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Abstract. We investigate the potential of causal inference methods (CIMs) to reveal hydrological connections from time-series.

Four CIMs are selected from two criteria, linear or nonlinear, and bivariate or multivariate. A priori, multivariate and nonlinear

CIMs are best suited for revealing hydrological connections because they suit nonlinear processes and deal with confounding

factors such as rainfall, evapotranspiration, or seasonality. The four methods are applied to a synthetic case and a real karstic

study case. The synthetic experiment indicates that, unlike the other methods, the multivariate nonlinear framework has a low5

false-positive rate and allows for ruling out a connection between two disconnected reservoirs forced with similar effective

precipitation. However, the multivariate nonlinear method appears unstable when it comes to real cases, making the overall

meaning of the causal links uncertain. Nevertheless, all CIMs bring valuable insights into the system’s dynamics, making them

a cost-effective and recommendable tool for exploring data. Still, causal inference remains attached to subjective choices and

operational constraints while building the dataset or constraining the analysis. As a result, the robustness of the conclusions10

that the CIMs can draw deserves to be questioned, especially with real and imperfect data. Therefore, alongside research

perspectives, we encourage a flexible, informed, and limit-aware use of CIMs, without omitting any other approach that aims

at the causal understanding of a system.

1 Introduction

Causal inference methods (CIMs) aim at identifying causal interactions between variables from variables (Spirtes et al., 2000;15

Pearl, 2009). When applied to time-series, these empirical methods are built upon the principle of priority of the cause, which

goes back to Hume (Hume, 1748). They infer causation from the expected time-dependencies between causes and effects, i.e.,

the causes must occur before the effects. They have evolved throughout the 20th century to go beyond the well-known corre-

lation, or cross-correlation, between two time-series (see Runge et al., 2019a, for a broad review). Although widely used, the

correlation or cross-correlation method is criticized for its inability to identify nonlinear causal relationships. Besides, the cor-20

relation cannot discriminate causal links from associations resulting from confounding factors. Indeed, dependencies between

variables can be explained either by a direct causal link or through the common cause principle (Reichenbach, 1956; Runge

et al., 2019a). The common cause principle tells us that dependencies between the variables could result from a third cause
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acting on the variables. Nowadays, a plethora of CIMs has been developed, differing in hypotheses or application fields. Some

CIMs explicitly deal with, either or both, nonlinear dependencies or confounding factors through multivariate analysis. These25

new CIMs are of growing interest in Earth, land, and hydrological sciences (Meyfroidt, 2016; Runge et al., 2019a; Goodwell

et al., 2020). In hydrology, applications of CIMs remain rare and cover, for example, the potential causal feedbacks between

soil moisture and precipitation (Salvucci et al., 2002; Tuttle and Salvucci, 2017), cross-scales rainfall interactions (Molini

et al., 2010), the ecohydrological feedback processes (Ruddell and Kumar, 2009), or the study of hydrological connectivity

(Sendrowski and Passalacqua, 2017; Rinderer et al., 2018) as in this article.30

The study of hydrological connectivity aims at identifying the paths taken or that could be taken by water. There is a priori

no causal interaction, i.e., flow, possible between two points in space that do not benefit from a hydrological connection. This

link between the concepts of hydrological connectivity and causality motivates the study of one given the other and vice versa.

There are different types of connections and various ways to refer to them (Bracken et al., 2013). We refer to the terminology of

Rinderer et al. (2018), which is inspired by and borrowed from the field of neurological and brain connectivity (Friston, 2011).35

There are three types of connectivity: (i) structural, (ii) functional, and (iii) effective connectivity. The structural connectiv-

ity is derived from the medium and highlights the potential, static, and time-invariant water flow paths from the geological

environment’s topography, spatial adjacency, or contiguity. The functional one is dynamic and is retrieved from statistical

time-dependencies between local hydrological variables. A statistical association may result from confounding factors, e.g.,

rainfall acting on two disconnected reservoirs or a shared seasonal pattern. Therefore, dependencies do not necessarily imply40

factual causation, such as process-based water flows. Then, the functional connectivity is a matter of cross-predictability and

still reflects potential rather than actual flow paths for water. CIMs with a multivariate framework address confounding fac-

tors. They offer the promises of discriminating functional connectivity from the effective one, which reveals actual flow paths

and processes within the system. From the structural to the effective connectivity through the functional one, the search for

hydrological connections can be seen as a progressive constraint from the potential paths to the actual paths taken by water.45

Because of their hidden and heterogeneous structures, karst systems are regularly studied through time-series analysis or

other empirical approaches to derive a causal or functional representation of the system (Bakalowicz, 2005). The application

of CIMs to karst is therefore very relevant. However, karst systems present some challenges for causal inference (Bakalowicz,

2005). In particular, the heterogeneity of the fractured geological environment is difficult or impossible to observe, characterize,

or hypothesize. This hiddenness jeopardizes the derivation of a reliable map of structural connectivity to guide causal inference,50

as recommended in Rinderer et al. (2018).

To date, the most commonly used method remains the linear cross-correlation function (CCF), including for karsts (e.g.,

Angelini, 1997; Larocque et al., 1998; Bailly-Comte et al., 2008; Labat et al., 2000; Mathevet et al., 2004; Watlet et al.,

2018). Some study cases are now involving linear multivariate methods (e.g., Salvucci et al., 2002; Tuttle and Salvucci, 2017),

including for karst (Kadić et al., 2018). Hydrological systems were first theoretically characterized by linear methods (Dooge,55

1973). Indeed, we expect some linearity in mass transfers and positive time-dependent correlations between causes and effects,

e.g., precipitation and discharge. This delayed linear transfer allows hydrological signals to be related by the unit hydrograph

theory as a simple convolution window (Dooge, 1973). Besides, linear methods also benefit from the computational efficiency

2

https://doi.org/10.5194/hess-2021-445
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



of linear algebra, which makes linear CIMs less time-consuming. Despite their monotonic behavior, hydrological systems,

especially karsts, are nevertheless sensitive to initial conditions, i.e., nonlinear. Nonlinearity is imputed to inherently nonlinear60

hydrological processes such as power laws or threshold effects triggering flows (Bakalowicz, 2005; Blöschl and Zehe, 2005).

For this reason, nonlinear CIMs may be more suited, although not specifically designed to deal with threshold effects.

