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Abstract. Advance warning of seasonal conditions has potential to assist water management in planning and risk mitigation, 

with large potential social, economic and ecological benefits. In this study, we explore the value of seasonal forecasting for 

decision making at five case study sites located in extratropical regions. The forecasting tools used integrate seasonal climate 

model forecasts with freshwater impact models of catchment hydrology, lake conditions (temperature, level, chemistry and 

ecology) and fish migration timing, and were co-developed together with stakeholderswater managers. To explore the 25 

decision making value of forecasts, we carried out a qualitative assessment of: (1) how useful forecasts would have been for 

a problematic past season, and (2) the relevance of any “windows of opportunity” (seasons and variables where forecasts are 

thought to perform well) for management. Overall, stakeholders water managers were optimistic about the potential for 

improved decision making and identified actions that could be taken based on forecasts. However, there was often a 

mismatch between those variables that could best be predicted and those which would be most useful for management. 30 

Reductions in forecast uncertainty and a need to develop practical hands-on experience were identified as key requirements 

before forecasts would be used in operational decision making. Seasonal climate forecasts provided little added value to 

freshwater forecasts in these extratropical study sites, and we discuss the conditions under which seasonal climate forecasts 

with only limited skill are most likely to be worth incorporating into freshwater forecasting workflows. 
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 Introduction 35 

We rely on freshwaters to deliver a range of vital services, and managing catchments and lakes to ensure these services are 

delivered can be highly challenging. Unexpected seasonal climate conditions can exacerbate the problem, as heatwaves, 

droughts or prolonged wet periods can stress already vulnerable systems. Advance warning of flow, water quality or 

biological conditions, a season in advance, could pave the way for protective measures to be put in place, with potentially 

great ecological, economic and societal benefits (Bruno Soares et al., 2018; Bruno Soares and Dessai, 2016). Seasonal 40 

forecasts have obvious potential to assist management of flow-regulated catchments, where water level can be adjusted in 

anticipation of wet or dry seasons, and much attention has been given to this in recent years (e.g. Maurer and Lettenmaier, 

2004; Turner et al., 2017; Turner et al., 2020; Peñuela et al., 2020). However, there are many other situations where forecasts 

could assist water managers in delivering key services, protecting vulnerable aquatic habitats and species, and in meeting 

environmental objectives. 45 

Within the water sector, predicting conditions a season in advance can make use of two sources of seasonal predictability: 

(1) antecedent and initial conditions, for example how much water is stored in the catchment/lake at the start of the period; 

and (2) how weather is likely to evolve over the coming season. The relative importance of these varies greatly by location 

and depends on the catchment/lake characteristics, season, forecast horizon and variable of interest (e.g. Shukla and 

Lettenmaier, 2011; Arnal et al., 2018). To incorporate both sources of predictability into forecasts, seasonal climate model 50 

output can be used to drive statistical or process-based surface water models. Seasonal climate models provide, for instance, 

probabilities of wetter or drier, cooler or hotter conditions several months in advance. One of the main sources of seasonal 

climate predictability is the coupled ocean–atmosphere El Niño/ La Niña pattern (Troccoli, 2010), so seasonal climate 

models tend to perform better in the tropics, which are more affected by these phenomena  (e.g. Manzanas et al., 2014; 

Beverley et al., 2019; Johnson et al., 2019). Away from the tropics, seasonal climate forecasting is challenging, and forecast 55 

quality varies geographically and strongly depends on the variable and season of interest. The added value of using seasonal 

climate forecasts in freshwater forecasting outside the tropics is therefore often less clear (e.g. Peñuela et al., 2020; Arnal et 

al., 2018). 

Many seasonal hydrologic and drought prediction systems have been developed over the last decade using a variety of 

forecasting methods. Seasonal streamflow forecasting is the most advanced, with many examples of systems that produce 60 

regional or even global operational forecasts (e.g. Arnal et al., 2018; Bennett et al., 2017; Emerton et al., 2018; Prudhomme 

et al., 2017; Wood and Lettenmaier, 2006). These systems generally perform better than climatology (i.e. resampled historic 

streamflow), although forecasting methods simpler Ensemble Streamflow Prediction (ESP; Day, 1985), where resampled 

historic meteorology data are used to drive hydrology modelsthat incorporate seasonal climate data have only been found to 

perform better than methods that rely on historic meteorological data over shorter lead times and/or in certain locations and 65 

seasons (e.g. in winter for 40% of Europe; Arnal et al., 2018). For lake water level, probably the longest-established 
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operational seasonal forecasting system is for the Great Lakes in the USA/Canada, where empirical and process-based 

catchment and /lake models are forced with historic meteorological data, in some cases taking monthly climate forecasts and 

long-term climate projections into account by the use of weightings used with historical meteorological forcing data and 

long-term climate projections (Gronewold et al., 2011; Gronewold et al., 2017; Fry et al., 2020). This system has been shown 70 

to offer some skill, although forecasted variability is generally lower than observed (Fry et al., 2020). Seasonal forecasts of 

water quality and ecology are however meanwhile rare, despite their potential relevance for management. The few examples 

we could find included river nutrient loads in a Korean catchment (Cho et al., 2016) and turbidity exceedance in a drinking 

water source in the Pacific Northwest (Towler et al., 2010), and while both studies focused primarily on method 

development, both of which showed promising resultsTowler et al. (2010) showed that their workflow, which incorporated 75 

seasonal climate forecasts, resulted in an improvement in skill over climatology. 

 For standing waters, the use of short-term weather forecasts, i.e. timescales of up to 10 days aheada few weeks, has been 

advanced in a number of lake water quality studies (e.g. Thomas et al., 2020; Carey et al., 2021), but seasonal time-scales 

have not been addressed to our knowledge. The focus of the WATExR project, a European Union (EU) project funded by the 

European Research Area for Climate Services (ERA4CS), was therefore to help address this gap, by focusing on seasonal 80 

forecasting of water quality and ecology and including standing waters. Pilot seasonal forecasting tools were co-developed 

with water managers at five catchment-lake case study sites, four in Europe and one in South Australia. The focus was on 

extratropical areas, where seasonal climate predictability is lower. Tools link seasonal climate forecasts with models which 

predict freshwater variables of interest to decision makers at each site, including river discharge, lake water level and water 

temperature (described in detail in Mercado-Bettín et al., 2021), water quality, algal bloom risk and fish migration. 85 

The substantial advances in the development of operational streamflow forecasting systems have enabled improved water 

management in some areas of the world. In a recent study, for example, Turner et al. (2020) found that a large proportion of 

dams and reservoirs in the US use seasonal stream inflow forecasting to inform water release. However, snowpack data-

information was inferred to be the main source of information for deriving streamflow forecasts, although there waswith 

more limited  also some evidence forof seasonal climate information being used. Certainly in Europe, recent studies have 90 

found that seasonal climate products are still rarely used to inform water management (e.g. Bruno Soares et al., 2018). 

