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Abstract. Climate warming may cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening 

water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so 15 

physically based models are needed for hydrological predictions and analyses. We develop an observational technique for 

detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow. We measure 

the 20th percentile of snowmelt days (DOS20), across 31 watersheds in the western US, as a proxy for the beginning of 

snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May, with warmer sites having earlier and 

more intermittent snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25% and 50% 20 

annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), suggesting that a one-day earlier DOS20 corresponds with a 

one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical projections of future DOS20 (RCP8.5, late 21st century), using 

space-for-time substitution, show that DOS20 will occur 11±4 days earlier per 1°C of warming, and that colder places (mean 

November-February air temperature, TNDJF < -8ºC) are 70% more sensitive to climate change on average than warmer places 

(TNDJF > 0ºC). Moreover, empirical space-for-time based projections of DOQ25 and DOQ50 are about four and two times more 25 

sensitive to earlier streamflow than those from NoahMP-WRF. Given the importance of changing streamflow timing for 

headwater resources, snowmelt detection methods such as DOS20 based on diel streamflow cycles may constrain hydrological 

models and improve hydrological predictions. 
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1 Introduction 30 

The role of earlier snowmelt in driving earlier streamflow timing is of great concern in a changing climate (Barnett et al., 2005; 

Harpold and Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume 

comes at the expense of later summer streamflow in regions like the western US (Hidalgo et al., 2009; McCabe and Clark, 

2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et 

al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy 35 

inputs (Meira Neto et al., 2020), decreasing runoff from upland forested watersheds (Foster et al., 2016; Jepsen et al., 2018; 

Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting downstream systems 

(Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress (Immerzeel et al., 2020). 

However, it remains difficult to predict how much streamflow timing and amount will shift in future climates due to altered 

snow accumulation patterns (Mote et al., 2018), melt rates (Musselman et al., 2017), and shifts from snowfall to rainfall (Klos 40 

et al., 2014). 

 

Due to the complexity of upland streamflow generation, physically based hydrological models are typically used to predict 

how snowpack changes will interact with the critical zone (CZ), and thus affect short-term flood and seasonal water supply 

forecasts (Kopp et al., 2018; Wood and Lettenmaier, 2006). In mountainous regions like the western US, models need to 45 

accurately simulate snow processes across watersheds with varying snowpack conditions (Serreze et al., 1999) and then 

transport and store that water in the CZ along hillslopes and watersheds with varying subsurface properties (Brooks et al., 

2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more closely mirror the timing 

of rainfall. Precipitation phase is mediated by basin elevation and hypsometry (Jennings et al., 2018; Wayand et al., 2015), 

which also influences precipitation amounts (Houze, 2012), with higher elevations and steeper watersheds typically having 50 

higher precipitation and snowfall. Solar radiation is the primary energy source for snowmelt in snow-dominated montane 

watersheds (Cline, 1997; Marks and Dozier, 1992), explaining the importance of cloudiness in driving snowmelt and 

streamflow processes, as evidenced by negative correlations between cloud cover and melt rates (Sumargo and Cayan, 2018). 

Shallower snowpacks have less cold content and begin their melt earlier when solar radiation is lower (Harpold et al., 2012; 

Harpold and Brooks, 2018; Musselman et al., 2017), which shifts streamflow earlier (Clow, 2010). Storage and drainage of 55 

water in the CZ control the sensitivity of streamflow to earlier rain or melt water inputs. For example, snowmelt-mediated 

spring streamflow timing is more sensitive to climate change in watersheds with rapid subsurface drainage than in landscapes 

with deep groundwater reservoirs that drain slowly (Safeeq et al., 2013). In contrast, the sensitivity of snowmelt-mediated 

summer streamflow volume to climate change has shown to be higher in slow-draining watersheds (Tague and Grant, 2009). 

The complexity of these storage relationships is exemplified by isotopic evidence showing that the fraction of streamflow that 60 

is "young water" (less than three months old) is smaller in steeper watersheds (Jasechko et al., 2016), suggesting that 

interactions between CZ water storage and changing hydrometeorology will be challenging to predict in mountainous areas. 
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Hydrologists typically apply two types of modeling tools to predict future streamflow: empirical models (such as space-for-

time substitutions) and more mechanistically oriented models (conceptual or physically based land surface models). Space-65 

for-time substitution (STS) assumes that long-term site-to-site relationships among variables can be used to understand and 

model their likely changes over time. STS has been used in fields such as hydrology (Goulden and Bales, 2014; Jepsen et al., 

2018; Sivapalan et al., 2011), biodiversity (Blois et al., 2013) and tree growth (Klesse et al., 2020) to predict responses to 

climate change. A limitation of the STS approach is that it neglects non-correlated (or independent) changes in spatially varying 

factors (Jepsen et al., 2018). For example, heterogenous patterns of warming, variations in precipitation and vegetation, or 70 

changes that occur at different temporal scales (e.g. soil properties versus rain-snow line transition) are neglected in the STS 

approach. Conversely, physically based models embed physics and state-of-the-art understanding of hydrological processes. 

These models typically require some degree of calibration or validation to observations (e.g. daily streamflow) to increase 

their predictive skill. The current generation of regional weather models using the Weather Research and Forecasting model 

(WRF) (Skamarock et al., 2008) coupled to the Noah Multi Physics land surface model (Noah-MP) (Niu et al., 2011) has 75 

shown promising results for modeling atmospheric and snow processes in the contiguous US (He et al., 2019; Liu et al., 2017; 

Musselman et al., 2017; Scaff et al., 2020). For example, snow simulations have been used to quantify mountain snowmelt 

and streamflow response to climate change (Musselman et al., 2017, 2018). These simulations use a pseudo global warming 

(PGW) approach, which perturbs the historical climate with a climate change signal from an ensemble of global climate models 

(GCMs); using this perturbation avoids systemic biases in the GCMs and avoids issues related to their interannual variability 80 

(Liu et al., 2017). Given the importance of snowmelt to streamflow generation and its uncertain sensitivity to climate change, 

new tools that allow comparisons between land surface models and STS predictions of future streamflow are valuable, and 

could help to diagnose modeling issues that can be improved for better predictions.   