To investigate how the CIMs can help to understand the dynamics of the karst system and how the method hypotheses impact

this understanding, we compare the connectivity inferred from the four CIMs (Table 1), all operating on the time-domain: the

linear and bivariate CCF, the bivariate and nonlinear Convergent Cross Mapping (CCM) method (Sugihara et al., 2012); and65

two multivariate methods, one linear (ParCorr) and one nonlinear (CMI), both part of the same causal inference framework

called PCMCI implemented in the Tigramite Python package (Runge et al., 2019b). First, the four methods are used in a

synthetic case study, where two hydrological discharge variables with similar meteorological forcing are either connected or

disconnected. Then, the same CIMs are applied to a real-time-series dataset from the Rochefort cave in Southern Belgium. The

real dataset include rainfall, potential evapotranspiration data, electrical resistivity patterns in the subsurface obtained from70

obtained from a geophysical monitoring experiment using time-lapse Electrical Resistivity Tomography (ERT)(Watlet et al.,

2018), and drip discharge time-series with distinct dynamical patterns monitoring percolation at three spots within the cave.

Time-series also have different numbers of missing values, unevenly distributed over time, allowing a discussion of the impact

of missing values on the analysis. To appreciate the results, previous dye tracing tests have revealed fast connected preferential

flow between the surface and a particular spot in the cave (Poulain et al., 2018). This prior knowledge can be seen as a reality75

check on the blind CIMs.

2 Materials and Methods

2.1 Causal Inference Methods (CIMs)

Four CIMs are selected based on two binary criteria: linear or nonlinear and bivariate or multivariate (Table 1). They operate

in the time-domain and investigate time-dependencies up to a maximum time delay dmax. The methods are presented here80

in a nutshell; a more detailed description of the methods and their practical implementation is available in the supplementary

materials (SM1). The Cross-Correlation Function (CCF) and the Convergent Cross-Mapping (CCM) (Sugihara et al., 2012; Ye

et al., 2015) methods respectively check for linear and nonlinear bivariate dependencies.

The two other methods are part of a multivariate causal inference framework implemented in the Tigramite Python package

(v.4.1) and based on the PCMCI conditional independence algorithm (see Runge et al., 2019b, and SM1.3). Being multivariate,85

those methods can cope with confounding variables. The general principle of causal inference using conditional independence

is the following: identifying a causal lag between two variables is checking whether or not time-dependencies pertain while

removing the effect of the other variables and potential causal lags. Therefore, the analysis framework is stochastic because a

background noise must persist to assess the variables’ independence after removing deterministic effects. Both methods test the

independence between the series either with a linear test, the partial correlation method (ParCorr, section 2.1.3), or a nonlinear90

one, the Conditional Mutual Information (CMI, section 2.1.4).
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Table 1. Selected causal inference methods (CIMs)

Linear Nonlinear

Bivariate Cross-Correlation Function (CCF) Convergent Cross-Mapping (CCM)

Multivariate Partial Correlation (ParCorr) Conditional Mutual Information (CMI)

In practice, however, one cannot remove the effect of all potentially causal delays without falling into a curse of dimension-

ality affecting the causal detection power of the approach (Runge et al., 2019b). For this reason, ParCorr (and CMI) are coupled

with the PC and MCI algorithms (or PCMCI by concatenation). The first step is the PC algorithm, named after its authors Peter

Spirtes and Clark Glymour (1991). Using the independence test, PC iteratively selects a subset of potential causal variables95

and delays for each variable to avoid the curse of dimensionality (Runge et al., 2019b, SM1.3). The second step, Momentary

Conditional Independence (MCI), applies the independence test based on the subsets identified during the PC step. The PC

procedure has a tuning hyperparameter named αPC , which controls the number of potential causes. αPC varies from 0 to 1,

where 1 is the less restrictive case which implies not pre-selection.

While the CMI method is the most promising in that it does not assume linearity and accounts for confounding effects, as for100

the other CIMs, the reliability of the reported causal relationships nevertheless depends on underlying hypotheses (discussed in

Runge, 2018a). Perhaps, the most important but the most challenging to verify and conceptualize in practice is the hypothesis

of causal sufficiency. Causal sufficiency implies that the analysis should include all potential common causes. This is indeed

difficult to verify because (i) potential causes, as variables are generally dictated by data availability, (ii) one is not supposed

to know potential causes before the analysis, or (iii) the concept of variable is mathematically abstract and building a finite and105

parsimonious time-series dataset require a prior or tacit exercise of conceptualization of the continuous system. In this way,

one can say that the dataset is a hypothesis in itself, which, if improperly framed, can induce spurious causal links even with

the best CIM available.

2.1.1 Cross-Correlation Function (CCF)

The CCF method is the most common to analyze time-dependencies and address causality (e.g., Angelini, 1997; Larocque110

et al., 1998; Labat et al., 2000; Mathevet et al., 2004; Bailly-Comte et al., 2008; Watlet et al., 2018). A variable Xt is said to be

a cause of variable Yt if the Pearson’s correlation coefficient ρ between Yt and Xt−d is significant on their overlapping domain

for at least one realistic value of d up to dmax.

2.1.2 Convergent Cross-Mapping (CCM)

The CCM method is primarily designed to reveal weak nonlinear interactions between time-series (Sugihara et al., 2012; Ye115

et al., 2015). CCM tests if dynamic trajectories behave consistently while the system revisits the same states, i.e., dynamic

recurrence. The system states are usually unknown; they are approximated by trajectory segments found in a trajectory matrix
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MY given by the Takens’ embedding theorem (Takens, 1981): MY = {Yt,Yt−1, ...,Yt−(m−1)}, where m is the embedding

dimension. In this case, with unit lags between time-series, m corresponds to the length of the segments and can be optimized

using self-forecasting performance while predicting points in Yt from their nearest neighbors inMY (Sugihara and May, 1990;120

Delforge et al., 2020a). This length m is set to two days in this study, due to the overall good performance of this value, i.e.,

MY = {Yt,Yt−1}. For a causal analysis and to check if Xt is a cause of Yt, CCM makes forecasts of the points in Xt from

points inXt identified from Yt. For a single forecast at a time of reference t∗, CCM selects the time-indices of them+1 nearest

neighbors of the state Yt∗ . The points in Xt mapping to the nearest-neighbors’ time-indices are averaged to make a forecast of

Xt∗ . The nearest-neighbor time-indices are selected such that they are at least tw days away from the reference state t∗, where125

tw is the Theiler window (Theiler, 1986). This window ensures that nearest neighbors are not direct temporal neighbors but

recurrent ones remote in time, following the CCM philosophy. The Theiler window tw is set to 10 days in this study such that

nearest-neighbor states are likely to be separated from their reference point by at least one rainfall event.

