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Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening 

water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change, and where it is most 15 

sensitive, remain key questions. Physically based hydrological models are often used for this purpose; however, they have 

embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to 

provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to 

streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land-surface 

simulations across the mountainous western US. We develop an observational technique for detecting streamflow responses 20 

to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the 

date of the 20th percentile of snowmelt days (DOS20), across 31 western US watersheds affected by snow, as a proxy for the 

beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-January to late May among our sites, with 

warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOS20 strongly correlates with the dates of 25% 

and 50% annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), suggesting that a one-day earlier DOS20 corresponds 25 

with a one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical projections of future DOS20 based on a stepwise multiple 

linear regression across sites and years under the RCP8.5 scenario for the late 21st century show that DOS20 will occur on 

average 11±4 days earlier per 1°C of warming. However, DOS20 in colder watersheds (mean November-February air 

temperature, TNDJF < -8ºC) is on average 70% more sensitive to climate change than in warmer watersheds (TNDJF > 0ºC). 

Moreover, empirical projections of DOQ25 and DOQ50 based on DOS20 are about four and two times more sensitive to climate 30 
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change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario. 

Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected 

streamflow sensitivity, snowmelt detection methods such as DOS20 based on diel streamflow cycles may help to constrain 

model parameters, improve hydrological predictions, and inform process understanding. 

1 Introduction 35 

Earlier streamflow caused by earlier snowmelt is of great concern in a changing climate (Barnett et al., 2005; Harpold and 

Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume comes at the 

expense of later summer streamflow in regions like the western United States (US) (Hidalgo et al., 2009; McCabe and Clark, 

2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et 

al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy 40 

inputs (Meira Neto et al., 2020; Gordon et al., 2022), decreasing runoff from upland forested watersheds (Foster et al., 2016; 

Jepsen et al., 2018; Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting 

downstream systems (Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress 

(Immerzeel et al., 2020). However, it remains difficult to predict how much streamflow timing and amount will shift in future 

climates (Gordon et al., 2022) due to altered snow accumulation patterns (Mote et al., 2018) and melt rates (Musselman et al., 45 

2017), and shifts from snowfall to rainfall (Klos et al., 2014). 

 

Physically based hydrological models are typically used to predict how snow accumulation and melt will interact with the 

critical zone (CZ) to affect short-term flooding and seasonal water supply (Kopp et al., 2018; Wood and Lettenmaier, 2006). 

In mountainous regions like the western US, models need to accurately simulate snow processes across watersheds with 50 

varying snowpack conditions (Serreze et al., 1999) and then transport and store that water in the CZ with varying subsurface 

properties (Brooks et al., 2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more 

closely mirror the amount and timing of rainfall. Precipitation phase (rainfall versus snowfall) is mediated by basin elevation 

and hypsometry (Jennings et al., 2018; Wayand et al., 2015), which also influences precipitation amounts (Houze, 2012), with 

higher elevations and steeper watersheds typically having higher precipitation and snowfall. Solar radiation is the primary 55 

energy source for snowmelt in snow-dominated montane watersheds (Cline, 1997; Marks and Dozier, 1992). Conversely, 

cloudiness lowers solar radiation and melt rates (Sumargo and Cayan, 2018). Shallower snowpacks have less cold content and 

begin to melt earlier when solar radiation is lower (Harpold et al., 2012; Harpold and Brooks, 2018; Musselman et al., 2017), 

which shifts streamflow earlier (Clow, 2010). Storage and drainage of water in the CZ control the sensitivity of streamflow to 

earlier rain or melt water inputs. For example, snowmelt-mediated spring streamflow timing is more sensitive to climate change 60 

in watersheds with rapid subsurface drainage than in landscapes with deep groundwater reservoirs that drain slowly (Safeeq et 

al., 2013). In contrast, slow-draining watersheds have greater sensitivity to snowmelt-mediated summer streamflow volume 
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from climate change (Tague and Grant, 2009). The complexity of these storage relationships is exemplified by isotopic 

evidence showing that the fraction of streamflow that is "young water" (less than three months old) is smaller in steeper 

watersheds (Jasechko et al., 2016), suggesting that physically modeling interactions between CZ water storage and changing 65 

hydrometeorology will be challenging in mountainous areas. In a recent data-driven review, Gordon et al. (2022) proposed a 

predictive framework composed of three testable and inter-related mechanisms to infer changes to snowmelt-driven streamflow 

response under warming. Such mechanisms are associated with snow season energy and mass exchanges, the intensity of snow 

season liquid water input and the synchrony of energy and water availability, and their analysis highlights the complexities in 

predicting future streamflow in regions where multiple mechanisms interact. 70 

 

Hydrologists typically apply two types of modeling tools to predict streamflow: empirical models and more mechanistically 

oriented models (conceptual or physically based land surface models). Empirical models assume that long-term and often site-

to-site statistical relationships among predictor variables (e.g., precipitation and air temperature) and water fluxes (e.g., 

evapotranspiration and streamflow) can be used to understand and model their likely changes over time or space. Empirical 75 

models used to predict changes over time (sometimes referred to as space-for-time substitutions) have been used to predict 

responses to climate change in fields such as hydrology (Goulden and Bales, 2014; Jepsen et al., 2018; Sivapalan et al., 2011), 

biodiversity (Blois et al., 2013) and tree growth (Klesse et al., 2020). Such models use retrospective information from different 

places ("space”), typically spanning wide range of conditions (e.g., climate gradients), to predict future changes over time. For 

example, observed characteristics from warm regions maybe used to infer future changes in cold regions due to global 80 

warming. A limitation of this approach is that it neglects non-correlated (or independent) changes in spatially variable factors 

(Jepsen et al., 2018). For example, heterogeneous patterns of warming, variations in precipitation and vegetation, or changes 

that occur at different temporal scales (e.g., development of soil properties over 100s to 1000s of years, versus shifts from rain 

to snow over hours) are implicitly neglected in such empirical frameworks.  

 85 

Conversely, physically based models embed state-of-the-art physical understanding of hydrological processes. These models 

typically require some degree of calibration or validation to observations (e.g., daily streamflow) to improve and assess their 

predictive skill. The current generation of regional weather models using the Weather Research and Forecasting model (WRF) 

(Skamarock et al., 2008) coupled to the Noah Multi Parameterization land surface model (Noah-MP) (Niu et al., 2011), which 

we refer as NoahMP-WRF, has shown promising results for modeling atmospheric and snow processes in the contiguous US 90 

(He et al., 2019; Liu et al., 2017; Musselman et al., 2017; Scaff et al., 2020). For example, snow simulations have been used 

to quantify mountain snowmelt and streamflow response to climate change (Musselman et al., 2017, 2018). These simulations 

use a pseudo global warming approach, which perturbs the historical climate with a climate change signal from an ensemble 

of global climate models (GCMs); using this perturbation avoids systemic biases in the GCMs and avoids issues related to 

their interannual variability (Liu et al., 2017). Comparisons between land surface models and empirically based predictions of 95 
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future streamflow are rare but valuable (Jepsen et al., 2018), and could help to diagnose modeling deficiencies and improve 

predictions.   

 

New observations of streamflow generation during snowmelt could be key to improving current hydrological models.  

