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Abstract. By rigorously accounting for dimensional homogeneity in physical laws, the Pi theorem and the related self-

similarity hypotheses allow us to achieve a dimensionless reformulation of scientific hypotheses in a lower dimensional context.

This paper presents applications of these concepts to the partitioning of water and soil on terrestrial landscapes, for which the

process complexity and lack of first principle formulation make dimensional analysis an excellent tool to formulate theories

that are amenable to empirical testing and analytical developments. The resulting scaling laws help reveal the dominant envi-5

ronmental controls for these partitionings. In particular, we discuss how the dryness index and the storage index affect the long

term rainfall partitioning, the key nonlinear control of the dryness index in global datasets of weathering rates, and the existence

of new macroscopic relations among average variables in landscape evolution statistics. The scaling laws for the partitioning

of sediments, the elevation profile, and the spectral scaling of self-similar topographies also unveil tantalizing analogies with

turbulent fluctuations.10

1 Introduction

Galileo is credited as the first scientist to have used dimensional analysis and scaling. In his 1638 ’Dialogues Concerning Two

New Sciences’ (Galilei, 1914), he deduced that geometrically similar objects are not equally strong under the their own weight:

"A small dog could probably carry on his back two or three dogs of his own size; but I believe that a horse could not carry15

even one of his own size". Since this discovery of scaling laws for complex biological materials, dimensional analysis has

continued to fascinate many scientists, from Fourier to Maxwell, Reynolds, Rayleigh, Kolmogorov and Taylor, and contributed

to numerous new results in several fields (e.g., Barenblatt, 1996; Szirtes, 2007; Bolster et al., 2011; Katul et al., 2019). These

methods have been extremely useful in complex problems lacking closed form solutions due to nonlinear interactions and

multi-physics as well as in design of experiments and numerical simulations and the rational interpretation of their results.20

Looking at some of the most striking applications of the Pi theorem and self-similarity (e.g., the famous example of the

atomic bomb of Taylor (Barenblatt, 1996) and the Kolmogorov spectrum of turbulence (Katul et al., 2019)), it is easy to be lured

by the promise of a mathematical structure offering a powerful dimension reduction in the space of variables and parameters,

even for vaguely formulated problems. In spite of the straightforward steps for its application, a brute force approach to
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dimensional analysis rarely leads to useful results. These failures are probably at the origin of some of the backlash in the25

literature, hailing these methods as nothing more than fancy tricks, capable only of recasting already-known solutions. What

is true is that applications of dimensional analysis cannot be done automatically, but require careful consideration of the

problem at hand. The results, which follow from the initial hypotheses, have to be scrutinized using the the available data

or simulations. In other words, when performing dimensional analysis one cannot avoid the necessary iterative process of

hypothesis formulation and subsequent verification, which forms the basis of any mathematical modeling (Logan, 2013). Its30

results, like a good dish, depend on its ingredients as much as on its recipe.

The presence of emerging scaling laws in geophysics has been widely recognized for a long time and the related power laws

have been observed in rainfall and streamflow statistics, in landscape and river-network geometry, as well as in the aggregation

properties of soils and aquifers (among many others see, e.g., Rodríguez-Iturbe and Rinaldo (2001), Gagnon et al. (2006),

Sposito (2008), and references therein). Notwithstanding these numerous examples, the presence of only a few applications35

of the Pi theorem in geophysics appears to be at odds with the early conclusion of Strahler that "dimensional analysis will

become increasingly useful in empirical, quantitative studies in geomorphology by offering a systematic means of describing

and comparing the form elements of the landscape" Strahler (1958).

In this paper, we revisit a series of fundamental problems in ecohydrology and scrutinize them under the common lens of

dimensional analysis with the goal of sharpening our intuition of the underlying physical processes. After a brief review of the40

concepts of dimensional analysis and scaling in Section 2, in Section 3 we consider three different instances of the partitioning

of water and soils in natural landscapes. Because of their complexity, availability of global data, and the lack of governing

equations from first principles, these phenomena provide a particularly fertile test-bed for dimensional techniques.

2 From Group Theory to Street-Fighting Hydrology

Dimensional analysis is a chapter of the more general group theory (Gilmore, 2012), based on the elegant formalism of gener-45

alized homogeneous functions (Barenblatt, 1996) and their underlying linear algebra (Logan, 2013). It formalizes the principle

of dimensional homogeneity, which expresses the fact that physical equations should be valid independently of the system of

units chosen. Taking this principle to its rigorous consequences allows us to exploit the dimensional symmetries of the problem

in a way that may lead to useful results.

On the theoretical front, the Pi theorem provides a systematic recipe to find self-similar solutions of partial differential50

equations (PDEs); these underlie the local Lie groups under which the PDEs are invariant (Barenblatt, 1996; Bluman and

Cole, 2012). On the more practical side, in data analysis and design of experiments (Barenblatt, 1996; Szirtes, 2007; Shen

et al., 2014), dimensional analysis helps make the so-called ’Fermi reasoning’ (i.e., privileging good reasoning to accuracy

to achieve fair estimates) more methodical (Bhaskar and Nigam, 1990; Persico, 2004; Efthimiou and Llewellyn, 2007). By

offering a rigorous way to organize physical hypotheses about a problem, perform dimension reduction in terms of fundamental55

governing groups, and verify and refine the hypotheses with available information, dimensional analysis is an asset for ’street-

fighting’ mathematical guessing (Mahajan, 2010).
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2.1 Scaling and power laws

The word scaling, in the sense used here, refers to the existence of a property that allows going from one scale to another

(upscaling or downscaling) using the same mathematical law and, therefore, it is related to the absence of a preferred scale or60

unit of measure. From a mathematical viewpoint, this property is linked to the fact that the solutions of dimensional physical

problems are generalized homogeneous functions (Hankey and Stanley, 1972; Widom, 2009) and that dimension functions are

power-law monomials (Barenblatt, 1996).

The defining property of a homogeneous function of degree n,

f(λx) = λnf(x), (1)65

makes it evident that, apart from a scale coefficient, λn, the same function is used to go from one scale (x) to another scale

(λx). The linkage to power laws becomes evident when setting λ= 1/x, which transforms the previous equation in

f(x) = xnf(1) = axn, (2)

where a= f(1) is a constant. Power-law functions, f(x) = axn, satisfy Eq. (1).

As we will see, scaling laws appear naturally in the application of the Pi theorem and arenot limited to space and time70

variables, but can involve any dimensional quantity. Scaling is often connected to fractal properties of the underlying processes

and also appear in the related fields of critical phenomena and anomalous scaling (Hankey and Stanley, 1972; Sornette, 2006),

renormalization group theory (Goldenfeld, 2018), and complete and incomplete self-similarity (Barenblatt, 1996). Sornette

(2006) has several examples of power laws ensuing from different mechanisms.

2.2 The powerful dimension reduction of the Pi theorem75

The starting point of a dimensional analysis is the formulation of a ’physical law’,

a= f(a1, ...,an), (3)

which relates a quantity of interest, a, the so-called governed quantity, to n other governing quantities, a1, ...,an. Eq. (3)

embeds formally our scientific hypothesis about the physical problem and serves as a mathematical placeholder to collect the

initial ingredients, on which the recipe of the Pi theorem then operates.80

With (3) established, the next step is to take stock of the dimension (i.e., the factor by which a physical quantity changes

upon passage from the original system of units to another) of the quantities present in the physical law (3). According to

Maxwell’s convention, the dimension of a variable q is indicated as [q]. For example, the dimension of the velocity v is

[v] = LT−1 (as well known, in mechanics the dimensions of length mass and time – LMT – are used as a class of system of

units). As a result of dimensional homogeneity, dimension functions are always power-law monomials (Barenblatt, 1996); thus,85

in mechanics a generic variable q has dimension function [q] = LαMβTγ . The latter is a specific instance of the Bridgman’s

equation (Bridgman, 1922; Panton, 2006), in which LMT are the chosen principal dimensions. It follows that the dimension
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of the argument of transcendental functions is unity (i.e., they are dimensionless quantities), so that their numerical value is

identical in all systems of units.

The number k of fundamental quantities in the physical law (3) plays a key role in the Pi theorem. Such fundamental quan-90

tities, also called repeating variables, must be dimensionally independent (Barenblatt, 1996), that is none of their dimensions

can be represented in terms of a product of powers of the dimensions of the remaining k−1 quantities (in turn, this is true only

if the determinant formed with the exponents of the dimension functions is different from zero). Often k is equal to the fewest

independent dimensions required to specify the dimensions of all quantities involved in (3), but in a few cases the number of

primary dimensions differs when variables are expressed in terms of different systems of dimensions (e.g., MLT, FLT, or any95

other combination). In any case the value of k is given by the rank of the dimensional matrix, formed by listing all the expo-

nents of the primary dimensions of each variable in (3); see e.g., Panton (2006); Logan (2013). Once it has been ascertained

that the problem admits k dimensionally independent quantities among the governing quantities, the k repeating variables may

be chosen and the physical law (3) may be formally re-arranged as

a= f(a1, ...,ak;ak+1, ...,an), (4)100

where conventionally the semicolon separates the repeating variables from the other ones.

Enforcing dimensional homogeneity on Eq. (4) leads to the main outcome of the Pi theorem (Barenblatt, 1996), namely that

the physical law, if true, can be written in the form

Π = ϕ(Πk+1, ...,Πn), (5)

in terms of the dimensionless Pi groups105

Π =
a

aα1
1 ,aα2

2 , ...,aαk

k

Πk+1 =
ak+1

a
α1,k+1
1 ,a

α2,k+1
2 , ...,a

αk,k+1
k

(6)

...

110

Πn =
an

a
αk,n−k

1 ,a
αk,n−k

2 , ...,a
αk,n−k

k

.

