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SM1: Causal Inference Methods (CIMs)
SM1.1 CrosgCorrelation Function (CCF)

For a driving variablgyv and a response variable of 0 samples, causality is framed through the computation of the-cross
correlation function (CCF) and the principle of priority of the cause. For a window of absolute di&ys with Q 1T, the
Pear sonds cor r é&kanputed Biweendhe fegponseiardrihie delayed driver on their overlappinddimesn:
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withQy Q. The P deatwesndwo finseseriesd andd is the ratio between their covariance and the product of their
standard deviations:
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The” coefficient is a standardized measure of linear dependencies that can be interpreted as the slope of a linearetgeession b
the two standardized variables (i.e., zero mean and unit variance). Accortirgglsinging betweerl and 1, meaning respectively
perfectly anticorrelated or correlated. Aof zero indicates the absence of linear dependencies. The sigréfichtie hypothesis
that"i s di fferent from zero i s usu attestyepotisgapaus. itk prvalue adstimates thea | |
probability that the correlation between the two tisegies is the output of an uncorrelated pssc The fvalue is sensitive to the
number of overlapping samples such that more samples are required to have a signifibamiifig’ Sis low. For a significance
level| , significant relationships are considered when thvalpe is lower thah . In the main manuscript, significant correlations
output by the CCF method are considered as a way to reveal potentially causal links betweendeietinae a causal del&yin

virtue of the principle of priority. The case'@f Trefers to a contemporaneous dependency and does not allow to infer a direction
for the causal relationshi@orrelation and the significance test were performed using Python and the Scipy(\itanen et al.,
2020)

SM1.2 @nvergent Cros#lapping (CCM)

CCM is a CIM rooted in the theory of nonlinear dynamical systén@ms atdetecting weak nonlinear associations between two
time-serieg(Sugihara et al., 2012LCM goes beyond linear correlation by checking if two variables behave consistently when the
systemrevisitsthesamestgate To approxi mate the states of a s(Yakang 1881) CCNM
To address wheth&s causes, the response variablei s f i r st embedded usingonTakensds

0 Ohy B o : (3)
0 is the reconstructed state space, i.e., a trajectory matrix defined by the embeddirigaddlaye embedding dimensidan

The state space reconstruction of the potential response vabiabtbe starting point of the CCM flowchart (Figure )1 CCM
uses a nearesieighbor algorithm to make forecasts of the staies™ @&, with @ the potential cause @d and'Qthe time to
prediction and potential causal delay (uffto ).'Y 'O '&@nhdl "Odre two usedefined set of timeseries indicesY 'O ots the time
indices of reference, such that the forecast being performed wodld bfer all " Y ‘O ;@ith ‘Qthe forecast horizon and potential
causal delay. The sét"Ofésts the timeindices where neareseighbors can potentially be identify. By default, no restrictions apply
ond "‘Oénd'Y O "&nd these sets cover the whole time domain, witlexiseption of the indices truncated by the reconstruction or
the prediction dela{2 In practice 0 trajectory samples are randomly selected fromitli@get. Working on subsamples allows
repeating forecasts  times to bootstrap statistics amzikes more reliable forecasts. To perform a single forécastp nearest

neighborsof the stated O B o in 0 are identified using Euclidean distance. The p is the default number
of nearesneighbors. We denote this set of nearesghbor statesw ho 8 Fo with a corresponding set of Euclidean
distances téonoted QHQ B HQ . Based on the timindices of the nearesieighbor setcorresponding points i are identified
and shifted byRtime-stepsas®w ho 1B hw . Thesed p states are averaged using exponential weightefined

based on the vector of distances:
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Each weight) is then divided by the sum of all weight so that they sum up to 1. The weighted average of-$eriemealues

w h mMBho provides the estimate af . As the sampling of thé random states (without replacementpin is
repeated)  times, the output forecast matrix is of site 0 . CCM forecasting skills are typically addressed with the mean
Pearson correlation (Eg. 2between thé vectors ofl) forecasts and the corresponding observed values.
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Figure SM.1. CCM Algorithm Flowchart. Usedefined parameters are displayed in blue.