Determining whether streamflow response was produced by rainfall or snowmelt is an important but difficult task (Weiler et 100 

al., 2018). Few simple, low-cost observational tools are available to separate rainfall-driven from snowmelt-driven 

contributions to streamflow, or to separate this year's snowmelt from the previous years' melt and storage. One method that 

can be straightforwardly applied to existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt, 

and streamflow (Kirchner et al., 2020; Lundquist and Cayan, 2002). Diel (24-hours) cycles in streamflow and shallow 

groundwater levels can result from daily cycles in snow/ice melt and evapotranspiration, which are both ultimately driven by 105 

solar radiation inputs (Kirchner et al., 2020). This mechanistic response has been used to study watershed properties like 

kinematic wave celerity (Kirchner et al., 2020), the impact of snowpack variability on streamflow timing (Lundquist and 

Dettinger, 2005), groundwater fluctuations (Loheide and Lundquist, 2009), and transitions from snowmelt to 

evapotranspiration-dominated streamflow fluctuations (Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More 

recently, Kirchner et al. (2020) combined local observations and remote sensing to show that streamflow diel response was 110 

tightly controlled by the timing of snowpack disappearance. However, it remains unknown whether information embedded in 

the diel streamflow response following snowmelt events can be used to inform streamflow predictions under climate change, 

and whether such projections are consistent with current state-of-the-art hydrological modeling. The purpose of this research 

is to evaluate whether land-surface hydrology model simulations and a new diel streamflow-based empirical model yield 

similar projected end-of-century changes in streamflow volume timing across mountainous western US headwater watersheds. 115 

To this aim, we extend the ‘diel cycle index’ approach of Kirchner et al. (2020) using diel streamflow observations to detect 

days when streamflow is coupled to snowmelt inputs (i.e., a snowmelt-dominated streamflow event), and investigate their 

contributions to historical variability in streamflow volume timing. We then compare empirical diel streamflow-based 

projections by the end of the century under an RCP8.5 pseudo global warming scenario against predictions from a state-of-

the-art land surface model (under the same climate scenario) across 31 mountainous watersheds in the western US to answer 120 

the following questions: 

1. Do historical diel streamflow cycles indicate earlier snowmelt in warmer watersheds and years, and can we use diel 

observations of snowmelt to predict the timing of streamflow volume? 

2. In which watersheds is the timing of snowmelt the most sensitive to climate change as projected by an empirical diel 

streamflow-based model?  125 

3. Do historical streamflow volume timings and future empirical diel streamflow-based projections diverge from commonly 

used, state-of-the-art land surface models? 

A list with the abbreviations used in this study is presented in Table 1. 
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2 Methods 

2.1 Study Domain and Data 130 

We studied 31 mountainous watersheds in the western US (Table 2), spanning snow fractions of 0.27 to 0.78 (Figure A3A), 

aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m (Addor et al., 2017; Pelletier 

et al., 2016) (Table 2). These watersheds are part of the CAMELS (Catchments Attributes and MEteorology for Large-sample 

Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow and meteorological forcing, 

among other observed and simulated hydrometeorological variables at the watershed scale. These watersheds were chosen 135 

because their streamflows are unregulated, they have relatively small drainage areas (< 250 km2), and they are at relatively 

high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-driven streamflow 

regimes. The names, locations, elevations, slopes, drainage areas, and other key characteristics of the 31 watersheds are 

presented in Table 2.  

 140 

The data used in this analysis include hourly streamflow, incoming shortwave radiation, mean daily relative humidity, air 

temperature, and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming shortwave 

radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest grid 

point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are from 

CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is interpolated from existing ground observations. 145 

Available hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites. Figure A1A 

shows the number of years that have more than 70, 80 and 90% of days with hourly records for the period between December 

1 and August 1. Based on this preliminary analysis, we selected water years with more than 80% of days with hourly 

streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze (except 

for sites #10 and #30 with 4 years). 150 

2.2 Snowmelt and Streamflow Diel Coupling 

To identify days when solar radiation-driven snowmelt is coupled to the streamflow response, hereafter called snowmelt days 

for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow (Figure 1). A 

snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged streamflow is 

statistically significant (p-value≤0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response after snowmelt, 155 

we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all combinations, and 

kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although having both a 

correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant correlations 

above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1 for r>0.6) to 

assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used to avoid 160 



6 

 

confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020; Mutzner 

et al., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation with lags 

below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner et al., 2020). 

However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel response or rain-

on-snow events. To minimize this, we further restricted the lags that could be selected based on optimum lags from snowmelt 165 

days with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-sky solar radiation 

value (grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and was calculated 

as the lags between the 10th and 90th percentile of clear-sky days with Spearman correlations above 0.8. This second filter also 

helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance of selecting 18-hr 

lags that can be associated with ET. Despite efforts to select only snowmelt-driven streamflow diel responses, this methodology 170 

does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always be excluded. 

Excluding such cases would require hourly precipitation observations, which are unavailable at some of our study watersheds. 

However, we believe that any such cases will minimally affect the results of our analysis. 

 

To better assess the potential impact that rainfall may have on our proposed diel analysis, particularly on the effect of rain-on-175 

snow events, we analyzed which days classified as snowmelt days also had rainfall. We assessed daily rainfall using the daily 

precipitation time series from CAMELS based on the DAYMET product for each watershed. A false detection rate metric was 

computed for each watershed, in which every day classified as a snowmelt day with daily precipitation above 5 mm and a 

mean daily air temperature above 2 oC was assumed to be mis-classified (Figure 2). A false detection rate of 100% means that 

all snowmelt days were mis-classified and 0% means that no days had significant rainfall. On average, the false detection rate 180 

was estimated at 7% with a standard deviation of 5%, and only watersheds #24 and #31 (located in WA and OR, respectively) 

exceeded 15%, with 21% and 29%, respectively. This suggests that the effect of potential rainfall-induced diel streamflow 

cycles (including rain-on-snow events) in most watersheds is low (except for watersheds #24 and #31), supporting further 

analysis. We also assessed the mean cross-site false detection rate for precipitation thresholds of 1 mm and 10 mm and found 

reasonable values of 12% and 3%, respectively. However, we believe that 1 mm is not a reasonable threshold as a 1 mm rainfall 185 

event would be unlikely to produce a distinguishable diel streamflow signal and could represent error/noise in the DAYMET 

product. 

2.3 The empirical diel streamflow-based model  

We defined the day when the 20th percentile of the snowmelt days (as defined in section 2.2) occurs (DOS20) as a new metric 

to characterize the seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5 th, 190 

10th, and 30th percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis. 

We chose this metric because we expected it to be associated with the timing of streamflow volume, and that the choice of 

slightly earlier or later snowmelt day metrics (e.g., DOS10 or DOS30) would not substantially change our results. We fitted a 
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stepwise multiple linear regression model (MLR, p-value<0.01, Equation 1) to reconstruct historical DOS20 across all 

watersheds and years (Figure 7) using four climate variables as predictors: total precipitation, air temperature, relative 195 

humidity, and solar radiation:  

𝐷𝑂𝑆20 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3

+ 𝛽7𝑥1𝑥4 + 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4  + 𝛽10𝑥3𝑥4 

(1) 

 

where x1 is cumulative air temperature (i.e., degree day, °C), x2 is cumulative precipitation (mm), x3 is mean relative humidity 

(%), x4 is mean solar radiation (W m-2), and the βi are regression coefficients. Mean annual climate variables were calculated 

for the period between November 1st and DOS20 (i.e., between late fall and the metric representing the date of early snowmelt 

events). As a result, DOS20 is present in both sides of Equation 1; therefore, the stepwise MLR requires an iterative solution 200 

when used in a predictive mode (i.e., for the climate change analysis when DOS20 is unknown). The MLR model is the basis 

of our empirical diel streamflow-based model, which is used to assess changes in DOS20 due to climate change (i.e., changes 

in x1, x2, x3 and x4 in Eq. (1)). We verified the stepwise MLR assumptions, namely, linear relationships between each predictor 

and DOS20, normally distributed residuals, homoscedasticity, and the absence of strong multicollinearity (as suggested by a 

Variance Inflation Factor < 3). We also tested other metrics related to the timing of early snowmelt events. These included: 205 

the first snowmelt day, the first three consecutive snowmelt events, and the 5th, 10th and 30th percentiles of snowmelt days 

(DOS5, DOS10 and DOS30, respectively). All metrics were also computed using each of the different Spearman correlation 

cutoffs (Table A1, A2, A3, A4 and A5), but the main analysis presented here focuses on DOS20 based on snowmelt days 

calculated with hourly Spearman correlations >0.8.  