 

Few simple, low-cost observational tools exist to separate rainfall-driven from snowmelt-driven contributions to streamflow 85 

or to separate this year's melt from previous years' melt and storage. One method that can be straightforwardly applied to 

existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt, and streamflow (Kirchner et al., 

2020; Lundquist and Cayan, 2002). Coupled diel cycles have been used to study kinematic wave celerity (Kirchner et al., 

2020), the impact of snowpack variability on streamflow timing (Lundquist and Dettinger, 2005), groundwater fluctuations 

(Loheide and Lundquist, 2009), and transitions from snowmelt to evapotranspiration-dominated streamflow fluctuations 90 

(Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More recently, Kirchner et al. (2020) combined local 

observations and remote sensing to show that streamflow diel response was tightly controlled by the timing of snowpack 

disappearance. Here, we extend the ‘diel cycle index’ approach of Kirchner et al. (2020) using diel streamflow observations 

to detect the occurrence of days when streamflow is coupled to snowmelt inputs, and investigate their contributions to historical 

variability in streamflow amount and timing. We compare STS end-of-century predictions under an RCP8.5 PGW scenario 95 
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against predictions from a state-of-the-art land surface model (under the same climate scenario) across 31 mountainous 

watersheds in the western US to answer the following questions: 

1. Is there evidence of earlier and more intermittent snowmelt in warmer watersheds and years, and can we use the timing 

of snowmelt to predict the timing of streamflow volume? 

2. How does snowmelt timing predict streamflow volume timing with an STS approach and where is the timing of snowmelt 100 

most sensitive to climate change?  

3. Do historical streamflow volume timings and future STS-based projections diverge from commonly used, state-of-the-art 

land surface models? 

2 Methods 

2.1 Study Domain and Data 105 

We studied snowmelt-driven streamflow in 31 mountainous watersheds in the western US (Table 1), spanning snow fractions 

of 0.27 to 0.78 (Figure A4A), aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m 

(Addor et al., 2017; Pelletier et al., 2016) (Table 1). These watersheds are part of the CAMELS (Watersheds Attributes and 

MEteorology for Large-sample Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow 

and meteorological forcing, among other observed and simulated hydrometeorological variables at the watershed scale. These 110 

watersheds were chosen because their streamflows are unregulated, they have relatively small drainage areas (< 250 km2), and 

they are at relatively high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-

driven streamflow regimes. The names, locations, elevations, slopes, drainage areas and other key characteristics of the 31 

watersheds are presented in Table 1.  

 115 

The data used in this analysis include hourly streamflow and incoming shortwave radiation, and mean daily relative humidity, 

air temperature and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming 

shortwave radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest 

grid point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are 

from CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is based on ground observations. Available 120 

hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites. Figure A1A shows the 

number of years that have more than 70, 80 and 90% of days with hourly records for the period between December 1 and 

August 1. Based on this preliminary analysis, we decided to use water years with more than 80% of days with hourly 

streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze (except 

for sites #10 and #30 with 4 years). 125 
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2.2 Snowmelt and Streamflow Diel Coupling 

To infer the occurrence of days when solar radiation-driven snowmelt is coupled to the streamflow, hereafter referred as 

snowmelt days for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow 

(Figure 1). A snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged 130 

streamflow is statistically significant (p-value≤0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response 

after snowmelt, we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all 

combinations, and kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although 

having both a correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant 

correlations above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1 135 

for r>0.6) to assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used 

to avoid confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020; 

Mutzner et al., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation 

with lags below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner 

et al., 2020). However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel 140 

response. To minimize this, we further restricted the lags that could be selected based on optimum lags from snowmelt days 

with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-sky solar radiation 

(grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and was calculated as 

the lags between the 10th and 90th percentile of clear-sky days with Spearman correlations above 0.8. This second filter also 

helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance of selecting 18-hr 145 

lags that can be associated with ET. Despite efforts to select snowmelt-driven streamflow diel responses only, this methodology 

does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always be excluded. 

Excluding such cases would require hourly precipitation measurements, which are not available for all of our study watersheds. 

However, we believe that any such cases will minimally affect the results of our analysis.  

 150 

2.3 Space-for-Time substitution (STS) for DOS20  

We defined the day when the 20th percentile of the snowmelt days occurs (DOS20) as a new metric to characterize the 

seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5 th, 10th and 30th 

percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis. We chose 

this metric because we expect it to be associated with the timing of streamflow volume, and the choice of slightly earlier or 155 

later DOS would not substantially change our results. We fitted a stepwise multiple linear regression model (MLR, p-

value<0.01, Equation 1) to reconstruct historical DOS20 across all our sites (Figure A5) using four climate variables: total 

precipitation, air temperature, relative humidity, and solar radiation.   
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𝐷𝑂𝑆20 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3

+ 𝛽7𝑥1𝑥4 + 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4  + 𝛽10𝑥3𝑥4 

(1) 

 

Where x1 is cumulative air temperature (°C), x2 is cumulative precipitation (mm), x3 is mean relative humidity (%), x4 is mean 

solar radiation (W m-2), and βi are the regression coefficients. Mean annual climate variables were calculated for the period 160 

between November 1st and DOS20. This results in DOS20 being present in both sides of Equation 1; therefore, the stepwise 

MLR requires an iterative solution when used in a predictive mode (i.e. for the climate change analysis). We verified the 

stepwise MLR assumptions, namely, linear relationships between each predictor and DOS20, residuals are normally distributed, 

homoscedasticity, and absence of strong multicollinearity (as suggested by a Variance Inflation Factor < 3). We also tested 

other metrics related to the timing of early snowmelt events. These included: the first snowmelt day, the first three consecutive 165 

snowmelt events, and the 5th, 10th and 30th percentile of snowmelt days (DOS5, DOS10 and DOS30, respectively). All these 

metrics were also computed using each of the different Spearman correlation cutoffs (Table A1, A2, A3, A4 and A5), but the 

main analysis presented here focuses on DOS20 based on snowmelt days calculated with hourly Spearman correlations >0.8. 

We used an STS approach to predict changes to DOS20 based on the stepwise MLR model and an end-of-the-century mean 

climate change signal from WRF (Liu et al., 2017). WRF was run under a high emission scenario (RCP8.5) using the PGW 170 

approach for the end of the century. Overall, it projects a warmer (4 – 5.2°C) and wetter (0 - 20% increase in precipitation) 

climate (Figure A4 and A5). As previously mentioned, predictors used in the stepwise MLR are calculated for the period 

between November 1st and DOS20; therefore, as we do not know the value of DOS20 in the future, an iterative solution is 

required to solve for DOS20 in Equation 1. We find a numerical solution using a 2-day convergence threshold between 

iterations, so that |DOS20i+1 – DOS20i| ≤ 2 days, where ‘i’ is the number of the iteration. 175 

