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Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening
water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change, and where it is most
sensitive, remain key questions. Physically based hydrological models are often used for this purpose; however, they have
embedded assumptions that translate into uncertain hydrological projections that need to be quantified and constrained to
provide reliable inferences. The purpose of this study is to evaluate differences in projected end-of-century changes to
streamflow timing between a new empirical model based on diel (daily) streamflow cycles and regional land-surface
simulations across the mountainous western US. We develop an observational technique for detecting streamflow responses
to snowmelt using diel cycles of incoming solar radiation and streamflow to detect when snowmelt occurs. We measure the
date of the 20" percentile of snowmelt days (DOSy), across 31 western US watersheds affected by snow, as a proxy for the
beginning of snowmelt-initiated streamflow. Historic DOSy varies from mid-January to late May among our sites, with
warmer basins having earlier snowmelt-mediated streamflow. Mean annual DOSy strongly correlates with the dates of 25%
and 50% annual streamflow volume (DOQ2s and DOQsp, both R? = 0.85), suggesting that a one-day earlier DOS;, corresponds
with a one-day earlier DOQ2s and 0.7-day earlier DOQso. Empirical projections of future DOSy based on a stepwise multiple
linear regression across sites and years under the RCP8.5 scenario for the late 21% century show that DOSy will occur on
average 11+4 days earlier per 1°C of warming. However, DOSy in colder watersheds (mean November-February air
temperature, Tnpsr < -8°C) is on average 70% more sensitive to climate change than in warmer watersheds (Tnps > 0°C).

Moreover, empirical projections of DOQ2s and DOQso based on DOSy are about four and two times more sensitive to climate
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change, respectively, than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario.
Given the importance of changes in streamflow timing for water resources, and the significant discrepancies found in projected
streamflow sensitivity, snowmelt detection methods such as DOSy, based on diel streamflow cycles may help to constrain

model parameters, improve hydrological predictions, and inform process understanding.

1 Introduction

Earlier streamflow caused by earlier snowmelt is of great concern in a changing climate (Barnett et al., 2005; Harpold and
Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume comes at the
expense of later summer streamflow in regions like the western United States (US) (Hidalgo et al., 2009; McCabe and Clark,
2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et
al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy
inputs (Meira Neto et al., 2020; Gordon et al., 2022), decreasing runoff from upland forested watersheds (Foster et al., 2016;
Jepsen et al., 2018; Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting
downstream systems (Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress
(Immerzeel et al., 2020). However, it remains difficult to predict how much streamflow timing and amount will shift in future
climates (Gordon et al., 2022) due to altered snow accumulation patterns (Mote et al., 2018) and melt rates (Musselman et al.,
2017), and shifts from snowfall to rainfall (Klos et al., 2014).

Physically based hydrological models are typically used to predict how snow accumulation and melt will interact with the
critical zone (CZ) to affect short-term flooding and seasonal water supply (Kopp et al., 2018; Wood and Lettenmaier, 2006).
In mountainous regions like the western US, models need to accurately simulate snow processes across watersheds with
varying snowpack conditions (Serreze et al., 1999) and then transport and store that water in the CZ with varying subsurface
properties (Brooks et al., 2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more
closely mirror the amount and timing of rainfall. Precipitation phase (rainfall versus snowfall) is mediated by basin elevation
and hypsometry (Jennings et al., 2018; Wayand et al., 2015), which also influences precipitation amounts (Houze, 2012), with
higher elevations and steeper watersheds typically having higher precipitation and snowfall. Solar radiation is the primary
energy source for snowmelt in snow-dominated montane watersheds (Cline, 1997; Marks and Dozier, 1992). Conversely,
cloudiness lowers solar radiation and melt rates (Sumargo and Cayan, 2018). Shallower snowpacks have less cold content and
begin to melt earlier when solar radiation is lower (Harpold et al., 2012; Harpold and Brooks, 2018; Musselman et al., 2017),
which shifts streamflow earlier (Clow, 2010). Storage and drainage of water in the CZ control the sensitivity of streamflow to
earlier rain or melt water inputs. For example, snowmelt-mediated spring streamflow timing is more sensitive to climate change
in watersheds with rapid subsurface drainage than in landscapes with deep groundwater reservoirs that drain slowly (Safeeq et

al., 2013). In contrast, slow-draining watersheds have greater sensitivity to snowmelt-mediated summer streamflow volume
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from climate change (Tague and Grant, 2009). The complexity of these storage relationships is exemplified by isotopic
evidence showing that the fraction of streamflow that is "young water" (less than three months old) is smaller in steeper
watersheds (Jasechko et al., 2016), suggesting that physically modeling interactions between CZ water storage and changing
hydrometeorology will be challenging in mountainous areas. In a recent data-driven review, Gordon et al. (2022) proposed a
predictive framework composed of three testable and inter-related mechanisms to infer changes to snowmelt-driven streamflow
response under warming. Such mechanisms are associated with snow season energy and mass exchanges, the intensity of snow
season liquid water input and the synchrony of energy and water availability, and their analysis highlights the complexities in

predicting future streamflow in regions where multiple mechanisms interact.

Hydrologists typically apply two types of modeling tools to predict streamflow: empirical models and more mechanistically
oriented models (conceptual or physically based land surface models). Empirical models assume that long-term and often site-
to-site statistical relationships among predictor variables (e.g., precipitation and air temperature) and water fluxes (e.g.,
evapotranspiration and streamflow) can be used to understand and model their likely changes over time or space. Empirical
models used to predict changes over time (sometimes referred to as space-for-time substitutions) have been used to predict
responses to climate change in fields such as hydrology (Goulden and Bales, 2014; Jepsen et al., 2018; Sivapalan et al., 2011),
biodiversity (Blois et al., 2013) and tree growth (Klesse et al., 2020). Such models use retrospective information from different
places ("space”), typically spanning wide range of conditions (e.g., climate gradients), to predict future changes over time. For
example, observed characteristics from warm regions maybe used to infer future changes in cold regions due to global
warming. A limitation of this approach is that it neglects non-correlated (or independent) changes in spatially variable factors
(Jepsen et al., 2018). For example, heterogeneous patterns of warming, variations in precipitation and vegetation, or changes
that occur at different temporal scales (e.g., development of soil properties over 100s to 1000s of years, versus shifts from rain

to snow over hours) are implicitly neglected in such empirical frameworks.

Conversely, physically based models embed state-of-the-art physical understanding of hydrological processes. These models
typically require some degree of calibration or validation to observations (e.g., daily streamflow) to improve and assess their
predictive skill. The current generation of regional weather models using the Weather Research and Forecasting model (WRF)
(Skamarock et al., 2008) coupled to the Noah Multi Parameterization land surface model (Noah-MP) (Niu et al., 2011), which
we refer as NoahMP-WRF, has shown promising results for modeling atmospheric and snow processes in the contiguous US
(He et al., 2019; Liu et al., 2017; Musselman et al., 2017; Scaff et al., 2020). For example, snow simulations have been used
to quantify mountain snowmelt and streamflow response to climate change (Musselman et al., 2017, 2018). These simulations
use a pseudo global warming approach, which perturbs the historical climate with a climate change signal from an ensemble
of global climate models (GCMSs); using this perturbation avoids systemic biases in the GCMs and avoids issues related to

their interannual variability (Liu et al., 2017). Comparisons between land surface models and empirically based predictions of
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future streamflow are rare but valuable (Jepsen et al., 2018), and could help to diagnose modeling deficiencies and improve

predictions.

