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Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening
water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so
physically based models are needed for hydrological predictions and analyses. We develop an observational technique for
detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow to detect
when snowmelt occurs. We measure the date of the 20™ percentile of snowmelt days (DOS2), across 31 watersheds affected
by snow in the western US, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOSy varies from mid-
January to late May, with warmer sites having earlier and more intermittent snowmelt-mediated streamflow. Mean annual
DOSy strongly correlates with the dates of 25% and 50% annual streamflow volume (DOQ2s and DOQs, both R? = 0.85),
suggesting that a one-day earlier DOSyo corresponds with a one-day earlier DOQ2s and 0.7-day earlier DOQso. Empirical
projections of future DOSy (RCP8.5, late 21% century), using space-for-time substitution, show that DOS2, will occur on
average 11+4 days earlier per 1°C of warming; however, DOSy in colder watersheds (mean November-February air
temperature, Tnpsr < -8°C) is on average 70% more sensitive to climate change on average than in warmer watersheds (Tnpsr
> 0°C). Moreover, empirical space-for-time based projections of DOQ2s and DOQso are about four and two times more
sensitive to earlier streamflow than those simulated by NoahMP-WRF under the same scenario. Given the importance of
changing streamflow timing for water resources, and the significant discrepancies in projected streamflow sensitivity between
space-for-time substitution and a land surface model, snowmelt detection methods such as DOS, based on diel streamflow

cycles may constrain models and improve hydrological predictions.
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1 Introduction

The role of earlier snowmelt in driving earlier streamflow timing is of great concern in a changing climate (Barnett et al., 2005;
Harpold and Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume
comes at the expense of later summer streamflow in regions like the western US (Hidalgo et al., 2009; McCabe and Clark,
2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et
al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy
inputs (Meira Neto et al., 2020), decreasing runoff from upland forested watersheds (Foster et al., 2016; Jepsen et al., 2018;
Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting downstream systems
(Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress (Immerzeel et al., 2020).
However, it remains difficult to predict how much streamflow timing and amount will shift in future climates due to altered
snow accumulation patterns (Mote et al., 2018), melt rates (Musselman et al., 2017), and shifts from snowfall to rainfall (Klos
etal., 2014).

Due to the complexity of upland streamflow generation, physically based hydrological models are typically used to predict
how snowpack changes will interact with the critical zone (CZ), and thus affect short-term flood behavior and seasonal water
supply forecasts (Kopp et al., 2018; Wood and Lettenmaier, 2006). In mountainous regions like the western US, models need
to accurately simulate snow processes across watersheds with varying snowpack conditions (Serreze et al., 1999) and then
transport and store that water in the CZ along hillslopes and watersheds with varying subsurface properties (Brooks et al.,
2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more closely mirror the timing
of rainfall. Precipitation phase is mediated by basin elevation and hypsometry (Jennings et al., 2018; Wayand et al., 2015),
which also influences precipitation amounts (Houze, 2012), with higher elevations and steeper watersheds typically having
higher precipitation and snowfall. Solar radiation is the primary energy source for snowmelt in snow-dominated montane
watersheds (Cline, 1997; Marks and Dozier, 1992), explaining the importance of cloudiness in regulating snowmelt and
streamflow processes, as evidenced by negative correlations between cloud cover and melt rates (Sumargo and Cayan, 2018).
Shallower snowpacks have less cold content and begin their melt earlier when solar radiation is lower (Harpold et al., 2012;
Harpold and Brooks, 2018; Musselman et al., 2017), which shifts streamflow earlier (Clow, 2010). Storage and drainage of
water in the CZ control the sensitivity of streamflow to earlier rain or melt water inputs. For example, snowmelt-mediated
spring streamflow timing is more sensitive to climate change in watersheds with rapid subsurface drainage than in landscapes
with deep groundwater reservoirs that drain slowly (Safeeq et al., 2013). In contrast, the sensitivity of snowmelt-mediated
summer streamflow volume to climate change has shown to be higher in slow-draining watersheds (Tague and Grant, 2009).