A comparison of Eqs. (3) and (5) clearly shows the great achievement of the Pi theorem in re-expressing a general mathemat-

ical relationship between a quantity of interest and n dimensional quantities as a new relationship between n−k dimensionless

quantities in a more manageable, lower dimensional space. The most striking applications in the literature are in fact linked

to a drastic dimension reduction (in the famous problems of the pendulum and the atomic bomb (Barenblatt, 1996), n= 2115

and k = 2 and n= 3 and k = 3, respectively so that n− k = 0 and one is left with a dimensionless function which is a con-

stant!). In nonlinear PDEs this may allow transforming them into ordinary differential equations (ODEs), with much greater

chances of finding a solution, either analytically or numerically. While this happens more frequently in one spatial dimension
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(e.g., Barenblatt, 1996; Daly and Porporato, 2004b; Eggers and Fontelos, 2008), it is also possible in more than one spatial

dimension (Hills and Moffatt, 2000; Xue and Stone, 2020).120

Depending on the governing variables involved in the physical law, there may be freedom in choosing the k governing

repeating variables. Each admissible choice leads to dimensionless groups that are related to the ones obtained from a different

admissible set. As we will see, while in general the different ensuing representations are equivalent, some combination may be

more revealing of the underlying dynamics and afford a more parsimonious representation. In PDEs, this freedom may lead

to different phase-space representations, some of which could be more amenable to analysis (Gratton and Minotti, 1990; Daly125

and Porporato, 2004b).

In summary, starting from a physically meaningful law (1), the Pi theorem not only provides a mathematically more specific

and elegant expression for it, but also helps reveal the actual physical controls of the problem, which emerge through it in the

form of the Pi numbers obtained: these, and not the single variables listed in the original law, are the actual quantities governing

the physical phenomenon (for example, the Reynolds, Mach, and Froude numbers and the many other ones, including those130

that we will see later in this article).

2.2.1 Self-similarity

When one or more of the Π groups attain very large or very small values, the function ϕ in (5) may reach an asymptotic form

related to a self-similar regime. In the simplest form of self-similarity, called complete or of the first kind (see Barenblatt, 1996),

the function ϕ reaches a constant plateau for either very small or very large values of the governing groups. As a result, the135

physical problem does not change even if the values of these groups change and the ’self-similar group’ can then be eliminated

from Eq. (5), allowing for further dimension reduction. In more complicated cases the self-similarity is of the second type, or

incomplete, because the function ϕ still depends on the self-similar Pi group according to a power law with an exponent, which

is not directly related to any of the dimension functions of the governing quantities.

Thus, assuming for example self-similarity with respect to the group Πk+1, Eq. (5) becomes140

Π = lim
Πk+1→ 0 or ∞

ϕ(Πk+1,Πk+2, ...,Πn) = Πβ
1ψ(Πk+2, ...,Πn), (7)

where β = 0 in the case of complete self-similarity. Thus complete self-similarity allows us to further reduce the dimensionality

of the problem by as many dimensions as there are self-similar groups. This type of similarity is frequently encountered in near-

wall turbulence, where the global Reynolds number and the dimensionless distance from the wall appear as self-similar groups.

As we will see later on, complete self-similarity is also present in landscape channelization, when fluvial erosion dominates145

over soil creep.

Incomplete self-similarity seems to be more rare and is often difficult to distinguish from the case of complete self similarity,

especially for experimental or numerical problems where there are transitions to different regimes (Spagnoli, 2005), or in

which the available data are not sufficiently precise (Barenblatt et al., 1997; Smits et al., 2011; Yin et al., 2019). In self-similar

solutions of PDEs, incomplete self-similarity typically results from a nonlinear eigenvalue problem and leads to power laws that150

control the temporal or spatial behavior of the problem with exponents that are irrational numbers that are not directly related
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to the dimension functions of any of the variables or initial and boundary conditions (e.g., Gratton and Minotti, 1990; Aronson

and Graveleau, 1993; Barenblatt, 1996; Burton and Taborek, 2007; Zheng et al., 2014). It is also worth noting that, starting

from different physical laws with or without a certain variable, one sometimes arrives at different final forms of self-similar

behavior. As we will see in the example of weathering in Sec. 3.2, it appears that such cases are actually related to problems155

of complete self-similarity, because the alternative formulation as an incomplete self-similarity problem is characterized by

integer exponents, which allow simplifications among variables, which in turn lead to the complete self similarity obtained

with the other choice of variables.

2.3 Augmented and directional dimensional analysis

It is not infrequent in the literature to come across a point of view, made explicit by Bridgman (1922), that ‘there is nothing160

sacrosanct’ about the choice of primary dimensions and that ‘dimensional analysis is merely a man-made tool that may be

manipulated at will’. This is indeed in line with modern physics, which links length, time, mass, and energy to the different

descriptions of reality depending on the scale of observation. Once a free choice of the primary units is accepted, then the

question remains of what choice will be of maximum utility (Moon and Spencer, 1949).

Compared to the aforementioned (Section 2.2) freedom of choosing repeating variables or classes of system of units (e.g.,165

the length, force, and time, LFT, instead of the length, mass, and time, LMT), the augmented dimensional analysis refers to a

more drastic freedom of ‘inventing’ the type and number of primary dimensions. It is related to the original observation of that

‘dimensions of quantities do not always afford a test of their identity’ (Lodge, 1888). Since this ultimately affects the number

of dimensionless groups and the extent of dimension reduction, the practical implications may be significant.

As the reader may imagine, this line of reasoning has attracted both stern skepticism and enthusiastic support, leading to170

interesting debates and controversies, with defenders of rigor and objectivity on one side and advocates of a flexible approach

on the other. In the writer’s experience, the subject is always a source of interesting discussion, if not else because, when one

writes in favor of it, the editors somehow always manage to select a reviewer who belongs to the skeptical camp.

The most emblematic case of controversy is perhaps the well known Rayleigh-Riabouchinsky controversy (e.g., Gibbings,

1982; Butterfield, 2001). Dealing with a problem of heat transfer between a body and a fluid stream, Rayleigh (1915a) solved175

it within the domain of thermodynamics, i.e., including temperature as primary dimension, and obtaining one governing di-

mensionless group. Riabouchinsky (1915) objected that adopting the more advanced point of view of statistical mechanics,

according to which temperature is the mean molecular kinetic energy, one could more parsimoniously limit the primary dimen-

sions to length, time, and energy, without involving temperature. As a result, he obtained two dimensionless groups, reaching

the paradoxical conclusion that an apparently more detailed knowledge of the problem yields a less informative result.180

The resolution of this controversy (see Appendix A for more details), shows that it is not a matter of the arbitrariness of

which dimensions are considered, but of the level of description intended for a problem. Whether to include the specifics of the

molecular motion depends on the size of the considered object. If one, following Rayleigh, accepts a thermodynamic approach,

then the details of the disorderly molecular energy are irrelevant and temperature can be treated as an independent quantity

compared to the kinetic energy of the mean motion. Formally, choosing a greater number of fundamental units (i.e., the number185
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of primary dimensions) is made possible by the addition of corresponding dimensional unifiers (Panton, 2006). The confusion

often arises in those cases where the structure of the equation is such that the dimensional unifier can be tacitly eliminated or

taken for granted.

Of similar nature, and perhaps even more subtle and controversial, is directional dimensional analysis, which is based on the

fact that in some cases distinguishing between vertical and horizontal dimensions provides more informative results (i.e., fewer190

dimensionless groups). Williams (1890) argued that ‘owing to the dimensions of space, the unit of length is involved in different

ways, according to the different relative directions in which it may be taken.’ While for some authors it remains controversial

(see, e.g., Barr, 1984; Gibbings, 1980; Kader and Yaglom, 1990, and references therein), others have worked to link these

extensions of dimensional analysis more solidly to group theory (Moran and Marshek, 1972). Directional dimensional analysis

works, provided that the ratio of the length dimensions does not play a role in the physics of the problem (e.g., in the original195

equations); this happens, for example, in cases that assume incompressibility where one of the lengths may be simply related to

mass flow, because the mass dimension has been canceled out of the equations. As we will see, the variable z in the landscape

evolution model, analyzed in Sec. 3.3, falls within this category.

Directional dimensional analysis and its generalizations have been used successfully in a variety of problems, including

applications in mechanics and atmospheric sciences (e.g., Huntley, 1967; Moran and Marshek, 1972; Kader and Yaglom,200

1990; Siano, 1985; Daly and Porporato, 2004a, b; Dimitrakopoulos and DeJong, 2012; Bonetti et al., 2020; Hooshyar et al.,

2020; Sun, 2020; Hooshyar et al., 2021). Notwithstanding we do not have rigorous criteria to assess whether and when the

’tricks’ of augmented dimensional analysis can be applied, there are certainly several cases in which extending the set of

primary dimensions is useful. Even in case of failure, the negative results can always be used to sharpen our physical laws and

improve our starting point for dimensional analysis.205

3 Water and soil mineral partitioning in the critical zone

Some of the most important questions of terrestrial geophysics are related to the partitioning of water and soil minerals at

the land surface. Figure 1 shows the three cases that we will analyze in this section: the partitioning of rainfall into evapo-

transpiration and percolation plus runoff, the soil partitioning of minerals either lost by chemical dissolution (weathering) or

transported away, and the related geomorphologic partitioning of soil over the landscape due to soil creep and fluvial erosion.210

Since their complexity prevents us from writing the governing equations and boundary conditions in detail, these problems

are excellent candidates for dimensional analysis, applied in combination with available data and numerical simulations of

simplified models. For simplicity, we focus on the dominant components of such partitionings and consider only long-term

averages, assuming stationary conditions.