We predict changes to DOS20 based on the stepwise MLR model and end-of-the-century mean climate change forcing from 210 

NoahMP-WRF (Liu et al., 2017). NoahMP-WRF was run under a high emission scenario (RCP8.5) using the pseudo global 

warming approach for the end of the century. Overall, it projects a warmer (4 – 5.2°C), wetter (0 - 20% increase in precipitation) 

climate (Figure A4 and A5). These mean annual changes in climate were applied to the predictors in the stepwise MLR model 

to predict changes in DOS20. As previously mentioned, predictors used in the stepwise MLR were calculated for the period 

between November 1st and DOS20; therefore, as we do not know the value of DOS20 in the future, an iterative solution is 215 

required to solve for DOS20 in Equation 1. We find a numerical solution using a 2-day convergence threshold between 

iterations, so that |DOS20i+1 – DOS20i| ≤ 2 days, where ‘i’ is the number of the iteration. 

2.4 Streamflow Volume Timing from a Land-Surface Model 

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and 

the period 2071-2100 under pseudo global warming (Liu et al., 2017). NoahMP-WRF simulations include an improved Noah 220 

configuration, which aims to better represent the snow physics. These improvements include (Liu et al., 2017): the rain-snow 

transition is based on a microphysics partitioning approach as opposed to a subjective temperature-based approach, patchy 

snowpack are allowed in the calculation of the surface energy balance, the heat transport from rainfall to the ground is included, 
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and the snow depletion curve is vegetation-dependent. These improvements allow for a better representation of the surface 

energy balance, and the simulation of snow accumulation and melt processes. We used daily watershed-scale outputs of surface 225 

and subsurface runoff from historical and future NoahMP-WRF simulations to estimate the date of 25% and 50% of annual 

streamflow volume (DOQ25 and DOQ50, respectively). Given the range of the watershed drainage areas (4 - 236 km2, Table 

2), watersheds covering several grid cells use the total surface and subsurface runoff for their corresponding grid cells. Small 

watersheds are represented by only the single nearest NoahMP-WRF grid cell. The way NoahMP-WRF is implemented within 

WRF lacks a streamflow routing scheme such as the one in WRF-Hydro (Gochis et al., 2020); therefore, we used the sum of 230 

surface and subsurface runoff to estimate DOQ25 and DOQ50. We also repeated the analysis using surface runoff only, leading 

to similar results (Figure A7). Given the relatively coarse NoahMP-WRF spatial resolution (4 km) compared to the watershed 

drainage areas (4 - 236 km2), we assume that mean streamflow timing metrics are not significantly affected by the lack of 

streamflow routing. 

3 Results 235 

3.1 Empirical Relationships Between DOS20, Climate and Streamflow 

Mean annual DOS20 (the date of the 20th percentile of snowmelt days) has a strong regional variability that is reasonably 

captured by a negative linear correlation (R2 = 0.48) with the mean winter air temperature (November to February, TNDJF) in 

watersheds with TNDJF<-3°C, whereas warmer watersheds do not follow the same pattern (Figure 3A and Figure 4A). Warmer 

sites (TNDJF > -3 °C) have a more variable mean DOS20 ranging from mid-January to early May, whereas the coldest sites 240 

(TNDJF <-8°C) have a later and less variable DOS20 around mid to late May. On average, the regression suggests that a 1 °C of 

warming results in 7.2-day earlier DOS20. A relationship between later DOS20 and colder TNDJF is also found in the year-to-

year variations at most watersheds (21 out of the 31) (Figure 3B). A strong negative linear relationship was found between the 

date of the 25% of the annual streamflow volume (DOQ25) and TNDJF (Figure 3C). Warmer watersheds (TNDJF>0°C) generate 

streamflow earlier (DOQ25 between mid-December and early March) compared to the coldest watersheds (TNDJF<-8°C) where 245 

DOQ25 is between early and late May (Figure 3C). On average, the cross-site regression shows that each 1°C warmer TNDJF 

produces a 13-day earlier DOQ25. For most watersheds (25 out of 31), interannual regressions show a similar pattern with 

warmer years having earlier DOQ25; however, these interannual regressions have shallower slopes than the cross-site 

relationships (Figure 3B and 3D). Previous work by Stewart et al. (2005) also related seasonal meteorological patterns with 

the spring onset and streamflow timing, and found similar relationships (e.g., warmer watersheds have earlier spring onset and 250 

streamflow timing). However, the definition of the spring onset was based on the cumulative hydrograph (the day when the 

cumulative departure from the mean streamflow was the minimum), as opposed to our more mechanistic diel streamflow 

analysis. Other definitions for spring onset based on streamflow, snow pillows, and air temperature are presented by Lundquist 

et al. (2004). 

 255 
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Strong correlations between DOS20 and both DOQ25 and DOQ50 (the date of 50% of the annual streamflow volume) (R2 = 0.85, 

Figure 5A and 5C) suggest connections between the timing of snowmelt and streamflow generation across watersheds and 

years. On average, sites that melt earlier are associated with earlier DOQ25 (Figure 5A) and a lower ratio of snowfall to total 

precipitation (snow fraction<0.5). The relationship between DOS20 and DOQ25 closely follows the 1:1 line (Figure 5A), 

although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 2 and Figure 6A) deviate substantially from 260 

this pattern, perhaps because they receive relatively little of their precipitation as snow. Similar watershed-level relationships 

using interannual variability in DOQ25 were found for most watersheds, with statistically significant slopes varying between 

0.4 and 2.5 day day-1 (Figure 5B). DOS20 also predicts DOQ50 well, with 10-day earlier snowmelt producing 7-day earlier 

DOQ50 on average (Figure 5C), and similar watershed-level interannual relationships (Figure 5D). The same three relatively 

rainy watersheds have DOQ50 prior to the DOS20 (Figure 5C and Figure 6B), suggesting that early snowmelt timing is not an 265 

important predictor of DOQ50 in such places.  

3.2 Diel Streamflow-Based Sensitivity of Snowmelt Timing (DOS20) to Climate Change 

We fitted a stepwise MLR with four climate variables (air temperature, precipitation, relative humidity, and solar radiation) to 

predict the diel streamflow-based DOS20 metric across watersheds and years. A total of 333 watershed-year combinations of 

DOS20 and climate variables were used to train the stepwise MLR model. The watershed-year relationship between observed 270 

and MLR predictions has a relatively high R2 of 0.83, a root mean square error (RMSE) of 17.5 days, and normally distributed 

residuals (p < 0.01) off the 1:1 line and centered at 0 with a standard deviation of 17.3 days (Figure 7A). The relationship 

between observations and MLR predictions of inter-watershed mean annual DOS20 (Figure 7B) is also strong (R2 = 0.83 and 

RMSE = 13.2 days) and follows the 1:1 line. Similarly, when we look at interannual values, represented by the lines 

overlapping the circles in Figure 7B, we find a good agreement with most slopes close to 1:1 (see inset plot Figure 7B). This 275 

analysis demonstrates that the MLR model can reasonably represent both the mean annual DOS20 values at each watershed 

and their interannual variability. Table A4 shows standardized beta coefficients that indicate the importance of each climate 

variable in the stepwise MLR. For the 0.8 correlation cutoff we found that incoming shortwave radiation has the greatest 

importance (beta = 0.75), followed by relative humidity (beta = 0.37) and air temperature (beta = -0.31). 