New observations of streamflow generation during snowmelt could be key to improving current hydrological models.
Determining whether streamflow response was produced by rainfall or snowmelt is an important but difficult task (Weiler et
al., 2018). Few simple, low-cost observational tools are available to separate rainfall-driven from snowmelt-driven
contributions to streamflow, or to separate this year's snowmelt from the previous years' melt and storage. One method that
can be straightforwardly applied to existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt,
and streamflow (Kirchner et al., 2020; Lundquist and Cayan, 2002). Diel (24-hours) cycles in streamflow and shallow
groundwater levels can result from daily cycles in snow/ice melt and evapotranspiration, which are both ultimately driven by
solar radiation inputs (Kirchner et al., 2020). This mechanistic response has been used to study watershed properties like
kinematic wave celerity (Kirchner et al., 2020), the impact of snowpack variability on streamflow timing (Lundquist and
Dettinger, 2005), groundwater fluctuations (Loheide and Lundquist, 2009), and transitions from snowmelt to
evapotranspiration-dominated streamflow fluctuations (Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More
recently, Kirchner et al. (2020) combined local observations and remote sensing to show that streamflow diel response was
tightly controlled by the timing of snowpack disappearance. However, it remains unknown whether information embedded in
the diel streamflow response following snowmelt events can be used to inform streamflow predictions under climate change,
and whether such projections are consistent with current state-of-the-art hydrological modeling. The purpose of this research
is to evaluate whether land-surface hydrology model simulations and a new diel streamflow-based empirical model yield
similar projected end-of-century changes in streamflow volume timing across mountainous western US headwater watersheds.
To this aim, we extend the ‘diel cycle index’ approach of Kirchner et al. (2020) using diel streamflow observations to detect
days when streamflow is coupled to snowmelt inputs (i.e., a snowmelt-dominated streamflow event), and investigate their
contributions to historical variability in streamflow volume timing. We then compare empirical diel streamflow-based
projections by the end of the century under an RCP8.5 pseudo global warming scenario against predictions from a state-of-
the-art land surface model (under the same climate scenario) across 31 mountainous watersheds in the western US to answer
the following questions:

1. Do historical diel streamflow cycles indicate earlier snowmelt in warmer watersheds and years, and can we use diel

observations of snowmelt to predict the timing of streamflow volume?

2. In which watersheds is the timing of snowmelt the most sensitive to climate change as projected by an empirical diel
streamflow-based model?

3. Do historical streamflow volume timings and future empirical diel streamflow-based projections diverge from commonly
used, state-of-the-art land surface models?

A list with the abbreviations used in this study is presented in Table 1.
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2 Methods
2.1  Study Domain and Data

We studied 31 mountainous watersheds in the western US (Table 2), spanning snow fractions of 0.27 to 0.78 (Figure A3A),
aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m (Addor et al., 2017; Pelletier
et al., 2016) (Table 2). These watersheds are part of the CAMELS (Catchments Attributes and MEteorology for Large-sample
Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow and meteorological forcing,
among other observed and simulated hydrometeorological variables at the watershed scale. These watersheds were chosen
because their streamflows are unregulated, they have relatively small drainage areas (< 250 km?), and they are at relatively
high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-driven streamflow
regimes. The names, locations, elevations, slopes, drainage areas, and other key characteristics of the 31 watersheds are

presented in Table 2.

The data used in this analysis include hourly streamflow, incoming shortwave radiation, mean daily relative humidity, air
temperature, and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming shortwave
radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest grid
point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are from
CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is interpolated from existing ground observations.
Available hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites. Figure A1A
shows the number of years that have more than 70, 80 and 90% of days with hourly records for the period between December
1 and August 1. Based on this preliminary analysis, we selected water years with more than 80% of days with hourly
streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze (except
for sites #10 and #30 with 4 years).

2.2 Snowmelt and Streamflow Diel Coupling

To identify days when solar radiation-driven snowmelt is coupled to the streamflow response, hereafter called snowmelt days
for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow (Figure 1). A
snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged streamflow is
statistically significant (p-value<0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response after snowmelt,
we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all combinations, and
kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although having both a
correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant correlations
above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1 for r>0.6) to

assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used to avoid
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confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020; Mutzner
etal., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation with lags
below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner et al., 2020).
However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel response or rain-
on-snow events. To minimize this, we further restricted the lags that could be selected based on optimum lags from snowmelt
days with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-sky solar radiation
value (grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and was calculated
as the lags between the 10" and 90 percentile of clear-sky days with Spearman correlations above 0.8. This second filter also
helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance of selecting 18-hr
lags that can be associated with ET. Despite efforts to select only snowmelt-driven streamflow diel responses, this methodology
does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always be excluded.
Excluding such cases would require hourly precipitation observations, which are unavailable at some of our study watersheds.

However, we believe that any such cases will minimally affect the results of our analysis.

To better assess the potential impact that rainfall may have on our proposed diel analysis, particularly on the effect of rain-on-
snow events, we analyzed which days classified as snowmelt days also had rainfall. We assessed daily rainfall using the daily
precipitation time series from CAMELS based on the DAYMET product for each watershed. A false detection rate metric was
computed for each watershed, in which every day classified as a snowmelt day with daily precipitation above 5 mm and a
mean daily air temperature above 2 °C was assumed to be mis-classified (Figure 2). A false detection rate of 100% means that
all snowmelt days were mis-classified and 0% means that no days had significant rainfall. On average, the false detection rate
was estimated at 7% with a standard deviation of 5%, and only watersheds #24 and #31 (located in WA and OR, respectively)
exceeded 15%, with 21% and 29%, respectively. This suggests that the effect of potential rainfall-induced diel streamflow
cycles (including rain-on-snow events) in most watersheds is low (except for watersheds #24 and #31), supporting further
analysis. We also assessed the mean cross-site false detection rate for precipitation thresholds of 1 mm and 10 mm and found
reasonable values of 12% and 3%, respectively. However, we believe that 1 mm is not a reasonable threshold as a 1 mm rainfall
event would be unlikely to produce a distinguishable diel streamflow signal and could represent error/noise in the DAYMET

product.

2.3 The empirical diel streamflow-based model

We defined the day when the 20" percentile of the snowmelt days (as defined in section 2.2) occurs (DOSy) as a new metric
to characterize the seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5™,
10™, and 30" percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis.
We chose this metric because we expected it to be associated with the timing of streamflow volume, and that the choice of

slightly earlier or later snowmelt day metrics (e.g., DOS1o or DOS30) would not substantially change our results. We fitted a

6
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stepwise multiple linear regression model (MLR, p-value<0.01, Equation 1) to reconstruct historical DOSyo across all
watersheds and years (Figure 7) using four climate variables as predictors: total precipitation, air temperature, relative
humidity, and solar radiation:

DOS;o = B1x1 + B2xy + B3x3 + BaXy + Psx1X; + Pex1X3 @)
+ B7x1X4 + PgX2X3 + BoXaXy + BroX3Xy

where x; is cumulative air temperature (i.e., degree day, °C), x2 is cumulative precipitation (mm), Xs is mean relative humidity
(%), X4 is mean solar radiation (W m2), and the g; are regression coefficients. Mean annual climate variables were calculated
for the period between November 1%t and DOSy (i.€., between late fall and the metric representing the date of early snowmelt
events). As a result, DOSy is present in both sides of Equation 1; therefore, the stepwise MLR requires an iterative solution
when used in a predictive mode (i.e., for the climate change analysis when DOSy is unknown). The MLR model is the basis
of our empirical diel streamflow-based model, which is used to assess changes in DOS, due to climate change (i.e., changes
in X1, X2, Xz and x4 in Eq. (1)). We verified the stepwise MLR assumptions, namely, linear relationships between each predictor
and DOSy, normally distributed residuals, homoscedasticity, and the absence of strong multicollinearity (as suggested by a
Variance Inflation Factor < 3). We also tested other metrics related to the timing of early snowmelt events. These included:
the first snowmelt day, the first three consecutive snowmelt events, and the 5™, 10" and 30" percentiles of snowmelt days
(DOSs, DOS;p and DOSg3, respectively). All metrics were also computed using each of the different Spearman correlation
cutoffs (Table Al, A2, A3, A4 and A5), but the main analysis presented here focuses on DOSy, based on snowmelt days

calculated with hourly Spearman correlations >0.8.