2.4 Streamflow Volume Timing from a Land-Surface Model 

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and 

the period 2071-2100 under PGW. We used daily watershed-scale outputs of surface and subsurface runoff from historical and 

future NoahMP-WRF simulations to estimate DOQ25 and DOQ50. Given the range of the watershed drainage areas (4 - 236 

km2, Table 1), watersheds covering several grid cells use the total surface and subsurface runoff for their corresponding grid 180 

cells. Small watersheds are represented by only the single nearest NoahMP-WRF grid cell. The way NoahMP-WRF is 

implemented within WRF lacks a streamflow routing scheme such as the one in WRF-Hydro (Gochis et al., 2020); therefore, 

we use the sum of surface and subsurface runoff to estimate DOQ25 and DOQ50. We also repeated the analysis using surface 

runoff only, leading to similar results (Figure A7). Given the relatively coarse NoahMP-WRF spatial resolution (4 km) 

compared to the watershed drainage areas (4 - 236 km2), we expect that mean streamflow timing metrics will not be 185 

significantly affected by the lack of streamflow routing. 
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3 Results 

3.1 Empirical Relationships Between DOS20, Climate and Streamflow 

Mean DOS20 has a strong regional variability that is reasonably captured by a linear correlation (R2 = 0.48) with the mean 

winter air temperature (November to February, TNDJF) in watersheds with TNDJF<-3°C, whereas warmer watersheds do not 190 

follow the same pattern (Figure 2A). Warmer sites (TNDJF > -3 °C) have a more variable mean DOS20 ranging from mid-January 

to early May, whereas the coldest sites (TNDJF <-8°C) have a later and less variable DOS20 around mid to late May. On average, 

1 °C of warming results in 7.2-day earlier DOS20. The relationship between later DOS20 and colder TNDJF is also found in the 

year-to-year variations in DOS20 at most watersheds (21 out of the 31), with warmer years experiencing earlier DOS20 (inset 

histogram in Figure 2A and 2B). We quantified the intermittency in snowmelt days using the lag-1 autocorrelation in a binary 195 

snowmelt index, where autocorrelations closer to 0 indicate more intermittent snowmelt. On average, warmer watersheds have 

more intermittent snowmelt days compared to colder watersheds (Figure 2C). Watersheds with TNDJF<-4°C have a more 

consistent mean annual autocorrelation that increases as TNDJF decreases, ranging between roughly 0.35 and 0.65 (Figure 2C 

and S2C). In contrast, warmer watersheds (TNDJF >-4°C) have a more variable mean annual autocorrelation that ranges between 

roughly 0.1 and 0.6, with a mean value around 0.4. At most watersheds (22 out of 31), interannual regression slopes between 200 

autocorrelation and TNDJF show that warmer years have a lower autocorrelation indicative of more intermittent snowmelt days; 

however, these interannual relationships vary greatly (Figure 2D). A strong linear relationship was found between the date of 

the 25% of the annual streamflow volume (DOQ25) and TNDJF. Warmer watersheds (TNDJF>0°C) generate streamflow the 

earliest (between mid-December and early March) compared to the coldest watersheds (TNDJF<-8°C), with DOQ25 between 

early and late May (Figure 2E). On average, the cross-site regression shows that a 1°C increase in TNDJF produces a 13-day 205 

earlier DOQ25. For most watersheds (25 out of 31), interannual regressions show a similar pattern with warmer years having 

earlier DOQ25; however, these interannual regressions have shallower slopes than the cross-site relationship (histogram inset 

Figure 2E and 2F).  

 

Strong correlations between DOS20 and both DOQ25 and DOQ50 (the date of the 50% of the annual streamflow volume) (R2 = 210 

0.85, Figure 3A and 3C) suggest connections between the timing of snowmelt and streamflow generation across watersheds 

and years. On average, sites that melt earlier are associated with earlier DOQ25 (Figure 3A) and a lower ratio of snowfall to 

total precipitation (snow fraction<0.5). The relationship between DOS20 and DOQ25 closely follows the 1:1 line (Figure 3A), 

although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 1) deviate substantially from this pattern, 

perhaps because they receive relatively little of their precipitation as snow. Similar watershed-level relationships using 215 

interannual variability in DOQ25 were found for most watersheds, with statistically significant slopes varying between 0.4 and 

2.5 day day-1. DOS20 also predicts DOQ50 well, with 10-day earlier snowmelt producing 7-day earlier DOQ50 on average 

(Figure 3C), and similar watershed-level interannual relationships (inset histogram Figure 3C). The same three relatively rainy 
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watersheds have DOQ50 prior to the DOS20 (Figure 3C), suggesting that early snowmelt timing is not an important predictor 

of DOQ50 in such places. 220 

3.2 Sensitivity of Snowmelt Timing (DOS20) to Climate Change 

We fitted a stepwise multiple linear regression model (MLR, Equation 1) with four climate variables (air temperature, 

precipitation, relative humidity, and solar radiation) to predict DOS20 across watersheds and years. A total of 333 watershed-

year combinations of DOS20 and climate variables were used to train the stepwise MLR model. The watershed-year relationship 

between observed and MLR predictions has a relatively high R2 of 0.83, a root mean square error (RMSE) of 17.5 days, and 225 

normally distributed residuals (p < 0.01) off the 1:1 line and centered at 0 with a standard deviation of 17.3 days (Figure 4A). 

The relationship between observations and MLR predictions of inter-watershed mean annual DOS20 (Figure 4B) is also strong 

(R2 = 0.83 and RMSE = 13.2 days) and follows the 1:1 line. Similarly, when we look at interannual values, represented by the 

lines overlapping circles in Figure 4B, we find a good agreement where most slopes are close to 1:1 (see inset plot Figure 4B). 

This analysis demonstrates that the MLR model can reasonably represent both the mean annual DOS20 values at each watershed 230 

and their interannual variability. Table A4 shows standardized beta coefficients that indicate the importance of each climate 

variable in the stepwise MLR. For the 0.8 correlation cutoff we found that incoming shortwave radiation has the greatest 

importance (beta = 0.75), followed by relative humidity (beta = 0.37) and air temperature (beta = -0.31). 