The scaling laws obtained from dimensional analysis shed light on the dominant soil, vegetation and climate controls for215

these hydrologic partitionings. Specifically, in the first application it will be seen how the dimensionless dryness and storage

indices determine the long term rainfall partitioning. The second application will reveal the key nonlinear control of the dry-
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Percolation & Runoff (LQ)

Evapotranspiration (ET)

Rainfall (R)

R=ET+LQ

Weathering (W)

Erosion & Creep (E)

Denudation (D)
D=W+E

Stream Loss (SL)

Creep (CR)

Uplift (U)

U=SL+CR

Figure 1. The three partitionings analyzed in this paper using dimensional analysis: the rainfall partitioning taking place at the land surface,

the soil mineral partitioning by chemical dissolution (weathering) and transport processes, and the related partitioning of soil sediments

responsible for landscape evolution and the formation of drainage networks.

ness index on weathering rates, while the third application will analyze new macroscopic relations among average variables

landscape evolution, uncovering an intriguing analogy between self-similar topographies and turbulent flow fields.

3.1 Rainfall partitioning220

The rainfall reaching the soil surface is either lost by runoff or infiltrates into the soil, where in turn is either lost by evapotran-

spiration or percolation. The fate of this partitioning is essentially controlled by the properties of the soil-plant system, which

– in a sense – acts as a geophysical valve, not only for the entire hydrologic cycle, but also for the energy and carbon cycles.

This fundamental hydrological problem presents robust behaviors for its macroscopic (i.e., averaged) patterns, as well as rich

and complex controls at the detail level, where the role of temporal fluctuations and spatial heterogeneities becomes important.225

We will indicate the mean rainfall rate as R and consider together the main losses: the evapotranspiration rate (ET) and the

mean rate of percolation plus runoff (LQ); see Figure 1. Assuming stationarity over long time scales and referring to a given

area, the input balances the outputs,

R= ET + LQ. (8)

It should be clear that, depending on the area chosen and whether the latter is homogeneous in term of land cover, soil properties,230

and topography, the actual meaning of the term LQ in Eq. (8) may be very different. In particular, if the control volume for

our water balance is the rooting zone of a small homogeneous plot of vegetated soil, then LQ will be the average of a very

intermittent term given by the sum of surface runoff and percolation to soil layers below the rooting zone, while if we consider
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an entire river basin, it will be mostly the average of the streamflow draining the area. How these processes scale with the land

area is an interesting open question, which is outside of our scope (see Fig. 4 by Yin et al. (2019) for an analysis of this effect).235

We specifically focus on ET, as many have done before, but here we adopt the special lens offered by the Pi theorem to explore

the implications of different hypotheses in the physical laws used as starting points.

3.1.1 Turc and Budyko spaces: dryness and humidity as main controls of rainfall partitioning

While they did not use dimensional analysis, Turc and Budyko started their work by making what is perhaps the simplest

hypothesis of a physical law for the rainfall partitioning (see Dooge, 1992; Daly et al., 2019, and references therein),240

ET = fTB(R,ETmax), (9)

where ETmax is a reference (e.g., potential or maximum) evapotranspiration. The rank of the dimension matrix

ET R ETmax

L 1 1 1

T −1 −1 −1

(10)

is 1, which leads to a total of two dimensionless groups, one governed and one governing. The same result is obtained adopting

a system with the only dimension of flux, say Φ, for which the dimension matrix245

ET R ETmax

Φ 1 1 1
(11)

also has rank 1.

If one chooses R as repeating variable, then applying the Pi theorem gives the so-called Budyko’s hypothesis

ΠB = ϕB(DI), (12)

where250

ΠB =
ET
R

and DI =
ETmax

R
(13)

is Budyko’s dryness (or aridity) index. If instead one chooses ETmax, then the Turc’s hypothesis follows (Daly et al., 2019)

ΠT = ϕT(HI), (14)

where

ΠT =
ET

ETmax
and HI =

R

ETmax
=

1
DI

. (15)255

is the humidity index. Which representation to use is mostly a matter of convenience, since they are related by ΠT = ΠB/DI

and ϕT = ϕB/DI . However, Budyko’s hypothesis may be more suitable to emphasize the dry end of the hydrologic spectrum,

while Turc’s privileges the humid end.
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Tropical Dry

Monsoon
Mediterranean

ET
/R

ET
/R

MOPEX data

storage 
index

Figure 2. Rainfall partitioning. a) Test of Budyko’s hypothesis using the MOPEX data (Porporato and Yin, 2022). The solid line shows the

original semi-empirical curve used by Budyko, ΠB = (DI tanhD−1
I (1− e−DI ))1/2. b) Different solutions of the mean partitioning of the

minimalist soil moisture balance model of Porporato et al. (2004), showing the role of the storage index, γ = w0/α, and seasonality (Feng

et al., 2012). The red dotted line is the original curve of Budyko.

The Budyko’s hypothesis is tested in Figure 2 using the MOPEX data for several river basins in the continental USA, and

plotted along with the original Budyko’s interpolating curve. Clearly, as shown many times before, the main controls on the260

rainfall partitioning are captured by the dryness index.

3.1.2 Storage index: the role of the hydrologic active depth and the variability timescale

While the dryness index captures the main variability of the data, the scatter in Figure 2 also suggest additional controls, which

prompt us to revisit the physical law (9) by considering additional governing quantities. There are several quantities that capture

the different properties of the hydrologic system and its climatic forcing, such as storage capacity, areal extension, vegetation265

type, seasonality, etc.. Among these candidates, the storage depth (the storage volume divided by the area) is probably the first

one to consider, as it appears when considering the dramatic effects on the rainfall partitioning when paving a vegetated field.

To account for this effect, we may add a quantity w0 with dimensions of length (L), that is a volume divided by an area. This

leads to a physical law of the type

ET = fET(R,ETmax,w0). (16)270

However, when trying to apply the Pi theorem, it becomes immediately apparent that, if w0 is chosen as a repeating variable,

it actually drops from the dimensionless formulation, similarly to the way the mass disappears from the list of variables when

applying the Pi theorem to the pendulum (Barenblatt, 1996). Physically, this tells us that to see a difference in the partitioning

among the hydrologic balance of a parking lot, a crusted soil, and a deep vegetated soil, the role of the soil depth must be

associated to other variables, which include a time scale to account for the variability of the hydrologic balance, for otherwise275

all the other influences are already contained in the dryness index!
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Thus, to achieve a further refinement in the Pi-theorem formulation, in combination with the storage depth w0 Porporato

et al. (2004) introduced a timescale related to the mean time between rainfall events, or –better– its inverse, the frequency of

rainfall events, say λ. Since the frequency of rainfall times the mean rainfall depth per event α is equal to the mean rainfall rate

R= αλ, the presence of the mean rainfall rate in the list becomes redundant if one already includes the mean rainfall depth α.280

With these additions, the physical law becomes

ET = fET(λ,α,ETmax,w0), (17)

with the dimension matrix of rank 2 given by

ET λ α ETmax w0

L 1 0 1 1 1

T −1 −1 0 −1 0

(18)

It is instructive to explore the full range of choices related to the three possible dimensionless groups, given by the five variables285

minus the rank two of the matrix. In turn, this implies five possibilities (of the six potential pairs of repeating variables, (α,w0)

obviously must be excluded because of dimensional dependence), which can all be brought back to the dryness index DI and

the storage index γ = w0/α, as shown in the following table:

Repeating var. Pi theorem Group relation

(α,λ) ET
αλ = ϕ1

(
Emax
αλ , w0

α

)
ΠB = ϕ1(DI ,γ)

(λ,Emax) ET
Emax

= ϕ2

(
αλ
Emax

, w0λ
Emax

)
ΠBD

−1
I = ϕ2(D−1

I ,γD−1
I )

(α,Emax) ET
Emax

= ϕ3

(
Emax
αλ , w0

α

)
ΠBD

−1
I = ϕ3(D−1

I ,γ)

(λ,w0) ET
λw0

= ϕ4

(
Emax
λw0

, αw0

)
ΠBγ

−1 = ϕ4(DIγ
−1,γ−1)

(Emax,w0) ET
Emax

= ϕ5

(
α
w0
, λw0
Emax

)
ΠBD

−1
I = ϕ5(γ−1,γD−1

I )

(19)

290

These five hydrologic spaces provide different, if related, scaling laws that allow us to focus on the role of specific combinations

of parameters and emphasize different hydrologic conditions. It is useful to note that the dimensionless group ϑ= γD−1
I =

λw0
EETmax

appears often as an independent variable. The latter can also be written as ϑ= λ
η , which uncovers an interpretation

of it as a ratio of timescales, one related to the mean time between rainfall occurrence, 1/λ, and one related to the time of

depletion of the soil store reservoir of depth w0 at the maximum evapotranspiration rate, i.e. η = Emax/w0. Note also that295

ϑ= λ
η appears naturally in the normalized form of the evolution equation of the probability distributions of soil moisture

dynamics in minimalist stochastic models (Porporato et al., 2004; Rodríguez-Iturbe and Porporato, 2007). Figure 2b reports

different partitioning curves for different values of the storage index γ, obtained by solving a minimalist stochastic soil moisture

model with only four dimensional parameters as in Eq. (17).

With the goal of analyzing the suitability of different hydrologic spaces to capture the information available in global datasets300

on hydrologic partitioning, Daly et al. (2019) analyzed a physical law focused on hydrologic fluxes (i.e., rates) only. Accord-

ingly, they considered an extension of Budyko and Turc physical law (9) by hypothesizing an additional control by a governing
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variable φ having the dimensions of a flux, [φ] = LT−1 = Φ,

ET = fET(R,ETmax,φ). (20)

Since each of the fluxes (L/T=Φ) can be used as a repeating variable, three hydrologic spaces are obtained. Assuming further305

that φ is a flux related to the storage capacity and the frequency of rainfall, φ= λw0, the three spaces (Daly et al., 2019) are

found to coincide with specific cases in (19): case 1 if R is chosen as repeating variable, case 2 if ETmax is chosen, and case 4

when φ is chosen.