We predict changes to DOSy based on the stepwise MLR model and end-of-the-century mean climate change forcing from
NoahMP-WRF (Liu et al., 2017). NoahMP-WRF was run under a high emission scenario (RCP8.5) using the pseudo global
warming approach for the end of the century. Overall, it projects a warmer (4 —5.2°C), wetter (0 - 20% increase in precipitation)
climate (Figure A4 and A5). These mean annual changes in climate were applied to the predictors in the stepwise MLR model
to predict changes in DOSy. As previously mentioned, predictors used in the stepwise MLR were calculated for the period
between November 1% and DOSyo; therefore, as we do not know the value of DOSy in the future, an iterative solution is
required to solve for DOSy in Equation 1. We find a numerical solution using a 2-day convergence threshold between
iterations, so that |[DOS20;.1 — DOS20;| < 2 days, where ‘i’ is the number of the iteration.

2.4 Streamflow Volume Timing from a Land-Surface Model

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and
the period 2071-2100 under pseudo global warming (Liu et al., 2017). NoahMP-WRF simulations include an improved Noah
configuration, which aims to better represent the snow physics. These improvements include (Liu et al., 2017): the rain-snow
transition is based on a microphysics partitioning approach as opposed to a subjective temperature-based approach, patchy

snowpack are allowed in the calculation of the surface energy balance, the heat transport from rainfall to the ground is included,
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and the snow depletion curve is vegetation-dependent. These improvements allow for a better representation of the surface
energy balance, and the simulation of snow accumulation and melt processes. We used daily watershed-scale outputs of surface
and subsurface runoff from historical and future NoahMP-WRF simulations to estimate the date of 25% and 50% of annual
streamflow volume (DOQ,s and DOQsy, respectively). Given the range of the watershed drainage areas (4 - 236 km?, Table
2), watersheds covering several grid cells use the total surface and subsurface runoff for their corresponding grid cells. Small
watersheds are represented by only the single nearest NoahMP-WRF grid cell. The way NoahMP-WREF is implemented within
WREF lacks a streamflow routing scheme such as the one in WRF-Hydro (Gochis et al., 2020); therefore, we used the sum of
surface and subsurface runoff to estimate DOQ2s and DOQso. We also repeated the analysis using surface runoff only, leading
to similar results (Figure A7). Given the relatively coarse NoahMP-WRF spatial resolution (4 km) compared to the watershed
drainage areas (4 - 236 km?), we assume that mean streamflow timing metrics are not significantly affected by the lack of

streamflow routing.

3  Results
3.1  Empirical Relationships Between DOS,, Climate and Streamflow

Mean annual DOSy (the date of the 20" percentile of snowmelt days) has a strong regional variability that is reasonably
captured by a negative linear correlation (R? = 0.48) with the mean winter air temperature (November to February, Tnpge) in
watersheds with Tnpye<-3°C, whereas warmer watersheds do not follow the same pattern (Figure 3A and Figure 4A). Warmer
sites (Tnosr > -3 °C) have a more variable mean DOSy ranging from mid-January to early May, whereas the coldest sites
(Tnpar <-8°C) have a later and less variable DOS,o around mid to late May. On average, the regression suggests that a 1 °C of
warming results in 7.2-day earlier DOSy. A relationship between later DOSy and colder Tnpgr is also found in the year-to-
year variations at most watersheds (21 out of the 31) (Figure 3B). A strong negative linear relationship was found between the
date of the 25% of the annual streamflow volume (DOQ2s) and Tnpyr (Figure 3C). Warmer watersheds (Tnps>0°C) generate
streamflow earlier (DOQ2s between mid-December and early March) compared to the coldest watersheds (Tnpe<-8°C) where
DOQ2s is between early and late May (Figure 3C). On average, the cross-site regression shows that each 1°C warmer Tnpsr
produces a 13-day earlier DOQ2s. For most watersheds (25 out of 31), interannual regressions show a similar pattern with
warmer years having earlier DOQ2s; however, these interannual regressions have shallower slopes than the cross-site
relationships (Figure 3B and 3D). Previous work by Stewart et al. (2005) also related seasonal meteorological patterns with
the spring onset and streamflow timing, and found similar relationships (e.g., warmer watersheds have earlier spring onset and
streamflow timing). However, the definition of the spring onset was based on the cumulative hydrograph (the day when the
cumulative departure from the mean streamflow was the minimum), as opposed to our more mechanistic diel streamflow
analysis. Other definitions for spring onset based on streamflow, snow pillows, and air temperature are presented by Lundquist
etal. (2004).
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Strong correlations between DOS3 and both DOQ2s and DOQso (the date of 50% of the annual streamflow volume) (R? = 0.85,
Figure 5A and 5C) suggest connections between the timing of snowmelt and streamflow generation across watersheds and
years. On average, sites that melt earlier are associated with earlier DOQas (Figure 5A) and a lower ratio of snowfall to total
precipitation (snow fraction<0.5). The relationship between DOS,, and DOQ3s closely follows the 1:1 line (Figure 5A),
although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 2 and Figure 6A) deviate substantially from
this pattern, perhaps because they receive relatively little of their precipitation as snow. Similar watershed-level relationships
using interannual variability in DOQ,s were found for most watersheds, with statistically significant slopes varying between
0.4 and 2.5 day day? (Figure 5B). DOSy also predicts DOQs, well, with 10-day earlier snowmelt producing 7-day earlier
DOQsp on average (Figure 5C), and similar watershed-level interannual relationships (Figure 5D). The same three relatively
rainy watersheds have DOQsg prior to the DOSyo (Figure 5C and Figure 6B), suggesting that early snowmelt timing is not an
important predictor of DOQsp in such places.

3.2 Diel Streamflow-Based Sensitivity of Snowmelt Timing (DOSy) to Climate Change

We fitted a stepwise MLR with four climate variables (air temperature, precipitation, relative humidity, and solar radiation) to
predict the diel streamflow-based DOS;, metric across watersheds and years. A total of 333 watershed-year combinations of
DOSy and climate variables were used to train the stepwise MLR model. The watershed-year relationship between observed
and MLR predictions has a relatively high R? of 0.83, a root mean square error (RMSE) of 17.5 days, and normally distributed
residuals (p < 0.01) off the 1:1 line and centered at O with a standard deviation of 17.3 days (Figure 7A). The relationship
between observations and MLR predictions of inter-watershed mean annual DOSy (Figure 7B) is also strong (R% = 0.83 and
RMSE = 13.2 days) and follows the 1:1 line. Similarly, when we look at interannual values, represented by the lines
overlapping the circles in Figure 7B, we find a good agreement with most slopes close to 1:1 (see inset plot Figure 7B). This
analysis demonstrates that the MLR model can reasonably represent both the mean annual DOSy values at each watershed
and their interannual variability. Table A4 shows standardized beta coefficients that indicate the importance of each climate
variable in the stepwise MLR. For the 0.8 correlation cutoff we found that incoming shortwave radiation has the greatest
importance (beta = 0.75), followed by relative humidity (beta = 0.37) and air temperature (beta = -0.31).