 

STS projections under climate change show earlier mean annual DOS20 in all watersheds, with significant variability from site 235 

to site (Figure 5A). Most watersheds show significant end-of-century changes in DOS20 ranging from up to three months earlier 

in cold sites where, historically, snowmelt under clear-sky conditions dominates (circles in Figure 5A), to as little as 20 days 

earlier in warm sites under historically cloudier conditions. The cross-site average change in DOS20 is 55.3 days with a standard 

deviation of 21.8 days. In many watersheds the mean projection of DOS20 under climate change is within the historically 

observed variability in DOS20 (Figure 5A). STS predicts that colder watersheds (TNDJF≤-8°C) on average are about 70% more 240 

sensitive to climate change (13.7±4.6 days °C-1) than warmer watersheds are (TNDJF>0°C) (8.1±6.2 day °C-1), as represented by 

the change in the DOS20 per degree of warming (Figure 5B). Site #24 (South Fork Tolt River, WA.) shows almost no change in 

its DOS20, which can be attributed to its mild climate change signal compared to the other watersheds (about +4°C, 5% 

precipitation increase, and virtually no change in humidity and solar radiation; Figure A4). When we look at the mean 

sensitivity across all watersheds, the STS analysis suggest an average sensitivity of 11.1±4.2 days ºC-1. 245 

 

 

 

 

 250 
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3.3 Sensitivity of Streamflow Timing to Climate Change: STS versus NoahMP-WRF 

We compared historical and STS projections for DOQ25 and DOQ50 with those from NoahMP-WRF. Streamflow sensitivity 

using STS projections for DOS20 under climate change were built using the linear regressions presented in Figure 3A and 3C 255 

(DOQ25 and DOQ50 vs DOS20). STS projections for DOQ25 range from early January to late May (red symbols, Figure 6A), 

advancing between 20 and 100 days under RCP 8.5 (x-axis, Figure 6C). The DOQ50 is projected to advance between roughly 

15 and 65 days (x-axis, Figure 6D), ranging from mid-February to late May (red symbols, Figure 6C). The historical DOQ25 

is greatly underestimated by NoahMP-WRF (blue symbols, Figure 6A) with a mean DOQ25 in mid-February, whereas 

historical DOQ25 is in early April (50-day mean difference). Projected changes to DOQ25 by NoahMP-WRF under PGW range 260 

between early January to mid-March (mean in early February), whereas STS projections range between early January and late 

March (mean in mid-February; Figure 6A). These results indicate that STS projections of DOQ25 are about four times more 

sensitive to climate change than those from NoahMP-WRF (ΔDOQ25 is about -60 days for STS and -15 days for NoahMP-

WRF; Figure 6C). Historical DOQ50 is reasonably well represented by NoahMP-WRF under the current climate (blue symbols, 

Figure 6B) with a mean difference of only 7 days, but future changes of about -20 days are roughly half of the -40 days from 265 

the STS projections (Figure 6D). STS projections of DOQ50 range between mid-February and early April, whereas NoahMP-

WRF projections range between mid-March and mid-May. Watersheds with the largest disagreement between STS and 

NoahMP-WRF projections for streamflow volume timing are those where DOS20 is the most sensitive to climate change, 

represented by the orange and yellow symbols in Figure 6C and 6D. These watersheds are characterized by historical cold 

winter temperatures (TNDJF<-6ºC) with snowmelt occurring mostly under sunny conditions (circle symbols), and are mostly 270 

located in the Rocky Mountains. 
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4 Discussion 

The new DOS20 metric describes the timing of early snowmelt-mediated streamflow based on the diel streamflow signal and 

suggests that shifts in snowmelt timing in colder, sunnier watersheds due to climate change have a greater effect on streamflow 275 

volume timing than in warmer, cloudier watersheds where snowmelt is more intermittent and more interspersed with rain. 

Despite the intuitive connections between snowmelt and streamflow, empirically linking changes in earlier snowmelt rates 

(Harpold and Brooks, 2018; Musselman et al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing 

(Stewart et al., 2004) has been challenging (Weiler et al., 2018), partly due to the scales at which snow (point-scale) and 

streamflow (watershed-scale) are typically measured. For example, evidence of snowmelt at Snow Telemetry (SNOTEL) 280 

locations in the US has shown that snowmelt events are more intermittent at sites with higher humidity, and future modeling 

suggests slower, earlier snowmelt in the largest snowpacks in areas with lower humidity and cloud cover (Harpold and Brooks, 

2018; Musselman et al., 2017). However, the potential cascading effects of earlier and slower snowmelt onto streamflow 

amount and timing are relatively unexplored (e.g. Berghuijs et al., 2014). Not surprisingly, the warmest and cloudiest 

watersheds have lower snow fractions and a more rainfall-dominated streamflow regime, and thus have less (and often no) 285 

interannual correlation between DOS20 and the metrics DOQ25 and DOQ50 (Figures 3A and 3C), illustrating the limitations of 

the diel streamflow method in rain-dominated watersheds. Conversely, the colder and sunnier watersheds, primarily in the 

intermountain region, have strong interannual correlations between DOS20 and DOQ25 (Figures 3A), reflecting the importance 

of snowmelt (instead of rain) in controlling streamflow volume timing. We currently lack physically based representations of 

many processes linking snowpack storage, snowmelt, subsurface storage, and the timing of water release following a 290 

hydrologic event (i.e. snowmelt or rainfall event).  Snowmelt modeling in complex terrain is challenged by the lack of adequate 

forcing data required to run models in addition to steep climate gradients. Characterizing precipitation phase and timing in 

steep watersheds remains challenging in warmer climates (Harpold et al., 2017; Jennings et al., 2018; Wayand et al., 2015), 

which will presumably increase in extent in the future (Klos et al., 2014). Complex terrain has a large effect on radiation fluxes, 

which are hard to capture at spatial scales of kilometers (Müller and Scherer, 2005) used in some land surface models. 295 

Nonetheless, this issue is less important in warmer, cloudier watersheds where longwave radiation and sensible heat are larger 

components of the energy balance (Mazurkiewicz et al., 2008). Forests exert a strong control on the snowpack mass and energy 

balance (Lundquist et al., 2013; Pomeroy et al., 1998) with spatially heterogeneous effects on snow accumulation and melt 

(Broxton et al., 2015). The presence of preferential flowpaths through the snowpack impacts the timing of melt release (Leroux 

and Pomeroy, 2017) and is not typically included in hydrological models. Once snowmelt is released from the snowpack, 300 

simulating (and validating) what fraction flows as subsurface and surface runoff remains difficult. Decades of tracer studies 

(e.g., (Godsey et al., 2010; Kirchner, 2003)) have shown that streamflow during and after hydrologic events (i.e., snowmelt or 

rainfall events) is typically ‘old water’ that has been stored in the watershed for months to years. Land surface models like 

NoahMP-WRF lack realistic groundwater stores and are at spatial resolutions that make hillslope and near-stream processes 

difficult to represent (Fan et al., 2019). For example, previous work in Sagehen Creek (site #23) suggests that streamflow 305 
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remains ~80% groundwater even during the snowmelt freshet (Urióstegui et al., 2017). Innovative observations and/or analyses 

that give new physical insights, like the diel streamflow analysis, can be used to derive such hydrologic representations, which 

could improve our prediction of hydrological systems (Kirchner, 2006).  