The analysis by Daly et al. (2019) shows that by accounting for the ability of a catchment to store water to supply evapotran-

spiration, the flux φ (referred to as maximum storage rate) serves as a modulator for the relationships of ET with R and ETmax310

for very dry and very wet catchments. In this way, accounting for it, it allows us to expand the Budyko and Turc frameworks,

suggesting that they are not equivalent, as often assumed in parametric models, unless φ→∞. Thus the variable φ helps

group catchments with similar evapotranspiration rates with respect to different combinations of the dimensionless groups

φ/ETmax = (λw0)/ETmax = ϑ= γD−1
I and φ/R= w0/λ= γ, which account for key catchment and hydrologic character-

istics. It also facilitates the analysis of the partitioning in catchments with intermediate values of the dryness index, while315

Budyko’s and Turc’s hypotheses help in the analysis of very dry and wet catchments, respectively (Daly et al., 2019).

3.1.3 Seasonality, variable coevolution, and higher order effects

It is logical to wonder about the effects of adding other potentially important variables to the physical law of rainfall parti-

tioning. These could include variables describing seasonality, soil and vegetation properties, and other details of the climatic

forcing. With the goal of investigating the role of seasonality in rainfall and evapotranspiration, Feng et al. (2012) considered320

the duration of the wet season and the intensity of rainfall seasonality. The effect of the new dimensionless groups obtained

on the long-term partitioning is shown in Figure 2b. Depending on the degree and type of seasonality, a reduction of evapo-

transpiration is typically observed, due to an increase in percolation during the wet season compared to the homogeneous case

with no seasonality. At the level of approximation afforded by the long-term averaging, the effects of seasonality are hardly

distinguishable from those of a decrease in the storage index γ. To disentangle the various effects, and more clearly see the325

effects of seasonality, the temporal variability in the rainfall partitioning must be considered. An example of this is presented

in Figure 3, where the Budyko curve is plotted parametrically as a function of time and the non uniqueness related to seasonal

storage becomes evident (Feng et al., 2015).

It is clear that more detailed analyses to disentangle the role of different ecohydrological variables on the rainfall partitioning

should focus on specific aspects of the space-time variability of evapotranspiration, which instead are lost in the spatially330

lumped, long-term evapotranspiration rates of Budyko’s type analyses. The combination with simple physically based models

may be a valuable way to sharpen the hypotheses of the physical laws, especially when trying to unravel the effects of the

covariation of some of the variables. These regard questions of how the rooting depth, and thus the storage capacity of the

active soil layer, may depend on the dryness index and whether such covariations may imply some adaptation of vegetation and

soil properties to the hydroclimatic characteristics. Along these lines, the minimalist stochastic model developed by Porporato335
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Figure 3. Transient trajectories of the time varying ratio 〈ETt〉/〈Rt〉 as function of the time varying dryness index 〈Dt〉 and time of year for

Mediterranean and tropical try climates. Brackets indicate ensemble averages for a given time of year, taken over the rainfall variability due

to a time dependent (i.e. seasonal) marked Poisson process of rainfall and seasonal potential evapotranspiration. Each loop is derived from

the same climate inputs with the exception of the phase difference between rainfall and potential evapotranspiration, with the thick grey lines

showing results for out-of-phase and thick black lines for in-phase. The +1 on the time of year axis corresponds to when maximum rainfall

occurs (wet season) and -1 corresponds to timing of minimum rainfall (dry season). The annual average value for each loop falls on a single

point on the annual Budyko’s curves, shown as dashed lines (black and grey) for those that account for climate seasonality, and as thin black

lines for the classical curve which considers only annually averaged climate values. After Feng et al. (2015).

et al. (2004) pointed to a tendency, for the points lying on the Budyko’s curve, to converge towards typical values of the storage

index of 5-6, in turn suggesting a root-depth adaptation to the intensity of rainfall. Similarly, Or and Lehmann (2019) attributed

the convergence of the rainfall partitioning to typical evaporative depths, while Hunt (2021) connected a dependence of the

storage index with hydroclimatic characteristics, γ(DI), to an adaptation brought about by constraints linked to percolation

statistics.340

Shedding light on the role of higher order controls on rainfall partitioning requires charting more detailed model-data in-

vestigations, branching off the beaten path of Budyko’s type analyses. Long-term averages may only contain a weak signal of

those interactions, which may be easily overwhelmed by noise and other data limitations. This suggests a need for adapting

dimensional analysis to these other aspect of the rainfall partitioning and formulating more sophisticated physical laws that

capture the more subtle controls by the soil-plant-atmosphere system.345

3.2 Soil formation, weathering, and loss

A partitioning of the soil mineral component also takes place, on much larger time scales, on the land surface (Riebe et al.,

2004). The loss of minarls at the land surface is controlled by series of tightly connected chemico-physical processes with

interesting geomorphology and hydrologic interactions (Maher and Chamberlain, 2014), which in turn have a crucial impact
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on the surface energy and water balances, as well as several biogeochemical, ecological and climate processes (Garrels, 1983;350

Richter and Billings, 2015).

The input of solid material to the soil from breaking up parent rock is called rock denudation. While the dissolved minerals

and the very fine particles resulting from denudation can be transported away by water, the remaining particles stay in the

ground where they continue to be weathered, until they too can be transported away. As the soil ages and transforms chemically,

the soil may also be deformed by the action of internal stresses and move as creeping flow. As a result, if one assumes, for355

simplicity, that the input and output balance (Riebe et al., 2004), denudation D equals soil formation rate. These in turn

balance the losses by weathering W and erosion plus creep, which are lumped here into a single term E (Figure 1), yielding

the following soil partitioning,

D =W +E. (21)

To analyze this partitioning and help resolve the complex interaction between chemical weathering, climate, and the hydro-360

logic cycle, Calabrese and Porporato (2020) used dimensional analysis. This alloed them to obtain a theoretical framework

to organize the existing data on weathering rates. Because of the crucial role of leaching of dissolved inorganic carbon to the

sites of weathering, the problem strongly depends on the rainfall partitioning at the surface, discussed in the previous section.

Accordingly, focusing on the weathering rate as the governed quantity, Calabrese and Porporato (2020) wrote a physical law

assuming that weathering rates are function of the input given by the denudation rate, a maximum weathering rate rate (which365

includes the effects of type of parent material, temperature, etc.), the concentration of dissolved inorganic carbon [DIC], and

the percolation flux LQ (see Eq. (3)). Further assuming that both [DIC] and LQ only depend on the surface rainfall partitioning

through the dryness index, as in the Bydyko’s hypothesis (12), they wrote

W = fW (D,Wmax,DI). (22)

Formally, apart form the presence of the dimensionless dryness index, the situation is similar to the one of Eq. (3), since W ,370

D, and Wmax have all the same dimensions of a flux of mineral per time. Choosing the input D as the repeating variable in Eq.

(21), as Budyko did in the rainfall partitioning, the Pi theorem gives

W

D
= ϕW

(
Wmax

D
,DI

)
. (23)

To verify this functional relationship, Calabrese and Porporato (2020) used literature data including granitic, basaltic, and

shale terrains and encompassing a broad range of environmental settings. After normalizing the data by their maximum rate375

and assuming for the range of data available that W ≤D, the results (Figure 4a) show a remarkable linear trend of the type

W

D
=
(
Wmax

D

)m
ψW (DI). (24)

Since the exponent m of the power law is very close to 1, the expression can be further simplified to the final form

W

Wmax
= ψW (DI). (25)
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a) b)

Figure 4. a) Analysis of the self-similarity hypothesis in Eq. (24); b) Specific weathering rates as a function of the dryness index; dashed line

shows Eq. (26). After Calabrese and Porporato (2020).

Both these expressions are suggestive of self-similarity. At a first glance, looking at (24), one would be led to conclude that380

we are in the presence of self-similarity of the second type with respect to Wmax/D. However, an exponent practically equal

to one, unlike the typical irrational numbers expected in incomplete self similarity (Barenblatt, 1996), leads to a simplification

which eliminates the governing variable D. As a result, the final expression (25) can be interpreted as a case of complete self-

similarity with respect to D/Wmax, when Wmax is chosen as a repeating variable in (22) instead of D. Alternatively, the same

expression can be obtained directly from the Pi theorem starting from an abbreviated physical law W = fWa(Wmax,DI). The385

precise meaning of this self-similarity remains an open problem to be investigated. The physical message however is that the

denudation rate is not a relevant quantity compared to the maximum weathering.

Equation (25) provides a mathematical structure to analyze how the water cycle affects the chemical depletion fraction

through the dryness index. The empirical data fit provides an equation with only one parameter

ψW (DI) = 1− ln(Dα
I + 1)

1 + ln(Dα
I + 1)

, (26)390

which emphasizes the strongly nonlinear relation between water availability and weathering rate (see Figure 4b). Starting from

high DI values, the normalized weathering rate increases only slightly up until DI ∼ 2, after which it steeply increases before

plateauing atDI ∼ 0.5. The increase region corresponds to the establishment of grassland, savanna, and shrubland ecosystems,

emphasizing the important role of vegetation in acidifying the soil and in turn enhancing weathering rates. A similar nonlinear

dependence on wetness has been observed in the global distribution of soil organic carbon (Kramer and Chadwick, 2018).395

The scatter showed by the data in Figure 4b is not unexpected, because of the large datasets used, which are obtained from

different locations and different methods. While it is likely that part of it may be attributable to noise, it would also be interesting

to consider whether adding other quantities in the physical law might help explain more of this variability. A logical starting

point could be the analysis of the effects of the soil depth and water-storage capacity, which could be explored by correlating

the data with estimates of the storage index γ. It is likely that this will reveal further linkages between surface hydrology, soil400

formation, and weathering.
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3.3 Landscape self-similarity