The complexity of these storage relationships is exemplified by isotopic evidence showing that the fraction of streamflow that
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is "young water" (less than three months old) is smaller in steeper watersheds (Jasechko et al., 2016), suggesting that

interactions between CZ water storage and changing hydrometeorology will be challenging to predict in mountainous areas.

Hydrologists typically apply two types of modeling tools to predict future streamflow: empirical models (such as space-for-
time substitutions) and more mechanistically oriented models (conceptual or physically based land surface models). Space-
for-time substitution assumes that long-term site-to-site statistical relationships among variables (e.g., precipitation and air
temperature) can be used to understand and model their likely changes over time (e.g., evapotranspiration and streamflow).
Space-for-time substitution has been used in fields such as hydrology (Goulden and Bales, 2014; Jepsen et al., 2018; Sivapalan
et al., 2011), biodiversity (Blois et al., 2013) and tree growth (Klesse et al., 2020) to predict responses to climate change. A
limitation of the space-for-time approach is that it neglects non-correlated (or independent) changes in spatially varying factors
(Jepsen et al., 2018). For example, heterogenous patterns of warming, variations in precipitation and vegetation, or changes
that occur at different temporal scales (e.g., soil properties versus rain-snow line transition) are implicitly neglected in the
space-for-time approach. Conversely, physically based models embed physics and state-of-the-art understanding of
hydrological processes. These models typically require some degree of calibration or validation to observations (e.g., daily
streamflow) to increase and assess their predictive skill. The current generation of regional weather models using the Weather
Research and Forecasting model (WRF) (Skamarock et al., 2008) coupled to the Noah Multi Parameterization land surface
model (Noah-MP) (Niu et al., 2011) has shown promising results for modeling atmospheric and snow processes in the
contiguous US (He et al., 2019; Liu et al., 2017; Musselman et al., 2017; Scaff et al., 2020). For example, snow simulations
have been used to quantify mountain snowmelt and streamflow response to climate change (Musselman et al., 2017, 2018).
These simulations use a pseudo global warming approach, which perturbs the historical climate with a climate change signal
from an ensemble of global climate models (GCMs); using this perturbation avoids systemic biases in the GCMs and avoids
issues related to their interannual variability (Liu et al., 2017). Given the importance of snowmelt to streamflow generation
and its uncertain sensitivity to climate change, new tools that allow comparisons between land surface models and space-for-
time predictions of future streamflow are valuable, and could help to diagnose modeling issues that can be improved for better

predictions.

Few simple, low-cost observational tools exist to separate rainfall-driven from snowmelt-driven contributions to streamflow
or to separate this year's melt from previous years' melt and storage. One method that can be straightforwardly applied to
existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt, and streamflow (Kirchner et al.,
2020; Lundquist and Cayan, 2002). Diel (24-hours) cycles in streamflow and shallow groundwater levels are often found in
mountainous systems driven by either snow or ice melt and evapotranspiration, which are both ultimately driven by solar
radiation inputs (Kirchner et al., 2020). This mechanistic response has been used to study watershed properties like kinematic
wave celerity (Kirchner et al., 2020), the impact of snowpack variability on streamflow timing (Lundquist and Dettinger,

2005), groundwater fluctuations (Loheide and Lundquist, 2009), and transitions from snowmelt to evapotranspiration-
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dominated streamflow fluctuations (Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More recently, Kirchner
et al. (2020) combined local observations and remote sensing to show that streamflow diel response was tightly controlled by
the timing of snowpack disappearance. Here, we extend the ‘diel cycle index’ approach of Kirchner et al. (2020) using diel
streamflow observations to detect the occurrence of days when streamflow is coupled to snowmelt inputs, and investigate their
contributions to historical variability in streamflow amount and timing. We compare space-for-time end-of-century predictions
under an RCP8.5 pseudo global warming scenario against predictions from a state-of-the-art land surface model (under the
same climate scenario) across 31 mountainous watersheds in the western US to answer the following questions:

1. Is there evidence of earlier snowmelt in warmer watersheds and years, and can we use the timing of snowmelt to predict

the timing of streamflow volume?

2. How does snowmelt timing predict streamflow volume timing with a space-for-time approach and where is the timing of
snowmelt most sensitive to climate change?