 

Because the diel analysis does not require assumptions embedded in physically based models, it is an independent tool that 310 

can be used to verify historical streamflow simulations from sub-daily resolved hydrological models. For example, land surface 

models could be benchmarked against observed snowmelt days based on the diel analysis or metrics like the DOS20. The diel 

analysis is also easier to implement than detailed process-based catchment models because it only requires observed hourly 

streamflow data and solar radiation. Solar radiation can be reliably represented by land surface models with data assimilation 

like NLDAS-2 (Luo et al., 2003) that assimilate field observations and remotely sensed radiation (including the effects of 315 

clouds) into an atmospheric modeling framework. We tested the sensitivity of some modeling decisions, such as the correlation 

cutoff between hourly solar radiation and streamflow used to detect snowmelt days and metrics for snowmelt timing, and 

found similar sensitivities of DOS20 to climate change across different correlation cutoffs and snowmelt timing percentiles 

(Table A5). Metrics like the first snowmelt day or the first three consecutive snowmelt days showed less consistent results 

(Table A5), likely due to individual early or mid-winter melt events that do not necessarily represent the mean watershed 320 

behavior. The diel streamflow analysis has four main limitations that need to be examined in future work: (1) it requires a 

steep enough stage-discharge relationship that daily streamflow cycles can be detected across the flow regime, (2) it focuses 

on snowmelt driven by solar radiation (and energy fluxes synchronized with it), (3) it is sensitive to assumptions about the lag 

time between solar radiation and streamflow, and (4) it is sensitive to assumptions about evapotranspiration losses. A steep 

stage-discharge relationship, in which small changes in discharge are associated with large changes in stage, is ideal to observe 325 

small diel streamflow changes with sufficient precision. Another assumption is that the majority of snowmelt is correlated with 

solar radiation. This assumption is supported by the importance of solar radiation in process-based studies of maritime and 

continental snowpacks (Cline, 1997; Jepsen et al., 2012; Marks and Dozier, 1992). Because our method allows the lag time 

between solar radiation and streamflow to vary within a predefined window, we expect it to capture other important energy 

fluxes like sensible heat that often lag the diel patterns of solar radiation (Ohmura, 2001). The third limitation is that the 330 

spatiotemporal variability in snowpack, surface and subsurface storage, and evapotranspiration will change the magnitude and 

lag time of the diel streamflow response (Kirchner et al., 2020; Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), 

which we address by allowing variable watershed- and month-specific time lags. However, lag times greater than 24 hours, 

which are associated with large watersheds or large subsurface storage, will make this method difficult to apply. The fourth 

limitation is that evapotranspiration losses must be small relative to snowmelt inputs, which is necessary because the effect of 335 

evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al., 2020). Evapotranspiration effects are minimized 

by focusing on early snowmelt when evapotranspiration losses are often assumed to be small (Bowling et al., 2018; Cooper et 

al., 2020; Winchell et al., 2016).  
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Previous STS implementations have been used to predict catchment-scale sensitivity of snowmelt-driven streamflow to 340 

changing climate using observations (Berghuijs et al., 2014; Stewart et al., 2005) and historical model output (Barnhart et al., 

2016) (Barnhart et al. 2016). Our MLR results suggest that humidity explains roughly the same or more variation in DOS20 

than temperature does (Table A4), and that solar radiation explains about twice as much DOS20 variation as either humidity or 

temperature does.  This is consistent with an energy budget dominated by solar radiation (Marks and Dozier, 1992), but also 

with a coupling between humidity and latent heat and longwave radiation effects (Harpold and Brooks, 2018). STS projections 345 

of DOS20 under the PGW scenario show that colder, drier, and sunnier sites (typical of the Rocky Mountains) are about twice 

as sensitive to warming as warmer, more humid, and cloudier sites (typical of the Pacific Northwest). Humid and warmer sites 

have relatively low snow fractions (<0.5) and, thus, a smaller snowmelt signal in the diel streamflow observations. In contrast, 

Harpold and Brooks (2018) showed that winter ablation at SNOTEL sites in humid places, like the Pacific Northwest, are more 

sensitive to warming than less humid places, like the Southwest US. The difference between these findings and our streamflow-350 

based inferences might be explained by SNOTEL sites being preferentially situated in snowy forest gaps that do not necessarily 

represent the catchment-scale, early-season snowmelt patterns focused on here. However, Kirchner et al. (2020) show general 

agreement between SNOTEL snowmelt response and the snowmelt-induced diel streamflow signal at the warm Sagehen 

Creek, CA (site #23). The reliability of STS projections partially depends on whether climate projections are within or outside 

the range of observed climate conditions. Under the PGW scenario, cold, sunny watersheds like those in the Rocky Mountains 355 

(site #9 and #10) will shift toward more humid, warmer conditions (Figure A6), like those observed in Southern Idaho (site 

#29) and the northern Sierra Nevada (site #23). In contrast, the PGW scenario in places like the Pacific Northwest, particularly 

those involving changes in atmospheric humidity above 5 g/m3 (Figure A6), have not been observed, and therefore are more 

uncertain. Overall, climate changes from PGW are mostly within the observed interannual and inter-watershed climate 

variability used to train the stepwise MLR (Figure A4). STS assumes that other variables not included in the analysis vary 360 

together with the predictive variables (climate), and neglects variables like the catchment’s physical (e.g., soil storage) and 

biological (e.g., vegetation) properties that do not necessarily co-vary with climate. Determining under what conditions we 

can reasonably apply STS remains an open question and has been posed as one the 23 unsolved problems in hydrology (Blöschl 

et al., 2019), highlighting the value of comparing our STS approach to a physically-based model.  

 365 

Sensitivity of historical snowmelt-mediated streamflow volume timing (DOQ25 and DOQ50) to climate change differ between 

STS and a land surface model, particularly in cold watersheds (Figure 6C and 6D), raising questions about current state-of-

the-art projections of streamflow timing sensitivity to climate change, like those used here from NoahMP-WRF. The observed 

data used in the STS approach have larger and more variable streamflow timing responses to climate change in cold, less 

humid, sunny places (10 – 17 days °C-1) that are representative of small, high-elevation Rocky Mountain watersheds (Figure 370 

5B). The historical diel streamflow analysis suggests that NoahMP-WRF may be systematically under-predicting the 

sensitivity of streamflow volume timing to earlier snowmelt-induced streamflow in colder and sunnier places (Figure 6C) that 

are most likely to have increased temperature and increased cloudiness in the future. The same mean annual future climate 
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projections were applied to both models; however, important differences in the streamflow timing response were found 

between NoahMP-WRF and STS approaches (Figure 6C and 6D). NoahMP-WRF running at sub-daily time steps has several 375 

advantages over the STS. For example, NoahMP-WRF can track the hourly covariance in precipitation, temperature, and 

humidity to estimate the precipitation partitioning between rain and snow. It is also able to represent hourly radiative and 

turbulent energy at the snowpack, and the cold content needed to predict snowmelt. The physical hydrology is also advanced 

and able to consider antecedent conditions and allow evapotranspiration losses that also modulate streamflow. Despite the 

advantages of land surface models like NoahMP-WRF in constraining processes for future projections, the simplicity of STS 380 

also provides several advantages. One of the main advantages is that it is derived from observations and can be used under an 