Barriers to use include low climate forecast skill at extratropical latitudes and the probabilistic nature of the forecasts, as well 

as factors such as a lack of awareness of what is available, accessibility, and level of expertise or training required (Bruno 

Soares and Dessai, 2016; Bolson et al., 2013). A variety of studies have emphasized that a key way of increasing the use of 

climate products in decision making is co-development, whereby scientists and decision-makers together frame and develop 95 

the scientific information and tools that are useful and usable for decision-making (Brasseur and Gallardo, 2016; Bruno 

Soares and Dessai, 2016). Another key aim of the WATExR project was therefore to facilitate and explore the value of using 

seasonal climate information to help support freshwater management. A case study-based approach, and involving 
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stakeholders water managers through every stage of development, ensured that the forecasting tools developed were user-

friendly and tailored to individual stakeholder site needs. 100 

In this paper, our main aim is to test how useful the forecasting tools developed as part of the WATExR project are for 

supporting decision making in real life management situations. To do this, we first used the forecasting tools to simulate 

historic seasons at the case study sites and then assessed, together with end users, the potential for improved management 

and key challenges. This assessment process involved two exercises. In the first (Sect. 3.1), we generated forecasts for a 

single historic season, selected by stakeholderswater managers, when seasonal climate resulted in problematic conditions in 105 

each study site. Stakeholders Managers then assessed how useful forecasts would have been, whether they would have 

helped mitigate the impacts of the seasonal event, and identified barriers to operational use. In the second exercise (Sect. 

3.2), we carried out a more comprehensive assessment of the seasonal forecasting windows of opportunity at each site, i.e. 

those seasons/variables/event types which could be reliably forecasted, their perceived usefulness, and which windows of 

opportunity would be of most use for management. We then discuss results in terms of the wider literature and review the 110 

opportunities and barriers for seasonal forecasting to support water management (Sect. 4). This includes a discussion of the 

conditions under which seasonal forecasting is most likely to be useful for decision-making, where the use of seasonal 

climate forecasts is most likely to provide added value, and future priorities. 

 Methods 

2.1. Case study sites 115 

Forecasting tools were developed at five case study sites, four in Europe and one in South Australia (Fig. 1). , Table 1). All 

are catchment-lake systems, and at all but the Irish site the lake water level is regulated. The main characteristics of the 

catchments and lakes/reservoirs are given in Table 1 and catchment maps are shown in SI1). 

Mount Bold Reservoir is the largest in South Australia. Its main water supply is the Onkaparinga river, but during the dry 

season inflows are supplemented with pumped water from the Murray River via a pipeline. Mount Bold provides water to 120 

the Happy Valley reservoir further downstream, which is the drinking water source for the city of Adelaide (around 1.3 

million people). Pumping water through the Murray pipeline is expensive, and operational decisions relating to pumping and 

release would benefit from advance knowledge of the likely hydrological conditions. In addition, the reservoir is susceptible 

to phosphorus resuspension which contributes to algal blooms in Happy Valley reservoir. 

The Wupper reservoir is located near Cologne and is created by a large dam on the Wupper River. Its catchment is heavily 125 

built up compared to the other sites and the reservoir is an important recreational area. The water level is managed for flood 

control, maintaining environmental flows and recreation, all of which are challenging as water level fluctuations are large. 

Cyanobacterial blooms are problematic during hot summers and low water levels. 
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Lake Vansjø is located in one of the most agricultural areas of Norway which, combined with the prevalence of phosphorus-

rich clay soils in its catchment, mean it is prone to poor water quality. The lake has two main basins, an eastern and a 130 

western basin, and is a very important recreational area. The eastern basin (Storefjorden) is deeper and provides drinking 

water to the city of Moss (population 60,000), and flows in to the shallower western basin (Vanemfjorden). The focus in this 

study was on the western basin, where algal blooms are particularly problematicIn lake Vansjø, for example. , tToxic 

cyanobacteria blooms led to bathing bans in much of the period 2000-2007, for example. Water level in the lake is regulated 

for hydropower, flood protection and recreation. 135 

Sau reservoir in Spain, Mount Bold in Australia and lake Vansjø in Norway are all important drinking water sources, and 

lake Vansjø is also used for hydropower generation. SauSau reservoir is the main water supply source for the Barcelona 

metropolitan area, with a population of up to 4.4 million, Vansjø. It is part of the Ter River catchment, which is the main 

source of water to the reservoir. The reservoir is vulnerable to both wet and dry seasonal climate events, as high river 

discharge washes in nutrients from the catchment resulting in poor water quality, whilst dry and warm seasons may result in 140 

low water levels, algal bloom development and anoxia. 

and Wupper reservoir in Germany are also managed for flood control and are important recreational areas. Sau, Mount Bold 

and Wupper Reservoirs are All but Lake Vansjø are part of a larger chain of reservoirs, and water managers therefore face 

challenges in developing optimum release and /pumping strategies throughout the chain. All the lake and /reservoir sites face 

water quality challenges. , in particular relatHigh river discharge may wash in ing to highexcess nutrients and lead to poor 145 

water quality, whilst prolonged dry and warm periods are often associated with /low water levels associated with 

flooding/droughts, as well as elevated nutrient inputs and associated algal blooms, which may be exacerbated by warmer 

water temperatures. In lake Vansjø, for example, toxic cyanobacteria blooms led to bathing bans in much of the period 2000-

2007. The primary management opportunity at these sites is therefore adjusting water storage, release and /pumping 

strategies to minimise operational costs, whilst ensuring drinking water provision, flood protection, recreation, maintaining 150 

minimum environmental flows and meeting environmental water quality targets. Advance warning of cyanobacteria bloom 

risk was of particular interest to the end user in Lake Vansjø, to inform lake monitoring strategies, as well as the likelihood 

of meeting water quality environmental targets. Additional background information on these four lake/reservoir sites is 

provided in Mercado-Bettín et al. (2021). In the Burrishoole catchment in northwest Ireland, the focus was on the timing of 

fish migration. This site is an extremely important Atlantic salmon and eel research catchment, with historic data on 155 

diadromous fish migration since the 1950s together with a comprehensive catchment monitoring programme. The primary 

stakeholder interest at this site was therefore monitoring and sustainable management of diadromous fish stocks. 

In the Burrishoole catchment in northwest Ireland, the focus was on the timing of diadromous fish migration. This site is an 

extremely important Atlantic salmon and eel research catchment, with historic data on diadromous fish migration since the 

1950s together with a comprehensive catchment monitoring programme. The primary stakeholderend user interest at this site 160 
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was therefore monitoring and sustainable management of diadromous fish stocks, and the development of a prototype 

seasonal forecasting tool that could be potentially transferred elsewhere in Ireland, for example to inform the timing of eel 

trap and release schemes, which are carried out in Ireland to enable eels to safely migrate around run-of-river hydropower 

structures. 

 165 

 

Figure 1. Location of the five study sites in Europe and Australia. 
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Table 1. Main characteristics of the catchment-lake study sites and the water managers involved in the project., forecasted 
variables at each site, and models used to simulate freshwater variables of interest. 