Besides the macroscopic effects of wetness on weathering discussed in the previous Section, the loss of minerals driven by the

coupled water and sediment fluxes on the topographic surface is also responsible for the formation of complex topographic

patterns, which in turn impact ecohydrologic processes (Dietrich and Perron, 2006). In this Section, we focus on the dendritic405

morphology of interlocked ridges and valleys, the self-similarity of which is linked to the fractal behavior of landscapes

(Rodríguez-Iturbe and Rinaldo, 2001). While on the one hand the complexity of these patterns hinders analytical results, on the

other hand it also helps with the investigation of macroscopic (i.e., averaged) behavior, giving rise, as we will see, to emergent

scaling behaviors for the large scale statistics of the sediment budget, the mean elevation profile, and the landscape spectral

properties.410

Towards the goal of performing dimensional and self-similarity analyses, here we will consider only (spatially) averaged

quantities in idealized geometries, for which the solutions may be expected to depend only on a limited number of dimen-

sionless quantities. The effort of formulating meaningful physical laws for average landscape quantities is facilitated by the

existence of simplified, semi-empirical landscape evolution models (Chen et al., 2014), which can be inspected to infer the main

governing quantities of the problems. We specifically refer to a minimalist landscape evolution model in detachment limited415

conditions (Howard, 1994), although many considerations apply also to transport limited and other intermediate formulations

(Davy and Lague, 2009; Pelletier, 2012). Accordingly, the equation for the evolution of the landscape elevation z(x,y, t) is

(Chen et al., 2014)

∂z

∂t
= δ∇2z−Kam|∇z|+U, (27)

where t is time, δ is the diffusion coefficient used to represent the intensity of soil creep, K is the fluvial erosion coefficient,420

a(x,y, t) is the specific drainage area, m is a dimensionless coefficients (for simplicity we assume the exponent of the gradient

in the erosion term to be equal to 1), and U is the surface-growth term due to tectonic uplift. Eq. (27) is coupled to the

‘conservation’ equation for the specific drainage area

∇ ·
(
a
∇z
|∇z|

)
= 1. (28)

The latter was derived by Bonetti et al. (2018) as an idealized representation of the water flow, following steepest descent lines425

of topographic surface with given characteristic speed (see also Bonetti et al., 2020). Mathematically, a= limw→0A/w, where

A is the contributing area and w is a finite portion of a contour (iso-elevation); hence, the specific drainage area has dimensions

of length, [a] = L, and is defined at a point on the landscape, whereas the contributing area A, [A] = L2, is actually zero when

considered at a point, unless the topographic surface is discontinuous (see Bonetti et al., 2018, for details). The use of A

instead of a in (27) is therefore incorrect and leads to grid-dependent results in mathematical codes. The coupled equations430

(27) and (28) form a closed system once the initial and boundary conditions are specified. Figure 5 shows simulation results

producing complex patterns (Anand et al., 2020) that resemble real landscapes, with characteristic branching and channelization

instability.
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Figure 5. Steady state simulation of landscape elevation given by (27) and (28) for m= 0.5 and different channelization indices, Eq. (33),

CI = 103 in (a) and CI = 104 in (b). The elevation along A-A and B-B transects is shown in (c) and (d). After (Hooshyar et al., 2021).

3.3.1 Sediment budget and soil partitioning

In steady state, spatial averaging leads to the partitioning of soil material into soil creep (SC) and the soil loss by stream erosion435

(SL),

U = CR + SL. (29)

This equation is obviously related to Eq. (21), since at steady state the rate of uplift needs to equal the denudation rate, while the

losses may be grouped by focusing on different features of the underlying processes. Eq. (21) emphasizes chemical weathering,

while lumping all the other losses (mainly erosion and creep) into the term E, while here Eq. (29) draws attention to the water-440

erosion term SL (possibly including also weathering), while the rest is lumped into a diffusive term, CR, representing soil creep

and other smoothing processes.
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Averaging spatially (27) and (28), the mean sediment balance equation can be written as (see Hooshyar and Porporato, 2021,

for details)

δ(2ly)−1 〈∇z⊥〉Ω︸ ︷︷ ︸
−CR

−K
(
(1−m)〈κcamz〉+m

〈
am−1z

〉)
︸ ︷︷ ︸

SL

+U = 0, (30)445

where ly is the domain width,∇z⊥ is the component of the elevation gradient normal to the domain contour Ω, κc is the plane

or contour curvature, the brackets 〈·〉 indicate spatial average, and 〈·〉Ω is the average over the domain contour. While this is an

exact result, the terms in brackets are unknown because of the complexity of the landscape surface. This is where dimensional

analysis comes in handy.

Bonetti et al. (2020) tackled the problem of these spatial averages by adopting a directional dimensional analysis (see Sec.450

2.3), considering independent dimensions for horizontal lengths, L, and the vertical length, Lz . Physically, a justification for

the use of directional dimensional analysis may be found in the fact that Eq. (27) is the sediment budget equation at a point

written in terms of volume of sediments per unit ground area. For sediments of constant density, the same equation can be

written in term of mass per unit ground area, say ρz, which then can be considered as a new variable with its independent

dimensions. Indicating the unknown average slope at the boundary as S∗ = 〈∇z⊥〉Ω, the physical law can be written as455

S∗ = f(ly,K,U ;δ,m), (31)

where the various quantities are suggested by inspection of the governing equations and the type of boundary conditions.

For this problem, [S∗] = LzL−1, [U ] = LzT−1, [δ] = L2T−1, [K] = L1−mT−1, [m] = 1. Choosing ly , K, and U as repeating

variables, the Pi theorem then yields

δS∗
Uly

=
2CR
U

= ϕCR(C−1
I ,m) = ψCR(CI ,m), (32)460

where

CI =
Klm+1

δ
(33)

is the global channelization index. Figure 6 shows the plot of the function (32) obtained from a set of simulations with different

CI and m values.

These results suggest a tantalizing analogy with the analysis of wall-bounded turbulent shear flows. In fact, the regular465

behavior of ϕ(CI ,m) reminds of the behavior of the Darcy friction factor plotted in the Moody diagram for pipe flow (Munson

et al., 2013). For a detailed description of dimensional analysis in turbulence, see Barenblatt (1996) and Katul et al. (2019).

In this analogy, the slope of the elevation profile and the slope of velocity profile play a similar role. As well known, in

turbulence, the mean velocity profile at the wall is proportional to the wall shear stress and relates to the partitioning of viscous

and turbulent stresses; this is analogous here to the partitioning of soil coming from uplift into creep and stream erosion –470

see Eq. (30). We will highlight further links with the dimensional analysis of wall-bounded turbulent flows in the subsequent

developments.
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Figure 6. Average sediment partitioning according to Eq. (32) as a function of the channelization index for different values ofm. Points refer

to numerical simulations and solid line refers to the analytical solution for the unchannelized regime (courtesy of Sara Bonetti).

It is also useful to note that in Bonetti et al. (2020) the Pi theorem was applied to (31) considering ly , U , and δ as repeating

variables, which instead leads to Πδ = ϕδ(CI), with Πδ = ΠCRCI and ϕδ(CI) = ψCR(CI)C−1
I . In the turbulence analogy,

the present analysis corresponds to choosing viscosity instead of density (which is the typical choice; see Katul et al. (2019)) as475

one of the repeating variables in the physical law for the wall-shear stress. Thus, for the wall-sear stress, τ = µΣ∗, where µ is

the dynamic viscosity and Σ∗ is the slope of the streamwise velocity profile at the wall, the physical law is τ = fτ (V,L,ρ,µ,ε),

where ρ is the density, V the mean velocity, L the characteristic lateral dimension, and ε the roughness height. Using V,L,µ

as repeating variables, one has τL
µV = Re · τ

ρV 2 = Re · fDarcy

(
Re, εL

)
, where Re = ρV L

µ is the bulk Reynolds number.

A second interesting fact is the plateauing of the curves at large values of CI , for both the analytical solution in the unchan-480

nelized case and the numerical results in the channelized regime. This suggests the existence of complete self-similarity for

CI →∞, again analogous to the self-similarity observed in the Moody diagram for the friction factor in the fully rough regime

(Munson et al., 2013), implying that while erosion dominates over creep, the effect of diffusion does not fully disappear but re-

mains present, probably concentrated in an area of zero measure corresponding to the network of ridges and valleys. Again, this

singular limit bears similarities with the much investigated limit of the viscous Navier-Stokes equations for Reynolds numbers485

tending to infinity as well as the hypothesis of dissipative anomalies in the inviscid Euler equations (e.g., Eyink, 2008).

3.3.2 Mean elevation profile

Hooshyar et al. (2020) analyzed the profile of the mean elevation, z̄ (y) = limlx→∞
1
lx

∫ lx
0
z (x,y)dx, of channelized land-

scapes. Based on the inspection of the governing equations and using again directional dimensional analysis, the physical law
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for the slope of the profile was assumed as490

dz̄

dy
= f dz̄

dy
(y,δ,z∗; ly,K,U,m) , (34)

where y is the distance from the boundary, z∗ is an elevation scale. Choosing y, δ, and z∗ as repeating variables and with simple

manipulation of the dimensionless groups, the Pi theorem gives

(m+ 1)η
dϕ

dη
= f3 (η,CI , ζ,m) , (35)

where ϕ= z̄
z∗

. In addition to the global channelization index, CI , reflecting the relative impact of fluvial erosion to diffusive495

transport, η = Kym+1

δ is a local variable with a similar form as CI but capturing the local relative contribution of those two

processes, while ζ = Ul2y
δz∗

describes the relative impact of tectonic uplift to diffusive transport.