3. Do historical streamflow volume timings and future space-for-time-based projections diverge from commonly used, state-
of-the-art land surface models?

A list with the abbreviations used in this study is presented in Table 1.

2 Methods
2.1  Study Domain and Data

We studied snowmelt-driven streamflow in 31 mountainous watersheds in the western US (Table 2), spanning snow fractions
of 0.27 to 0.78 (Figure A3A), aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m
(Addor et al., 2017; Pelletier et al., 2016) (Table 2). These watersheds are part of the CAMELS (Catchments Attributes and
MEteorology for Large-sample Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow
and meteorological forcing, among other observed and simulated hydrometeorological variables at the watershed scale. These
watersheds were chosen because their streamflows are unregulated, they have relatively small drainage areas (< 250 km?), and
they are at relatively high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-
driven streamflow regimes. The names, locations, elevations, slopes, drainage areas and other key characteristics of the 31

watersheds are presented in Table 2.

The data used in this analysis include hourly streamflow and incoming shortwave radiation, and mean daily relative humidity,
air temperature and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming
shortwave radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest
grid point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are
from CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is interpolated from existing ground
observations. Available hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites.

Figure A1A shows the number of years that have more than 70, 80 and 90% of days with hourly records for the period between
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December 1 and August 1. Based on this preliminary analysis, we decided to use water years with more than 80% of days with
hourly streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze

(except for sites #10 and #30 with 4 years).

2.2 Snowmelt and Streamflow Diel Coupling

To infer the occurrence of days when solar radiation-driven snowmelt is coupled to the streamflow, hereafter referred as
snowmelt days for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow
(Figure 1). A snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged
streamflow is statistically significant (p-value<0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response
after snowmelt, we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all
combinations, and kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although
having both a correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant
correlations above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1
for r>0.6) to assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used
to avoid confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020;
Mutzner et al., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation
with lags below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner
et al., 2020). However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel
response or rain-on-snow events. To minimize this, we further restricted the lags that could be selected based on optimum lags
from snowmelt days with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-
sky solar radiation (grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and
was calculated as the lags between the 10" and 90™ percentile of clear-sky days with Spearman correlations above 0.8. This
second filter also helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance
of selecting 18-hr lags that can be associated with ET. Despite efforts to select only snowmelt-driven streamflow diel responses,
this methodology does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always
be excluded. Excluding such cases would require hourly precipitation observations, which are not available for all of our study

watersheds. However, we believe that any such cases will minimally affect the results of our analysis.

To provide a better idea of the potential impact that rainfall may have on our proposed diel analysis, particularly on the effect
of rain-on-snow events, we analyzed which days that were classified as snowmelt days also has rainfall. We assessed daily
rainfall using the daily precipitation time series from CAMELS based on the DAYMET product for each watershed. A false
detection rate metric was computed for each watershed, in which every day classified as a snowmelt with daily precipitation
above 5 mm and a mean daily air temperature above 2 °C was assumed to be mis-classified (Figure 2). A false detection rate

of 100% means that all snowmelt days were mis-classified and 0% means that no days had significant rainfall. On average,
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the false detection rate was estimated at 7% with a standard deviation of 5%, and only watersheds #24 and #31 (located in WA
and OR, respectively) are above 15%, with 21% and 29%, respectively. This suggest that the effect of potential rainfall-induced
diel streamflow cycle (including rain-on-snow events) in most watersheds is low (except for watersheds #24 and #31),
supporting further analysis. We also assessed the mean cross-site false detection rate for precipitation thresholds of 1 mm and
10 mm and found reasonable values of 12% and 3%, respectively. However, we believe that 1 mm is not a reasonable threshold
as a 1 mm rainfall event is unlikely to produce a distinguishable diel streamflow signal or could represent error/noise in the
DAYMET product.