Site End user Catchment 
area (km2) 

Lake 
surface 
area (km2) 

Land use 
(%)Forecasted 
variables 

Impact 
modelsLake 
elevation (m) 

Max depth 
(m) 

Water 
residence 
time (yrs) 

Mount Bold reservoir, 
Australia 

South Australian Water 
(Senior research 
program manager, 
environmental release 
manager) 

357 2.5 Pasture: 39 
Semi-natural: 
19Streamflow, water 
temperature 
Built-up: 18 
Crops & horticulture: 14 
Other: 10 
 

244GR4J, 
GLM 

45 0.2 – 0.6 

Wupper reservoir, 
Germany 

Wupperverband 
(Head of water 
resources and flood risk 
management, technical 
staff) 

215 2.1 Grassland: 
48Streamflow, water 
temperature 
Built up: 25 
Forest: 19 
Agriculture: 8 
 

250GR6J, 
GLM 

31 0.2 

Burrishoole 
catchment, Ireland 

Marine Institute 
(Station manager, 
postdoc) 

85 3.9 Rough grazing: 73 
Forestry: 22Fish 
migration timing 
Waterbodies: 5 
 

25*GR4J, 
statistical 
models 

N/A N/A 

Western basin of Lake 
Vansjø, Norway 

Morsa river basin 
management authority 
(Manager) 

690 36 Forest: 79Streamflow, 
water temperature, 
cyanobacteria bloom 
risk 
Agriculture: 16 
Waterbodies: 5 
 

26SimplyQ, 
GOTM, BN 

19 0.21 

Sau reservoir, Spain ATL Water Supply 
Company (Head of 
water treatment and 
resource, technical staff) 

1522 5.7 Forest, semi-natural: 
83Streamflow, water 
temperature 
Agriculture: 15 
Built up: 2 

425mHM, 
GOTM 

60 0.2 

* At Lough Feeagh, around 100 m upstream of the fish monitoring point. 170 

2.2. Co-development and assessment 

Water managers were involved in the design of the forecasting tools from the start as active project members, to ensure the 

tools matched their interests and needs. This also meant that they were able to interpret the probabilistic forecasts and the 

reliability information included with forecasts, and so carry out an informed assessment of the value of forecasts for decision 

making. The water managers engaged in the project included reservoir operators and water supply companies in Mount 175 

Bold, Wupper and Sau reservoirs; the Morsa river basin management authority in Norway, a partnership organisation 

responsible for implementation of the European Water Framework Directive (WFD; 2000/60/EC) in the catchment; and the 

Marine Institute in Ireland, who are responsible for diadromous fish stock monitoring and informing fisheries management 

(Table 1). One or two people were involved in the project from each organisation, including someone in a position to take 

water management decisions or, in the case of Mount Bold, responsible for research into new operational methods. A 180 

technical staff member (i.e. with responsibility for running models and analysing data) from each end user organisation was 
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also involved the project, where necessary. Water managers from Mount Bold and Wupperverband had experience in using 

catchment hydrology, water quality and reservoir models, and the ultimate goal at these sites, would be to run seasonal 

forecasting workflows in-house. At Sau and Vansjø, the aim was to develop user-friendly forecast output, rather than for the 

end users to run the workflows themselves. 185 

Water managers were involved in the design of the forecasting tools from the start as active project members, to ensure the 

tools matched their interests and needs. This also meant that they were able to interpret the probabilistic forecasts and the 

reliability information included with forecasts, and so carry out an informed assessment of the value of forecasts for decision 

making. Formal co-development and assessment exercises included: 

 An initial workshop to introduce seasonal forecasting and define the main management challenges and priorities at each 190 

site and ways in which forecasts could contribute to decision making; 

 A forecasting tool co-development workshop to agree on desired features, functionality and information layout at each 

site; 

 A workshop on communicating and visualising seasonal forecast uncertainty and reliability information (more details 

and outcomes are briefly described in Sect. 2.4); 195 

 Two interactions to assess stakeholder end user perceptions on the qualitative value of forecasts, i.e. the practical 

potential for improved management (the focus of this paper): 

1. Assessment of the usefulness of forecasts for a selected historic event (Sect. 3.1): this involved stakeholders water 

managers first selecting a historic season of interest. Researchers then generated forecasts for this season and shared 

them with stakeholdersmanagers, who were asked a set of questions via an on-line questionnaire to determine their 200 

interpretation of the forecasts and their potential usefulness (full questions are given in SI2; see  SI1 in the data 

repository; see Sect. 6). Results were then discussed individually between researchers and stakeholders water 

managers at each case study site via a facilitated virtual call, and then case studies shared experiences and main 

findings at an all-hands workshop. 

2. Assessment of the usefulness of windows of opportunity (Sect. 3.2): researchers at each case study site generated a 205 

list of the variables/seasons/event types that could be reliably forecast (the windows of opportunity). The potential 

value of these for management was then explored via an on-line survey, where stakeholders water managers were 

also asked to select any additional windows they were most interested in obtaining reliable forecasts for (see SI2 

Box A1 in the Appendix for survey design; Sect. 6). 

2.3. Forecasting workflows 210 

The surface water variables of interest varied between sites. The Irish site focused on the timing of diadromous fish 

migration to inform fisheries monitoring and management. Elsewhere, The surface water variables of relevance for 

management varied by site (Table 1). Aall water lake/reservoir site managers were interested in streamflow forecasts. Water 
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temperature was also of broad interest, as the most basic water quality parameter which affects a host of other 

biogeochemical and ecological processes, and which can be simulated relatively robustly using process-based models. This 215 

was therefore the “water quality” end point forecast in the German, Spanish and Australian sites. At lakeIn Vansjø in 

Norway, water temperature alone would not be enough to inform decision making, and the end user was also eager for 

forecasts of water quality parameters, in particular the risk of toxic cyanobacteria blooms. The Irish site focused on the 

timing of diadromous fish migration to inform fisheries management. 

A range of different models were used to produce forecasts for the freshwater variables of interest (hereafter termed 220 

freshwater “impact models”). In most cases, these impact models integrate seasonal climate forecasts, knowledge of 

antecedent conditions and the characteristics of the system to predict the future state. The following models were used to 

simulate the different variables of interest: 

 Streamflow, lake level and lake water temperature: Details of the modelling workflow used in the lake/reservoir sites 

are given in Mercado-Bettín et al. (2021). In brief, a process-based catchment hydrology model was used to simulate 225 

streamflow, and in turn provided input to a process-based lake model which simulated lake water level and temperature. 

Differences in site characteristics led to different models being used at different sites (Table 1). For catchment hydrology, 

the spatially distributed mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) was used at Sau, the semi-distributed 

SimplyQ model (Jackson-Blake et al., 2017) at Vansjø, and the semi-distributed Genie Rural (GR) models, implemented 

within the airGR R package (Coron et al., 2017), were used elsewhere (GR4J at Mount Bold and Burrishoole, GR6J at 230 

Wupper)or. The pLake thermodynamics and water level were simulated using GOTM (http://gotm.net) in Vansjø and 

Sau andor GLM  (Hipsey et al., 2019) in Mount Bold and Wupper reservoir were used for simulating lake 

thermodynamics and water level. 

 Timing of fish migration: At the Irish site, a statistical model was developed to predict the timing of seawards migration 

of Atlantic salmon (Salmo salar), brown trout (Salmo trutta) and European eel (Anguilla anguilla). Daily fish counts 235 

were estimated for each species using correlative models, with predictor variables stream discharge, water temperature, a 

proxy for fish preparedness for migration, moonlight exposure and, for eels, rate of change in water temperature over the 

previous 20 days. Daily stream discharge was estimated using GR4J. Daily water temperature was estimated using a four 

parameter air temperature to water temperature statistical model, where daily water temperature was linearly correlated 

with lagged air temperature. Fish preparedness for migration was estimated by first estimating the photoperiod-weighted 240 

degree days after the winter solstice (taking as input photoperiod and water temperature data), and then fitting fish count 

data to non-linear unimodal functions of photoperiod-weighted degree days. 

 Algal bloom risk: At the Norwegian site, algal bloom risk was estimated using a continuous Gaussian Bayesian Network 

(BN). Water quality observations from the previous year were used to produce probabilistic estimates for growing season 

(May-October) mean concentrations of total phosphorus (TP), chlorophyll-a (chl-a) and lake colour, and growing season 245 

maximum cyanobacteria biovolume (cyano), incorporating interrelationships between these variables. Meteorological 
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nodes were not included in the network, after cross-validation showed that they did not increase (and sometimes 

decreased) predictive performance, meaning that this impact model did not include seasonal climate data as input. 