In fine, the fact thato  can be significantly predicted from other pointgiinidentified from timeseries segments i, that are
nearesineighbors tap, is used as an indicator thatcausesv. The effectivecrossstate then crossime mapping suggesthat®
dynamic is embedded i, which suggestdirect causality, or at least a common belonging to the same dynamical system. In the
original papefSugihara et al., 2012¢ausality is inferred using a prediction horiZan 1tand from the principle of convergence,
meaning that [should progressively increase with larger sample siz&€ur implementation deenot consider convergence as a
sufficient criterion for causality. We assume that[is significantly high, convergence is expect8dnilarly to the CCF method,

we instead vary the prediction horiz@to identify significant causal delays and distiriate the driver from the response based

on the principle of priority of the caus&€his CCM approach is suggested for variables exhibiting a correlated and synchronous
behavior(Ye et al., 2015)such as hydrological variabl€ghe significance of the average forecast skilis conducted through a

St u d-tast, éossidering the sample lengthThis means thdt[would be significantly different frorthe expected correlation
between two white noise signal of lengthi.e., zero.

With respect the main manuscript, we applied no restrictiovf @ighdd ‘O fixed sample length af of 100 was used 100 times
(0 ). The optimal embedding parameters (Eqt 2ndt) for & can be selected by optimizing the delfecasting skill§Sugihara
and May, 1990)These sefprediction skills are obtained by applying the CCM algorithm on a single vartable ¢ in Figure
SM.1). The embedding delaywas set at theéme-series resolution of 1 day, while ¢ was found to provide the best forecasting
skills in general. Besides, we also considered a time exclusion window of 10 days, known as the TheilefTWiaiien1986)
such that nearesieighbor states i are not neighbors in time but remote by at least 10 days and picked whénegsits
recurrent trajectories. The Theiler window ensures that predictive power arises from state dependencies, notdvorelatido
patterns.

Finally, we chose to pogtrocess the retrieved significdrto remove an undesirable effect of thebeniding parameter . For a

single causal dela, the embedding has the effect of providing significant predictive skills over the embedding window, such tha
the delaysbetweenQandQ & p are usually significanfsee 24] This effectis illustrated in Figure SM. To discard the
undesirable sustain of predictive skills, we truncated all significant segments of consecutive delays by 1 days ginee a pst-

filtering of the significant CCM relationship. Consequently, isolated significant delays are also removed. Besides,” fagative
not considered since they are meaningless.
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Figure SM.2. Example of CCM on a linear stochastic model &0 ) 1§ - with - a standard white noise. The model assumes a
univariate causal relationship © & thatshould be revealed by CCM forecast (xmap) fid@rto &  (True delayQ= 2). The figure shows

the results of CCM forecasts froimto & (black) and vice versa (gray) for delays ranging betwéeand 5. CCM skill' [is the mean Pearson
correlation between thé p T mredicted vectors of length p 1 &®nd the corresponding true values. The effect of the embedding
dimension is clearly visible. Significant predictive skills are sustained at least over a windowoof(gizent p . Hence, island of significant
dependgacies should be tailed from the right to reveal the true delays associated with ffositieetruncation also prevents future dependencies

(Q m) from extending past dependenci€s (Tt and being misinterpreted as causal relationships.

Regarding the CCMode, CCM is applied with a Python version develdpd®elforge et al., 2020)A computationally faster and
official Python version of CCM, as well as R and C++ implementation, are currently available from the repository:

https://github.com/SugiharaLab/pyEDM
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SM1.3. PCMCI Algorithm

PCMCI is a 2step procedure: PC, named after its authors Peter and (Slairkes and Glymour, 1991and MC| standing for
Momentary Conditional Independen¢Runge et al., 2019)Iin general, considering a multivariate tideries process:

& M I of iy time-series, PCMCI allows recovering a causal graph based on the principle of conditional independence. .
delayed timeseriestd  with "® 1T causes itself or another serigswith "Q 1) , if conditional independence to the past of

the process= ( excluding® s rejected:
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where the symbols respectively me@n: fi c a u:s e sfoi; mp:l ifiensodt; i n:d efpcecnmdceinttiggnieex ¢ lowd |

The Full Conditional Independence algorithm (FullCl) is entirely based on Eg. 5. However, FullCl suffers from the curse c
dimensionality if the conditioning involves too many variables in the conditioning géRunge et aJ 2019) Hence, the purpose

of the prior PC step is to estimate first the potential parenés ) for each variablgd . Tigramite relies on the RGterative
procedure by default. Initially, all potential parents are considered@s). In the first step, all the parents that are unconditionally
independent t&d are removed, and the parent presenting the strongest dependency is identified. In the second one, the parents
are independent @@ conditionally to the strongest paiteof step 1 are removed, and a second parent with the highest conditional
dependence is identified as an additional condition for step 3. The operation is repeated consideyitigrecieasing number of
conditions up to a point there are no more comaiit to test ins & ). Then, the MCI second step starts and tests for conditional
independence on the dimensionally reducedset of parents resulting from PC1, such that:

®w %0 s R, B ) (6)

Resulting from the MCI step, links where conditional independence cannot be rejected are considered as true causal,parents
causally inferred sufficient causes. These links are reported in the resulting DAG.