2.3 Space-for-Time substitution for DOSy

We defined the day when the 20™ percentile of the snowmelt days occurs (DOSz) as a new metric to characterize the
seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5™, 10" and 30%
percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis. We chose
this metric because we expect it to be associated with the timing of streamflow volume, and the choice of slightly earlier or
later snowmelt days would not substantially change our results. We fitted a stepwise multiple linear regression model (MLR,
p-value<0.01, Equation 1) to reconstruct historical DOSy across all our sites (Figure A4) using four climate variables: total

precipitation, air temperature, relative humidity, and solar radiation.
DOS;o = B1x1 + B2Xy + B3x3 + BaXy + Psx1X; + PeX1X3 @)
+ B7x1X4 + PgX2X3 + BoXaXy + BroX3Xs

Where x; is cumulative air temperature (°C), X2 is cumulative precipitation (mm), Xz is mean relative humidity (%), X4 is mean
solar radiation (W m), and S are the regression coefficients. Mean annual climate variables were calculated for the period
between November 1% and DOSy. This results in DOSy being present in both sides of Equation 1; therefore, the stepwise
MLR requires an iterative solution when used in a predictive mode (i.e., for the climate change analysis). We verified the
stepwise MLR assumptions, namely, linear relationships between each predictor and DOS2o, normally distributed residuals,
homoscedasticity, and absence of strong multicollinearity (as suggested by a Variance Inflation Factor < 3). We also tested
other metrics related to the timing of early snowmelt events. These included: the first snowmelt day, the first three consecutive
snowmelt events, and the 5™, 10" and 30™ percentiles of snowmelt days (DOSs, DOS; and DOS3o, respectively). All these
metrics were also computed using each of the different Spearman correlation cutoffs (Table Al, A2, A3, A4 and A5), but the
main analysis presented here focuses on DOSy based on snowmelt days calculated with hourly Spearman correlations >0.8.
We used a space-for-time approach to predict changes to DOS based on the stepwise MLR model and an end-of-the-century
mean climate change signal from WRF (Liu et al., 2017). WRF was run under a high emission scenario (RCP8.5) using the
pseudo global warming approach for the end of the century. Overall, it projects a warmer (4 — 5.2°C) and wetter (0 - 20%
increase in precipitation) climate (Figure A4 and A5). As previously mentioned, predictors used in the stepwise MLR are

calculated for the period between November 1% and DOS,o; therefore, as we do not know the value of DOSy in the future, an
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iterative solution is required to solve for DOSy in Equation 1. We find a numerical solution using a 2-day convergence
threshold between iterations, so that [DOS20i:1 — DOS20i| < 2 days, where ‘i’ is the number of the iteration.

2.4 Streamflow Volume Timing from a Land-Surface Model

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and
the period 2071-2100 under pseudo global warming (Liu et al., 2017). NoahMP-WRF simulations include an improved Noah
configuration aiming to better represent the snow physics. These improvements include (Liu et al., 2017): the rain-snow
transition is based on a microphysics partitioning approach as opposed to a subjective temperature-based approach, patchy
snowpack are allowed in the calculation of the surface energy balance, the heat transport from rainfall to the ground is included,
and the snow depletion curve is vegetation-dependent. These improvements allow a better representation of the surface energy
balance, and the simulation of snow accumulation and melt processes. We used daily watershed-scale outputs of surface and
subsurface runoff from historical and future NoahMP-WRF simulations to estimate DOQ2s and DOQso. Given the range of the
watershed drainage areas (4 - 236 km?, Table 2), watersheds covering several grid cells use the total surface and subsurface
runoff for their corresponding grid cells. Small watersheds are represented by only the single nearest NoahMP-WRF grid cell.
The way NoahMP-WRF is implemented within WRF lacks a streamflow routing scheme such as the one in WRF-Hydro
(Gochis et al., 2020); therefore, we use the sum of surface and subsurface runoff to estimate DOQ2s and DOQso. We also
repeated the analysis using surface runoff only, leading to similar results (Figure A7). Given the relatively coarse NoahMP-
WREF spatial resolution (4 km) compared to the watershed drainage areas (4 - 236 km?), we expect that mean streamflow timing

metrics will not be significantly affected by the lack of streamflow routing.