In practice, the time to prediction tp varies between [−dmax,0] to evaluate the time-dependencies between Xt+tp and Yt

and infer causality from the principle of priority (Ye et al., 2015). In this case, the time-indices of the nearest neighbors of130

Yt∗ are simply shifted by tp to identify the states in Xt that are averaged into a single prediction of state Xt∗+tp. For each tp,

we forecast the full vector Xt+tp of prediction 100 times based on bootstrapped samples of MY (See SM1.2). CCM forecast

skills and time-dependencies are appreciated with the mean Pearson’s correlation between the 100 estimates and the original

time-series. Our implementation of CCM is the one developed by Delforge et al. (2020a).

2.1.3 Partial Correlation Test (ParCorr)135

The ParCorr conditional independence test is like Granger causality and relies on linear vector autoregressive models (Granger,

1969). The principle is the following: Xt−d causes Yt if a significant correlation exists between Xt−d and Yt after removing

the linear effect of all the potentially causal variables and delays, including their own past. There are recent applications of

Granger causality or partial correlations in hydrology (e.g., Salvucci et al., 2002; Tuttle and Salvucci, 2017) or in the case of

karst (Kadić et al., 2018). In the case of ParCorr, αPC is automatically optimized between 0.05 and 0.5 for ParCorr based on140

Akaike’s Information criterion of model performance (Akaike, 1974).

2.1.4 Conditional Mutual Information Test (CMI)

CMI is a nonlinear alternative to the ParCorr independence test running with the PCMCI algorithm (SM1.3). CMI is a multi-

variate extension of the concept of entropy transfer (Schreiber, 2000; Sendrowski and Passalacqua, 2017), i.e., another bivariate

nonlinear CIM such as CCM. CMI is evaluated with a nearest-neighbor estimator (Frenzel and Pompe, 2007; Vejmelka and145

Paluš, 2008) coupled with a shuffling significance test (Runge, 2018b). Several methods exist to estimate mutual information

within the Tigramite package. However, the nearest-neighbor estimator is recommended for time-series below 1000 samples,

which is the case in this study. Unlike ParCorr, the αPC value is not optimized and has to be set manually. We considered two

values, a less restrictive one of 0.2 and a more restrictive one of 0.05.
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CMI, or nonlinear independence tests in general, are very computationally expansive and quickly require high-performance150

computers or significant computational time depending on the size of the dataset and the hyperparameters of the analysis (see

Runge, 2018b). In comparison, the synthetic experiment at section 3 required two weeks of computation with CMI, while the

result with ParCorr was almost instantaneous.

2.2 Study Site and Data

The karstic study site is located in the Calestienne, a band of outcropping Devonian limestone crossing southern Belgium.155

The time-series dataset results from the monitoring of the Lorette cave (Fig. 1.a), one of the largest caves sited next to the

city of Rochefort (Watlet et al., 2018; Poulain et al., 2018, and references therein). The dataset is completed by daily potential

evapotranspiration data (ET, Fig. 1.c) estimated with the Penman-Monteith FAO-56 method (Allen et al., 1998) and data from a

PAMESEB agrometeorological station located 3 km from the study site in Jemelle. Other time-series are obtained from sensors

on site (Fig. 1.a). Rainfall data (RF, Fig. 1.a) are daily average from a Lufft tipping bucket rain gauge with a 1 min sample160

rate located at the surface (elevation ∼225 m AOD). Inside the cave (elevation ∼190 m AOD), two drip discharge monitoring

devices (P1, P2, Fig. 1.a) are installed within the main chamber accessible from a sinkhole, which constitutes the cave entrance.

In particular, P1 monitors an active dripping point due to a visible fracture on the chamber’s ceiling. Based on dye injection at

the surface and in-cave tracing, a connection and preferential flow path between the dye injection point (DT, Fig. 1.a) and P1

was identified (Poulain et al., 2018). The breakthrough curve showed an initial arrival time of 3.75 hours, a sustained peak for165

80 hours, and a tail lasting up to 120 days. However, sporadic peaks in concentration were observed after every rainfall event,

reacting after 1.48 hours, peaking after 7.2 hours, and lasting up to 30 hours on average. P2 monitors a dripping spot draining

a porous limestone area. The last one, P3, located in the North gallery, monitors slow discharge from drops falling from one

single stalactite below a massive limestone layer. P1, P2, and P3 (Fig. 1.c) are daily means of the percolation rate.

An Electrical Resistivity Tomography (ERT) profile was installed to investigate the hydrology of the subsurface and potential170

connections above the cave (Watlet et al., 2018). ERT is a geophysical monitoring tool to study various types of hydrological

processes (see Slater and Binley, 2021, and references therin). At the study site, the ERT profile is not flat as it starts from the

depression of a sinkhole where the entrance to the cave is located (ERT, Fig. 1.a). The ERT experiment allowed collecting ERT

datasets daily between 2014 and 2017, which still represents, to the best of the author’s knowledge, the longest, high-resolution

ERT monitoring experiment conducted in a karst environment (see Watlet et al., 2018, for details). This dataset consists of175

1558 spatial cells. Each of them is assigned to a resistivity time-series defined on 465 daily time-steps defining the temporal

dimension of the dataset. As a necessary prior step to causal inference, the 1558 time-series were dimensionally reduced to six

time-series clusters (R0 to R5, Fig. 1, b, and c). We used hierarchical agglomerative clustering with the Ward linkage method

to minimize the squared distance between time-series within clusters. This algorithm is similar to k-means. As clustering was

applied on the standardized ERT dataset, clusters represent groups of linearly correlated resistivity dynamics. The optimal180

number of clusters of 6 was selected using the optimal Silhouette Index as a clustering evaluation metric (Rousseeuw, 1987).