 280 

Empirical diel streamflow-based projections under climate change show earlier mean annual DOS20 in all watersheds (i.e., 

earlier snowmelt initiation), with significant variability from site to site (Figure 8A). Most watersheds show significant end-

of-century changes in DOS20 ranging from up to three months earlier in cold sites where, historically, snowmelt under clear-

sky conditions dominates (circles in Figure 8A), to as little as 20 days earlier in warm sites under historically cloudier 

conditions. The cross-site average change in DOS20 is 55.3 days with a standard deviation of 21.8 days. In many watersheds 285 

the mean projection of DOS20 under climate change is within the historically observed variability in DOS20 (Figure 8A). The 

empirical model predicts that on average, colder watersheds (TNDJF≤-8°C) are about 70% more sensitive to climate change 

(13.7±4.6 days °C-1) than warmer watersheds are (TNDJF>0°C) (8.1±6.2 day °C-1), as represented by the change in the DOS20 
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per degree of warming (Figure 8B). Site #24 (South Fork Tolt River, WA.) shows almost no change in its DOS20, which can be 

attributed to its weaker climate change signal compared to the other watersheds (about +4°C, 5% precipitation increase, and 290 

virtually no change in humidity and solar radiation; Figure A4). The diel streamflow-based analysis suggests an average 

sensitivity of DOS20 to climate change of 11.1±4.2 days ºC-1 across all watersheds. 

3.3 Sensitivity of Streamflow Timing to Climate Change: Empirical diel streamflow-based model versus NoahMP-

WRF 

We compared historical and empirical diel streamflow-based projections for DOQ25 and DOQ50 with those from NoahMP-295 

WRF. Empirical streamflow timing sensitivity projections for DOS20 under climate change were derived from the linear 

regressions presented in Figure 5A and 5C (DOQ25 and DOQ50 vs DOS20) with projected changes in DOS20 using the MLR 

under climate change. Empirical projections for DOQ25 range from early January to late May (red symbols, Figure 9A), 

advancing between 20 and 100 days under RCP 8.5 (x-axis, Figure 9C). The DOQ50 is projected to advance between roughly 

15 and 65 days (x-axis, Figure 9D), ranging from mid-February to late May (red symbols, Figure 9B). The historical DOQ25 300 

is underestimated by NoahMP-WRF (blue symbols, Figure 9A) with a mean DOQ25 in mid-February, whereas historical 

DOQ25 is in early April (50-day mean difference). Projected changes to DOQ25 by NoahMP-WRF under pseudo global 

warming range between early January to mid-March (mean in early February; Figure 9A), averaging -15 days (ΔDOQ25, Figure 

9C), whereas empirical diel streamflow-based projections range between early January and late March (mean in mid-February; 

Figure 9A), averaging about -60 days (ΔDOQ25, Figure 9C). These results indicate that empirical diel streamflow-based 305 

projections of DOQ25 are about four times more sensitive to climate change than those from NoahMP-WRF. Historical DOQ50 

is reasonably well represented by NoahMP-WRF under the current climate (blue symbols, Figure 9B) with a mean difference 

against observations of 7 days; however, future changes of about -20 days are projected, which are roughly half of the -40 days 

predicted by the empirical streamflow-based projections (ΔDOQ50, Figure 9D). Empirical diel streamflow-based projections 

of DOQ50 range between mid-February and early April, whereas NoahMP-WRF projections range between mid-March and 310 

mid-May, suggesting later estimates of streamflow volume by the land surface model. Watersheds with the largest 

disagreement between the empirical model and NoahMP-WRF projections for streamflow volume timing are those where 

DOS20 is the most sensitive to warming, represented by the orange and yellow symbols in Figure 9C and 9D. These watersheds 

are characterized by historical cold winter temperatures (TNDJF<-6ºC) with snowmelt occurring mostly under sunny conditions 

(circle symbols) in the Rocky Mountains. 315 
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4 Discussion 

The new DOS20 metric based on the diel streamflow analysis quantifies the timing of early snowmelt events and suggests that 

shifts towards earlier snowmelt will generate larger shifts toward earlier streamflow in colder, sunnier watersheds than in 

warmer, cloudier watersheds where snowmelt is more interspersed with rain. Despite the intuitive connections between 320 

snowmelt and streamflow, empirically linking changes in earlier snowmelt rates (Harpold and Brooks, 2018; Musselman et 

al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing (Stewart et al., 2004) has been challenging 

(Weiler et al., 2018).  This study represents of the first empirical analysis of streamflow-induced snowmelt change across a 

regional climate gradient not relying only on streamflow volume. Understanding these connections is challenging due to the 

representative scales at which snow (point-scale) and streamflow (watershed-scale) are typically measured and analyzed. For 325 

example, evidence of snowmelt at Snow Telemetry (SNOTEL) sites in the US has shown more intermittent snowmelt events 

at sites with higher humidity, and future modeling suggests lower-humidity sites will experience slower, earlier snowmelt 

(Harpold and Brooks, 2018; Musselman et al., 2017). However, the cascading effects of earlier and slower snowmelt on 

streamflow amount and timing remain relatively unexplored (e.g. Berghuijs et al., 2014), and are potentially affected by surface 

and subsurface hydrological connectivity, vegetation water use, and other processes that are not easily measured or 330 

parameterized. Our diel streamflow analysis has limitations in places dominated by rainfall, as evidenced by higher false 

detections in areas with low snow fractions (Figure 2) and by the small (or nonexistent) interannual correlation between DOS20 

and the metrics DOQ25 and DOQ50 (Figure 5A and 5C) in those places. Conversely, the colder and sunnier watersheds, 

primarily in the intermountain region, have strong interannual correlations between DOS20 and DOQ25 (Figure 5A and Figure 

6A), reflecting the importance of snowmelt (instead of rain) in controlling streamflow volume timing.  335 

 

Because the diel streamflow analysis does not require the many assumptions that are embedded in physically based models, it 

is an independent tool that can be used to verify historical streamflow simulations from sub-daily resolved hydrological models. 