To produce seasonal surface water forecasts, freshwater impact models were first ‘warmed up’ where necessary using 

historic meteorological forcing data, and then run for the future target season of interest using seasonal climate model output 250 

as forcing data. 

 For historic meteorological data, we used the ERA5 reanalysis data, the latest reanalysis produced produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF; Hersbach et al., 2020), which is a global dataset with 

0.25° horizontal resolution and hourly temporal resolution. For seasonal climate predictions, we used the ECMWF’s most 

recent long-range forecasting system SEAS5 (Johnson et al., 2019),, a global dataset with 1° horizontal resolution. SEAS5 255 

seasonal forecasts are available as real-time operational forecasts from 2018 (50 members), and as retrospective seasonal 

forecasts for past years (hindcasts) for the period 1993-2016 (25 members), which were used in this study. SEAS5 was bias 

corrected using ERA5 data using quantile mapping (see Mercado-Bettín et al., 2021 for details). All climate data were 

downloaded and post-processed using the climate4R bundle of packages (Iturbide et al., 2019). ERA5 is a natural choice to 

use in combination with SEAS5 as it is used to initialise SEAS5 and therefore ensures consistency between variables. Local 260 

sources of meteorological data could be used instead, and may be less biased than ERA5. However, ERA5 is available on a 

global grid and for the period of time, variables and temporal resolution required in the project, which was not the case for 

local data in a number of the case studies. A workflow using ERA5 is also more easily generalisable and transferable, which 

was one of the project’s objectives. However, in the Irish site local meteorological data was used to bias correct the ERA5 

data, and in future workflows it would be worth exploring the more recent bias-corrected ERA5 data (Cucchi et al., 2020). 265 

Alternative seasonal climate forecasting systems were used at the start of the project, before SEAS5 became available (CFS, 

SEAS4), without substantial differences in seasonal climate forecasting skill to SEAS5. 

 

Forecasts of catchment discharge and lake temperature were produced four times a year for the boreal seasons spring 

(March-May), summer (June-Aug), autumn (Sep-Nov) and winter (Dec-Feb). The fish model and BN produce one forecast 270 

per year, for the months when seaward fish migration occurs in Ireland and the 6-month (May-October) ‘growing season’ 

used in Water Framework Directive (WFD) ecological status classification in Norwegian lakes. 

2.4. What does a seasonal forecast look like? 

Seasonal climate forecasts are predictions of how the weather will evolve over the next season (typically three to six months 

ahead). Day-to-day forecasts are unreliable over such long horizons, so forecasts are instead used to say whether the next 275 

season will, on average, show broad differences to normal. Forecasts are therefore usually given as the probability of falling 

into one of three terciles: below normal, normal or above normal. The statistical fish model uses terciles to summarise 
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whether migration timing is likely to be early, normal or late relative to normal. Instead of terciles, a binary classification 

was used to summarise water quality predictions in Norway, with the probability of being in two WFD-relevant classes (e.g. 

above or below ‘Good’ ecological status). 280 

Quantification and effective communication of forecast quality is a crucial element of seasonal forecasting. Following 

literature recommendations (Taylor et al., 2015; Gill, 2008), two kinds of forecast quality information were provided 

alongside forecasts: 

1. Predictability of the future state of the environment. SEAS5 has 50 ensemble members, or 25 in hindcast mode. 

Each member is a priori equally likely and was used to produce 25 impact model forecasts. The divergence of members 285 

provides information about future predictability, with better agreement between members meaning higher predictability. 

In practice, this information is given as the probability of the tercile, i.e. the percentage of ensemble members which fall 

into each tercile. 

2. Historic skill. This describes how well the forecast performed historically when compared to observations. Forecasts 

should not be used to inform management if the system has no skill, regardless of the agreement between ensemble 290 

members. Skill was quantified for each season and tercile using the probabilistic Relative Operating Characteristic Skill 

Score (ROCSS). This is a simple and easy-to-interpret measure of skill, which is well-suited to communication with 

decision -makers. It ranges from 1 (a perfect forecast) to -1 (a perfectly bad forecast). A value of zero indicates no skill 

compared to a climatological prediction. A significance test was carried out to indicate whether forecasts were 

significantly better than climatology (α = 0.05). In Norway, only two classes were forecast by the BN and so Matthew’s 295 

correlation coefficient (MCC) was used instead of ROCSS, as it is well suited to summarizing the overall skill of binary 

classifiers. MCC ranges between 0 and 1. 

To help design forecasting tools which presented these two sources of quality information in a user-friendly way, managers 

correctly interpret these two sources of quality information, we held a workshop on visualising and communicating 

uncertainty. After providing background on the two kinds of forecast quality information, we discussed end user preferences 300 

for how the information should be presented. We took as starting point findings from the EU FP7 EUPORIAS project, which 

had a particular focus on communicating forecast quality (Taylor et al., 2016), including recommendations that: (1) forecasts 

should not be provided when there is no skill, as research has shown that end users tend to be influenced by the forecast even 

if it has no value; (2) qualitative skill and uncertainty categories and visual cues should be provided, to help users make 

sense of skill information; (3) attempts to classify skill as ‘good’ or ‘poor’ are subjective, and so thresholds should be 305 

decided on together with end users; (4) a single measure of confidence should be considered, that combines quantile 

likelihoods with a measure of historic skill, to simplify interpretation and This is important, to ensure, for example, that 

managers are mistrustful of forecasts with no historic skill, regardless of whether tercile probability is ‘High’.; (5) a tiered or 
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layered approach to presenting forecast quality information is a useful means of avoiding confusion, where different levels of 

information may be selected by different user groups. 310 

Following on from discussions at this workshop, forecast presentation varied somewhat between sites, given a range of 

preferences. At all sites, however, the tercile probabilities and historic skill scores were categorised and accompanied by 

descriptive text summaries in the seasonal forecast, to aid interpretation. Managers were involved in deciding on appropriate 

categories and wording. Tercile probabilities (i.e. agreement between ensemble embers) were split into four categories: 

‘Very low’ (<35%), ‘Low’ (35-49%), ‘Medium’ (50-64%) and ‘High’ (65-100%). For historic skill, the ROCSS text 315 

summary was ‘Skilled’ or ‘None’, according to whether ROCSS was significantly positive or not. Historic skill given by 

MCC in Norway was summarized qualitatively as ‘None’ (< 0.2), ‘Low’ (0.2-0.39), ‘Medium’ (0.4-0.59) or ‘High’ (> 0.6). 

A combined confidence score was also provided, integrating the two types of forecast quality information. This is important, 

to ensure for example that managers are mistrustful of forecasts with no historic skill, regardless of whether tercile 

probability is ‘High’. We opted to derive this e combined confidence by setting it to be the same as the tercile probability 320 

unless the historic skill was ‘None’, in which case it was also ‘None’. For water quality forecasts in Norway, if class 

probability was ‘High’ then overall confidence was the same as the historic skill; if class probability was ‘Medium’, overall 

confidence was historic skill reduced by one class. An example of a forecast can be seen for Lake Vansjø at 

https://watexr.data.niva.no/ (last accessed January 2022). 