The methodological aspects associated with clustering are extensively covered in another issue (Delforge et al., 2020b).
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Figure 1. Study site and data: (a) Rochefort cave laboratory and sensors (EPSG: 31370), (b) resistivity clusters obtained from hierarchical

agglomerative clustering of standardized resistivity data (Watlet et al., 2018; Delforge et al., 2020b), (c) daily time-series dataset. Resistivity

time-series (c, R0 to R5) are the mean resistivity variations per cluster (b). Potential evapotranspiration data (ET) are obtained from an

agrometeorological station (PAMESEB) located 3 km from the site. The red areas on (c) show the time-domain resulting from the condition-

ing on past delays with dmax = 5 days while considering respectively P1, P2, and P3 only in the causal dataset. A hydrological connection

was identified by dye injection and tracing from the surface (DT) to P1 (Poulain et al., 2018). Source: Digital Elevation Model from Service

Public de Wallonie, Cave delineation from Watlet et al. (2018).
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Table 2. Summary statistics of the time-series variable.

Statistic ET [mm] RF [mm] P1 [L/h] P2 [L/h] P3 [L/h] R0 [Ω.m] R1 [Ω.m] R2 [Ω.m] R3 [Ω.m] R4 [Ω.m] R5 [Ω.m]

Count 1297 1297 718 366 1223 465 465 465 465 465 465

Mean 2.2 2.0 6.13 1.30 9.06E-04 1.80E+03 1.95E+03 2.80E+03 8.78E+02 1.02E+03 8.28E+02

Std dev. 1.8 4.2 4.33 1.92 1.11E-04 2.38E+02 5.68E+02 5.64E+02 2.35E+02 7.75E+01 1.73E+02

Min 0.0 0.0 1.05 0.00 6.35E-04 1.30E+03 1.11E+03 1.88E+03 5.07E+02 8.67E+02 5.33E+02

10% 0.3 0.0 1.91 0.05 7.76E-04 1.37E+03 1.28E+03 2.03E+03 5.92E+02 9.23E+02 5.89E+02

25% 0.7 0.0 3.00 0.09 8.21E-04 1.69E+03 1.48E+03 2.27E+03 7.06E+02 9.59E+02 6.45E+02

50% 1.6 0.1 4.57 0.27 8.99E-04 1.85E+03 1.85E+03 2.83E+03 8.51E+02 1.03E+03 8.52E+02

75% 3.3 2.1 8.46 1.73 9.75E-04 1.96E+03 2.36E+03 3.29E+03 1.01E+03 1.10E+03 9.92E+02

90% 5.0 6.2 12.74 4.20 1.06E-03 2.08E+03 2.86E+03 3.48E+03 1.21E+03 1.13E+03 1.03E+03

Max 8.6 53.8 22.66 9.45 1.26E-03 2.30E+03 3.21E+03 3.83E+03 1.65E+03 1.17E+03 1.09E+03

R0 is associated with a dense limestone area in the model’s center (Fig. 1.b, X=22 m, Z=10 m). R1 shows responsive

resistivity dynamics at the plateau’s surface (Fig. 1.b, X=32 m, Z=13 m), as well as in a fractured area around coordinate

X=15 m below the surface patterns of R3. R2 is rather representative of the resistivity patterns of the limestone matrix. R4 is185

associated with a clayey limestone layer located below the patterns of slope surface R5 (Watlet et al., 2018; Delforge et al.,

2020b). We expect causal links to appear primarily between P1 and the near-surface resistivity patterns R1 or R3.

Time-series of Fig. 1.c are the 11 inputs for the four selected CIMs. Table 2 shows their statistics. Bivariate CIMs (CCF and

CCM) are applied between each pair of time-series on their overlapping time-domain with a maximum causal delay dmax = 5

days. This maximum delay allows covering the full time-span of preferential flow peaks lasting up to 80 h (Poulain et al.,190

2018). For the same reason, we use the same dmax for the multivariate methods. In general, it is preferable to use large dmax

values, because any delay that can be considered as a potential cause must be included in the analysis to satisfy the hypothesis

of causal sufficiency. On the other hand, dmax cannot take a larger value because of the missing data. Indeed, the PCMCI

algorithm dismisses all time slices of samples where missing values occur in any variable and their lags up to 2dmax, which

limits the overall overlapping time-domain to 48 days. This low value is mainly imputed to the short time-domain of P2 (Fig.195

1.c, Table 2). Concerned that this number would impact the robustness of the analysis, we also applied PCMCI with dmax = 5

days while considering one percolation data at a time. In this way, P1, P2, P3 are considered separate and independent drainage

systems and the overlap domains become larger: 184, 62, and 218 days respectively. These conditioning domains are shown in

red for the respective time series considered (Fig. 1.c.).
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3 Synthetic Study Case200

3.1 Conceptual Model

The four CIMs are first applied to test and explore the following theoretical assertion: nonlinear and multivariate CIMs are

best suited to detect effective hydrological connectivity. For this purpose, a simple hydrological reservoir model is inspired by

the problematic case of the common cause (Fig. 2). The common cause problem is easily conceived through two separate and

independent reservoirs (A and B) benefiting from the same meteorological forcing. Without an effective connection, they will205

nevertheless show a strong temporal dependence. In this case, two reservoirs,A andB, are subject to the same forcing effective

precipitation Peff (i.e., precipitation minus evapotranspiration). If A and B are disconnected, the ideal CIM would then reject

the effective connection between the reservoirs and their dischargesQA andQB if Peff is included in the multivariate analysis.

However, B responds systematically one day later than A to Peff . Hence, with bivariate methods and the priority principle

only, QA would seemingly cause QB . For comparison, we consider a case where QA and Q′B are effectively connected as if210

they were contributing to the same drainage network, with QA upstream of Q′B . Noteworthily, this experiment does not cover

the case of nonlinearities arising from threshold effects and intermittent processes. Instead, we assume a continuous causal

relationship over time, as the CIMs do.

The model is forced by real effective precipitation data Peff monitored at the study site (section 2.2). Both reservoirs take

as input a net inflow term IA and IB resulting from the application of the unit hydrographs HA and HB as linear transfer215

functions convolved forwardly on a noisy precipitation input (HR ∗Peff,R with ∗ the convolution operator). Adding some

noise is mandatory to check for conditional independence (section 2.1). A multiplicative noise term is preferred as hydrological

variables are often characterized by multiplicative noise (e.g., Rodriguez-Iturbe et al., 1991). With R either A or B, Peff,R =

Peff + εRPeff , with εR being randomly generated from a normal distribution with zero mean and standard deviation equal

to εlvl times the standard deviation of Peff . The parameter εlvl is always identical for A and B, such that εA and εB have220

the same distribution. The continuity equation gives the reservoirs storage dynamics: dSR/dt= IR−QR. The outflow QR

introduces some nonlinearities through a typical nonlinear storage-discharge relationship QR = kRS
eR

R , with kR and eR the

discharge coefficient and the nonlinear exponent. Such power-law formulations are typical in hydrology (Dooge, 1973) and

common while modeling karsts as well (Hartmann et al., 2014; Jourde et al., 2015).