STS framework that is well constrained by the observed spatial and temporal variability of snowmelt across watersheds and 

years (Figure 4B). Also, the STS does not assume anything about the complex spatial distribution of snowpacks or subsurface 

properties and interactions with the surface, which are major constraints to physically-based models (Baroni et al., 2010; 

Christiaens and Feyen, 2001; Wilby et al., 2002). While an STS approach is not a replacement for land surface models like 385 

NoahMP-WRF, partly because the underlying streamflow datasets are not available everywhere, we believe that there is added 

value in including new benchmarks like the proposed DOS20 to further constrain modeling decisions and improve model 

fidelity required for reliable and accurate hydrological predictions.    

5 Conclusions 

Water management in the western US relies on accurate predictions of how both short-term climate variability and long-term 390 

climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between an 

empirical STS and a land surface model (NoahMP-WRF) raise important questions about the sensitivity of streamflow timing 

to climate change, particularly in cold regions, and its impact on water planning. Significant differences exist in the way STS 

and land surface models predict changes to snowmelt and streamflow timing, with both approaches having strengths and 

weaknesses; however, the land surface model misses historical patterns in streamflow response estimated by the empirical STS 395 

model. Specifically, we show that DOS20 is a strong predictor of the early season hydrograph response, particularly in cold, 

sunny areas where the NoahMP-WRF streamflow timing simulations lack sensitivity to climate change. Validating future 

model predictions is impossible, but snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to 

refine land surface models and better determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 

2017; Viviroli et al., 2007), particularly in cold regions. We propose a novel approach that can complement the benchmarking 400 

or calibration of hydrological models. For example, the snowmelt timing metric DOS20 could be used to test the performance 

of land surface models running at sub-daily scales and fine spatial resolution in representing the historical snowmelt regime 

across watersheds and years. Diel streamflow observations may provide additional information to constrain physically based 

models beyond typical benchmarking against daily streamflow or snow accumulation metrics. As land surface models move 

towards real application for water management (Kopp et al., 2018), the field hydrology community must seek ways to test and 405 
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improve these models using widely-available datasets if we are to meet the grand water management challenges posed by 

climate change and altered snowmelt regimes in key mountainous regions. 
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Figure 1: Examples of the methodology applied to three watersheds located in California (A) (B) (WY2016), Colorado (C) (D) 

(WY2014) and Washington (E) (F) (WY2012). (A), (C) and (E) show hourly solar radiation (orange), clear sky solar radiation (grey-

shaded background) and streamflow (blue) response, and the statistically significant (p<0.01) lagged spearman correlation (r>0.6) 

between streamflow and solar radiation on a text box with a thick line highlighting clear-sky days (>80% of clear-sky solar 650 
radiation). Percentages shown in the left panels represent the percentage of incoming solar radiation as a fraction of the clear sky 

solar radiation. (B), (D) and (F) show the solar radiation-driven snowmelt days (blue circles) on top of the annual hydrograph (semi-

log scale) shown for the analysis period (white background).  
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 655 

Figure 2: (A), (C) and (E) show cross-site relationships between mean winter air temperature (November to February) and DOS20, 

autocorrelation of snowmelt days, and the date of 25% of annual streamflow volume (DOQ25), respectively. Slopes of individual 

sites’ interannual relationships are shown as the lines on top of each symbol, where statistically significant (p-value ≤0.05) slopes are 

red. (B), (D) and (F) show the spatial variability of the watershed-level interannual slopes of the corresponding (A), (C) and (E) panel 

variables, with significant slopes highlighted in symbols with thicker edges. Non-significant interannual slopes are presented to show 660 
the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of snowmelt days under 

clear-sky conditions. Sunny sites (circles) have >90%, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites 

(diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80% of the potential 

clear-sky solar radiation.  
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 665 

Figure 3: (A) The day when the 20th percentile of snowmelt days occurs (DOS20) against the date of 25% of the annual streamflow 

volume (DOQ25); inset plot shows interannual slopes at the watershed level. (B) Regional map with the interannual slopes of linear 

regressions at the watershed level between DOS20 and DOQ25. (C) DOS20 against the date of 50% of the annual streamflow volume 

(DOQ50); inset plot shows interannual relationships at the watershed level. (D) Regional map with the interannual slopes of linear 

regressions at the watershed level between DOS20 and DOQ50. Symbols with thicker edges in (B) and (D) represent statistically 670 
significant interannual slopes (p≤0.05). Dashed lines in (A) and (C) are 1:1 lines, and the slopes of sites’ interannual relationships 

are shown as the lines on top of each symbol, where statistically significant (p-value ≤0.05) slopes are red. Sites #24, #25 and #31, 

indicated by dashed circles, fall far from the linear regression and are not included in its calculation. Symbols indicate the mean 

annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90%, partly cloudy sites (squares) have between 70 

and 90%, and cloudy sites (diamonds) have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential 675 
clear-sky solar radiation. 
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Figure 4: (A) scatterplot showing the fit of the stepwise multiple linear regression (MLR) model to the observed DOS20 across all 

sites and years. (B) shows the same stepwise MLR model applied at the mean annual watershed-level across all watersheds. 680 
Interannual variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e. watershed); 

red and blue lines indicate statistically significant (p≤0.05) and insignificant slopes, respectively.  
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Figure 5: (A) Historical DOS20 from diel analysis and projected changes in DOS20 using STS projections under an RCP 8.5 PGW 685 
climate for the end of the 21st century. Watersheds are sorted from earlier (left) to later (right) historical DOS20. Symbols associated 

with future projections (stars) are not classified by sunny, partly cloudy, or cloudy, as we make no inference about the cloudiness 

condition of snowmelt days under the climate change scenario. Blue symbols in (A) represent the mean annual percentage of clear-

sky snowmelt days, where sunny sites (circles) have >90%, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites 

(diamonds) have <70%. Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. 690 
(B) Relationship between mean winter air temperature and the sensitivity of DOS20 to climate change as projected by the STS. 
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Figure 6: Changes to DOQ25, and DOQ50 due to climate change under an RCP8.5 PGW climate scenario by the end of the century. 695 
(A) and (B) compare historical against projected values between NoahMP-WRF and the STS. (C) and (D) compare the projected 

change (future minus historical) between NoahMP-WRF and STS, colored by the sensitivity of DOS20 to climate change as projected 

by the STS analysis (Figure 5b). Symbols surrounded by black circles indicate sites that were excluded from the regression analysis 

in Figure 3 (rainier sites #24, #25 and #31). Symbols represent the historical mean annual percentage of clear-sky snowmelt days, 

where sunny sites (circles) have >90%, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have 700 
<70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. We make no 

inference about the cloudiness condition of snowmelt days under the RCP8.5 PGW climate scenario; however, red symbols (upper 

panels) follow the same symbology for easier interpretation. 
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Table 1: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017). 

