we observed a 49% reduction in SNC

and an average reduction of 22 d in SCD. Trend differences might be explained by the fact that domain averages strongly

depend on the investigated domain, and Lüthi et al. (2019) have a different extent of Alpine region compared to this study. In

addition,  their  domain  includes  much  higher  elevations  because  the  horizontal  spacing  is  much  finer,  and  the  higher

elevations showed stronger reductions in snow cover. 

4.4 Validation of the downscaling

The downscaling approach was validated by applying it to the upscaled MODIS snow cover fraction, and then compare it to

the original maps, which have been used for upscaling. This comparison involved the whole domain and all daily maps,

resulting in approximately 71 billion pixels (7305 days times 9.8 million pixels per  map).  The overall  accuracy  of the

downscaling was 96.4%, the PPV 89.1%, and the NPV 97.4%. Consequently, snow was downscaled less correctly than land,

but still accuracies are high. In addition, there was a seasonal and elevational dependence of the downscaling errors. Lowest

accuracies were found for the elevation at which the transition from land to snow occurs, and this elevation varied by season

(Figure S15). For example, in December, the lowest accuracy was 83 % at1400 m, but in May, the lowest accuracy was 87

% at 2000 m. In absolute terms, the number of correctly downscaled pixels outweighs the errors by large (Figure S16).
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To evaluate the errors in downscaled climatologies of SCD, we compared the downscaled QDM bias adjusted past RCM to

the observed high-resolution climatology from MODIS. By definition of QDM, the empirical distribution of past snow cover

fraction at the 0.11° resolution is identical between RCMs and MODIS. Thus, the difference between downscaled average

annual snow cover duration (SCD) and observed high-resolution MODIS SCD is an indicator of the downscaling error. The

mean downscaling bias was -3.0 d and the MAE 5.2 d. In addition, there was an elevation dependence of the bias (Figure

S17). A negative bias was found for elevations below 1000 m, almost no average bias between 1000 and 3000 m, and

positive bias above 3000 m. Glacierized surfaces exhibited strong positive bias, except if SNCp50 was imputed by the

second elevational step. 

The  downscaling  procedure  assumes  seasonal  stationarity.  Across  the  snow  season,  the  processes  governing  snow

accumulation and ablation differ substantially, so seasonal stationarity is questionable. However, the downscaling procedure

employed in this study is based on terrain morphology, which stays constant across the season. For the spatial scales used

here with 250 m spacing, this resolves to mostly elevation and only partly aspect and slope. For higher spatial spacings, such

as tens of metres,  preferential  deposition of snow, terrain shading, and wind start  to play strong roles,  and stationarity

becomes increasingly less plausible. We evaluated the stationarity assumption for our study by calculating two different

SNCp50 values, one for the start of season (September to February) and one for the end of season (March to August). The

average bias between the seasonal and annual SNCp50 values was -0.018 for the start and 0.007 for the end of season, with

an MAE of 0.057 and 0.041, respectively. Most of the bias was confined to lowest elevations (below 1000 m), which do not

have a proper start and end of season, but multiple intermittent episodes. Given these low differences between seasonal

SNCp50 values, the seasonal stationarity assumptions seems justified.

5 Conclusion

Bias  adjustment of  snow  cover  fraction  from  RCMs  using  aggregated  MODIS  remote  sensing  observations  offers  a

promising approach to evaluate future changes of snow cover fraction in mountain areas under a climate model ensemble

view. While limited by the resolution of RCMs, it offers consistent large-scale patterns of snow cover fraction for the past

and future, and it is potentially applicable on a global scale. Consequently, it might be a viable alternative in remote or less

monitored areas. While snow cover fraction is probably not a priority for climate modelling groups to be made available, the

proposed bias adjustment could benefit from a larger ensemble of climate models being available. Regarding bias adjustment

methods, trend-preserving approaches,  such as delta change or quantile delta mapping, were found superior to quantile

mapping for snow cover fraction.