In a system with relatively small diffusive transport and dominated by erosion and uplift, CI and ζ take high values. The

same argument also applies to η except for locations at an intermediate distance from the boundary. Thus, when the variables η,

CI , and ζ reach such an asymptotic condition, one may assume complete self-similarity (Barenblatt, 1996) according to which500

the function f3 is independent of these quantities

η
dϕ

dη
= κ(m) , (36)

where κ is only a function of m. Integrating Eq. (36) yields

ϕ= κ(m) lnη+C, (37)

where C is independent of η but may still depend on m, CI , and ζ. Eq. (37) describes the logarithmic scaling of the mean-505

elevation profile with respect to η. The emergence of such a logarithmic profile was confirmed in numerical simulations,

laboratory experiments, and real landscapes, as well as in other models of complex branching such as the optimal channel net-

works and directed percolation (Hooshyar et al., 2020). Figure 7 shows the flattening of mean elevation profiles with increasing

CI (recall that a similar effect is observed also in turbulent velocity profiles), along with the values of the coefficient κ of the

logarithmic profile.510

As observed by Hooshyar et al. (2020), the presence of a mean logarithmic profile of elevation at an intermediate distance

from the domain boundaries is similar to the classic results for the turbulent velocity profile (see also Barenblatt, 1996). In wall-

bounded turbulence (Katul et al., 2019), the logarithmic profile for the mean velocity profile is obtained from the Pi theorem

applied to the physical law for the mean gradient, dūdy = f(y,u∗,ρ,L,µ,ε), where u∗ =
√

τ
ρ is the friction velocity (the other

quantities have the same meaning as in the previous Subsection) and then assuming complete self-similarity with respect to515

both the bulk and local Reynolds numbers. From a phenomenological point of view, the analogy between the two phenomena

is found in the resemblance between progressive penetration to smaller scales of ridges and valleys into the landscape and the

intensification of vorticity producing smaller and smaller vortices (i.e., smaller Kolmogorov scales). The increased turbulent

mixing and the progressive land-surface dissection with sharper sequences of ridges and valleys surface dissection with in-

creasing channelization index and Reynolds number, respectively, produces in both cases a flattening of mean profile observed520
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Figure 7. Mean elevation profiles for increasing values of CI (from blue to red lines) and, on the left, coefficient of the logarithmic profile

as a function of the exponent m for simulations, the XLE laboratory experiments (Hooshyar et al., 2019), and the landscape at the Calhoun

Critical Zone Observatory (CCZO). Modified after (Hooshyar et al., 2020).

in the turbulence mean velocity and the mean elevation (see Fig. 7a) as well as a logarithmic scaling. The fact that a logarith-

mic region is found in different contexts, including directed percolation (Hooshyar et al., 2020), hints at the generality of such

self-similar scaling as a robust outcome in dynamically different complex systems, appearing as a dimensional consequence of

length-scale independence in spatially bounded complex systems.

3.3.3 Spectral analysis of elevation fluctuations525

Our final example follows Hooshyar et al. (2021) who analyzed the power spectral density (PSD) of elevation transects at given

y (see Figure 5),

Py(ω) =
1
lx
|ẑy(ω)|2, (38)

for lx→∞, where

ẑy(ω) =

lx∫

0

zy(x)e−2πiωdx (39)530

is the Fourier transform of zy(x) and ω is the longitudinal wavenumber or inverse scale. These PSDs peak at a wavenumber

(i.e., the most energetic mode) which provides a characterization of the typical valley spacing. Beyond such wavenumbers, a

power-law scaling is typically visible in simulations, producing an asymptotic behavior which can be collapsed onto a single

curve at high CI .

Hooshyar et al. (2021) analyzed the PSD spectral scaling with the aid of directional dimensional analysis. They argued535

that for a longitudinal elevation series at a given y the amount of ‘energy’ (i.e., variance of the elevation fluctuations) at a

wavenumber ω must depend on the following variables

Py(ω) = g1 (ω,y, ly, δ,K,U,m) , (40)
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where g1 is the physical law. The energy Py(ω) is defined over the fluctuations along the x-axis (see Eq. (38)) and has

dimension L2
zL. The wavenumber along the x direction has dimension [ω] = L−1, while δ, K, and U have dimensions L2T−1,540

L1−mT−1, and LzT−1, respectively; y and ly have dimension L.

Given three dimensions Lz , L, T and 7 dimensional governing variables, and choosing K, U , and ω as repeating variables,

the Pi theorem yields

Py(ω)K2ω3−2m

U2
= g2

(
Kω−(m+1)

δ
,ωly,ωy,m

)
. (41)

A manipulation of Eq. (41) leads to545

Py(ω)K2ω3−2m

U2
= g3 (CI ,η,ηω,m) . (42)

The quantity η =Kym+1/δ has the same form as that of CI but defined locally at y distance from the boundary, and ηω =

Kω−(m+1)/δ is equivalent to η but defined in the frequency domain.

In the asymptotic limit of relatively high CI , η and ηω attains a near-constant limit away from the boundary, implying

complete self-similarity,550

Py(ω)∝ ω2m−3, (43)

where the proportionality coefficient is (U/K)2
g3(m). Eq. (43) predicts the exponent of the power spectral density that is

independent of δ and has a power-law decay. The condition of high CI , η and ηω is expected in systems that are dominated

by erosion (high CI), far enough from the boundary (high η), and within small enough scales (high ηω). Again a parallel with

the Kolmogorov spectrum of turbulence (Pope, 2001; Katul et al., 2019) can be drawn with the channelization index playing555

the role of the Reynolds number. Moreover, at a sufficient distance from the domain boundary, it may be assumed that the

information regarding the domain geometry and direction is lost, becoming statistically isotropic. This is similar to the local

isotropy at small scales (or eddies detached from the boundary) of fully developed turbulent flow.

Fig. 8a shows the exponent of the power fits to PSDs for simulations with CI ≥ 105, denoted by α, for different m values.

This finding agrees with the relation α= 2m− 3 in the intermediate range of m and supports the validity of the assumption560

of complete self-similarity with respect to ηω . The inset of Fig. 8b also shows the function g3(m) from numerical simulations.

The spectral scaling was confirmed also in the laboratory experiments and the real topography at the Calhoun Critical Zone

Observatory (Fig. 8c-f).

From a geomorphological point of view, the connection between the exponent α and the parameter m in the erosion term

provides a useful link to landscape processes, since steep landscapes with debris-flow-dominated channels have been associated565

to smaller m, while flatter fluvial landscapes are characterized by larger values of m (Montgomery and Foufoula-Georgiou,

1993). The values of the spectral exponent is also interesting from a more theoretical point of view, in relation to the role of

nonlinearities as a function of scale. Our analysis has shown consistently values of α∼−2.5, while several studies previously

reported exponents near −2 (Newman and Turcotte, 1990; Huang and Turcotte, 1989; Passalacqua et al., 2006); the latter

corresponds to a fractal dimension Dm = 1.5 (Huang and Turcotte, 1989; Voss, 1985) and to the presence of an underlying570
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fractional Brownian noise (Turcotte, 1987; Bell Jr, 1975) with a Lorentzian spectrum and an exponential decay of the elevation

autocorrelation. These models with α=−2 would therefore imply linear stochastic dynamics, at odds with the known presence

of nonlinear terms responsible for the very formation of the channel network.

On the one hand,α=−2.5 would mean an erosion exponentm= 0.25, therefore preserving the nonlinearity of the dynamics

also for mascroscopic scaling relationships, like the PSD scaling. On the other hand, the fact that the observed value is not far575

from α=−2, might mean that averages taken over complex landscape patterns cause an effective reduction of nonlinearity,

whereby the activation of many degrees of freedom at high channelization regimes causes a statistical regularity which muffles

the small scale nonlinearities. This is certainly an interesting topic that deserves further investigation.

Finally, from a practical point of view, the spectral scaling of landscape elevation could be profitably utilized in developing

efficient numerical simulations of landscape evolution (Passalacqua et al., 2006). Such numerical schemes would potentially580

resemble large eddy simulation methods used in fluid turbulence Pope (2001), where the unsolved dynamics at finer scales are

approximated by extrapolating the PSD. The improved speed would be a great asset for large scale simulations of landscape

evolution under different scenarios.

4 Conclusions

We have presented several examples of applications of the Pi theorem and self-similar scaling to the partitioning of water and585

sediments driven by the terrestrial water cycle. It is time to draw to a close and ask ourselves whether by using dimensional

analysis we have learned anything useful regarding these problems. An answer in the affirmative is suggested by considering

that dimensional analysis helped reveal the dominant controls of the dryness index and storage index in the long term rainfall

partitioning, while in the weathering analysis it allowed us to extract the key nonlinear control of dryness index, making order in

the vast amount of information contained in global datasets from different experiments and environmental conditions. Finally,590

the analysis of the complex geometries obtained from landscape evolution models allowed us to discover new macroscopic

relations among macroscopic variables in the partitioning of sediments, the elevation profile, and the spectral scaling. The

analogy between landscape elevation and turbulent velocity fluctuations has also been fruitful and promises further results.

If these observations confirm the utility of dimensional analysis, it should also be clear that these methods are not a fool-

proof set of rules to achieve miraculous solutions. Rather, they are an iterative procedure to sharpen our hypotheses on physical595

processes. Thinking of dimensional arguments as a form of modelling allows an ‘explication of the role abstraction and multiple

realisability; not as compatibility with other possible worlds but as compatibility with different fictional descriptions of our

own world’ (Pexton, 2014). We hope that these considerations will help breathe new life in Strahler’s view (Strahler, 1958)

that dimensional analysis will become increasingly useful in ecohydrology, geomorphology, and beyond.
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(e)
(f)

Figure 8. (a) PSDs of elevation longitudinal series for different values of m at an intermediate distance from the boundary. (b) Slope of

power fit to the declining part of the PSD from simulations with CI ≥ 105, denoted by α, as a function of the exponent m. The data from the

XLE physical experiment are also shown. The black line is the relation α= 2m− 3 derived from dimensional and self-similarity arguments

in Eq. (43). The inset shows the function g3(m) from numerical simulations. (c) shows an example of the XLE experimental landscape

(Hooshyar et al., 2019), of which (d) shows the PSD. (e) Portion of the landscape at the Calhoun Critical Zone in South Carolina, USA from

1-m resolution LiDAR data. (f) The PSD is computed from 1-D transects within the area contained by the two parallel lines that are located

at an intermediate distance from the main channel shows two distinct power-law scaling regions with similar exponent. After Hooshyar et al.