Empirical diel streamflow-based projections under climate change show earlier mean annual DOSy in all watersheds (i.e.,
earlier snowmelt initiation), with significant variability from site to site (Figure 8A). Most watersheds show significant end-
of-century changes in DOSy ranging from up to three months earlier in cold sites where, historically, snowmelt under clear-
sky conditions dominates (circles in Figure 8A), to as little as 20 days earlier in warm sites under historically cloudier
conditions. The cross-site average change in DOSy is 55.3 days with a standard deviation of 21.8 days. In many watersheds
the mean projection of DOS, under climate change is within the historically observed variability in DOSy (Figure 8A). The
empirical model predicts that on average, colder watersheds (Tnps<-8°C) are about 70% more sensitive to climate change
(13.7+4.6 days ‘Ct) than warmer watersheds are (Tnpy=>0°C) (8.1%6.2 day "C), as represented by the change in the DOSz
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per degree of warming (Figure 8B). Site #24 (South Fork Tolt River, WA.) shows almost no change in its DOSz, which can be
attributed to its weaker climate change signal compared to the other watersheds (about +4°C, 5% precipitation increase, and
virtually no change in humidity and solar radiation; Figure A4). The diel streamflow-based analysis suggests an average

sensitivity of DOSg to climate change of 11.1+4.2 days °C* across all watersheds.

3.3 Sensitivity of Streamflow Timing to Climate Change: Empirical diel streamflow-based model versus NoahMP-
WRF
We compared historical and empirical diel streamflow-based projections for DOQ2s and DOQsp with those from NoahMP-
WRF. Empirical streamflow timing sensitivity projections for DOSy under climate change were derived from the linear
regressions presented in Figure 5A and 5C (DOQ2s and DOQsp vs DOSy0) with projected changes in DOSy using the MLR
under climate change. Empirical projections for DOQ2s range from early January to late May (red symbols, Figure 9A),
advancing between 20 and 100 days under RCP 8.5 (x-axis, Figure 9C). The DOQs is projected to advance between roughly
15 and 65 days (x-axis, Figure 9D), ranging from mid-February to late May (red symbols, Figure 9B). The historical DOQ2s
is underestimated by NoahMP-WRF (blue symbols, Figure 9A) with a mean DOQys in mid-February, whereas historical
DOQgs is in early April (50-day mean difference). Projected changes to DOQ2s by NoahMP-WRF under pseudo global
warming range between early January to mid-March (mean in early February; Figure 9A), averaging -15 days (ADOQ2s, Figure
9C), whereas empirical diel streamflow-based projections range between early January and late March (mean in mid-February;
Figure 9A), averaging about -60 days (ADOQus, Figure 9C). These results indicate that empirical diel streamflow-based
projections of DOQs are about four times more sensitive to climate change than those from NoahMP-WRF. Historical DOQs
is reasonably well represented by NoahMP-WRF under the current climate (blue symbols, Figure 9B) with a mean difference
against observations of 7 days; however, future changes of about -20 days are projected, which are roughly half of the -40 days
predicted by the empirical streamflow-based projections (ADOQso, Figure 9D). Empirical diel streamflow-based projections
of DOQso range between mid-February and early April, whereas NoahMP-WRF projections range between mid-March and
mid-May, suggesting later estimates of streamflow volume by the land surface model. Watersheds with the largest
disagreement between the empirical model and NoahMP-WRF projections for streamflow volume timing are those where
DOSy is the most sensitive to warming, represented by the orange and yellow symbols in Figure 9C and 9D. These watersheds
are characterized by historical cold winter temperatures (T npse<-6°C) with snowmelt occurring mostly under sunny conditions

(circle symbols) in the Rocky Mountains.
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4 Discussion

The new DOSy metric based on the diel streamflow analysis quantifies the timing of early snowmelt events and suggests that
shifts towards earlier snowmelt will generate larger shifts toward earlier streamflow in colder, sunnier watersheds than in
warmer, cloudier watersheds where snowmelt is more interspersed with rain. Despite the intuitive connections between
snowmelt and streamflow, empirically linking changes in earlier snowmelt rates (Harpold and Brooks, 2018; Musselman et
al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing (Stewart et al., 2004) has been challenging
(Weiler et al., 2018). This study represents of the first empirical analysis of streamflow-induced snowmelt change across a
regional climate gradient not relying only on streamflow volume. Understanding these connections is challenging due to the
representative scales at which snow (point-scale) and streamflow (watershed-scale) are typically measured and analyzed. For
example, evidence of snowmelt at Snow Telemetry (SNOTEL) sites in the US has shown more intermittent snowmelt events
at sites with higher humidity, and future modeling suggests lower-humidity sites will experience slower, earlier snowmelt
(Harpold and Brooks, 2018; Musselman et al., 2017). However, the cascading effects of earlier and slower snowmelt on
streamflow amount and timing remain relatively unexplored (e.g. Berghuijs et al., 2014), and are potentially affected by surface
and subsurface hydrological connectivity, vegetation water use, and other processes that are not easily measured or
parameterized. Our diel streamflow analysis has limitations in places dominated by rainfall, as evidenced by higher false
detections in areas with low snow fractions (Figure 2) and by the small (or nonexistent) interannual correlation between DOSy
and the metrics DOQ2s and DOQso (Figure 5A and 5C) in those places. Conversely, the colder and sunnier watersheds,
primarily in the intermountain region, have strong interannual correlations between DOS2, and DOQ3s (Figure 5A and Figure

6A), reflecting the importance of snowmelt (instead of rain) in controlling streamflow volume timing.

Because the diel streamflow analysis does not require the many assumptions that are embedded in physically based models, it
is an independent tool that can be used to verify historical streamflow simulations from sub-daily resolved hydrological models.
For example, land surface models could be benchmarked against observed snowmelt days based on the diel streamflow analysis
or metrics like DOSy to better represent processes associated with snowmelt-driven streamflow generation. The diel
streamflow analysis is also easier to implement than detailed process-based models because it only requires observed hourly
streamflow data and solar radiation. If measured solar radiation is not available, it can be reliably represented by land surface
models like NLDAS-2 (Luo et al., 2003) that assimilate field observations and remotely sensed radiation (including the effects
of clouds) into an atmospheric modeling framework. In our analysis, we tested the sensitivity of some modeling decisions,
such as the correlation cutoff between hourly solar radiation and streamflow used to detect snowmelt days and metrics for
snowmelt timing and found similar sensitivities of DOSy, to climate change across different correlation cutoffs and snowmelt
timing percentiles (Table A5). Metrics like the first snowmelt day or the first three consecutive snowmelt days showed less
consistent results (Table A5), likely due to individual early or mid-winter melt events that do not necessarily represent the