Table 3. Model parameters for the synthetic cases

Model HA kA eA HB kB eB

1 [0.7, 0.2, 0.1] 0.1 1 [0.1, 0.8, 0.1] 0.1 1

2 [0.7, 0.2, 0.1] 0.1 1 [0.1, 0.8, 0.1] 0.01 1.5

3 [0.7, 0.2, 0.1] 0.01 1.5 [0.1, 0.8, 0.1] 0.1 1

4 [0.7, 0.2, 0.1] 0.01 1.5 [0.1, 0.8, 0.1] 0.01 1.5

9

https://doi.org/10.5194/hess-2021-445
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 2. The conceptual and mathematical model for the synthetic study case. Two reservoirs A and B are forced by inflows IA or IB

resulting from the unit hydrograph HA and HB forward convolution on noisy variant Peff,A and Peff,B of the same effective precipitation

Peff . The storage SA and SB dynamics follows a typical continuity equation dS/dt= I −Q, where the discharge QA and QB follow a

nonlinear power law Q= kSe with two parameters k and e. The reservoir B responds mainly 1 day after A, which introduced a systematic

time-dependency between the reservoir suggesting causation. Q′
B is a flow downstream of QB draining QA and transferred considering the

unit hydrographHAB . The causal analysis involves either the disconnected caseQA andQB or the connected caseQA andQ′
B . Multivariate

methods includes Peff within the analysis.

For the synthetic cases, we derived four models based on the parameters presented in Table 3. The unit hydrographs HA and225

HB are constant, with their maxima differing by one daily time-step. The lag introduces the desired constant time-dependencies

between the two reservoirs despite the absence of connection. The recession parameters allow generating distinct dynamic

patterns with various degrees of nonlinearity thanks to εR. In addition, we also considered 14 stochastic noise level εlvl ∈
{0.05,0.1, . . . ,0.65,0.70}. With the four combinations of Table 3 and the 14 noise levels, 56 datasets were generated from

four years of effective precipitation data Peff (2014-2018) and initial storages SA and SB equal to 30 mm. Only the last year230

of the three variables Peff , QA, QB were considered for the causal inference experiment. The data generation is repeated to

produce 56 additional datasets with an effective connection. QA and QB are causally related by overwriting QB such that

Q′B =QB + (HAB ∗QA) where HAB = [0.1,0.8,0.1] is a linear transfer function convolved forwardly on QA. Finally, the

whole synthesis process is repeated to generate first-order differenced datasets, making a total of 224 datasets with 4 model

combinations, 14 noise levels, connected or not, and differenced or not. The primary purpose of the difference is to create a235

case where the shared seasonality that affects the bivariate dependencies between the data is eliminated.
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3.2 Result

Figure 3 shows the results of the experiment. It depicts the average and interquartile range of QA-Qb time-dependencies, or

QA-Q′B if connected, obtained with the four CIMs on the datasets synthesized from the numerous model combinations (Table

3) and noise levels with a maximum delay dmax = 5 days. The multivariate analysis includes Peff . We distinguish between240

cases where the reservoirs are connected or not and where the data are differenced or not. Regarding the bivariate methods,

CCF and CCM both exhibit sustained time-dependencies when the data is not differenced due to the auto-correlation in the

series and seasonality. From differenced data, the results better screen the expected peak at lag one. However, it is also the case

while the reservoirs are disconnected because of the confounding effect related to the common forcing of the two reservoirs.

This is not an effective connection but a functional and apparent one resulting from the delayed responses of the two reservoirs.245

The sustained time-dependency of CCM over the lag of 2 days is an artifact of the embedding dimension defining the length

of trajectory segments, which is two days in this case (see SM1.2).

Figure 3. Patterns of statistical time-dependencies between QA and Qb (Q′
B if connected) for the four CIMs (a. to d.). Lines are the average

statistics for 56 synthetic datasets obtained from four different model structures (Table 3) and 14 distinct noise levels. The envelope represents

the interquartile range of the statistics. In general, connected reservoirs show a QA→Q′
B causal dependencies at a lag of one day. However,

except for CMI on the not differenced data, disconnected reservoirs show a non-causal, yet, significant statistical dependencies QA→QB

at lag one day, since reservoir A mostly reacts one day before B to the effective precipitation.
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Regarding the multivariate CIMs patterns, the linear ParCorr method seems to discriminate the connected case from the

disconnected case. Still, it always shows a peak at lag 1, whatever the cases, which could be misinterpreted as an effective

connection. Only the nonlinear CMI method applied on the not differenced data seems to reject the idea of connection when250

it is effectively absent. This finding supports our theoretical assertion: the multivariate nonlinear method is the best suited to

address effective hydrological connectivity. Furthermore, the method appears to perform better if seasonality is left present in

the time-series. Still, Fig. 3 shows the pattern of the statistics, not the result of a causality test and its p-value.

Since we know for each simulation whether or not there is an actual causal link between A and B, Table 4 assesses the

performance of the statistical test from true positives (TP), false positives (FP), true negatives (TN), and false negatives (FN)255

for the problematic lag of 1 day. We consider the multivariate PCMCI methods ParCorr and CMI, with the latter having two

different αPC values for pre-selection of potential causes (PC stage). Two levels of significance are considered at 99% and

95% based on the p-values obtained by the tests. Table 4 shows that, for a similar level of accuracy, CMI for not differenced

data has higher precision and a lower false-positive rate, meaning that positive tests are likely to detect actual causal relations.

This is particularly contrasting with other methods and provides a valuable piece of information. However, the high precision260

comes at the cost of a low recall: CMI misses about half of the actual causal links. On the contrary, ParCorr misses none but

has a bad precision, i.e., many false positives. This analysis thus provides an overview of the contrasts between methods. Of

course, this virtual three-variable configuration is far from representative of the great variety of natural hydrological systems

and their spatiotemporal organizations.