(2021).
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Appendix A: The Rayleigh-Riabouchinsky controversy: thermodynamic limit as complete self-similarity600

In this appendix we discuss in more detail the Rayleigh-Riabouchinsky Controversy related to augmented dimensional analysis.

In particular, after a brief historic background, we show how the thermodynamic approach of Rayleigh corresponds to a self-

similar solution of the first kind with respect to the dimensionless group obtained form the Boltzmann constant, which serves

as the dimensional unifier when augmenting the dimensional analysis from mechanics to thermodynamics.

As mentioned in the main text, Rayleigh (1915a)1 considered the problem the heat flux h, the governed quantity, between a605

body of characteristic dimension a and a stream of incompressible and inviscid fluid moving with velocity v. Besides a and v

the other governing quantities are the specific heat capacity c and the thermal conductivity κ. Rayleigh formulated a physical

law with n= 5 governing variables and adopted length, time, energy, and temperature as primary dimensions (i.e., kRay = 4),

as typical in thermodynamics (of course one could use also LMT plus temperature, using mass instead of energy). As a result,

he obtained one (n− kRay = 5− 4 = 1) governing dimensionless group, which he used to successfully describe the problem.610

In a very short comment published soon after Rayleigh’s paper, Riabouchinsky (1915) objected that adopting the more

advanced and detailed point of view of statistical mechanics, according to which temperature is the mean molecular kinetic

energy, one could more parsimoniously limit the primary dimensions to length, time and energy, without involving temperature.

As a result, he obtained two (n− kRia = 5− 3 = 2) dimensionless groups. In his response, Rayleigh rejected Riabouchinsky’s

alternative commenting that: ‘It would indeed be a paradox if the further knowledge of the nature of heat afforded by molecular615

theory put us in a worse position than before in dealing with a particular problem. The solution would seem to be that the Fourier

equations embody something as to the nature of heat and temperature which is ignored in the alternative argument’ (Rayleigh,

1915b).

Rayleigh’s reply was authoritative and sensible, but not completely satisfactory. As pointed out by Buckingham (1915):

‘since he does not pursue the subject further and the reader may feel as if left in mid-air, it seems worth while that the620

point raised by M. Riabouchinsky should be somewhat further elucidated.’ Since then the debate has been subject of continued

discussions. Here, taking a cue from previous analyses of this controversy (e.g., Gibbings, 1980; Butterfield, 2001) and adopting

the use of a dimensional unifier (Panton, 2006), we show that Rayleigh’s result may be seen as a self-similar solution of

the first kind of the augmented physical law obtained by including the Boltzmann constant as a dimensional unifier to link

thermodynamics to mechanics. Starting from a thermodynamic approach to the problem is tantamount to taking for granted625

the existence of this limit.

Thus, following Rayleigh, we specifically choose length (L), time (T), energy (heat, H), and temperature (Θ) as primary

dimensions. With [h] = HT−1, [a] = L, [θ] = Θ, [c] = HL−3Θ−1, [κ] = HL−1T−1Θ−1, [v] = LT−1, and [kB ] = HΘ−1, we

1This Nature paper contains the famous quote of Lord Rayleigh: "I have often been impressed by the scanty attention paid even by original workers in

physics to the great principle of similitude. It happens not infrequently that results in the form of ’laws’ are put forward as novelties on the basis of elaborate

experiments, which might have been predicted a priori after a few minutes’ consideration."
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obtain the dimension matrix

h a θ c κ v kB

L 0 1 0 −3 −1 1 0

T −1 0 0 0 −1 −1 0

H 1 0 0 1 1 0 1

Θ 0 0 1 0 −1 0 −1

(A1)630

of rank 4. As a result, the Pi theorem gives 7-4=3 dimensionless groups.

Choosing the heat flux h as the governed quantity and selecting a, θ, c, and κ as dimensionally independent (repeating)

variables among the governing quantities leads to the physical law

h= f(a,θ,c,κ;v,kB), (A2)

from which the Pi theorem then gives635

h

dθκ
= ϕ

(
vcd

κ
, kBd

3c

)
. (A3)

With a system of units for which kB = 1 one obtains the result of Riabouchinsky (1915),

h

dθκ
= ϕRia

(
vcd

κ
, d3c

)
. (A4)

This however would imply the use of very small units, because in the usual SI system, kB = 1.380649× 10−23 J · K−1. As a

result, apart from systems at the nanoscale, in normal conditions kBd
3c∼ 0. Our everyday experience, on which thermody-640

namic concepts are based, shows that we can neglect this term in (A3) to arrive at the result, originally obtained by Rayleigh,

h

dθκ
= ϕRay

(
vcd

κ

)
. (A5)

Thus, looking at Eq. (7), it becomes clear that the thermodynamic limit, which allows us to go from statistical mechanics to

continuum mechanics and thermodynamics, corresponds to a complete self-similar solution of (A3) with respect to kBd3c.645

Alternatively, the same result is obtained by straightforward application of the Pi theorem to the restricted physical law

h= fRay(a,θ,c,κ;v), (A6)

as originally done by Rayleigh.

Competing interests. The author declares no competing interests.

Acknowledgements. This article follows a kind invitation by EGU related to the Dalton medal presentation by the author. Much of this work650

has been the result of invaluable collaborations with Edoardo Daly, Jun Yin, Xue Feng, Salvatore Calabrese, Sara Bonetti, Milad Hooshyar,

26

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.



and Shashank Anand. The author is also grateful to Paolo D’Odorico, Gaby Katul, Luca Ridolfi, and Ignacio Rodriguez-Iturbe for continued

friendship, support, and advice. The US National Science Foundation (NSF) grant nos. EAR-1331846 and EAR-1338694, the BP through

the Carbon Mitigation Initiative (CMI) at Princeton University, and the Moore Foundation are acknowledged for financial support.

27

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.



References655

Anand, S. K., Hooshyar, M., and Porporato, A.: Linear layout of multiple flow-direction networks for landscape-evolution simulations,

Environmental Modelling & Software, 133, 104 804, 2020.

Aronson, D. G. and Graveleau, J.: A selfsimilar solution to the focusing problem for the porous medium equation, European Journal of

Applied Mathematics, 4, 65–81, 1993.

Barenblatt, G., Chorin, A., and Prostokishin, V.: Scaling laws for fully developed turbulent flow in pipes, 1997.660

Barenblatt, G. I.: Scaling, self-similarity, and intermediate asymptotics: dimensional analysis and intermediate asymptotics, 14, Cambridge

University Press, 1996.

Barr, D. I.: Consolidation of basics of dimensional analysis, Journal of engineering Mechanics, 110, 1357–1376, 1984.

Bell Jr, T.: Statistical features of sea-floor topography, in: Deep Sea Research and Oceanographic Abstracts, vol. 22, pp. 883–892, Elsevier,

1975.665

Bhaskar, R. and Nigam, A.: Qualitative physics using dimensional analysis, Artificial Intelligence, 45, 73–111, 1990.

Bluman, G. W. and Cole, J. D.: Similarity methods for differential equations, vol. 13, Springer Science & Business Media, 2012.

Bolster, D., Hershberger, R. E., and Donnelly, R. J.: Dynamic similarity, the dimensionless science, Physics Today, 64, 42–47, 2011.

Bonetti, S., Bragg, A., and Porporato, A.: On the theory of drainage area for regular and non-regular points, Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 474, 20170 693, 2018.670

Bonetti, S., Hooshyar, M., Camporeale, C., and Porporato, A.: Channelization cascade in landscape evolution, Proceedings of the National

Academy of Sciences, 117, 1375–1382, 2020.

Bridgman, P. W.: Dimensional analysis, Yale university press, 1922.

Buckingham, E.: The principle of similitude, Nature, 96, 396–397, 1915.

Burton, J. and Taborek, P.: Two-dimensional inviscid pinch-off: An example of self-similarity of the second kind, Physics of Fluids, 19,675

102 109, 2007.

Butterfield, R.: Dimensional analysis revisited, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engi-

neering Science, 215, 1365–1375, 2001.

Calabrese, S. and Porporato, A.: Wetness controls on global chemical weathering, Environmental Research Communications, 2, 085 005,

2020.680

Chen, A., Darbon, J., and Morel, J.-M.: Landscape evolution models: A review of their fundamental equations, Geomorphology, 219, 68–86,

2014.

Daly, E. and Porporato, A.: A note on groundwater flow along a hillslope, Water resources research, 40, 2004a.

Daly, E. and Porporato, A.: Similarity solutions of nonlinear diffusion problems related to mathematical hydraulics and the Fokker-Planck

equation, Physical Review E, 70, 056 303, 2004b.685

Daly, E., Calabrese, S., Yin, J., and Porporato, A.: Hydrological Spaces of Long-Term Catchment Water Balance, Water Resources Research,

55, 10 747–10 764, 2019.

Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research: Earth

Surface, 114, 2009.

Dietrich, W. E. and Perron, J. T.: The search for a topographic signature of life, Nature, 439, 411–418, 2006.690

28

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Dimitrakopoulos, E. G. and DeJong, M. J.: Revisiting the rocking block: closed-form solutions and similarity laws, Proceedings of the Royal

Society A: Mathematical, Physical and Engineering Sciences, 468, 2294–2318, 2012.

Dooge, J. C.: Sensitivity of runoff to climate change: A Hortonian approach, Bulletin of the American Meteorological Society, 73, 2013–

2024, 1992.

Efthimiou, C. J. and Llewellyn, R. A.: Cinema, Fermi problems and general education, Physics education, 42, 253, 2007.695

Eggers, J. and Fontelos, M. A.: The role of self-similarity in singularities of partial differential equations, Nonlinearity, 22, R1, 2008.