seasonal watershed behavior. The diel streamflow analysis has four main limitations that need to be examined in future work:
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(1) it requires a steep enough stage-discharge relationship that daily streamflow cycles can be detected across the flow regime,
(2) it focuses on snowmelt driven by solar radiation (and energy fluxes synchronized with it), (3) it is sensitive to assumptions
about the lag time between solar radiation and streamflow, and (4) it is sensitive to assumptions about evapotranspiration
losses. A steep stage-discharge relationship, in which small changes in discharge are associated with large changes in stage, is
ideal to observe small diel streamflow changes with sufficient precision. The second limitation originates from the assumption
that the majority of snowmelt is correlated with solar radiation, which is supported by the dominant role of solar radiation in
process-based studies of maritime and continental snowpacks (Cline, 1997; Jepsen et al., 2012; Marks and Dozier, 1992).
Because our method allows the lag time between solar radiation and streamflow to vary within a predefined window, we expect
it to capture the effects of other important energy fluxes, such as sensible heat, that often lag the diel patterns of solar radiation
by several hours (Ohmura, 2001). Rain-on-snow events are particularly challenging to detect with our analysis, as days with a
lower percentage of incoming shortwave radiation (<80% of clear-sky) are filtered out to avoid issues with potential rainfall-
dominated diel signals. It may also misclassify rainfall-driven diel streamflow cycles, although we checked for rainfall-
induced cycles and found that these accounted for only a small fraction (7% on average; Figure 2) of our inferred snowmelt
days. The relationships between streamflow timing (i.e., DOS,, DOQ2s and DOQsp) and meteorological drivers in rainier
sites showed cross-site and interannual relationships that are consistent with those in colder, more snow-dominated places
(except for watersheds #24, #25 and #31) (e.g., Figure 3A and 3C). The third limitation is that the spatiotemporal variability
in snowpack, surface and subsurface storage, and evapotranspiration will change the magnitude and lag time of the diel
streamflow response (Kirchner et al., 2020; Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), which we address
by allowing variable watershed- and month-specific time lags. However, lag times greater than 24 hours, which are associated
with large watersheds or large subsurface storage, will make this method impaossible to apply. The method may also miss early
snowmelt-driven diel cycles in watersheds with dry soils, as the diel signal will be buffered by the subsurface storage capacity
before generating a measurable streamflow response. Our empirical diel streamflow-based model implicitly assumes that other
variables not included in the analysis vary together with the predictive variables (climate) and neglects watersheds' physical
(e.g., soil storage) and biological (e.g., vegetation) properties that do not necessarily co-vary with climate. The fourth limitation
is that evapotranspiration losses must be small relative to snowmelt inputs, which is necessary because the effect of
evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al., 2020). Evapotranspiration effects are minimized
by focusing on early snowmelt periods, when evapotranspiration losses are small (Bowling et al., 2018; Cooper et al., 2020;
Winchell et al., 2016).

Hydrological modeling in land surface models attempts to physically represent snowpack storage, snowmelt, subsurface
storage, and its release to the streamflow, which is challenged by uncertain forcing data and simplified and uncertain model
parameters. For example, snowmelt modeling in complex terrain is challenged by steep climate gradients and by the lack of
adequate forcing data (e.g., precipitation, temperature, wind, etc.). Characterizing precipitation phase and timing in steep

watersheds remains challenging in rain-to-snow transition zones (Harpold et al., 2017; Jennings et al., 2018; Wayand et al.,
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2015), which will presumably increase in extent in the future (Klos et al., 2014). Complex terrain affects radiation fluxes,
which are hard to estimate at kilometer spatial scales (Muller and Scherer, 2005) used in most land surface models. Most of
our study sites are forest covered, which exerts a strong control on the snowpack mass and energy balance (Lundquist et al.,
2013; Pomeroy et al., 1998; Safa et al., 2021) with spatially heterogeneous effects on snow accumulation and melt that remain
challenging to model (Broxton et al., 2015; Krogh et al., 2020). The presence of preferential flowpaths through the snowpack
impacts the timing of melt release (Leroux and Pomeroy, 2017) and is not typically included in hydrological models. Once
snowmelt is released from the snowpack, simulating (and validating) what fraction flows as subsurface and surface runoff
remains difficult. Decades of tracer studies (e.g., Godsey et al., 2010; Kirchner, 2003) have shown that streamflow during and
after hydrologic events (i.e., snowmelt or rainfall events) is typically ‘old water’ that has been stored in the watershed for
months to years. Land surface models like NoahMP-WRF lack realistic groundwater stores to represent old water and lack
hillslope and near-stream processes (Fan et al., 2019). For example, previous work at Sagehen Creek (site #23) suggests that
streamflow remains ~80% groundwater even during the snowmelt freshet (Uridstegui et al., 2017), despite a strong snowmelt
diel response caused by pressure changes induced by infiltrating snowmelt. Innovative observations that give new physical
insights, like the diel streamflow analysis, could bring new information to modeling beyond what is possible with typical daily

discharge resolution (Kirchner, 2006).

The diel-based analysis of snowmelt-driven streamflow to changing climate gives unique insights over previous efforts using
daily and seasonal streamflow volumes (Berghuijs et al., 2014; Stewart et al., 2005) and retrospective hydrological modeling
(Barnhart et al., 2016). Empirical projections of DOSz under the pseudo global warming scenario (Figure 8B) show that
colder, drier, and sunnier sites (typical of the Rocky Mountains) are about twice as sensitive to warming as warmer, more
humid, and cloudier sites (typical of the Pacific Northwest). Humid and warmer sites have lower snow fractions (<0.5, more
rainfall effects) and thus, a smaller snowmelt signal in the diel streamflow observations. In contrast, Harpold and Brooks
(2018) showed that winter ablation at SNOTEL sites in humid places, like the Pacific Northwest, are more sensitive to warming
than less humid places, like the Southwest US. However, Kirchner et al. (2020) showed general agreement between SNOTEL
snowmelt response and the snowmelt-induced diel streamflow signal at the warm Sagehen Creek watershed (site #23). The
sensitivity of the early snowmelt timing metric (DOSy) to climate change is a function of changes in precipitation phase
(rainfall vs snowfall), snowpack ablation (changes in the patterns of melt and sublimation), and hydrological partitioning to
streamflow versus evaporative loss. Due to the empirical basis of our analysis, these sensitivities are not easy to disentangle,
but the diel analysis is a new source of information that could help in that effort. The reliability of the empirical diel streamflow-
based projections partially depends on whether climate projections are within or outside the range of observed climate
conditions across the large climatic gradient found in the western US. Under the pseudo global warming scenario, cold, sunny
watersheds like those in the Rocky Mountains (sites #9 and #10) will shift toward more humid, warmer conditions (Figure
Ab), like those observed in Southern ldaho (site #29) and the northern Sierra Nevada (site #23). In contrast, the pseudo global
warming scenarios for places like the Pacific Northwest, particularly those involving changes in atmospheric humidity above
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5 g/m3 (Figure A4), have not been observed in the historical record, and therefore are more uncertain. Determining reasonable
conditions to apply empirical models that use observed differences in sites to predict future changes (often called space-for-
time models), like the presented diel streamflow analysis, has been posed as one of the 23 unsolved problems in hydrology
(Bloschl et al., 2019).