4 Real Study Case265

4.1 Bivariate Methods

Figure 4 shows pairwise dependencies between first-order differenced time-series, for a better screening of time-dependencies

using bivariate methods (Fig. 3). Detailed time-dependencies are also reported in the Supplementary Materials (SM2.1, SM2.2).

The links displayed are those for which the correlation value is significantly different from zero following a Student’s t-test. The

CCF method (Fig. 4.a) is reporting many potential linear causal associations. If causality is hard to infer from such a diagram,270

the results make sense in general. A typical pattern is that the sign of time-dependencies tends to flip after a few delays due to

RF’s forcing and the fact that dry periods come after the rain. Considering low delays, ET is positively related to the resistivity

patterns, mostly at the surface (R1, R3). ET is negatively correlated with P1 only, which is known to drain fast flow from the

surface through the epikarst. All variables are dependent on RF, the main confounding factor, but R0, associated with a dense

limestone area, depends to a lesser extent. R0 and R4 put apart, the quartet R1, R2, R3, and R5 exhibit strong positive and275

contemporaneous correlations together. P1, P2, and P3 also are instantaneously related. P1 and P2 have strong dependencies

with all resistivity patterns, but inconsistent and positive correlations are reported between the anomalous resistivity series R4

representative of the clayey limestone. P3 seems rather dependent on R5 (slope) and R2 (mostly limestone matrix), makings

sense since P3 most likely drains the matrix’s delayed flow.
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Table 4. Causal test statistics for the synthetic cases at lag 1 day

Method ParCorr CMI CMI

αPC = 0.05 αPC = 0.2

Datasets Not diff. Diff. Not diff. Diff. Not diff. Diff.

Data Statistics

Total count 112 112 112 112 112 112

Actual + 56 56 56 56 56 56

Actual - 56 56 56 56 56 56

Test results

TP at 99% 56 56 28 56 15 56

(95%) (56) (56) (34) (56) (27) (56)

FP at 99% 29 29 3 28 1 28

(95%) (35) (32) (4) (42) (2) (35)

TN at 99% 27 27 53 28 55 28

(95%) (21) (24) (52) (14) (54) (21)

FN at 99% 0 0 28 0 39 0

(95%) (0) (0) (22) (0) (29) (0)

Test metrics

Accuracy1 99% 0.74 0.74 0.72 0.75 0.64 0.75

(95%) (0.69) (0.71) (0.77) (0.62) (0.72) (0.69)

Precision2 99% 0.66 0.66 0.90 0.67 0.94 0.67

(95%) (0.62) (0.64) (0.89) (0.57) (0.93) (0.62)

Recall3 99% 1.00 1.00 0.5 1.00 0.3 1.00

(95%) (1.00) (1.00) (0.61) (1.00) (0.48) (1.00)

FP rate4 99% 0.52 0.52 0.05 0.5 0.02 0.5

(95%) (0.63) (0.57) (0.07) (0.75) (0.04) (0.63)

1(TP+TN)/(TP+FP+FN+TN); 2TP/(TP+FP); 3TP/(TP+FN); 4FP/(FP+TN)
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Figure 4. Graph of pairwise cross-dependencies: (a) with the linear Cross-Correlation Function (CCF),(b) with the nonlinear Convergent

Cross-Mapping (CCM) method. An undirected line represents contemporaneous dependencies. Delayed dependencies are shown using di-

rected curved arrows. All corresponding delays d are displayed in the middle of its corresponding arrow. The color of arrows maps to the

strength of dependencies. Solid and dash-dotted arrows represent respectively significant dependencies with p-value < 0.001 and < 0.01.

Compared to CCF, the CCM results (Fig. 4.b) are more intelligible since fewer significant links are reported. However, CCM280

as a nonlinear method gives no clue about the nature of the underlying dynamics or the dominant sign of the dependencies.

P2 is now exclusively related to R5, and P3 has no dependencies on resistivity patterns. P1 is CCM-related to the surface

resistivity patterns R1, R3, and R5, but also R2, which is representative of the limestone matrix resistivity. Compared to CCF,

CCM supports the particular conclusion of connected and preferential flows occurring between the surface and P1.

4.2 Multivariate methods285

For multivariate methods, we chose to report causal graphs for the raw (not differenced) data since differencing did not impact

ParCorr but reduced the precision of CMI in the virtual experiment (Table 3). Hence, Fig. 5 shows linear conditional dependen-

cies (ParCorr) obtained from the raw time-series for the full dataset (All data, Fig. 5.a) and considering the discharge series one

by one (P1, P2, and P3, Fig. 5, b to d). The P1, P2, and P3 datasets allow the analysis to be performed over larger time domains

(Fig. 1.c). Except for R4, the dominant relationships between resistivity and meteorological variables are maintained between290

14

https://doi.org/10.5194/hess-2021-445
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



the graphs, demonstrating stability in the ParCorr results despite differences in the considered time-domain. As for CCM (Fig.

4.b), P1 is associated with R1, R2, R3, and R5 (Fig. 5, a and b). The rainfall RF remains significantly related to P1, suggesting

that resistivity patterns are not sufficient causes of P1. Regarding P2, similarly to CCM (Fig. 4.b), ParCorr on all data (Fig. 5.a)

reveals a significant link between R5 and P2. However, the link is absent in Fig. 5.c, and two direct links from RF appear and

bypass the resistivity patterns. Yet, R3 and R4 seem to influence P2 at lag 2, but the relationship is positive, which cannot be295

interpreted as a linear mass transfer. We also denote two upward links to R4 and ET. These links seem physically unrealistic

and potentially problematic since the effect of P2 is be removed from these variables, which may alter the whole causal graph.

P3, i.e., the low rate stalactite drip discharge, remains unrelated (Fig. 5, a and d).

Regarding the nonlinear analysis (CMI), we found unstable results on all datasets: All data, P1, P2, and P3 (see SM2.3).