PCMCI flexibly allows us to consider défent conditional independence tests: a linear method by assessing Partial Correlation
(ParCorr) and a nonlinear one relying on Conditi onaslEqMut t

2) betweend® and the residua of the multivariate linear regression model @f against its conditions, for instance,

5 ® . ® [ & )inthe case of MCI. The linear model is fit using Ordinary Least Square regression, and the correlatiol
significance is estimatewith pv al ue r esul t i ngest.fThioframeavorkSg verg similar dosthe popular Granger
causality, which is based on vector amgressive model@Granger, 1969) However, PCMCIParCorr differs from the usual
Granger causality in three aspects: (1) Granger causality does not rely on the PCMCI procedure and, thus, suffersré®iof the cu
dimensionality; (2) GC does not repodntemporaneous dependenci@s (1); and (3) Granger causality relies on-gebt, testing

if including a potential driveé® in the multivariate model ab significantly reduces the variance of residuals.

In contrast, CMI can be seen as a inaliate extension of the transfer entropy met{®chreiber, 2000)n the information theory,
CMI, or'G; ¢ , is the mutual information between two variatidesandd conditioned ta:
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If G mhé and® are conditionally independent éohand, therefore, not directly causally related, given that the probability
densities are correctly estimated. For this purpose, PCMCI with the CMI conditional independence test offers three differe
methods: Gaussian Process and Distance Correlation (GRBEQ)earest neighbor estimator (CMIknn); and an estimator based on
kernel measures of CMI (RCOT). The author recommends using the most general conditional independence test, CMIknn, wt
multiplicative noise is expected, as in hydroldgyy., 12], and where the sample size is lower than 1000, which is the case in this
study. CMIknn is, therefore, considered. The latter relies on a neaigstborCMI estimator(Frenzel and Pompe, 2007; Vejmelka
and Pal ocojmbine@wti®aBlgcal permutation scheme as a nonparametric test for conditional indepéRdegeg2018)

Besides the maximum l&@ , PCMCI requires other arguments. The PC stage retrieves parents according toraatgola
parameter  ranging between 0 and 1. The higher, the higher the number of parents, with  p corresponding to the
FullCl algorithm (Eq. 5). If  is too low, true parents might be missing. If is too high, the MCI step may retrieve spurious
results due to the curse of dimensionality. When the ParCorr conditional independence test is selected, PCMCI allowg optimiz
| while minimizing the Akaike Information CriteriofAkaike, 1974) In the main manuscript, this feature is used to generate the
ParCorr DAG. For CMlwe tested the method considering two values: the défault 1@ and a more restrictive T8t v

The CMIknnmethodfurther relies oriwo hypeparametes (Runge, 2018)The first,Q , definesthe size of the neighborhodor
the knn estimator of CMIThe Q@  mostly acs as a smoothing parameter regarding the CMI, and should not be too Emeall.
second parametet) , defines the size of the neighborhood for the local permutatibame for the shuffling test. Tf@
parameters has less importance tléan regarding the sensitivity of the outcomes.

The PCMCI algorithn{Runge etl., 2019)is implemented in the Tigramite Python package for causaldaries analysis (version
4.1 for the main manuscript). The GitHub repository contains further information and tutorials to run the causal discovel
framework:https://github.com/jakobrunge/tigramite/
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SM2: Supplementary Results
SM2.1. CrosCorrelation Function

Figure SM3 shows the CCF timdependenciei the form of a correlogram. CCF was appladthe firstorder differencedeal
datase{seethe main manuscript)
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Figure SM.3. CCF timedependencies applied to the first order differenced data. Lagged dependencies significantly different from zero ai
reported with red stars {gal < 0.001), orange squares (0,0044p<0.01), and green triangles (0.01vq<0.05).



SM2.2. Convergent Croddapping

Figure SM4 shows the CCM time&lependencies on the first order differenced datdsme that the significant dependencies are
expected to sustain over an additional delay since the embedding dim@ndon 3) is two days. This effect was removed in the
main manusript using posfiltering (see SM1.2).
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Figure SM.4. CCM time-dependencies applied to the first order differenced data. Lagged dependencies significantly different from zero al
reported with red stars {g@l < 0.001), orange squares (0,00445<0.01),and green triangles (0.01%@l<0.05). The results are not post
processed (see SM1.2).