The sensitivity of historical snowmelt-mediated streamflow volume timing (DOQ2s and DOQsp) to climate change differs
substantially between the empirical diel streamflow-based approach and a land surface model, raising questions about current
state-of-the-art projections of early season streamflow timing from NoahMP-WRF, particularly in cold watersheds (Figure 9C
and 9D). The observed data used in the diel streamflow-based approach have larger and more variable streamflow timing
responses to climate change (10 — 17 days °C) in cold, dry, sunny places that are representative of small, high-elevation
Rocky Mountain watersheds (Figure 8B). The historical diel streamflow analysis suggests that NoahMP-WRF may be
systematically under-predicting the sensitivity of streamflow volume timing to earlier snowmelt-induced streamflow in colder
and sunnier places (Figure 9C) that are most likely to have increased temperature and increased cloudiness in the future. The
same mean annual future climate scenarios were applied to both approaches; however, important differences in the streamflow
timing response were found between NoahMP-WRF and diel streamflow-based projections (Figure 9C and 9D). NoahMP-
WRF underpredicts historical DOQ2s (Figure 9A) across most sites, whereas DOQso is much better represented. It is worth
noting that when DOQ2s simulated by NoahMP-WREF is calculated using surface runoff alone (Figure A7A), rather than
subsurface plus surface runoff, it performs better against observed DOQ2s. However, NoahMP-WRF projected sensitivity in
streamflow timing to climate change remains significantly lower than predictions based on the diel-streamflow analysis (Figure
AT7C). We used these simulations in the analysis because NoahMP underlies the US National Water Model and thus its
relevance to policy and research is high. There are many differences in the way that NoahMP-WRF and the empirical diel
streamflow-based approach function. NoahMP-WRF can track the hourly covariance in precipitation, temperature, and
humidity to estimate precipitation partitioning between rain and snow. It is also able to represent hourly radiative and turbulent
energy at the snowpack, and the cold content needed to predict snowmelt. Its physical hydrology is also advanced and able to
consider antecedent conditions and allow evapotranspiration losses that also modulate streamflow. Despite the advantages of
land surface models like NoahMP-WREF in constraining processes for future projections, the simplicity of diel streamflow-
based analysis also provides several advantages. One of the main advantages is that it is derived from observations and thus it
is well constrained by the observed spatial and temporal variability of snowmelt across watersheds and years (Figure 7B).
Also, it does not assume anything about the complex spatial distribution of snowpacks and precipitation or subsurface
properties, which are major constraints to physically-based models (Baroni et al., 2010; Christiaens and Feyen, 2001; Wilby
et al., 2002). While the empirical diel streamflow-based model is not a replacement for land surface models like NoahMP-
WRF, partly because the underlying streamflow datasets are not available everywhere, there is added value in including new
benchmarks like the proposed DOSy to further constrain modeling decisions and improve model fidelity required for reliable

and accurate hydrological predictions.
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5 Conclusions

Water management in the western US requires accurate predictions of how both short-term climate variability and long-term
climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between
empirical diel streamflow-based projections and a land surface model (NoahMP-WRF) raise important questions about the
sensitivity of streamflow timing to climate change, particularly in cold regions, and its impact on water planning. Significant
differences exist in the way diel streamflow-based and land surface models predict changes to snowmelt and streamflow
timing, with both approaches having strengths and weaknesses; however, the land surface model misrepresents historical
patterns in streamflow response that are more accurately estimated by the empirical model. We show that DOSy is a strong
predictor of the early season hydrograph response, particularly in cold, sunny areas where the NoahMP-WRF streamflow
timing simulations lack sensitivity to climate change. Rigorously validating future model predictions is impossible, but
snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to refine land surface models and better
determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 2017; Viviroli et al., 2007), particularly
in cold regions. Our novel approach can complement the benchmarking or calibration of physically based hydrological models,
beyond typical benchmarking against daily streamflow or snow accumulation metrics. For example, the snowmelt timing
metric DOSyo based on diel streamflow observations could be used to test how well land surface models, running at sub-daily
scales and fine spatial resolution, can reproduce the historical snowmelt regime across watersheds and years. As land surface
models move towards real application for water management (Kopp et al., 2018), the hydrology community must seek ways
to test and improve them using widely-available datasets if we are to meet the grand water management challenges posed by

climate change in mountainous regions.
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Figure 1: Examples of the diel cycle analysis applied to two watersheds located in California (A) (B) (WY2016) and Colorado (C)
(D) (WY2014). (A) and (C) show hourly solar radiation (orange) and streamflow (blue); the first statistically significant (p<0.01)
lagged spearman correlation (r>0.6) between streamflow and solar radiation is shown on a text box for clear-sky days only (>80%
of clear-sky solar radiation). (B) and (D) show the solar radiation-driven snowmelt days (blue circles) on top of the annual
hydrograph (semi-log scale) for the period of analysis (white background, December to July).
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Figure 2: Percentage of days that were classified as having snowmelt following the diel streamflow cycle analysis that also had
daily precipitation above 5 mm and a mean daily air temperature above 2 °C. Symbols are associated with the mean annual
percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have >90%, clear-sky snowmelt days, partly cloudy

730 sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt
days are defined as those with more than 80% of the potential clear-sky solar radiation.
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Date of 25% of Streamflow Volume (DOst)

Figure 3: (A) and (C) show cross-site relationships between mean winter air temperature (November to February) and DOSz and
the date of 25% of annual streamflow volume (DOQz2s), respectively. Slopes of individual sites’ interannual relationships are shown
as the lines on top of each symbol, where statistically significant (p-value <0.05) slopes are red. Non-significant interannual slopes
are presented to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of
snowmelt days under clear-sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares)
have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined
as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) show histograms of interannual slopes (for all
watershed and those with statistically significant relationships) and the cross-site relationships presented in their respective left

panel.
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Figure 4: Spatial variability of watershed-level interannual slopes for (A) DOS20 vs winter air temperature, and (B) DOQ2s vs winter
air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are

750 associated with those presented in Figure 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-
sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%,
and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80%
of the potential clear-sky solar radiation.
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Figure 5: (A) The day when the 20t percentile of snowmelt days occurs (DOS20), compared to the date of the 25% of the annual
streamflow volume (DOQz25). (C) DOS20 against the date of 50% of the annual streamflow volume (DOQso). Dashed lines in (A) and
(C) are 1:1 lines, and the slopes of sites’ interannual relationships are shown as the lines on top of each symbol, with statistically
significant (p-value <0.05) slopes shown in red. Sites #24, #25 and #31, indicated by dashed circles, fall far from the linear regression
and are not included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites
(circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds)
have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. (B) and (D)
show histograms of interannual slopes (for all watershed and those with statistically significant relationships) and the cross-site
relationships presented in their respective left panels.
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Figure 6: Spatial variability of the watershed-level interannual slopes for (A) DOQz2s vs DOS20, and (B) DOQso0 vs DOS2.
Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with those

775 presented in Figure 5. Watersheds that fall far from the linear regression presented in Figure 5 are surrounded by a dashed circle.
Symbols are associated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have
>90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%.
Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation.

780

29



"15 I [ 7

2| (A) o e &|(® [ ¥

2} (A) g bt > F I p<5% / . 25

z 240 3 4 10 = == Cross-site -

= & = % -.'

@ 20 §i i

S * 3 i ” f/ 20 §
8 3 %0 o 50 100 . 8 e ,@’ =

Al Residual (days) = & Q2
O & S o slope (day day™' 8

= 3 g pe (day day™) <
© e o 15 ®

T 8 [ >

2 e = ﬂ -
e o o S ; @’ / S
@ 1S 8

cr x 10 €
X S =i 5
- = 2’ zZ
Z 8 2

- . R?=0.83 £ [or e R?=0.82 5

b RMSE = 17.5 days S| RMSE = 13.2 days

O r e

gl ee | . | ¥ ‘ .

Dec-01 Jan-30 Mar-30 May-29 Jan-30 Mar-30 May-29
Observed annual DOSZO Observed mean annual 00820
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785 Interannual variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e., watershed);
red and blue lines indicate statistically significant (p<0.05) and insignificant slopes, respectively.