2.5. Identifying windows of opportunity 325 

‘Windows of opportunity’ for seasonal forecasting were required for the second assessment exercise (Sect. 3.2). These were 

identified at each site using historic skill scores (Sect. 2.4). SEAS5 hindcasts were compared to ERA5, and impact model 

forecasts were compared to observations. Skill was calculated for every season in the 24 year period 1993-2016, or longer 

where possible (1981-2019 for the BN in Norway and 1993-2019 for fish migration timing in Ireland). At the Irish and 

Norwegian sites, real observations were used to assess skill. Elsewhere, forecasts were compared to ‘pseudo-observations’, 330 

model output derived by running models forced with ERA5 data. Skill calculated using pseudo-observations ignores impact 

model error and is therefore a best case estimate, although as seasonal climate skill is likely the largest source of uncertainty, 

this is still a useful first assessment of forecast performance. Statistical significance (95% confidence) of ROCSS was then 

used to identify windows of opportunity, i.e. season/variable/tercile combinations for which forecast performance was 

significantly better than expected from climatologya forecast with no discriminative skill (ROCSS = 0). Windows of 335 

opportunityResults reported in this paper summarise those already reported in Mercado-Bettín et al. (2021) for Sau and 

Mount Bold and for streamflow and lake water temperature forecasting in the Vansjø, as well as including updated results 

for Wupper using an improved model calibration, and new results for Burrishoole and for lake water quality/ecology 

forecasting in Vansjø. The windows of opportunity identified present a useful first indication of where seasonal forecasts are 

most likely tomay be reliable enough to support decision making, but should be interpreted with some caution due to the 340 
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small sample size (a short hindcast period is split into 3 terciles, i.e. 8 data points per tercile), the use of pseudo-observations 

for some sites or variables, and the somewhat subjective fact that 5% significance threshold chosen to identify robust 

forecasting windowsdoes not necessarily reflect the practical decision-making value of forecasts. 

 Results 

3.1. Usefulness of seasonal forecasts during a historic season 345 

In the first assessment exercise, stakeholders water managers were asked to choose a historic season when seasonal climate 

resulted in problems in their study site. The events chosen are summarised in Table 2, along with associated surface water 

impacts and opportunities identified for mitigating the impacts, given a reliable-enough forecast. Dry and hot seasons were 

chosen in Mount Bold and Wupper, with associated problems with low reservoir water levels, problems meeting demand and 

poor water quality. A dry season was also selected in Burrishoole, which was accompanied by a later than normal salmon 350 

run. Prolonged wet periods and associated lake flooding and poor water quality were selected in Sau and Vansjø.  
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Table 2. Seasonal events selected by water managers, associated surface water impacts and management opportunities had 
advance warning been available at the time. 

Site Climate event Surface water impacts Management opportunities 

Mt Bold 
reservoir 
(Australia) 

Boreal autumn 2006 
(Australian spring; Sep-
Nov). A dry and hot 
autumn during the 
‘Millennium Drought’ 
(1996 to mid-2010) 

High water demand. Low reservoir level 
at the beginning of the pumping season. 
Poor water quality. 

Strategic planning of water 
pumping and associated lower 
water pumping costs. 

Wupper 
reservoir 
(Germany) 

Summer 2003 heatwave Reservoir level had to be lowered 
substantially to supply drinking water 
further downstream. Associated 
eutrophication. Downstream water 
quality was also impacted. 

Store extra water in a series of 
upstream reservoirs in advance. 

Burrishoole 
catchment  
(Ireland) 

Low rainfall in spring 
2010, following a very 
cold winter 

Around 80% of salmon migrated during 
19th-22nd May, later than average. 

Being prepared for data sampling 
collection (sufficient staff, 
equipment) during key migration 
periods is very importantensures 
efficient data collection and 
minimizes the  to reduce fish 
mortality. impacts of sampling on 
fish health (e.g. reduced time in 
traps). 

Lake Vansjø  
(Norway) 

Very high rainfall in 
autumn 2000 

High water level, flooding of farm land 
and sewage stations, high nutrient 
inputs. Toxic algal blooms in summer 
2001 (and proceeding summers until 
2007). 

Lower lake level in advance. Extra 
monitoring to screen for toxic 
blooms at bathing sites. 

Sau reservoir 
(Spain) 

High precipitation in 
autumn 2019 

Large water, sediment and organic 
matter fluxes from upstream, lake 
flooding, poor reservoir water quality. 
Increased treatment costs. 

Lower the lake level in advance. 
Store good quality water in an 
upstream reservoir. 

3.1.1 Forecasts for the selected events 

Forecasts produced for the seasons of interest and presented to stakeholders water managers are summarised in Table 3 (see 355 

Sect. 2.4 for an explanation of the confidence information that accompanied the forecasts). For climate forecasts, overall 

confidence in predictions was uniformly low. Even when there was good agreement between forecast ensemble members 

and therefore high tercile probability, low historic skill and non-significant ROCSS meant that no confidence could be 

placed in forecasts. However, some positive ROCSS were present (e.g. in Australia) and, although not significant, may be 

providing added value to freshwater impact model forecasts. 360 

Freshwater impact model forecasts, meanwhile, had medium or high skill in one or more of the variables of interest at most 

sites, suggesting a lack of sensitivity to seasonal climate (discussed further in Sect. 4). 
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Table 3. Summary of forecasts for the historic events selected by stakeholderswater managers. Abbreviations: cyano: cyanobacteria, 
D: day of migration, BT: bottom water temperature, P: precipitation, Q: inflow discharge, ST: surface water temperature, T: air 365 
temperature, var: variable. 

Site 
Target 
season 

Model Var 
Observed 
tercile 

Forecast 
tercile 

Confidence 

Probabilitya Skillb 
Overall 
confidencec 

Mt Bold 
(Au) 

2006, 
southern 
spring 
(Sep-Nov) 

SEAS5 
P below below Medium (60%) None (0.27) None 

T above above Low (40%) None (0.33) None 

Impact 

Q below below High (72%) Skilful (0.48) Medium 

ST normal above Low (44%) None (−0.04) None 

BT above below/normal Low (36%) None 
(0.38/0.4) 

None 

Wupper 
(Ge) 

2003, 
summer 
(Jun-Aug) 

SEAS5 
P below above Medium (55%) None (−0.14) None 

T above above/below Low (35/35%) None (−0.61) None 

Impact 

Q below above Medium (52%) None (−0.59) None 

ST above below Low (44%) None (−0.15) None 

BT above above High (92%) Skilful (0.71) High 

Burrishoo
leBooris-
hoole (Ir) 

2010, 
spring 
(Mar-Jun) 

SEAS5 
P below below Low (48%) None (−0.23) None 

T normal below Low (44%) None (0.23) None 

Impact Salmon 
mean D 

later later High (88%) None (0.25) None 

Vansjø 
(No) 

2000, 
autumn 
(Sep-Nov) 

SEAS5 
P above normal Low (36%) None (0.25) None 

T above below Medium (56%) None (−0.26) None 

Impact Q above below Low (36%) None (−0.01) None 

2001, 
summer 
(May-Oct) 

Impact 
Chl-a ≤ Poor ≤ Poor N/A High (0.71) Medium 

Cyano ≥ Goodd ≤ Moderate Medium (64%) High (0.78) Medium 

Sau (Sp) 
2019, 
Autumn 
(Sep-Nov) 