For example, land surface models could be benchmarked against observed snowmelt days based on the diel streamflow analysis 

or metrics like DOS20 to better represent processes associated with snowmelt-driven streamflow generation. The diel 340 

streamflow analysis is also easier to implement than detailed process-based models because it only requires observed hourly 

streamflow data and solar radiation. If measured solar radiation is not available, it can be reliably represented by land surface 

models like NLDAS-2 (Luo et al., 2003) that assimilate field observations and remotely sensed radiation (including the effects 

of clouds) into an atmospheric modeling framework. In our analysis, we tested the sensitivity of some modeling decisions, 

such as the correlation cutoff between hourly solar radiation and streamflow used to detect snowmelt days and metrics for 345 

snowmelt timing and found similar sensitivities of DOS20 to climate change across different correlation cutoffs and snowmelt 

timing percentiles (Table A5). Metrics like the first snowmelt day or the first three consecutive snowmelt days showed less 

consistent results (Table A5), likely due to individual early or mid-winter melt events that do not necessarily represent the 

seasonal watershed behavior. The diel streamflow analysis has four main limitations that need to be examined in future work: 
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(1) it requires a steep enough stage-discharge relationship that daily streamflow cycles can be detected across the flow regime, 350 

(2) it focuses on snowmelt driven by solar radiation (and energy fluxes synchronized with it), (3) it is sensitive to assumptions 

about the lag time between solar radiation and streamflow, and (4) it is sensitive to assumptions about evapotranspiration 

losses. A steep stage-discharge relationship, in which small changes in discharge are associated with large changes in stage, is 

ideal to observe small diel streamflow changes with sufficient precision. The second limitation originates from the assumption 

that the majority of snowmelt is correlated with solar radiation, which  is supported by the dominant role of solar radiation in 355 

process-based studies of maritime and continental snowpacks (Cline, 1997; Jepsen et al., 2012; Marks and Dozier, 1992). 

Because our method allows the lag time between solar radiation and streamflow to vary within a predefined window, we expect 

it to capture the effects of other important energy fluxes, such as sensible heat, that often lag the diel patterns of solar radiation 

by several hours (Ohmura, 2001). Rain-on-snow events are particularly challenging to detect with our analysis, as days with a 

lower percentage of incoming shortwave radiation (<80% of clear-sky) are filtered out to avoid issues with potential rainfall-360 

dominated diel signals.  It may also misclassify rainfall-driven diel streamflow cycles, although we checked for rainfall-

induced cycles and found that these accounted for only a small fraction (7% on average; Figure 2) of our inferred snowmelt 

days.  The relationships between streamflow timing (i.e., DOS20, DOQ25 and DOQ50) and meteorological drivers in rainier 

sites showed cross-site and interannual relationships that are consistent with those in colder, more snow-dominated places 

(except for watersheds #24, #25 and #31) (e.g., Figure 3A and 3C). The third limitation is that the spatiotemporal variability 365 

in snowpack, surface and subsurface storage, and evapotranspiration will change the magnitude and lag time of the diel 

streamflow response (Kirchner et al., 2020; Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), which we address 

by allowing variable watershed- and month-specific time lags. However, lag times greater than 24 hours, which are associated 

with large watersheds or large subsurface storage, will make this method impossible to apply. The method may also miss early 

snowmelt-driven diel cycles in watersheds with dry soils, as the diel signal will be buffered by the subsurface storage capacity 370 

before generating a measurable streamflow response. Our empirical diel streamflow-based model implicitly assumes that other 

variables not included in the analysis vary together with the predictive variables (climate) and neglects watersheds' physical 

(e.g., soil storage) and biological (e.g., vegetation) properties that do not necessarily co-vary with climate. The fourth limitation 

is that evapotranspiration losses must be small relative to snowmelt inputs, which is necessary because the effect of 

evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al., 2020). Evapotranspiration effects are minimized 375 

by focusing on early snowmelt periods, when evapotranspiration losses are small (Bowling et al., 2018; Cooper et al., 2020; 

Winchell et al., 2016).  

 

Hydrological modeling in land surface models attempts to physically represent snowpack storage, snowmelt, subsurface 

storage, and its release to the streamflow, which is challenged by uncertain forcing data and simplified and uncertain model 380 

parameters.  For example, snowmelt modeling in complex terrain is challenged by steep climate gradients and by the lack of 

adequate forcing data (e.g., precipitation, temperature, wind, etc.). Characterizing precipitation phase and timing in steep 

watersheds remains challenging in rain-to-snow transition zones (Harpold et al., 2017; Jennings et al., 2018; Wayand et al., 
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2015), which will presumably increase in extent in the future (Klos et al., 2014). Complex terrain affects radiation fluxes, 

which are hard to estimate at kilometer spatial scales (Müller and Scherer, 2005) used in most land surface models. Most of 385 

our study sites are forest covered, which exerts a strong control on the snowpack mass and energy balance (Lundquist et al., 

2013; Pomeroy et al., 1998; Safa et al., 2021) with spatially heterogeneous effects on snow accumulation and melt that remain 

challenging to model (Broxton et al., 2015; Krogh et al., 2020). The presence of preferential flowpaths through the snowpack 

impacts the timing of melt release (Leroux and Pomeroy, 2017) and is not typically included in hydrological models. Once 

snowmelt is released from the snowpack, simulating (and validating) what fraction flows as subsurface and surface runoff 390 

remains difficult. Decades of tracer studies (e.g., Godsey et al., 2010; Kirchner, 2003) have shown that streamflow during and 

after hydrologic events (i.e., snowmelt or rainfall events) is typically ‘old water’ that has been stored in the watershed for 

months to years. Land surface models like NoahMP-WRF lack realistic groundwater stores to represent old water and lack 

hillslope and near-stream processes (Fan et al., 2019). For example, previous work at Sagehen Creek (site #23) suggests that 

streamflow remains ~80% groundwater even during the snowmelt freshet (Urióstegui et al., 2017), despite a strong snowmelt 395 

diel response caused by pressure changes induced by infiltrating snowmelt. Innovative observations that give new physical 

insights, like the diel streamflow analysis, could bring new information to modeling beyond what is possible with typical daily 

discharge resolution (Kirchner, 2006). 

 

The diel-based analysis of snowmelt-driven streamflow to changing climate gives unique insights over previous efforts using 400 

daily and seasonal streamflow volumes (Berghuijs et al., 2014; Stewart et al., 2005) and retrospective hydrological modeling 

(Barnhart et al., 2016). Empirical projections of DOS20 under the pseudo global warming scenario (Figure 8B) show that 

colder, drier, and sunnier sites (typical of the Rocky Mountains) are about twice as sensitive to warming as warmer, more 

humid, and cloudier sites (typical of the Pacific Northwest). Humid and warmer sites have lower snow fractions (<0.5, more 

rainfall effects) and thus, a smaller snowmelt signal in the diel streamflow observations. In contrast, Harpold and Brooks 405 

(2018) showed that winter ablation at SNOTEL sites in humid places, like the Pacific Northwest, are more sensitive to warming 

than less humid places, like the Southwest US. However, Kirchner et al. (2020) showed general agreement between SNOTEL 

snowmelt response and the snowmelt-induced diel streamflow signal at the warm Sagehen Creek watershed (site #23). The 

sensitivity of the early snowmelt timing metric (DOS20) to climate change is a function of changes in precipitation phase 

(rainfall vs snowfall), snowpack ablation (changes in the patterns of melt and sublimation), and hydrological partitioning to 410 

streamflow versus evaporative loss. Due to the empirical basis of our analysis, these sensitivities are not easy to disentangle, 

but the diel analysis is a new source of information that could help in that effort. The reliability of the empirical diel streamflow-

based projections partially depends on whether climate projections are within or outside the range of observed climate 

conditions across the large climatic gradient found in the western US. Under the pseudo global warming scenario, cold, sunny 

watersheds like those in the Rocky Mountains (sites #9 and #10) will shift toward more humid, warmer conditions (Figure 415 

A6), like those observed in Southern Idaho (site #29) and the northern Sierra Nevada (site #23). In contrast, the pseudo global 

warming scenarios for places like the Pacific Northwest, particularly those involving changes in atmospheric humidity above 
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5 g/m3 (Figure A4), have not been observed in the historical record, and therefore are more uncertain. Determining reasonable 

conditions to apply empirical models that use observed differences in sites to predict future changes (often called space-for-

time models), like the presented diel streamflow analysis, has been posed as one of the 23 unsolved problems in hydrology 420 

(Blöschl et al., 2019).  