ID USGS ID Watershed Name 

Drainage 

Area 

(km2) 

Mean 

Elevation 

(masl) 

Mean 

slope (m 

km-1) 

Lat. 

(°N) 

Lon. 

(°W) 

Snow 

Fraction 

Aridity 

index 

Soil 

Depth 

(m) 

1 06278300 Shell Creek, WY. 58.9 2,953 86.7 44.51 107.40 0.73 1.32 0.74 

2 06311000 
North Fork Powder 

River, WY. 
61.2 2,516 41.1 44.03 107.08 0.57 1.68 0.90 

3 06614800 
Michigan River, 

CO. 
4.0 3,297 145.8 40.50 105.87 0.76 1.29 0.57 

4 06622700 
North Brush Creek, 

WY. 
98.7 2,837 71.3 41.37 106.52 0.72 1.48 2.20 

5 06623800 
Encampment 

River, WY. 
187.7 2,971 90.9 41.02 106.82 0.75 1.06 1.14 

6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 106.22 0.74 1.46 2.52 

7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 105.56 0.47 2.12 0.50 

8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 105.66 0.47 1.50 0.85 

9 09034900 Bobtail Creek, CO. 15.7 3,571 102.8 39.76 105.91 0.73 1.16 0.47 

10 09035900 

South Fork of 

Williams Fork, 

CO. 

72.8 3,241 123.9 39.80 106.03 0.69 1.44 0.56 

11 09047700 
Keystone Gulch, 

CO. 
23.6 3,334 103.8 39.59 105.97 0.63 1.92 0.45 

12 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 106.32 0.71 1.40 0.27 

13 09066300 Middle Creek, CO. 15.5 2,944 143.8 39.65 106.38 0.69 1.49 0.48 

14 09352900 
Vallecito Creek, 

CO. 
188.2 3,283 156.1 37.48 107.54 0.63 1.24 0.50 

15 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 109.37 0.50 1.79 1.16 

16 09378630 
Recapture Creek, 

UT. 
10.4 2,125 53.4 37.76 109.48 0.50 1.88 0.55 

17 09386900 Rio Nutria, NM. 184.9 2,342 37.4 35.28 108.55 0.31 2.48 1.07 

18 09404450 
East Fork Virgin 

River, UT. 
193.0 2,070 56.2 37.34 112.60 0.42 2.86 0.82 

19 09492400 
East Fork White 

River, AZ. 
129.0 2,469 65.4 33.82 109.81 0.27 1.88 0.92 

20 10205030 Salina Creek, UT. 134.6 2,489 76.2 38.91 111.53 0.58 2.46 0.67 

21 10234500 Beaver River, UT. 236.4 2,499 95.2 38.28 112.57 0.63 2.06 0.60 
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22 10336660 
Blackwood Creek, 

CA. 
29.8 2,113 83.5 39.11 120.16 0.67 0.77 0.79 

23 10343500 
Sagehen Creek, 

CA. 
27.6 2,157 81.2 39.43 120.24 0.71 1.10 1.20 

24 12147600 
South Fork Tolt 

River, WA. 
14.1 1,068 159.4 47.71 121.60 0.27 0.22 0.63 

25 12178100 
Newhalem Creek, 

WA. 
69.7 1,305 255.7 48.66 121.24 0.53 0.33 0.54 

26 12381400 
South Fork Jocko 

River, MT. 
151.0 1,877 102.2 47.20 113.85 0.59 0.97 0.62 

27 12447390 
Andrews Creek, 

WA. 
58.1 1,701 172.6 48.82 120.15 0.78 0.86 0.47 

28 13018300 Cache Creek, WY. 27.9 2,198 109.5 43.45 110.70 0.66 1.50 0.69 

29 13083000 Trapper Creek, ID. 133.2 1,863 69.1 42.17 113.98 0.49 2.11 1.04 

30 13240000 
Lake Fork Payette 

River, ID. 
125.6 1,965 110.1 44.91 116.00 0.73 0.75 0.44 

31 14158790 Smith River, OR. 40.6 1,027 116.4 44.33 122.05 0.37 0.36 0.85 
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7 Appendices 

 

Figure A1: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between 

December 1 and August 1. Gauge ID is as presented in Table A1. Numbers of years at site #13 are the same for all thresholds 715 
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation 

cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation. 
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Figure A2: (A): CAMELS mean winter (November to February) air temperature, (B) mean annual DOS20, (C) Mean annual 1-day 720 
lag autocorrelation of snowmelt days occurrence, and (D) mean annual DOQ25. Symbols (circle, square and diamond) represent the 

mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%, partly cloudy have between 70 and 90%, and 

cloudy have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. 
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 725 

Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between 

December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater 

than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky 

conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-

sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where 730 
sunny sites have >90%, partly cloudy have between 70 and 90%, and cloudy have <70. 
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between 

November and DOS20 in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the 735 
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century (WRF-PGW). This 

analysis suggests that most of the climate change signal from NoahMP-WRF PGW is within the observed climate variability, except 

for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond) associated with 

historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%, partly cloudy 

have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential 740 
clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global 

warming scenario, and thus, we use a five-point star (in red) for the future scenario. 
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 745 

Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the 

century. (A) shows changes in precipitation against air temperature. (B) shows incoming shortwave against absolute humidity. 