Eyink, G. L.: Dissipative anomalies in singular Euler flows, Physica D: Nonlinear Phenomena, 237, 1956–1968, 2008.

Feng, X., Vico, G., and Porporato, A.: On the effects of seasonality on soil water balance and plant growth, Water resources research, 48,

2012.

Feng, X., Porporato, A., and Rodriguez-Iturbe, I.: Stochastic soil water balance under seasonal climates, Proceedings of the Royal Society700

A: Mathematical, Physical and Engineering Sciences, 471, 20140 623, 2015.

Gagnon, J.-S., Lovejoy, S., and Schertzer, D.: Multifractal earth topography, Nonlinear Processes in Geophysics, 13, 541–570, 2006.

Galilei, G.: Dialogues concerning two new sciences, Dover, 1914.

Garrels, R. M.: The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years,

American Journal of Science, 283, 641–683, 1983.705

Gibbings, J.: On dimensional analysis, Journal of Physics A: Mathematical and General, 13, 75, 1980.

Gibbings, J.: A logic of dimensional analysis, Journal of Physics A: Mathematical and General, 15, 1991, 1982.

Gilmore, R.: Lie groups, Lie algebras, and some of their applications, Courier Corporation, 2012.

Goldenfeld, N.: Lectures on phase transitions and the renormalization group, CRC Press, 2018.

Gratton, J. and Minotti, F.: Self-similar viscous gravity currents: phase-plane formalism, J. Fluid Mech, 210, 155–182, 1990.710

Hankey, A. and Stanley, H. E.: Systematic application of generalized homogeneous functions to static scaling, dynamic scaling, and univer-

sality, Physical Review B, 6, 3515, 1972.

Hills, C. P. and Moffatt, H.: Rotary honing: a variant of the Taylor paint-scraper problem, Journal of Fluid Mechanics, 418, 119–135, 2000.

Hooshyar, M. and Porporato, A.: Mean Dynamics and Elevation-Contributing Area Covariance in Landscape Evolution Models, Water

Resources Research, p. e2021WR029727, 2021.715

Hooshyar, M., Singh, A., Wang, D., and Foufoula-Georgiou, E.: Climatic Controls on Landscape Dissection and Network Structure in the

Absence of Vegetation, Geophysical Research Letters, 46, 3216–3224, 2019.

Hooshyar, M., Bonetti, S., Singh, A., Foufoula-Georgiou, E., and Porporato, A.: From turbulence to landscapes: Logarithmic mean profiles

in bounded complex systems, Physical Review E, 102, 033 107, 2020.

Hooshyar, M., Katul, G., and Porporato, A.: Spectral Signature of Landscape Channelization, Geophysical Research Letters, 48,720

e2020GL091 015, 2021.

Howard, A. D.: A detachment-limited model of drainage basin evolution, Water resources research, 30, 2261–2285, 1994.

Huang, J. and Turcotte, D.: Fractal mapping of digitized images: application to the topography of Arizona and comparisons with synthetic

images, Journal of Geophysical Research: Solid Earth, 94, 7491–7495, 1989.

Hunt, A.: Soil formation, vegetation growth, and water balance: A theory for Budyko, Hydrogeology, chemical weathering, and soil forma-725

tion, pp. 67–80, 2021.

Huntley, H. E.: Dimensional analysis, Dover publications, 1967.

29

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Kader, B. and Yaglom, A.: Mean fields and fluctuation moments in unstably stratified turbulent boundary layers, Journal of Fluid Mechanics,

212, 637–662, 1990.

Katul, G., Li, D., and Manes, C.: A primer on turbulence in hydrology and hydraulics: The power of dimensional analysis, Wiley Interdisci-730

plinary Reviews: Water, 6, e1336, 2019.

Kramer, M. G. and Chadwick, O. A.: Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale, Nature Climate

Change, 8, 1104–1108, 2018.

Lodge, A.: THE MULTIPLICATION AND DIVISION OF CONCRETE QUANTITIES., General Report (Association for the Improvement

of Geometrical Teaching), 14, 47–70, 1888.735

Logan, J. D.: Applied mathematics, John Wiley & Sons, 2013.

Mahajan, S.: Street-fighting mathematics: the art of educated guessing and opportunistic problem solving, The MIT Press, 2010.

Maher, K. and Chamberlain, C.: Hydrologic regulation of chemical weathering and the geologic carbon cycle, science, 343, 1502–1504,

2014.

Montgomery, D. R. and Foufoula-Georgiou, E.: Channel network source representation using digital elevation models, Water Resources740

Research, 29, 3925–3934, 1993.

Moon, P. and Spencer, D. E.: A modern approach to “dimensions”, Journal of the Franklin Institute, 248, 495–521, 1949.

Moran, M. and Marshek, K.: Some matrix aspects of generalized dimensional analysis, Journal of Engineering Mathematics, 6, 291–303,

1972.

Munson, B. R., Okiishi, T. H., Huebsch, W. W., and Rothmayer, A. P.: Fluid mechanics, Wiley Singapore, 2013.745

Newman, W. I. and Turcotte, D. L.: Cascade model for fluvial geomorphology, Geophysical Journal International, 100, 433–439, 1990.

Or, D. and Lehmann, P.: Surface evaporative capacitance: How soil type and rainfall characteristics affect global-scale surface evaporation,

Water Resources Research, 55, 519–539, 2019.

Panton, R. L.: Incompressible flow, John Wiley & Sons, 2006.

Passalacqua, P., Porté-Agel, F., Foufoula-Georgiou, E., and Paola, C.: Application of dynamic subgrid-scale concepts from large-eddy simu-750

lation to modeling landscape evolution, Water Resources Research, 42, 2006.

Pelletier, J. D.: Fluvial and slope-wash erosion of soil-mantled landscapes: detachment-or transport-limited?, Earth Surface Processes and

Landforms, 37, 37–51, 2012.

Persico, E.: Commemoration of Enrico Fermi, Enrico Fermi: His Work and Legacy, p. 36, 2004.

Pexton, M.: How dimensional analysis can explain, Synthese, 191, 2333–2351, 2014.755

Pope, S. B.: Turbulent flows, 2001.

Porporato, A. and Yin, J.: Ecohydrology, Cambridge, 2022.

Porporato, A., Daly, E., and Rodriguez-Iturbe, I.: Soil water balance and ecosystem response to climate change, The American Naturalist,

164, 625–632, 2004.

Rayleigh, L.: The principle of similitude, Nature, 95, 66, 1915a.760

Rayleigh, L.: Reply, Nature, 95, 644, 1915b.

Riabouchinsky, D.: The principle of similitude, Nature, 95, 591–591, 1915.

Richter, D. d. and Billings, S. A.: ‘One physical system’: Tansley’s ecosystem as Earth’s critical zone, New Phytologist, 206, 900–912, 2015.

Riebe, C. S., Kirchner, J. W., and Finkel, R. C.: Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes

spanning diverse climate regimes, Earth and Planetary Science Letters, 224, 547–562, 2004.765

30

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.



Rodríguez-Iturbe, I. and Porporato, A.: Ecohydrology of water-controlled ecosystems: soil moisture and plant dynamics, Cambridge Univer-

sity Press, 2007.

Rodríguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: chance and self-organization, Cambridge University Press, 2001.

Shen, W., Davis, T., Lin, D. K., and Nachtsheim, C. J.: Dimensional analysis and its applications in statistics, Journal of Quality Technology,

46, 185–198, 2014.770

Siano, D. B.: Orientational analysis—a supplement to dimensional analysis—I, Journal of the Franklin Institute, 320, 267–283, 1985.

Smits, A. J., McKeon, B. J., and Marusic, I.: High–Reynolds number wall turbulence, Annual Review of Fluid Mechanics, 43, 353–375,

2011.

Sornette, D.: Critical phenomena in natural sciences: chaos, fractals, selforganization and disorder: concepts and tools, Springer Science &

Business Media, 2006.775

Spagnoli, A.: Self-similarity and fractals in the Paris range of fatigue crack growth, Mechanics of Materials, 37, 519–529, 2005.

Sposito, G.: Scale dependence and scale invariance in hydrology, Cambridge University Press, 2008.

Strahler, A. N.: Dimensional analysis applied to fluvially eroded landforms, Geological Society of America Bulletin, 69, 279–300, 1958.

Sun, B.-H.: Scaling law for the propagation speed of domino toppling, AIP Advances, 10, 095 124, 2020.

Szirtes, T.: Applied dimensional analysis and modeling, Butterworth-Heinemann, 2007.780

Turcotte, D. L.: A fractal interpretation of topography and geoid spectra on the Earth, Moon, Venus, and Mars, Journal of Geophysical

Research: Solid Earth, 92, E597–E601, 1987.

Voss, R. F.: Random fractal forgeries, in: Fundamental algorithms for computer graphics, pp. 805–835, Springer, 1985.

Widom, B.: Scaling laws, Scholarpedia, 4, 9054, https://doi.org/10.4249/scholarpedia.9054, revision #91749, 2009.

Williams, W.: On the relation of the dimensions of physical quantities to directions in space, Proceedings of the Physical Society of London785

(1874-1925), 11, 357, 1890.

Xue, N. and Stone, H. A.: Self-Similar Draining near a Vertical Edge, Physical review letters, 125, 064 502, 2020.

Yin, J., Calabrese, S., Daly, E., and Porporato, A.: The energy side of Budyko: Surface-energy partitioning from hydrological observations,

Geophysical Research Letters, 46, 7456–7463, 2019.

Zheng, Z., Christov, I. C., and Stone, H. A.: Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents,790

Journal of fluid mechanics, 747, 2014.

31

https://doi.org/10.5194/hess-2021-442
Preprint. Discussion started: 27 August 2021
c© Author(s) 2021. CC BY 4.0 License.