 

The sensitivity of historical snowmelt-mediated streamflow volume timing (DOQ25 and DOQ50) to climate change differs 

substantially between the empirical diel streamflow-based approach and a land surface model, raising questions about current 

state-of-the-art projections of early season streamflow timing from NoahMP-WRF, particularly in cold watersheds (Figure 9C 425 

and 9D). The observed data used in the diel streamflow-based approach have larger and more variable streamflow timing 

responses to climate change (10 – 17 days °C-1) in cold, dry, sunny places that are representative of small, high-elevation 

Rocky Mountain watersheds (Figure 8B). The historical diel streamflow analysis suggests that NoahMP-WRF may be 

systematically under-predicting the sensitivity of streamflow volume timing to earlier snowmelt-induced streamflow in colder 

and sunnier places (Figure 9C) that are most likely to have increased temperature and increased cloudiness in the future. The 430 

same mean annual future climate scenarios were applied to both approaches; however, important differences in the streamflow 

timing response were found between NoahMP-WRF and diel streamflow-based projections (Figure 9C and 9D). NoahMP-

WRF underpredicts historical DOQ25 (Figure 9A) across most sites, whereas DOQ50 is much better represented. It is worth 

noting that when DOQ25 simulated by NoahMP-WRF is calculated using surface runoff alone (Figure A7A), rather than 

subsurface plus surface runoff, it performs better against observed DOQ25. However, NoahMP-WRF projected sensitivity in 435 

streamflow timing to climate change remains significantly lower than predictions based on the diel-streamflow analysis (Figure 

A7C). We used these simulations in the analysis because NoahMP underlies the US National Water Model and thus its 

relevance to policy and research is high. There are many differences in the way that NoahMP-WRF and the empirical diel 

streamflow-based approach function. NoahMP-WRF can track the hourly covariance in precipitation, temperature, and 

humidity to estimate precipitation partitioning between rain and snow. It is also able to represent hourly radiative and turbulent 440 

energy at the snowpack, and the cold content needed to predict snowmelt. Its physical hydrology is also advanced and able to 

consider antecedent conditions and allow evapotranspiration losses that also modulate streamflow. Despite the advantages of 

land surface models like NoahMP-WRF in constraining processes for future projections, the simplicity of diel streamflow-

based analysis also provides several advantages. One of the main advantages is that it is derived from observations and thus it 

is well constrained by the observed spatial and temporal variability of snowmelt across watersheds and years (Figure 7B). 445 

Also, it does not assume anything about the complex spatial distribution of snowpacks and precipitation or subsurface 

properties, which are major constraints to physically-based models (Baroni et al., 2010; Christiaens and Feyen, 2001; Wilby 

et al., 2002). While the empirical diel streamflow-based model is not a replacement for land surface models like NoahMP-

WRF, partly because the underlying streamflow datasets are not available everywhere, there is added value in including new 

benchmarks like the proposed DOS20 to further constrain modeling decisions and improve model fidelity required for reliable 450 

and accurate hydrological predictions.    
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5 Conclusions 

Water management in the western US requires accurate predictions of how both short-term climate variability and long-term 

climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between 

empirical diel streamflow-based projections and a land surface model (NoahMP-WRF) raise important questions about the 455 

sensitivity of streamflow timing to climate change, particularly in cold regions, and its impact on water planning. Significant 

differences exist in the way diel streamflow-based and land surface models predict changes to snowmelt and streamflow 

timing, with both approaches having strengths and weaknesses; however, the land surface model misrepresents historical 

patterns in streamflow response that are more accurately estimated by the empirical model. We show that DOS20 is a strong 

predictor of the early season hydrograph response, particularly in cold, sunny areas where the NoahMP-WRF streamflow 460 

timing simulations lack sensitivity to climate change. Rigorously validating future model predictions is impossible, but 

snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to refine land surface models and better 

determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 2017; Viviroli et al., 2007), particularly 

in cold regions. Our novel approach can complement the benchmarking or calibration of physically based hydrological models, 

beyond typical benchmarking against daily streamflow or snow accumulation metrics. For example, the snowmelt timing 465 

metric DOS20 based on diel streamflow observations could be used to test how well land surface models, running at sub-daily 

scales and fine spatial resolution, can reproduce the historical snowmelt regime across watersheds and years. As land surface 

models move towards real application for water management (Kopp et al., 2018), the hydrology community must seek ways 

to test and improve them using widely-available datasets if we are to meet the grand water management challenges posed by 

climate change in mountainous regions. 470 
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Figure 1: Examples of the diel cycle analysis applied to two watersheds located in California (A) (B) (WY2016) and Colorado (C) 720 
(D) (WY2014). (A) and (C) show hourly solar radiation (orange) and streamflow (blue); the first statistically significant (p<0.01) 

lagged spearman correlation (r>0.6) between streamflow and solar radiation is shown on a text box for clear-sky days only (>80% 

of clear-sky solar radiation). (B) and (D) show the solar radiation-driven snowmelt days (blue circles) on top of the annual 

hydrograph (semi-log scale) for the period of analysis (white background, December to July).  
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Figure 2: Percentage of days that were classified as having snowmelt following the diel streamflow cycle analysis that also had 

daily precipitation above 5 mm and a mean daily air temperature above 2 oC. Symbols are associated with the mean annual 

percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have >90%, clear-sky snowmelt days, partly cloudy 

sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt 730 
days are defined as those with more than 80% of the potential clear-sky solar radiation. 

  



26 

 

 

 

Figure 3: (A) and (C) show cross-site relationships between mean winter air temperature (November to February) and DOS20 and 735 
the date of 25% of annual streamflow volume (DOQ25), respectively. Slopes of individual sites’ interannual relationships are shown 

as the lines on top of each symbol, where statistically significant (p-value ≤0.05) slopes are red. Non-significant interannual slopes 

are presented to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of 

snowmelt days under clear-sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) 

have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined 740 
as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) show histograms of interannual slopes (for all 

watershed and those with statistically significant relationships) and the cross-site relationships presented in their respective left 

panel. 
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Figure 4: Spatial variability of watershed-level interannual slopes for (A) DOS20 vs winter air temperature, and (B) DOQ25 vs winter 

air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are 

associated with those presented in Figure 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-750 
sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, 

and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80% 

of the potential clear-sky solar radiation. 
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Figure 5: (A) The day when the 20th percentile of snowmelt days occurs (DOS20), compared to the date of the 25% of the annual 760 
streamflow volume (DOQ25). (C) DOS20 against the date of 50% of the annual streamflow volume (DOQ50). Dashed lines in (A) and 

(C) are 1:1 lines, and the slopes of sites’ interannual relationships are shown as the lines on top of each symbol, with statistically 

significant (p-value ≤0.05) slopes shown in red. Sites #24, #25 and #31, indicated by dashed circles, fall far from the linear regression 

and are not included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites 

(circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) 765 
have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) 

show histograms of interannual slopes (for all watershed and those with statistically significant relationships) and the cross-site 

relationships presented in their respective left panels. 
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Figure 6: Spatial variability of the watershed-level interannual slopes for (A) DOQ25 vs DOS20, and (B) DOQ50 vs DOS20. 

Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with those 

presented in Figure 5. Watersheds that fall far from the linear regression presented in Figure 5 are surrounded by a dashed circle. 775 
Symbols are associated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have 

>90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%. 

Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. 
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Figure 7: (A) Scatterplot showing the fit of the stepwise multiple linear regression (MLR) model to the observed DOS20 across all 

sites and years. (B) shows the same stepwise MLR model applied at the mean annual watershed level across all watersheds. 