The causal graphs varied substantially when we repeated the analysis with the same parameters due to the stochastic nature300

of the independence test (Runge, 2018b). Consequently, we developed a sensitivity analysis by varying the hyperparameters

of the method, hoping to isolate more stable configurations. Whatever the configurations, the results remained unstable. The

instability is attributed to the lack of data and the fact that CMI, the most sensitive method, is applied to highly correlated

data from a smooth inverted electrical resistivity model. This creates anomalies in the representation of causality between

resistivity variables potentially due to the overly deterministic relationships that link these series. This problem is illustrated305

and further detailed in the supplementary materials (SM2.3). Consequently, to achieve a causal representation of the system

with the nonlinear multivariate method, we had to adopt another logic, that of the consensus brought by the set of models from

the sensitivity analysis. We considered all simulations done for the sensitive analysis as an ensemble of models rendering each

a causal graph. Figure 6 reports the links achieving majority (50% considering a p-value of 0.05) among the ensemble of causal

graphs from the sensitivity analysis. Following the consensus logic, the results again suggest a preferential connection with P1,310

while the two other drip discharge series remain unrelated.

5 Discussion

We introduced CMI as the most relevant for effective connection detection. Our results showed that CMI differs from the other

CIMs in its low false-positive rate for the virtual case. However, CMI remains imperfect and missed a significant amount of

effective connections. Moreover, the method proved to be unstable in our real case study, forcing us to adopt a logic initially315

absent from causal inference methods, that of a consensus graph (Fig. 6). The instability is possibly due to a large amount

of missing data. Another hypothesis is that the ERT time-series are too smooth and deterministically related, which could

contribute to the instability of the method (Runge, 2018a). The supplementary materials indeed show a strange behavior in the

links with the CMI method, especially on the reduced time domains due to missing data (see SM2.3, Fig. SM.5 P2, and Fig.

SM.6, All data).320
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Figure 5. Graph of ParCorr cross-dependencies: considering (a) all data or one unique discharge series (b) P1, (c) P2, or (d) P3. An undirected

line represents contemporaneous dependencies. Delayed dependencies are shown using directed curved arrows. All corresponding delays d

are displayed in the middle of its corresponding arrow. The color of arrows maps to the strength of dependencies. Solid and dash-dotted arrows

represent respectively significant dependencies with p-value < 0.001 and < 0.01. For each graph, the size of the overlapping time-domain

between the variables changes as follows: 48 days (a), 184 days (b), 62 days (c), and 218 days (d).
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Figure 6. Consensual graph of CMI cross-dependencies obtained from the ensemble of simulations performed in the sensitivity analysis:

(considering (a) all data or one unique discharge series (b) P1, (c) P2, or (d) P3. An undirected line represents the Contemporaneous

dependencies. Delayed dependencies are shown using directed curved arrows. All corresponding delays d are displayed in the middle of its

corresponding arrow. The links displayed are those reaching the majority (50%) for all causal graphs where the connections are established

with a p-value of significance at 0.05. The color of arrows maps to the strength of the voting ratio. For each graph, the size of the overlapping

time-domain between the variables changes as follows: 48 days (a), 184 days (b), 62 days (c), and 218 days (d).
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5.1 On the Practical Use of CIMs

Optimistically, we note that CIMs tend to reveal the preferential connection between P1 and the surface, as expected from the

dye tracing test (Poulain et al., 2018, and Fig. 1.a). Yet, no statistical test provides the actual probability of a causal relationship,

but rather that of an association under the assumptions of the CIM’s underlying model and the adequacy of the dataset, notably,

i.e., through the causal sufficiency hypothesis (Runge, 2018a). In other words, claiming that a link inferred from CIMs is a325

causal or effective connection is a delicate step. On this front, the CIMs are all equivalent, and they only differ on the types

of connections that they can or cannot detect with a fair rate of false alarm. We demonstrate that the CMI method has a low

false-positive rate compared to the others. Still, bivariate methods are helpful if only to select potential links and check which

ones are dismissed while using multivariate CIMs. The value of CCM compare to CCF is the opportunity to reveal weak

nonlinear interactions for cases where such relations are suspected. Besides, linear methods are faster, more interpretable, and330

explainable to an audience, i.e., many reasons that could favor their practical use.

In general, the CIMs allow us to focus on a limited number of relationships: the strongest, the most cross-predictable, the

most robust, or consensual if the approaches or parameters are varied. For this reason, the high number of connections found

by the CCF method (Fig. 4.a) should act as a warning light. Nonetheless, and this is true for all methods, we can adjust

the number of causal connections retrieved and limit the results to the strongest dependencies by selecting a proper method335

parameterization: lowering the p-values, using more restrictive tests, or confronting the statistical dependencies with those

obtained from surrogate data sets (Schreiber and Schmitz, 2000). The predictive potential of the most significant links gives

them value, and their robustness should prevent futile discussions on an evanescent singularity. Altogether, it appears difficult to

rely on any particular link obtained with a single method and in a unique configuration. Indeed, this study showed how volatile

links CIMs could be. Therefore, CIMs’output, like many others in statistics, should be taken with caution. Their robustness340

should be assessed by varying the methods, the datasets, or the time domains to address the robustness of the links. On the other

hand, we cannot exclude that an elusive but actual causal connection would be only detectable by one or the other method,

using the right parameterization.

By being labeled as causal, we may have more expectations of CIMs than other types of experiments or investigation

methods, hoping to get simple answers to complex problems from them. Nevertheless, all types of methods can contribute to our345

causal understanding of environmental systems (e.g., dye tracing tests or spatially detailed inverse resistivity models). However,

the sensitivity of CIMs to their assumptions and parameterization makes them hazardous to use alone. Despite their limitations,

CIMs complement other methods, and they could be combined to narrow the range of possible causal representations of the

system under study.

5.2 Research Perspectives350

Today, CIMs benefit from a growing interest; they evolve and progress. CIMs pursue the ideal of causality solely inferred by

data and machines. They are very generic methods and should be studied and appropriated for the specificity of hydrological

data. In general, Klemeš (1982) was particularly critical of letting the data speak for itself. For the multivariate methods, we
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have chosen to let the causal graphs be formed from the data. We have not prescribed any constraint on the conditioning of

variables. This means that variables can be conditioned on potentially aberrant links, negatively impacting the whole causal355

graph. Studying how to constraint causal inference is an exciting research perspective. It should be done with caution to prevent

us from constraining the analysis on perceptually biased hypotheses on the system’s functioning. In particular, this could be

done by reintroducing some physical concerns or spatial dimensions into the analysis. Rinderer et al. (2018) already proposed

to constrain CIMs with structural connectivity, which is the first level of potential connectivity allowed by the geophysical

environment. Currently, distances nor the length of flow path or energy potentials do not matter in CIMs. This spatial dimension360

is initially present in Hume’s contiguity principle in time and space (Hume, 1748). To Schrodinger, the spatial continuum is

also a causal paradigm in physics (Schrödinger, 1954). Then, we recommend research avenues on reconciling CIMs with space

and physics.