SEAS5 
P above above Low (48%) None (0.1) None 

T normal above Medium (52%) None (0.17) None 

Impact 

Q above above Low (43%) Skilful (0.47) Medium 

ST above normal High (76%) None (0.05) None 

BT normal above High (100%) Skilful (0.54) High 

a Probability of the most likely tercile, discretized into categories Low (33-49%), Medium (50-64%) or High (65-100%). 
b Historic skill score is ROCSS (summarised qualitatively as ‘None’ for non-significant results, otherwise ‘Skilful’) or MCC 
in Norway (discretized into None (< 0.2), Low (0.2-0.39), Medium (0.4-0.59) or High (> 0.6). 
c Probability and skill were combined into a single score with four classes, None, Low, Medium or High (see Sect. 2.4). 370 
d Cyanobacterial blooms did occur near the bathing beaches, but not at the lake monitoring point. 
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3.1.2 Value of forecasts for decision making 

Stakeholders Water managers were then asked to assess whether forecasts would have been useful had they been available in 

advance and, if so, how. Questions and full responses are given in SI21 in the data repository (see Sect. 6) and are 

summarised in Table 4, where common themes which emerged across study sites have been highlighted. Managers at all 375 

sites could see the potential value of forecasts. However, even given skilful forecasts for at least some of the variables of 

interest, forecasts would only have been used qualitatively as a pointer to the best strategies, rather than directly feeding into 

operational management. Main barriers were forecast skill and uncertainty and more general issues of trust. Even where skill 

was high, stakeholders water managers said that they would need to observe the forecasts performing well themselves to 

build confidence that they were providing trustworthy additional information, showing the importance of personal 380 

experience. Managers at all but the Norwegian and Irish sites also stated that their trust in the freshwater impact model 

forecasts was low in part because of the low skill of the seasonal climate forecasts. 

Table 4. Aggregation of stakeholder water manager feedback on the usefulness of forecasts for the chosen historic seasons. 

Question Response 
AustraliaMt 

Bold 
(Au) 

GermanyWupper 
(Ge) 

IrelandBurrishoole 
(Ir) 

NorwayVansjø 
(No) 

SpainSau 
(Sp) 

Would the 
forecasts 
have been 
useful? 

Yes      

Somewhat      

No      

If so, how 
would they 
have been 
used? 

Indication of 
appropriate reservoir 
management 
strategies 

     

Inform staffing 
levels/monitoring 

     

Key 
barriers? 

Uncertainty and low 
historic skill 

     

Need to develop 
personal experience 
of ‘added value’ 

     

3.2. Windows of opportunity and assessment of their usefulness 

In the second exercise for exploring the potential for forecasts to support management, we carried out a more comprehensive 385 

assessment of whether the seasons, variables and terciles which could be forecast with reasonable confidence (the windows 

of opportunity) were considered useful for water management, as well as which windows stakeholders managers most 

wished to obtain skilful forecasts for. 
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There were few windows of opportunity in seasonal climate (see SI3 in the data repository for full results; Sect. 6Table A1). 

There were no windows in Ireland, 3 in Germany, 5 in Spain, 9 in Australia and 10 in Norway. The 5% significance level 390 

used means that some of these may be false positives (tests were carried out on up to 108 data slices per site; 4 seasons × 3 

terciles × up to 9 variables, so we would expect on average 5 false positives per site). 

A substantially larger number of impact model variables showed significant skill (Table 5). This suggests that antecedent 

conditions/inertia are responsible for much of the skill, further supported by the fact that bottom water temperature was 

better predicted than surface water temperature (15 versus 5 windows, respectively; Table 5), likely because of its lower 395 

sensitivity to seasonal climate (discussed in Sect. 4.2). 

Opinions on the usefulness of the windows of opportunity are summarised in Table 5 (full responses are given in SI34 in the 

data repository; see Sect. 6), together with the windows which stakeholders water managers were most interested in. All the 

windows of opportunity for discharge were thought to be of medium or high relevance, and almost all combinations of 

season/tercile were highlighted as being desirable for management. For surface water temperature, spring to autumn ‘above 400 

normal’ forecasts were seen to be the most useful, due to often strong links between warm summer water and problematic 

algal growth. Many of the other windows of opportunity in surface water temperature were thought to be of medium or low 

relevance. As mentioned above, bottom water temperature was the variable that was most successfully forecast, with 15 

windows of opportunity across the case study sites. However, it was also the variable that was thought to be least useful for 

management, with four of the windows being ranked as having low or no relevance. Overall, we found a mismatch between 405 

the variables that were thought to be most useful for management, and those which could best be forecast. This can be seen, 

for example, in the difference between the number of current versus desired skilful windows for the different variables 

(Table 5; discussed further in Sections 4.1 and 4.2). 

In addition, a number of stakeholders water managers commented that they would require information on more than just the 

most probable tercile, but rather the likelihood of extremes, which are particularly challenging for management. 410 

Responses from the Irish site are not shown in Table 5 as a large range of population statistics were explored. Three 

windows of opportunity were found: early median day of migration for trout, later than normal day when 5% of salmon have 

migrated, and later than normal day when 25% of eel have migrated. These were all thought to be extremely relevant for 

management. The most desired windows of opportunity were the day when 25% of the population has migrated, the mean 

day of migration and, for eel, the day when 75% of the population has migrated, although skill in the timing of all percentiles 415 

was of interest to check forecast consistency. Although all terciles were thought to be relevant, "earlier than normal" was 

considered the most useful, as acting on a wrong “early” forecast would have relatively minor consequences, whilst delaying 

action because of a “later than normal” forecast could result in fish mortality if the forecast were wrong. 
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Table 5. Windows of opportunity in surface water variables and stakeholderend user  assessment of their usefulness relevance for 
management (L: low/none, M: medium, H: high). Ticks show the windows which stakeholders managers particularly wanted skilful 420 
forecasts for. Where letters and ticks coincide, the window was both skilfully forecast, and particularly usefuldesirable for water managers. 
Irish case study responses are given in the text. 

Variable 
Boreal 
season 

Tercile or class 

Windows of opportunity & their relevance for 
management 

Total 
windows 

Desired 
windows SpainSau 

(Sp) 

Germany
Wupper 
(Ge) 

Norway
Vansjø 
(No) 

Australi
aMt 
Bold 
(Aus) 

Discharge 

winter 
above     

6 39 

normal M    
below     

spring 
above   M    
normal     
below   M   H   

summer 
above     
normal     
below M    

autumn 
above H      
normal     
below     

Surface water 
temperature 

winter 
above     

5 15 

normal     

below   L  

spring 
above   M    

normal     

below   M    

summer 
above H      

normal     

below L    

autumn 
above     

normal     

below     

Bottom water 
temperature 

winter 
above   L  

15 8 

normal     

below   L M 

spring 
above L M   M  

normal     

below  M   M  

summer 
above M M     

normal     

below L M    M 

autumn 
above L    

normal     

below L    

chl-a Growing upper or lower N/A N/A H   N/A 3 3 



20 

 

cyanobacteria season 
(May-Oct) 

H   
colour M 
total P  
 

 Discussion: opportunities and barriers for seasonal forecasting to inform water management 

4.1. Water manager views on forecast value and key barriers 425 

Water managers were generally enthusiastic about the forecasting tools developed and their potential to assist them in 

preparing for the coming season. They identified actions that could be taken, given a reliable-enough forecast, to help reduce 

the negative impacts of otherwise unforeseen events. They were well aware of the limited skill of many of the forecasted 

variables, and were generally comfortable with the idea of working with probabilistic forecasts. For most sites, the act of 

setting up the impact models was in itself a valuable process, and managers were often enthusiastic about the new system 430 

knowledge gained in doing so, and for the workflows to be more generally useful (for example for forecasting at shorter time 

scales). and for the workflows to be more generally useful (e.g. for use in shorter-term forecasting using weather forecasts). 