30



790

795

Gauge ID
18172931232615191620 7 223013 2 21242711142528 5108 1 41286 3 9

T T T 20
A ‘ 8 B 2 _
(A) (%) ( )O [o) R"=03 May-19
o] 5] slope = -0.75
wg =3 T ] g 15} & 5 - || Apr-29 g
g = T o 2 »=" " 8
Q o® g~ (6 Apr-09 A
E oo 25 R : s
S 3 ‘..lll.. L5 107 ® i 8
E Lt - gaEEEEEERE4 & K a ¥ '. Mar-20 &
e < 0‘-’ * | x| * LR SO S e s Ml [
2 _gm * ***_* ok Ky ~ % *x * X @3 5 O  Sunny L
O‘.: xEx K 1 @ Historical + min/max, Sunny 1l = = O Partally Cloudy Feb-09
g L 7 B Historical + min/max, Partly Cloudy R & Cloudy S
| 1 . ¥ Historical + min/max, Cloudy | awe 010 5 U'
% Diel streamflow-based projection B -

Mean Winter Air Temperature (°C)

Figure 8: (A) Historical DOS2o from the diel analysis and projected changes in DOS2o using the empirical diel streamflow-based
projections under the RCP 8.5 pseudo global warming climate for the end of the 21% century. Watersheds are sorted from earlier
(left) to later (right) historical DOS20. Symbols associated with future projections (stars) are not classified by sunny, partly cloudy,
or cloudy, as we make no inference about the cloudiness condition of snowmelt days under the climate change scenario. Blue symbols
in (A) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90% clear-sky snowmelt
days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%. Clear-sky snowmelt days are
defined as those with more than 80% of the potential clear-sky solar radiation. (B) Relationship between mean winter air
temperature and the sensitivity of DOSzo to climate change as projected by the empirical diel streamflow-based model.
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Figure 9: Changes to DOQ2s and DOQso due to climate change under an RCP8.5 pseudo global warming climate scenario by the
end of the century. (A) and (B) compare historical against projected values between NoahMP-WRF and the empirical diel
streamflow-based model. (C) and (D) compare the projected change in streamflow timing (future minus historical) between
NoahMP-WRF and the empirical diel streamflow-based model, colored by the sensitivity of DOSz to climate change as projected
by the empirical diel streamflow-based model (Figure 8b). Symbols surrounded by black circles indicate sites that were excluded
from the regression analysis in Figure 5 (rainier sites #24, #25 and #31). Symbols represent the historical mean annual percentage
of clear-sky snowmelt days, where sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have
between 70 and 90%, and cloudy sites (diamonds) have <70%; clear-sky snowmelt days are defined as those with more than 80% of
the potential clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 P
climate scenario; however, red symbols (upper panels) follow the same symbology for easier interpretation.
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Table 1: List of Abbreviations

Abbreviation

Definition

CAMELS Catchments Attributes and MEteorology for Large-sample Studies

DOQzs Date of 25% of annual streamflow volume

DOQso Date of 50% of annual streamflow volume

DOS1s The day when the 20" percentile of the snowmelt days occurs, with snowmelt days as defined by the
streamflow diel cycle analysis

GCM Global Climate Model

MLR Multiple Linear Regression Model

NLDAS-2 Phase 2 of the National Land Data Assimilation System

Noah-MP Noah Multi Parameterization land surface model

NoahMP-WRF | Simulations by WRF using the Noah-MP land surface model

RCP8.5 Representative Concentration Pathway 8.5

WRF Weather Research and Forecasting Model
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Table 2: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017).

Drainage | Mean Mean o Soil
. Lat. | Lon. Snow Aridity
ID | USGSID | Watershed Name | Area Elevation slope (m ) ) Depth
°N) | (°W) Fraction | index
(km?) (masl) kmt) (m)
1 06278300 Shell Creek, WY. 58.9 2,953 86.7 4451 | 107.40 | 0.73 1.32 0.74
North Fork Powder
2 06311000 61.2 2,516 411 44.03 | 107.08 | 0.57 1.68 0.90
River, WY.
Michigan River,
3 06614800 co 4.0 3,297 145.8 40.50 | 105.87 | 0.76 1.29 0.57
North Brush Creek,
4 06622700 WY 98.7 2,837 71.3 41.37 | 106.52 | 0.72 1.48 2.20
Encampment
5 06623800 ) 187.7 2,971 90.9 41.02 | 106.82 | 0.75 1.06 1.14
River, WY.
6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 | 106.22 | 0.74 1.46 2.52
7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 | 105.56 | 0.47 2.12 0.50
8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 | 105.66 | 0.47 1.50 0.85
9 09034900 Bobtail Creek, CO. | 15.7 3,571 102.8 39.76 | 105.91 | 0.73 1.16 0.47
South Fork of
10 | 09035900 Williams Fork, 72.8 3,241 123.9 39.80 | 106.03 | 0.69 1.44 0.56
Co.
Keystone Gulch,
11 | 09047700 co 23.6 3,334 103.8 39.59 | 105.97 | 0.63 1.92 0.45
12 | 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 | 106.32 | 0.71 1.40 0.27
13 | 09066300 Middle Creek, CO. | 15.5 2,944 143.8 39.65 | 106.38 | 0.69 1.49 0.48
Vallecito Creek,
14 | 09352900 co 188.2 3,283 156.1 37.48 | 107.54 | 0.63 1.24 0.50
15 | 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 | 109.37 | 0.50 1.79 1.16
Recapture Creek,
16 | 09378630 Ut 10.4 2,125 53.4 37.76 | 109.48 | 0.50 1.88 0.55
17 | 09386900 Rio Nutria, NM. 184.9 2,342 374 35.28 | 108.55 | 0.31 2.48 1.07
East Fork Virgin
18 | 09404450 193.0 2,070 56.2 37.34 | 112.60 | 0.42 2.86 0.82
River, UT.
East Fork White
19 | 09492400 ) 129.0 2,469 65.4 33.82 | 109.81 | 0.27 1.88 0.92
River, AZ.
20 | 10205030 Salina Creek, UT. 134.6 2,489 76.2 38.91 | 111.53 | 0.58 2.46 0.67
21 | 10234500 Beaver River, UT. | 236.4 2,499 95.2 38.28 | 112.57 | 0.63 2.06 0.60
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Blackwood Creek,

22 | 10336660 CA 29.8 2,113 83.5 39.11 | 120.16 | 0.67 0.77 0.79
Sagehen Creek,

23 | 10343500 cA 27.6 2,157 81.2 39.43 | 120.24 | 0.71 1.10 1.20
South Fork Tolt

24 | 12147600 . 14.1 1,068 159.4 47.71 | 121.60 | 0.27 0.22 0.63
River, WA.
Newhalem Creek,

25 | 12178100 WA 69.7 1,305 255.7 48.66 | 121.24 | 0.53 0.33 0.54
South Fork Jocko

26 | 12381400 151.0 1,877 102.2 47.20 | 113.85 | 0.59 0.97 0.62
River, MT.
Andrews Creek,

27 | 12447390 WA 58.1 1,701 172.6 48.82 | 120.15 | 0.78 0.86 0.47

28 | 13018300 Cache Creek, WY. | 27.9 2,198 109.5 43.45 | 110.70 | 0.66 1.50 0.69

29 | 13083000 Trapper Creek, ID. | 133.2 1,863 69.1 42.17 | 113.98 | 0.49 211 1.04
Lake Fork Payette

30 | 13240000 125.6 1,965 110.1 4491 | 116.00 | 0.73 0.75 0.44
River, ID.