Other research perspectives are more fundamentally related to the nature of the hydrological data.

1. Long time-scale. The methods proposed here work on the temporal domain. However, the assumption of causal suffi-365

ciency is questionable since hydrological connections can be spread over much longer time-scales. Thus, methods that

work in the frequency domain or that couple the frequency domain with the time-domain deserve a particular interest

(e.g., Molini et al., 2010).

2. Intermittent connectivity. We did not address the nonlinearity associated with threshold effects or intermittent hydro-

logical connections (Blöschl and Zehe, 2005; Bracken et al., 2013). The CIMs assume constant interactions, even if370

modulable in the case of nonlinear methods. Since a hydrograph at the output of a hydrological system is a good repre-

sentation of the hydrological state of the system, applying the CIMs on a segmentation of the hydrograph (e.g., high or

low flows) is another interesting application. Segmentation would, however, reduce the available temporal domain for

conditioning the variables, similarly to missing values in this study.

3. Contemporaneous dependencies. Most hydrological dependencies are contemporaneous, preventing the inference of375

causality from the principle of priority. Some CIMs are not built upon the principle of priority (e.g., Spirtes et al., 2000;

Pearl, 2009; Runge et al., 2019a) and could be investigated. In particular, the Tigramite package has been recently updated

to include an improved and faster PCMCI+ algorithm that deals with contemporaneous links and strong auto-correlation

in series, with the promises of stronger recall and well-controlled false positive (Runge, 2020).

4. Statistical models and their parametrization. The CMI method deserves to be studied in more detail for its potentiality380

revealed in the virtual experiment. There are other estimators of the CMI that could be more adapted to longer series

or other time-scales (Runge et al., 2019b). Furthermore, the parameterization of estimators could be studied in more

detail, supported by the current interest in hydrology about the information theory (see Goodwell et al., 2020, and other

debaters). Virtual experiments also provide an opportunity to study in more detail how to parameterize CIMs.

5. Inversion or processing artifacts. Many hydrological datasets are not directly measured but inverted, modeled, or pro-385

cessed so that artificial dependencies between the data may exist. These dependencies should not be confused with
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causal relationships, and further study could be conducted to assess the sensitivity of CIMs to these artifacts and propose

strategies to mitigate the problem.

6 Conclusions

We applied four causal inference methods for detecting hydrological connections. These CIMs study the temporal dependen-390

cies between variables. They are either linear or nonlinear, and bivariate (pairwise dependencies) or multivariate (conditional

pairwise dependencies). The four CIMs are applied to both a synthetic and a real case in a karstic study site. The synthetic

data are effective precipitation and modeled discharge from two reservoirs, either parallel and disconnected or contributing

in series to the same drainage channel. The real karstic dataset involves precipitation and evapotranspiration data, subsurface

resistivity series clustered from an inverted electrical resistivity model associated with a time-lapse ERT dataset, and three drip395

percolation discharge series in the cave below the surface. In this case, we know that a preferential flow exists between the

surface and the one spot of drip discharge in the cave.

For the synthetic case, bivariate methods cannot discriminate causal dependencies from those arising from confounding by

the meteorological forcing of the model. Bivariate methods generally only account for potential connections, while multivariate

methods attempt to extricate actual ones. In accordance with our theoretical expectations, we found that the nonlinear and mul-400

tivariate CIM based on conditional mutual information (CMI) is indeed the most precise: the identified connections are likely

to be actual connections. Yet, this method has a bad recall: it misses many connections. Moreover, this same method proved

to be unstable for the real case. We believe that the temporal domain, further reduced by missing data and the conditioning

process, was too small to converge. Possibly, the instability is also due to the electrical resistivity model and the clustered

series being too smooth, correlated, and therefore too deterministically related to establishing causality based on the concept of405

conditional independence. To overcome this issue, we built a consensual causal graph from multiple iterations of the method

and its parameters, with the outcome in phase with our perceptual understanding of the system. Yet, consensus introduces a

new logic in the causal inference process that is not part of the initial theory. The causal graph of the linear bivariate method,

the cross-correlation function (CCF), shows ubiquitous dependencies between variables. Not much can be learned about con-

nectivity and preferential flow paths without considering more restrictive tests. The three other methods support the idea of a410

preferential connection where it is suspected.

Nonetheless, any multivariate CIM will assess causality under the hypothesis of causal sufficiency, meaning that all the

potential causes are monitored alongside other hypotheses. The sufficiency of the data is hardly verified in practice, as well as

the complete adequacy of one particular CIM and its parameters. As a result, different causal links may appear with different

configurations. Accordingly, it is delicate to interpret a causality test as the probability of an actual hydrological connection.415

While caution and flexibility are always warranted, CIMs are interesting data mining methods, undoubtedly capable of making

causal discoveries and constantly improving. We propose suggestions for research perspectives considering the specificity of

hydrological dynamics. In the meantime, we promote non-exclusive approaches while using CIMs by varying the methods,

their parameters, the time domain, and the data. They participate in a causal understanding of hydrological systems, but causal
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understanding is not limited to them. They synergize with other leading approaches such as physically-based modeling, other420

empirical data analysis approaches, or field investigations.

Code and data availability. CCF and the Student’s t-test are computed using the Scipy Python package (Virtanen et al., 2020). The CCM

python implementation is available from Delforge et al. (2020a). The official R implementation is available from the CRAN repository: https:

//CRAN.R-project.org/package=rEDM. PCMCI and independence tests are implemented within the Tigramite (v.4.1 in this case) Python

package: https://jakobrunge.github.io/tigramite/. Evapotranspiration data were obtained from the agrometeorological PAMESEB network425

for the station of Jemelle: https://agromet.be. All other environmental time-series can be obtained from Watlet et al. (2018) and the related

repository: https://zenodo.org/record/1158631. Resistivity clustered time-series can be reconstructed following Delforge et al. (2020b) and

the example available from the repository: http://dx.doi.org/10.17632/zh5b88vn78.2
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