Despite general enthusiasm, no-one felt that forecasts could be incorporated directly into operational management straight 

away. In all cases, forecasts would only be used qualitatively in the first instance, to provide a general indication of how 

conditions might evolve, rather than to drive operational models (Sect. 3.1.2), matching the findings of Bruno Soares et al. 435 

(2018). Trust and lack of personal experience were key issues raised by most managers. The other key limitation, raised at 

all sites, was forecast quality (i.e. high forecast uncertainty and low skill; see Section 2.4). The similarity in stakeholder  

responses across the contrasting study sites suggests these manager viewpoints are likely to be more widely applicable. low 

forecast reliability, including often high Forecast uncertainty was a barrier at most sites, as there was often close to an even 

distribution of probabilities across terciles for the selected historic events (Section 3.1.1), making it difficult for managers to 440 

know whether to act based on forecasts. Whilst a reduction in forecast uncertainty (i.e. increased sharpness) could therefore 

help in increasing uptake of seasonal forecasts in operational water management, A reduction in uncertainty and higher 

historic skill are therefore still likely to be general requirements for increased uptake of seasonal forecasts in operational 

water management. Ways of achieving this are discussed further in Sect. 4.4.studies have shown that even highly uncertain 

forecasts can significantly improve reservoir management, as long as forecast uncertainty is explicitly accounted for, for 445 

example within an optimization framework (e.g. Ficchì et al., 2016). More widespread use of optimization routines in water 

management could also therefore increase the value of seasonal forecasts for management. Increasing the skill of forecasting 

systems remains however a top priority (discussed further in Section 4.4), as no matter how sharp the forecasts, they should 

not be used to inform management if the forecasting system has been proven to have no skill. 

There was general enthusiasm for many of the ‘windows of opportunity’, the variables, seasons and terciles for which the 450 

forecasting systems showed most potential. However, there was often a mismatch between what could best be predicted and 
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what was considered most useful (Table 5). Seasonal discharge forecasts were of particular interest, for example, and yet 

there were few discharge windows of opportunity. Bottom water temperature, meanwhile, could be forecast reasonably well 

at many sites, and yet had limited management relevance. 

At all sites, the sustained uptake of project outputs into the future requires operationalization and maintenance, which is 455 

often a challenge as ongoing funding is required. An additional barrier to direct uptake of the tools is that they do not include 

reservoir operations or interactions between management choices and catchment/lake conditions. However, at many sites 

there are plans for the knowledge and workflows generated to be used beyond the project duration. In Sau Reservoir in 

Spain, for example, researchers are now providing monthly reports to the end user for seasonal forecasts with a one month 

lead time, whilst in Wupper Reservoir in Germany, Wupperverband are incorporating the workflow, and forecasts derived 460 

from it using a variety of climate products, into their longer-term management plans. At the Irish site, parts of the workflow 

(published in the fishcastr R package developed during WATExR; see Sect. 6) are already being used for other ongoing 

analyses of fish migration, but additional funding is required for operationalization of the forecasting system and, ideally, 

expansion to a wider area. At Mount Bold reservoir, SA Water were encouraged by the WATExR project results, and have 

decided to invest in an internal follow-on project to establish a seasonal forecasting methodology. 465 

4.2. Sources of seasonal predictability and management implications 

As mentioned in the introduction, seasonal predictability in freshwater impact model predictions derives from knowledge of 

initial conditions and of climate over the target season. At the majority of study sites there were a number of windows of 

opportunity where freshwater variables could be forecasted with reasonable skill (Sect. 3.2). Seasonal climate forecasts 

themselves had very limited skill at these extratropical latitudes, so it seems likely that the impact model windows of 470 

opportunity were primarily due to models capturing how initial conditions and system inertia influence the target season. 

This could explain the better performance of bottom water temperature forecasts compared to surface water temperature and 

discharge forecasts, as the latter two are likely more sensitive to seasonal climate. Although further work is needed to 

confirm the sensitivity of the different variables to seasonal climate and initial conditions (and will be the topic of an 

upcoming paper), the initial indication is that those variables that are most sensitive to climate over the target season are the 475 

hardest to generate reliable seasonal forecasts for (due to low seasonal climate model skill in our study areas), and yet in this 

case were are also the variables which are were most useful for management, given the importance of streamflow for 

reservoir operations, and of surface water temperature in controlling algal blooms. 

The low skill of the seasonal climate forecasts is typical of skill over much of Europe, parts of North America, Russia, 

northern China and other mid-latitude areas (Johnson et al., 2019; Maclachlan et al., 2015). Seasonal forecasting to support 480 

water management in these areas with low climate model skill will therefore be largely reliant on initial conditions as the 

main source of seasonal predictability. High quality forecasts, which can be used to inform management, are then most likely 

in catchments/lakes where initial conditions exert a larger influence. This is the case in larger systems and for variables or 
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ecological species which are less sensitive to seasonal climate. For streamflow forecasts, for example, initial conditions 

provide much of the forecasting skill and predictability is highest in slower-responding catchments with larger water storage 485 

and groundwater contributions (Pechlivanidis et al., 2020; Girons Lopez et al., 2021; Donegan et al., 2020; Harrigan et al., 

2018). Many successful streamflow forecasting systems do not include seasonal climate model forecasts, showing that a 

great deal can be achieved using only historic information, in some cases/seasons outperforming predictions which use 

seasonal climate model forecasts (e.g. Peñuela et al., 2020; Arnal et al., 2018). In lakes and reservoirs, the storage buffering 

effect has also been shown to reduce the importance of streamflow forecast skill, particularly when the reservoir capacity is 490 

large compared to variability in inflow (Maurer and Lettenmaier, 2004; Turner et al., 2017). Studies looking at sources of 

predictability for seasonal water quality and ecology appear are to be currently lacking, but similar concepts will likely hold. 

4.3. Do seasonal climate forecasts provide added value at extratropical latitudes? 

Where seasonal climate forecasts are skilful, they undoubtedly have potential to provide added value to surface water impact 

model forecasts. All water managers in this study were very enthusiastic about the potential benefit of skilful climate 495 

forecasts for improving their operations and were particularly interested in variables which are more likely to be sensitive to 

seasonal climate (e.g. discharge and surface water temperature). Several studies have shown that skilful seasonal climate 

forecasts can lead to sometimes large improvements in streamflow forecasting ability (e.g. Shukla and Lettenmaier, 2011), 

which may, for example, have economic value for reservoir operations (Maurer and Lettenmaier, 2004; Turner et al., 2017). 

However, in our study catchments, seasonal climate models did not produce skilful forecasts for the selected historic events 500 

(Sect. 3.1), and there were few windows of opportunity for seasonal climate (Sect. 3.2). In areas where seasonal climate 

model skill is low, the extra resources required to work with seasonal climate data may not be worth potentially marginal 

performance gains, particularly as poor seasonal climate forecasting skill may reduce trust in any skilful impact model 

forecasts that use seasonal climate as input (Sect. 3.1.2). Particularly in larger catchments and lakes, which are less sensitive 

to seasonal climate, it is likely that attention would be better spent on developing simpler benchmark systems. Methods 505 

inspired by Ensemble Streamflow Prediction (ESP; Day, 1985) are likely candidates, potentially made more nuanced by, for 

example, using North Atlantic Oscillation (NAO) index or other climate signals to condition the forecast (e.g. Donegan et 

al., 2020; Najafi et al., 2012; Sabzipour et al., 2020), or longer-term climate projections (Gronewold et al., 2017). 