31 | 14158790 Smith River, OR. 40.6 1,027 116.4 44,33 | 122.05 | 0.37 0.36 0.85
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Figure Al: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between
December 1 and August 1. Gauge ID is as presented in Table 2. Numbers of years at site #13 are the same for all thresholds
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation
cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation.
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830 Figure A2: (A): CAMELS mean winter (November to February) air temperature, (B) mean annual DOSz, and (C) mean annual
DOQ:2s. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites
have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are
defined as those with more than 80%o of the potential clear-sky solar radiation.
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Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between
December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater
than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky
conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-
sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70.
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between
November and DOSz in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis
suggests that most of the climate change signal from NoahMP-WRF pseudo global warming is within the observed climate
variability, except for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond)
associated with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%
clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as
those with more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of
snowmelt days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario.
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Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the
century. (A) shows changes in precipitation against air temperature. (B) shows incoming shortwave against absolute humidity.
Numbers represent the Gauge IDs as presented in Table 2.
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Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and
shortwave radiation (SWR) at each watershed, and the changes associated with the pseudo global warming as simulated by WRF.
(B) shows the same analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated
with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky
snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with
more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt
days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers
next to blue symbols represent the Gauge IDs as presented in Table 2.
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Figure A7: Same as Figure 9 but using streamflow timing metrics from NoahMP-WRF for an RCP8.5 pseudo global warming
scenario, calculated using surface runoff only instead of using surface plus subsurface runoff (as in Figure 6). Note the improved fit
in historical DOQg2s; however, this analysis yields very similar results to those of Figure 6, with NoahMP-WRF streamflow
simulations being much less sensitive to climate change than the empirical diel streamflow-based model suggests. (A) and (B)
compare historical against projected values between NoahMP-WRF and the empirical diel streamflow-based model. (C) and (D)
compare the projected change (future minus historical) between NoahMP-WRF and the diel streamflow-based model, colored by
the sensitivity of DOSz to climate change as projected by the empirical diel streamflow-based model (Figure 5b). Symbols
surrounded by black circles indicate sites that were excluded from the regression analysis in Figure 3 (rainier sites #24, #25 and
#31). Symbols (circle, square and diamond) represent the historical mean annual percentage of clear-sky snowmelt days, where
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky
snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. We make no inference about the
cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming climate scenario; however, red symbols (upper
panels) follow the same symbology for easier interpretation.
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Table Al: Coefficient of determination (R?) and slope (in parenthesis, day/day) of the linear regression between different early
snowmelt timing metrics and DOQ2s and DOQso, as presented in Figure 5, for different correlation cutoffs (r) between hourly solar
radiation and streamflow. DOSxx represent the date when the xx™ percentile of snowmelt days occurs. Sites #24, #35 and #31, are

890

excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections.

Early snowmelt timing metrics vs DOQ2s vs DOQso
1%t snowmelt day 0.13 (0.61) 0.06 (0.25)
1%t 3 consecutive snowmelt day | 0.5 (0.71) 0.4 (0.4)
DOSs 0.37 (0.83) 0.28 (0.45)
r>0.5
DOS1o 0.49 (0.91) 0.43 (0.52)
DOSzo 0.69 (1.1) 0.66 (0.67)
DOSzo 0.73(1.1) 0.72 (0.68)
1t snowmelt day 0.24 (0.73) 0.15 (0.35)
1% 3 consecutive snowmelt day | 0.59 (0.77) 0.49 (0.44)
DOSs 0.46 (0.82) 0.37 (0.45)
r>0.6
DOS1o 0.63 (0.97) 0.53 (0.55)
DOS2 0.76 (1.05) 0.72 (0.64)
DOS3o 0.77 (1.07) 0.78 (0.67)
1%t snowmelt day 0.42 (0.73) 0.3(0.39)
1% 3 consecutive snowmelt day | 0.62 (0.85) 0.59 (0.53)
DOSs 0.61 (0.86) 0.51 (0.49)
r>0.7
DOS1o 0.71 (0.94) 0.63 (0.55)
DOS2 0.76 (0.99) 0.75 (0.62)
DOS3o 0.79 (1.03) 0.82 (0.65)
1%t snowmelt day 0.66 (0.87) 0.54 (0.5)
1%t 3 consecutive snowmelt day | 0.76 (1.09) 0.78 (0.71)
DOSs 0.79 (1.01) 0.7 (0.6)
r>0.8
DOS1o 0.83 (1.03) 0.78 (0.64)
DOS2 0.85 (1.07) 0.85 (0.68)
DOSzo 0.85(1.1) 0.88 (0.72)
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Table A2: Root mean square error (RMSE) and coefficient of determination (R?, in parentheses) associated with several stepwise
multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g., Equation 1 uses
DOS20) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents
the date when the xxt" percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 also

895 shown in Figure 7A.

Early snowmelt timing metrics r>05 r>0.6 r>0.7 r>0.8
First snowmelt day 11.1(0.87) | 12.3(0.88) | 15.2(0.88) | 21.7(0.82)
First 3 consecutive snowmelt days | 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) | 20.2(0.8)
DOSs 14.9(0.83) | 15.4(0.85) | 17.3(0.86) | 21.1(0.8)
DOS1o 16.4 (0.82) | 17.3(0.83) | 19.9(0.82) | 19.6 (0.82)
DOS2 16.5(0.82) |17.9(0.82) | 18.9(0.82) | 17.5(0.83)
DOS3 16.3(0.82) | 17.4(0.82) |17.8(0.82) | 16.3(0.83)
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Table A3: Coefficient of determination (R?) for the site-average stepwise multiple linear regression, analogous to that presented in
Figure 7B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt

900 days metrics). DOSxx represents the date when the xx™ percentile of snowmelt days occurs. Bolded number is associated with the
stepwise MLR in Equation 1 using DOS2o.

Early snowmelt timing metrics r>05 [r>06 |[r>07 |r>038
First snowmelt day 0.8 0.82 0.89 0.79
First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69
DOSs 0.84 0.85 0.87 0.83
DOS1o 0.84 0.85 0.86 0.84
DOS2 0.83 0.82 0.82 0.82
DOS3zo 0.83 0.81 0.81 0.8
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly

905 solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that
of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp:
Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xx™ percentile of
snowmelt days occurs. *Indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling
decisions used in the result and discussion sections.

Early snowmelt timing metrics | Bi: AT | p:Pp | Bs: RH | Ba: SWR P Pe: b P bs: Pro-
ATxPp ATXRH | ATxSWR PpxRH PpxSWR | RHXSWR
1 snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1°* 3 consecutive
-0.41 0.74 0.002 0.38 0.19 n/a nla -0.33 nla -0.19
snowmelt days
r>05 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyo -0.55 0.45 0.22 0.56 0.26 n/a nla n/a 0.23 -0.21
DOSy -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28
DOS3 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27
1 snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a nla
1%t 3 consecutive
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21
snowmelt days
r>0.6 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyy 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16
DOSy -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24
DOS3 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24
1%t snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1%t 3 consecutive
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23
snowmelt days
r>0.7 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyo -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17
DOS; -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24
DOSs -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26
1 snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06
1%t 3 consecutive
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27
snowmelt days
r>0.8 DOSs -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19
DOSyo -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26
DOS; -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29
DOSs -0.29 0.29 0.37 0.76 0.09 n/a nla n/a 0.18 -0.26

910
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Table A5: Coefficient of determination (R?) and slope (in parenthesis, days °C™) of the linear regression between the empirical diel
streamflow-based model sensitivity to warming and sites’ mean winter air temperature as presented in Figure 8B, for different early
snowmelt day metrics and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when
915 the xx™ percentile of snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and

discussion sections.

Early snowmelt timing metrics r>05 r>0.6 r>0.7 r>0.8
First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (-0.75)
First 3 consecutive snowmelt days 0.02 (-0.30) | 0.08 (-0.51) | 0.00 (-0.05) | 0.00 (-0.07)
DOSs 0.00 (0.04) |0.01(-0.18) | 0.02(-0.32) | 0.25 (-1.00)
DOS1o 0.00 (-0.09) | 0.25(-0.86) | 0.37(-1.17) | 0.2 (-0.66)
DOS2 0.27 (-0.68) | 0.35(-0.89) | 0.37(-0.99) | 0.33(-0.75)
DOS3o 0.22 (-0.57) | 0.26 (-0.65) | 0.27 (-0.66) | 0.20 (-0.52)
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