SM2.3. Conditionnal Mutual Information (CMI)

PCMCI with the CMIknn applied on the real dataset was unstpbtentially due to the small size of the overlappingtdomain

of the conditioned variable3o illustrate thisinstability, Figure SM.5 and SM.6 reports the causal graph outputs forun®
obtained with the same parameter configuration §°Q HQ ). In particular, some strange caussbpssometimes appear
between resistivity variables (Figure SM.5¢c-R8, or Figure SM.6a RR1). This observation led us to believe that the highly
smoothedaveragedresistivity timeseries obtained from thaverted tmelapse Electrical Resistivity Tomography model
contributes to the instability.
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Figure SM.5. Graph of CMI crossiependencieRUN 1) (a) considering all data,(b) excluding P2, P3, (c) excluding P1, P3, (d)
excluding P1, P2. Contemporaneous dependencies are represented by a undirected straight arrow. Delayed dependencies are showr
using directed curved arrows. All corresponding delagse displayed in the middle of its corresponding arrow. The color of arrows

maps to the strength of dependencies. Solid and-diztshd arrows represent respectively significant dependencies wélu@ <

0.001 and < 0.01.
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Figure SM.6. Graph of CMI crosslependencieRUN 2). (a) considering all data,(b) excluding P2, P3, (c) excluding P1, P3, (d)
excluding P1, P2. Contemporaneous dependencies are represented by a undirected straight arrow. Delayed dependencies are showr
using directed arved arrows. All corresponding dela@sare displayed in the middle of its corresponding arrow. The color of arrows

maps to the strength of dependencies. Solid and-diatsbd arrows represent respectively significant dependencies wilug <

0.001 ad < 0.01.For eachgraph, the size of the overlapping thlemainbetween the variables chasges follows: 48 days (a), 184

days (b) 62 days (c), and 218 days (d).



To better evaluate how dissimilar two causal graphsiaddn which casave performed a full sensitivity analysighis sensitivity
analysis varies the datasets well as the parameters of the algorithm, and runs 5 tests for each configuration to investigat
convergence problems. The sensitivity factors are

6FD6, OP106, O60P206, O6P36:

t h e FDobeaing all dadaiPadss ED exctuding $2, B3EPROe d |
isFD excluding P1, P3, and 06P36

6 is FD exclwuding P11, P2
The|  parameter defined as either 0.2 or 0.05;

The™Q parametebelonging to [5, 10, 15, 20, 30, 40]. We cannot go beyond the absolute value of 48 which is the siz
of the overlapping domain for FD conditioned variables.

The™Q  parameter as in [5, 10, 15, 20]

This parameter space covers 960 simulations egdonith’Q  equal to 5 daysTo give an account of the high computational
cost of CMIknn, the sensitivity analysis took about two weeks on a single PC laptop ma2himeadsintel core i7 9th generation.
Figure SM.7and SM.8shows themeanJaccard similarity between each combination of the 5 causal graphs retrieved for each
parameter set. The Jaccard similafitmplemented i(Pedregosa et al., 20)Teportsthe size of the intersection divided by the
size of the union of two vector of labgi®., labeled asausal onon-causal in this case. For Figure SMnt&M.8, the significance
p-value threshold was set respectively to 0.01 and 0.05. However, the Jaccard similarity capture the similarity thathartee to
Figure SM.9 and SM.10. reports the Adjusted Rand Ii{d&X), also implemented i(Pedregosa et al., 201 Which is a similarity

metric that account for chan{@beingtheexpectedscore ofandom similarity. In overall,a slightly lower similarity obtained with

= 0.2 which allows more causal pareritfie effect of the dataset is visible with AREpecially with ] ) showing that

the FD and P2 ggears more random due to the small size of their overlapping time d(ffigiire SM.9 and SM.10pP1 is the less
random, which is also where we expect an hydrological connectios part of the grapRegarding the optimal choice €  or

Q

, No clearcut pattern appeartn the main manuscriptye therefore chose to build the consengoajority) causal graph

using all the causal graphs obtained through this sensitivity analysis.
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Figure SM.7.Mean Jaccard Similarity betwe#ime @mbinations of Hraphs obtained with the samparameter sets and significance
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Figure SM.9.Mean Adjusted Rand Index between the combinations of 5 graphs obtained with the same pararmaetesigeificance

thresholdp-value of 0.01