Interannual variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e., watershed); 785 
red and blue lines indicate statistically significant (p≤0.05) and insignificant slopes, respectively.  
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Figure 8: (A) Historical DOS20 from the diel analysis and projected changes in DOS20 using the empirical diel streamflow-based 

projections under the RCP 8.5 pseudo global warming climate for the end of the 21st century. Watersheds are sorted from earlier 790 
(left) to later (right) historical DOS20. Symbols associated with future projections (stars) are not classified by sunny, partly cloudy, 

or cloudy, as we make no inference about the cloudiness condition of snowmelt days under the climate change scenario. Blue symbols 

in (A) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90% clear-sky snowmelt 

days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%. Clear-sky snowmelt days are 

defined as those with more than 80% of the potential clear-sky solar radiation. (B) Relationship between mean winter air 795 
temperature and the sensitivity of DOS20 to climate change as projected by the empirical diel streamflow-based model. 
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Figure 9: Changes to DOQ25 and DOQ50 due to climate change under an RCP8.5 pseudo global warming climate scenario by the 800 
end of the century. (A) and (B) compare historical against projected values between NoahMP-WRF and the empirical diel 

streamflow-based model. (C) and (D) compare the projected change in streamflow timing (future minus historical) between 

NoahMP-WRF and the empirical diel streamflow-based model, colored by the sensitivity of DOS20 to climate change as projected 

by the empirical diel streamflow-based model (Figure 8b). Symbols surrounded by black circles indicate sites that were excluded 

from the regression analysis in Figure 5 (rainier sites #24, #25 and #31). Symbols represent the historical mean annual percentage 805 
of clear-sky snowmelt days, where sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have 

between 70 and 90%, and cloudy sites (diamonds) have <70%; clear-sky snowmelt days are defined as those with more than 80% of 

the potential clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 P 

climate scenario; however, red symbols (upper panels) follow the same symbology for easier interpretation. 
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 815 

Table 1: List of Abbreviations 

Abbreviation Definition 

CAMELS Catchments Attributes and MEteorology for Large-sample Studies 

DOQ25 Date of 25% of annual streamflow volume 

DOQ50 Date of 50% of annual streamflow volume 

DOS20 
The day when the 20th percentile of the snowmelt days occurs, with snowmelt days as defined by the 

streamflow diel cycle analysis 

GCM Global Climate Model 

MLR Multiple Linear Regression Model 

NLDAS-2 Phase 2 of the National Land Data Assimilation System 

Noah-MP Noah Multi Parameterization land surface model 

NoahMP-WRF Simulations by WRF using the Noah-MP land surface model 

RCP8.5 Representative Concentration Pathway 8.5 

WRF Weather Research and Forecasting Model 
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Table 2: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017). 

ID USGS ID Watershed Name 

Drainage 

Area 

(km2) 

Mean 

Elevation 

(masl) 

Mean 

slope (m 

km-1) 

Lat. 

(°N) 

Lon. 

(°W) 

Snow 

Fraction 

Aridity 

index 

Soil 

Depth 

(m) 

1 06278300 Shell Creek, WY. 58.9 2,953 86.7 44.51 107.40 0.73 1.32 0.74 

2 06311000 
North Fork Powder 

River, WY. 
61.2 2,516 41.1 44.03 107.08 0.57 1.68 0.90 

3 06614800 
Michigan River, 

CO. 
4.0 3,297 145.8 40.50 105.87 0.76 1.29 0.57 

4 06622700 
North Brush Creek, 

WY. 
98.7 2,837 71.3 41.37 106.52 0.72 1.48 2.20 

5 06623800 
Encampment 

River, WY. 
187.7 2,971 90.9 41.02 106.82 0.75 1.06 1.14 

6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 106.22 0.74 1.46 2.52 

7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 105.56 0.47 2.12 0.50 

8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 105.66 0.47 1.50 0.85 

9 09034900 Bobtail Creek, CO. 15.7 3,571 102.8 39.76 105.91 0.73 1.16 0.47 

10 09035900 

South Fork of 

Williams Fork, 

CO. 

72.8 3,241 123.9 39.80 106.03 0.69 1.44 0.56 

11 09047700 
Keystone Gulch, 

CO. 
23.6 3,334 103.8 39.59 105.97 0.63 1.92 0.45 

12 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 106.32 0.71 1.40 0.27 

13 09066300 Middle Creek, CO. 15.5 2,944 143.8 39.65 106.38 0.69 1.49 0.48 

14 09352900 
Vallecito Creek, 

CO. 
188.2 3,283 156.1 37.48 107.54 0.63 1.24 0.50 

15 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 109.37 0.50 1.79 1.16 

16 09378630 
Recapture Creek, 

UT. 
10.4 2,125 53.4 37.76 109.48 0.50 1.88 0.55 

17 09386900 Rio Nutria, NM. 184.9 2,342 37.4 35.28 108.55 0.31 2.48 1.07 

18 09404450 
East Fork Virgin 

River, UT. 
193.0 2,070 56.2 37.34 112.60 0.42 2.86 0.82 

19 09492400 
East Fork White 

River, AZ. 
129.0 2,469 65.4 33.82 109.81 0.27 1.88 0.92 

20 10205030 Salina Creek, UT. 134.6 2,489 76.2 38.91 111.53 0.58 2.46 0.67 

21 10234500 Beaver River, UT. 236.4 2,499 95.2 38.28 112.57 0.63 2.06 0.60 
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22 10336660 
Blackwood Creek, 

CA. 
29.8 2,113 83.5 39.11 120.16 0.67 0.77 0.79 

23 10343500 
Sagehen Creek, 

CA. 
27.6 2,157 81.2 39.43 120.24 0.71 1.10 1.20 

24 12147600 
South Fork Tolt 

River, WA. 
14.1 1,068 159.4 47.71 121.60 0.27 0.22 0.63 

25 12178100 
Newhalem Creek, 

WA. 
69.7 1,305 255.7 48.66 121.24 0.53 0.33 0.54 

26 12381400 
South Fork Jocko 

River, MT. 
151.0 1,877 102.2 47.20 113.85 0.59 0.97 0.62 

27 12447390 
Andrews Creek, 

WA. 
58.1 1,701 172.6 48.82 120.15 0.78 0.86 0.47 

28 13018300 Cache Creek, WY. 27.9 2,198 109.5 43.45 110.70 0.66 1.50 0.69 

29 13083000 Trapper Creek, ID. 133.2 1,863 69.1 42.17 113.98 0.49 2.11 1.04 

30 13240000 
Lake Fork Payette 

River, ID. 
125.6 1,965 110.1 44.91 116.00 0.73 0.75 0.44 

31 14158790 Smith River, OR. 40.6 1,027 116.4 44.33 122.05 0.37 0.36 0.85 

 820 
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7 Appendices 

 

Figure A1: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between 

December 1 and August 1. Gauge ID is as presented in Table 2. Numbers of years at site #13 are the same for all thresholds 825 
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation 

cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation. 
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Figure A2: (A): CAMELS mean winter (November to February) air temperature, (B) mean annual DOS20, and (C) mean annual 830 
DOQ25. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites 

have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are 

defined as those with more than 80% of the potential clear-sky solar radiation. 
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 835 

Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between 

December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater 

than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky 

conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-

sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where 840 
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70. 
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between 

November and DOS20 in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the 845 
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis 

suggests that most of the climate change signal from NoahMP-WRF pseudo global warming is within the observed climate 

variability, except for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond) 

associated with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% 

clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as 850 
those with more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of 

snowmelt days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. 
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 855 

Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the 

century. (A) shows changes in precipitation against air temperature. (B) shows incoming shortwave against absolute humidity. 