The downscaling of RCM SNC with high-resolution MODIS observations falls under an “experimental” label. It suffers

from many inadequacies,  such  as  snow accumulation  in  RCMs,  noise  in  observations,  and  is  likely  inappropriate  for

glacierized areas. However, it can provide auxiliary and high spatial resolution information while accounting for climate
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model uncertainty. The discrepancies to results from a dedicated snow model for a smaller area (the Ötztal Alps) require

further research before a final recommendation can be given. Even though differences are likely caused by the small spatial

extent and catchment specifics (forest distribution, glaciers), which are features that fall outside of the RCM’s scope and

capabilities.

For the study region, which is approximately the Greater Alpine Region, results showed an overall reduction in snow cover

fraction for 2071-2100 compared to 2001-2020 of 14 % for RCP2.6 and 48 % under RCP8.5. However, strong elevational

and seasonal dependencies of changes were found (Tables S3 to S8, Figures S8, S9, S14, S18, S19S11). Absolute reductions

became higher with increasing elevation, while relative reductions became lower (Table 2). Downscaling resulted in slightly

more negative estimates of change than solely from bias adjustment. In addition, spatial patterns of change emerged, with

stronger relative decreases in the south and west compared to north and east (Figure 5), which are consistent to past trends of

station observations of snow depth (Matiu et al., 2021). Results for the low emission scenario RCP2.6 are based on a smaller

ensemble than for the high emission scenario RCP8.5 (4 vs. 23 models), and thus model uncertainty might be underestimated

for RCP2.6.

Potential usages of the downscaled information include hydrological studies or glacier modelling studies that require snow

line information. They might help in determining winter sport reliability, even though future assessments that do not account

for technical snow are most likely not very useful (Spandre et al., 2019; Morin et al., 2021). Finally, downscaling approaches

should be kept in mind considering the new generation of soon to be available high-resolution RCMs (at or below 2 km), for

example, from CORDEX flagship pilot studies, together with long-term remote sensing observations at tens of meters scale,

such as harmonized Landsat Sentinel series.

Table  2.  Summary  of  changes  in  annual  snow cover  fraction  (BA,  bias  adjustment)  and annual snow cover  duration  (DS,
downscaling)  by  emission  scenario  at  three  representative  elevations.  Columns  show  model  mean  with  model  spread  in
parentheses for absolute (abs.) changes in percentage points (pp) for BA, days for DS, as well as, relative (rel.) changes for BA and
DS. RCP stands for Representative Concentration Pathway. Results are based on quantile delta mapping as BA method.

Scenario Elevation [m] BA abs. [pp] BA rel. DS abs. [d] DS rel.

RCP2.6 500 -1.5 (-2.6, -0.5) -21.2% (-37.0, -7.9) -5 (-9, -1) -23.6% (-44.3, -6.1)

1,500 -4.4 (-7.7, -2.0) -14.0% (-24.8, -6.5) -18 (-32, -7) -18.1% (-32.6, -7.6)

2,500 -5.8 (-9.9, -2.7) -8.4% (-14.5, -4.0) -26 (-47, -14) -10.7% (-19.5, -6.0)

RCP8.5 500 -4.7 (-6.0, -2.7) -68.6% (-87.1, -39.6) -16 (-19, -10) -76.3% (-93.0, -45.9)

1,500 -13.2 (-19.0, -9.0) -42.3% (-60.9, -28.9) -47 (-65, -35) -48.1% (-66.9, -36.3)
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Scenario Elevation [m] BA abs. [pp] BA rel. DS abs. [d] DS rel.

2,500 -17.2 (-32.8, -6.4) -25.2% (-48.0, -9.4) -76 (-134, -33) -31.4% (-55.3, -13.7)

Code and data availability

All code to perform the analysis is available in a public repository (Matiu, 2021). The repository also holds final processed

data of the snow cover duration climatologies from MODIS, as well as single GCM-RCM maps from bias correction and

downscaling. The input data is not shared, because of its large size. The RCM data is available for non-commercial use after

registration  (https://cordex.org/data-access/).  For  access  to  the  MODIS  observations,  see  Matiu  et  al.  (2020a).  The
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