Numbers represent the Gauge IDs as presented in Table A1. 
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 750 

Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and 

shortwave radiation (SWR) at each watershed, and the changes associated with PGW as simulated by WRF. (B) shows the same 

analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated with historical values 

represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%, partly cloudy have between 70 

and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar 755 
radiation. We make no inference about the cloudiness condition during snowmelt days under the RCP8.5 pseudo global warming 

scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers next to blue symbols represent the Gauge IDs 

as presented in Table A1. 
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 760 

Figure A7: Same as Figure 6 but using streamflow timing metrics from NoahMP-WRF calculated using surface runoff only, as 

opposed to using surface plus subsurface runoff (as in Figure 6). Note the improved fit in historical DOQ25; however, this analysis 

yields very similar results to those of Figure 6, with NoahMP-WRF streamflow simulations being much less sensitive than those from 

STS to climate change under an RCP8.5 pseudo global warming scenario. (A) and (B) compare historical against projected values 

between NoahMP-WRF and the STS. (C) and (D) compare the projected change (future minus historical) between NoahMP-WRF 765 
and STS, colored by the sensitivity of DOS20 to climate change as projected by the STS analysis (Figure 5b). Symbols surrounded by 

black circles indicate sites that were excluded from the regression analysis in Figure 3 (rainier sites #24, #25 and #31). Symbols 

(circle, square and diamond) represent the historical mean annual percentage of clear-sky snowmelt days, where sunny sites have 

>90%, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with more 

than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under 770 
the RCP8.5 PGW climate scenario; however, red symbols (upper panels) follow the same symbology for easier interpretation. 
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Table A1: Coefficient of determination (R2) and slope (in parenthesis, day/day) of the linear regression between different early 

snowmelt timing metrics and DOQ25 and DOQ50, as presented in Figure 3, for different correlation cutoffs (r) between hourly solar 775 
radiation and streamflow. DOSxx represent the date when the xxth percentile of snowmelt days occurs. Sites #24, #35 and #31, are 

excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections. 

Early snowmelt timing metrics  vs DOQ25  vs DOQ50 

r > 0.5 

1st snowmelt day 0.13 (0.61) 0.06 (0.25) 

1st 3 consecutive snowmelt day 0.5 (0.71) 0.4 (0.4) 

DOS5 0.37 (0.83) 0.28 (0.45) 

DOS10 0.49 (0.91) 0.43 (0.52) 

DOS20 0.69 (1.1) 0.66 (0.67) 

DOS30 0.73 (1.1) 0.72 (0.68) 

r > 0.6 

1st snowmelt day 0.24 (0.73) 0.15 (0.35) 

1st 3 consecutive snowmelt day 0.59 (0.77) 0.49 (0.44) 

DOS5 0.46 (0.82) 0.37 (0.45) 

DOS10 0.63 (0.97) 0.53 (0.55) 

DOS20 0.76 (1.05) 0.72 (0.64) 

DOS30 0.77 (1.07) 0.78 (0.67) 

r > 0.7 

1st snowmelt day 0.42 (0.73) 0.3 (0.39) 

1st 3 consecutive snowmelt day 0.62 (0.85) 0.59 (0.53) 

DOS5 0.61 (0.86) 0.51 (0.49) 

DOS10 0.71 (0.94) 0.63 (0.55) 

DOS20 0.76 (0.99) 0.75 (0.62) 

DOS30 0.79 (1.03) 0.82 (0.65) 

r > 0.8 

1st snowmelt day 0.66 (0.87) 0.54 (0.5) 

1st 3 consecutive snowmelt day 0.76 (1.09) 0.78 (0.71) 

DOS5 0.79 (1.01) 0.7 (0.6) 

DOS10 0.83 (1.03) 0.78 (0.64) 

DOS20 0.85 (1.07) 0.85 (0.68) 

DOS30 0.85 (1.1) 0.88 (0.72) 
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Table A2: Root mean square error (RMSE) and coefficient of determination (R2, in parenthesis) associated with several stepwise 

multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g. Equation 1 uses 780 
DOS20) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents 

the date when the xxth percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 

also shown in Figure 4A. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 11.1 (0.87) 12.3 (0.88) 15.2 (0.88) 21.7 (0.82) 

First 3 consecutive snowmelt days 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) 20.2 (0.8) 

DOS5 14.9 (0.83) 15.4 (0.85) 17.3 (0.86) 21.1 (0.8) 

DOS10 16.4 (0.82) 17.3 (0.83) 19.9 (0.82) 19.6 (0.82) 

DOS20 16.5 (0.82) 17.9 (0.82) 18.9 (0.82) 17.5 (0.83) 

DOS30 16.3 (0.82) 17.4 (0.82) 17.8 (0.82) 16.3 (0.83) 
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Table A3: Coefficient of determination (R2) for the site-average stepwise multiple linear regression, analogous to that presented in 

Figure 4B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt 

days metrics). DOSxx represents the date when the xxth percentile of snowmelt days occurs. Bolded number is associated with the 

stepwise MLR in Equation 1 using DOS20. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.8 0.82 0.89 0.79 

First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69 

DOS5 0.84 0.85 0.87 0.83 

DOS10 0.84 0.85 0.86 0.84 

DOS20 0.83 0.82 0.82 0.82 

DOS30 0.83 0.81 0.81 0.8 
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly 

solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that 

of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp: 

Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xxth percentile of 795 
snowmelt days occurs. *indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling 

decisions used in the result and discussion sections. 

Early snowmelt timing metrics β1: AT β2: Pp β3: RH β4: SWR 
β 5: 

ATxPp 

β 6: 

ATxRH 

β 7: 

ATxSWR 

β 8: 

PpxRH 

β 9: 

PpxSWR 

β 10: 

RHxSWR 

r > 0.5 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.41 0.74 0.002 0.38 0.19 n/a n/a -0.33 n/a -0.19 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.55 0.45 0.22 0.56 0.26 n/a n/a n/a 0.23 -0.21 

DOS20 -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28 

DOS30 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27 

r > 0.6 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16 

DOS20 -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24 

DOS30 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24 

r > 0.7 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17 

DOS20 -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24 

DOS30 -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26 

r > 0.8 

1st snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06 

1st 3 consecutive 

snowmelt days 
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27 

DOS5 -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19 

DOS10 -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26 

DOS20 -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29 

DOS30 -0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 -0.26 
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Table A5: Coefficient of determination (R2) and slope (in parenthesis, days °C-1) of the linear regression between STS sensitivity to 800 
warming and sites’ mean winter air temperature as presented in Figure 5B, for different early snowmelt day metrics and correlation 

cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when the xxth percentile of snowmelt days 

occurs. Bolded numbers are associated with the modeling decisions used in the result and discussion sections. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (-0.75) 

First 3 consecutive snowmelt days 0.02 (-0.30) 0.08 (-0.51) 0.00 (-0.05) 0.00 (-0.07) 

DOS5 0.00 (0.04) 0.01 (-0.18) 0.02 (-0.32) 0.25 (-1.00) 

DOS10 0.00 (-0.09) 0.25 (-0.86) 0.37 (-1.17) 0.2 (-0.66) 

DOS20 0.27 (-0.68) 0.35 (-0.89) 0.37 (-0.99) 0.33 (-0.75) 

DOS30 0.22 (-0.57) 0.26 (-0.65) 0.27 (-0.66) 0.20 (-0.52) 
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