Numbers represent the Gauge IDs as presented in Table 2. 
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Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and 

shortwave radiation (SWR) at each watershed, and the changes associated with the pseudo global warming as simulated by WRF. 

(B) shows the same analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated 

with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky 

snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with 865 
more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt 

days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers 

next to blue symbols represent the Gauge IDs as presented in Table 2. 
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 870 

Figure A7: Same as Figure 9 but using streamflow timing metrics from NoahMP-WRF for an RCP8.5 pseudo global warming 

scenario, calculated using surface runoff only instead of using surface plus subsurface runoff (as in Figure 6). Note the improved fit 

in historical DOQ25; however, this analysis yields very similar results to those of Figure 6, with NoahMP-WRF streamflow 

simulations being much less sensitive to climate change than the empirical diel streamflow-based model suggests. (A) and (B) 

compare historical against projected values between NoahMP-WRF and the empirical diel streamflow-based model. (C) and (D) 875 
compare the projected change (future minus historical) between NoahMP-WRF and the diel streamflow-based model, colored by 

the sensitivity of DOS20 to climate change as projected by the empirical diel streamflow-based model (Figure 5b). Symbols 

surrounded by black circles indicate sites that were excluded from the regression analysis in Figure 3 (rainier sites #24, #25 and 

#31). Symbols (circle, square and diamond) represent the historical mean annual percentage of clear-sky snowmelt days, where 

sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky 880 
snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. We make no inference about the 

cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming climate scenario; however, red symbols (upper 

panels) follow the same symbology for easier interpretation. 
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Table A1: Coefficient of determination (R2) and slope (in parenthesis, day/day) of the linear regression between different early 

snowmelt timing metrics and DOQ25 and DOQ50, as presented in Figure 5, for different correlation cutoffs (r) between hourly solar 

radiation and streamflow. DOSxx represent the date when the xxth percentile of snowmelt days occurs. Sites #24, #35 and #31, are 

excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections. 

Early snowmelt timing metrics  vs DOQ25  vs DOQ50 

r > 0.5 

1st snowmelt day 0.13 (0.61) 0.06 (0.25) 

1st 3 consecutive snowmelt day 0.5 (0.71) 0.4 (0.4) 

DOS5 0.37 (0.83) 0.28 (0.45) 

DOS10 0.49 (0.91) 0.43 (0.52) 

DOS20 0.69 (1.1) 0.66 (0.67) 

DOS30 0.73 (1.1) 0.72 (0.68) 

r > 0.6 

1st snowmelt day 0.24 (0.73) 0.15 (0.35) 

1st 3 consecutive snowmelt day 0.59 (0.77) 0.49 (0.44) 

DOS5 0.46 (0.82) 0.37 (0.45) 

DOS10 0.63 (0.97) 0.53 (0.55) 

DOS20 0.76 (1.05) 0.72 (0.64) 

DOS30 0.77 (1.07) 0.78 (0.67) 

r > 0.7 

1st snowmelt day 0.42 (0.73) 0.3 (0.39) 

1st 3 consecutive snowmelt day 0.62 (0.85) 0.59 (0.53) 

DOS5 0.61 (0.86) 0.51 (0.49) 

DOS10 0.71 (0.94) 0.63 (0.55) 

DOS20 0.76 (0.99) 0.75 (0.62) 

DOS30 0.79 (1.03) 0.82 (0.65) 

r > 0.8 

1st snowmelt day 0.66 (0.87) 0.54 (0.5) 

1st 3 consecutive snowmelt day 0.76 (1.09) 0.78 (0.71) 

DOS5 0.79 (1.01) 0.7 (0.6) 

DOS10 0.83 (1.03) 0.78 (0.64) 

DOS20 0.85 (1.07) 0.85 (0.68) 

DOS30 0.85 (1.1) 0.88 (0.72) 
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Table A2: Root mean square error (RMSE) and coefficient of determination (R2, in parentheses) associated with several stepwise 

multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g., Equation 1 uses 

DOS20) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents 

the date when the xxth percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 also 

shown in Figure 7A. 895 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 11.1 (0.87) 12.3 (0.88) 15.2 (0.88) 21.7 (0.82) 

First 3 consecutive snowmelt days 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) 20.2 (0.8) 

DOS5 14.9 (0.83) 15.4 (0.85) 17.3 (0.86) 21.1 (0.8) 

DOS10 16.4 (0.82) 17.3 (0.83) 19.9 (0.82) 19.6 (0.82) 

DOS20 16.5 (0.82) 17.9 (0.82) 18.9 (0.82) 17.5 (0.83) 

DOS30 16.3 (0.82) 17.4 (0.82) 17.8 (0.82) 16.3 (0.83) 
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Table A3: Coefficient of determination (R2) for the site-average stepwise multiple linear regression, analogous to that presented in 

Figure 7B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt 

days metrics). DOSxx represents the date when the xxth percentile of snowmelt days occurs. Bolded number is associated with the 900 
stepwise MLR in Equation 1 using DOS20. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.8 0.82 0.89 0.79 

First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69 

DOS5 0.84 0.85 0.87 0.83 

DOS10 0.84 0.85 0.86 0.84 

DOS20 0.83 0.82 0.82 0.82 

DOS30 0.83 0.81 0.81 0.8 
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly 

solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that 905 
of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp: 

Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xxth percentile of 

snowmelt days occurs. *Indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling 

decisions used in the result and discussion sections. 

Early snowmelt timing metrics β1: AT β2: Pp β3: RH β4: SWR 
β 5: 

ATxPp 

β 6: 

ATxRH 

β 7: 

ATxSWR 

β 8: 

PpxRH 

β 9: 

PpxSWR 

β 10: 

RHxSWR 

r > 0.5 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.41 0.74 0.002 0.38 0.19 n/a n/a -0.33 n/a -0.19 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.55 0.45 0.22 0.56 0.26 n/a n/a n/a 0.23 -0.21 

DOS20 -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28 

DOS30 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27 

r > 0.6 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16 

DOS20 -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24 

DOS30 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24 

r > 0.7 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17 

DOS20 -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24 

DOS30 -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26 

r > 0.8 

1st snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06 

1st 3 consecutive 

snowmelt days 
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27 

DOS5 -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19 

DOS10 -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26 

DOS20 -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29 

DOS30 -0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 -0.26 
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Table A5: Coefficient of determination (R2) and slope (in parenthesis, days °C-1) of the linear regression between the empirical diel 

streamflow-based model sensitivity to warming and sites’ mean winter air temperature as presented in Figure 8B, for different early 

snowmelt day metrics and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when 

the xxth percentile of snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and 915 
discussion sections. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (-0.75) 

First 3 consecutive snowmelt days 0.02 (-0.30) 0.08 (-0.51) 0.00 (-0.05) 0.00 (-0.07) 

DOS5 0.00 (0.04) 0.01 (-0.18) 0.02 (-0.32) 0.25 (-1.00) 

DOS10 0.00 (-0.09) 0.25 (-0.86) 0.37 (-1.17) 0.2 (-0.66) 

DOS20 0.27 (-0.68) 0.35 (-0.89) 0.37 (-0.99) 0.33 (-0.75) 

DOS30 0.22 (-0.57) 0.26 (-0.65) 0.27 (-0.66) 0.20 (-0.52) 
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