In systems that are particularly sensitive to meteorological forcing at seasonal timescales (e.g. small catchments and 

lakes/reservoirs with short residence times), and where the benefits of any windows of opportunity are large (e.g. a large 510 

potential cost saving or particularly sensitive drinking water source/habitat), then the potential benefits of incorporating 

seasonal climate data are greater. In this case, it may be worth incorporating seasonal climate data into the forecasting 

workflow, as long as there are some windows of opportunity at lead times of interest for management. 
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4.4. Future priorities for more skilful seasonal predictions 

A key barrier to the use of seasonal forecasts in operational management is forecast performance, in particular poor historic 515 

skill (Sect. 4.1). To help improve performance, we see the need for progress to be made on two fronts: 

(1) Improvements in seasonal climate model skill. Seasonal climate models are under active development, and recent 

advances in the prediction of climate teleconnections, such as the NAO in Europe (Wang et al., 2017; Scaife et al., 2014; 

Svensson et al., 2015), may lead to improvements in coming years.  

(2) Improvements in impact model performance. Improvements in impact models themselves may also be required, as in 520 

some cases errors derived from impact models may be the dominant source of uncertainty (e.g. Cho et al., 2016). However, 

probably the greatest potential here is through improved/increased data collection. Although not considered in detail here, 

the importance of this cannot be understated. For example, observed data is fundamental to developing and calibrating 

trustworthy impact models, correctly initialising impact models and evaluating the historic skill of forecasting systems, 

which is a key element for building trust in predictions. 525 

 

 Conclusions 

In this study, we have explored whether pilot seasonal forecasting tools developed at five case study sites could usefully 

support practical water management. Tools integrated seasonal climate model forecasts and freshwater impact models to 

produce forecasts of streamflow, lake water level, lake water temperature and, at some sites, lake water quality/ecology and 530 

fish migration timing. Co-development was a key part of the process, i.e. researchers and end users worked closely to design 

tools that were relevant and tailored to the individual needs at each of the study sites. This meant that the user-community 

was able to make well-informed assessments of forecast skill and qualitative value for decision-making. Key outcomes 

include: 

 At the majority of case study sites there were windows of opportunity where surface water forecasts could be produced 535 

with enough skill to be potentially useful for management. 

 End users were enthusiastic about the potential for improved decision making and identified actions that could be taken 

based on forecasts. However, even skilful forecasts would only be used qualitatively in the first instance, until trust had 

been built up through practical hands-on experience. 

 Reduced uncertainty and higher historic skill were identified as key requirements for the operational use of forecasts, as 540 

was an ability to forecast more extreme seasonal events than just terciles (below normal, normal or above normal). 

Improved procedures within operational water management that take into account uncertain forecasts (e.g. optimization) 

would also likely result in an increase in forecast management value. 
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 Where seasonal climate forecasts are skilful, they undoubtedly have potential to provide added value to freshwater 

model forecasts and assist management, in particular in smaller systems which are more responsive to climate. 545 

 Outside the tropics, seasonal climate forecast skill is limited. Despite this, forecasting within the water sector can still be 

usefully carried out, but relies on seasonal predictability derived from antecedent/initial conditions and system inertia. 

The best chance of developing useful seasonal forecasting tools is then in slower-responding systems (e.g. larger 

catchments and lakes), which are less sensitive to climate over the target season. In this case, time is probably best spent 

on developing tools which use re-sampled historical meteorological data rather than seasonal climate model output to 550 

force impact models. 

 Seasonal climate model forecasts with only patchy skill are most likely to be worth incorporating into freshwater 

seasonal forecasting workflows when: (1) the system is particularly sensitive to seasonal climate (e.g. small catchments 

and lakes), and (2) the potential benefits of any windows of opportunity are large. 

 Supplementary information, supporting data, tools and code 555 

Supplementary data (SI1-3) are available at https://doi.org/10.5281/zenodo.5906258 (Jackson-Blake, 2022). Seasonal 

forecasting tools and/or underlying code are available for several of the study sites in the WATExR GitHub repository 

(website: https://nivanorge.github.io/seasonal_forecasting_watexr/; repository: 

https://github.com/NIVANorge/seasonal_forecasting_watexr; last accessed Jan 2022). The fishcastr R package, for seasonal 

forecasting of timing of diadromous fish migration, is publicly available (French, 2021). Supplementary information is in the 560 

folder ‘paper3_JacksonBlake_etal’. An archived (citable) version of the repository will be available through Zenodo 

after paper review, and citations added to the paper. 

Appendix 

Box A1. Questions posed to water managers to assess the usefulness of the windows of opportunity. 

Part I: Survey of whether each window of opportunity is useful: 

1. The model has skill in forecasting xij. How relevant is this for you for management? (Where xij = the window of 
opportunity x for season/tercile j and variable i; question repeated for each j) 

Answer: Multiple choice, options: extremely relevant, somewhat relevant, not relevant 

2. If any of the windows of opportunity for this variable are relevant to management, please comment on how they 
might be useful. 

Answer: free text 

Questions 1 and 2 were repeated for each variable, if windows of opportunity were present 
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Part II: Profiling of which variables, seasons and terciles skilful predictions are most desirable for: 
 
1. For variable x, which season(s) and tercile(s) would be most useful for you to have skilful seasonal forecasts for to 

support management (if any)? (Where x = simulated variable) 

Answer: checkbox grid, with one row per season and one column per tercile 

2. Please describe any variables that weren’t included and which are of interest to you, and for which season(s) you 
would want predictions. 

Answer: free text 
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Table A1. Climate variables, seasons and terciles for which SEAS5 had significant skill, as assessed by comparison to ERA5 over 
the period 1993-2016. 

Site 
Number of skilful /total 

combinationsa 
Skilful climate variable/season/tercile combinations 

Boreal season Variableb Tercile 

Mount 
Bold, 
Australia 

9/108 

Spring (Mar-May) rlds above 
Autumn (Sep-Nov) cc above 

petH above 
psl above 
rsds above 
tas normal 

Winter (Dec-Feb) psl above 
tdps above 

Summer (June-Aug) cc normal 

Wupper, 
Germany 

3/96 
Spring (Mar-May) tdps above 
Winter (Dec-Feb) rlds normal 

vas below 
Burrishoole, 
Ireland  

0/18 
None 

Vansjø, 
Norway 

10/96 

Spring (Mar-May) psl normal 
psl above 
tas above 
tcc normal 
tdps below 
uas above 
vas below 

Winter (Dec-Feb) rlds normal 
rsds above 
tcc below 

2/108 Early summer (May-Jul) rsds above 

Sau, Spain 5/108 

Autumn (Sep-Nov) cc above 
Spring (Mar-May) cc above 

psl above 
Summer (Jun-Aug) cc above 

tdps above 
a ROCSS were calculated for z total data ‘slices’, where z = x met variables * y seasons * 3 terciles. 
b Meteorological variable abbreviations: psl: surface pressure, tcc: total cloud cover, uas: 10 m u wind component, vas: 10 m v wind 
component, tas: 2 m temperature, tdps: 2 m dewpoint temperature, rsds: downwards surface solar radiation, rlds: downwards surface 570 
thermal radiation, tp: total precipitation. 

Author contribution 

AF, DMB, FC, MDF, MS, LJB, RM and TM developed and applied the modelling workflows, with input from all co-

authors; LP facilitated the first stakeholder assessment exercise; LJB and FC conducted the second assessment exercise; LJB 

prepared the manuscript with contributions from all co-authors. 575 
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