3  Results
3.1 Empirical Relationships Between DOS,, Climate and Streamflow

Mean DOSy has a strong regional variability that is reasonably captured by a negative linear correlation (R2= 0.48) with the
mean winter air temperature (November to February, Tnpse) in watersheds with Tnpsr<-3°C, whereas warmer watersheds do
not follow the same pattern (Figure 3A and Figure 4A). Warmer sites (Tnpse > -3 °C) have a more variable mean DOSz, ranging
from mid-January to early May, whereas the coldest sites (Tnosr <-8°C) have a later and less variable DOSy around mid to
late May. On average, the regression suggests thata 1 °C of warming results in 7.2-day earlier DOSo. The relationship between
later DOSyo and colder Tnpyr is also found in the year-to-year variations in DOSyo at most watersheds (21 out of the 31), with
warmer years experiencing earlier DOSy (Figure 3B). A strong linear relationship was found between the date of the 25% of
the annual streamflow volume (DOQ3s) and Tnpye. Warmer watersheds (Tnps>0°C) generate streamflow the earliest (between
mid-December and early March) compared to the coldest watersheds (Tnpsr<-8°C), with DOQ2s between early and late May
(Figure 3C). On average, the cross-site regression shows that a 1°C increase in Tnpyr produces a 13-day earlier DOQas. For

most watersheds (25 out of 31), interannual regressions show a similar pattern with warmer years having earlier DOQ3s;
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however, these interannual regressions have shallower slopes than the cross-site relationship (Figure 3B and 3D). Previous
work by Stewart et al. (2005) also related seasonal meteorological patterns with the spring onset and streamflow timing, and
found similar relationships (e.g., warmer watersheds have earlier spring onset and streamflow timing). However, the definition
of the spring onset was based on the cumulative hydrograph (the day when the cumulative departure from the mean streamflow
was the minimum), as opposed to our more mechanistic diel streamflow analysis. Other definitions for spring onset based on

streamflow, snow pillows and air temperature are presented by Lundquist et al. (2004).

Strong correlations between DOS3 and both DOQ2s and DOQso (the dates at which 25% and 50% of the annual streamflow
volume are reached) (R? = 0.85, Figure 5A and 5C) suggest connections between the timing of snowmelt and streamflow
generation across watersheds and years. On average, sites that melt earlier are associated with earlier DOQs (Figure 5A) and
a lower ratio of snowfall to total precipitation (snow fraction<0.5). The relationship between DOS2, and DOQ2s closely follows
the 1:1 line (Figure 5A), although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 2 and Figure 6A)
deviate substantially from this pattern, perhaps because they receive relatively little of their precipitation as snow. Similar
watershed-level relationships using interannual variability in DOQ2 were found for most watersheds, with statistically
significant slopes varying between 0.4 and 2.5 day day™ (Figure 5B). DOSy also predicts DOQso well, with 10-day earlier
snowmelt producing 7-day earlier DOQso on average (Figure 5C), and similar watershed-level interannual relationships (Figure
5D). The same three relatively rainy watersheds have DOQs prior to the DOSy (Figure 5C and Figure 6B), suggesting that

early snowmelt timing is not an important predictor of DOQso in such places.

3.2 Sensitivity of Snowmelt Timing (DOSy) to Climate Change: Space-For-Time Substitution

We fitted a stepwise MLR with four climate variables (air temperature, precipitation, relative humidity, and solar radiation) to
predict DOSy across watersheds and years. A total of 333 watershed-year combinations of DOS,, and climate variables were
used to train the stepwise MLR model. The watershed-year relationship between observed and MLR predictions has a relatively
high R? of 0.83, a root mean square error (RMSE) of 17.5 days, and normally distributed residuals (p < 0.01) off the 1:1 line
and centered at O with a standard deviation of 17.3 days (Figure 7A). The relationship between observations and MLR
predictions of inter-watershed mean annual DOSy, (Figure 7B) is also strong (R? = 0.83 and RMSE = 13.2 days) and follows
the 1:1 line. Similarly, when we look at interannual values, represented by the lines overlapping circles in Figure 7B, we find
a good agreement, with most slopes are close to 1:1 (see inset plot Figure 7B). This analysis demonstrates that the MLR model
can reasonably represent both the mean annual DOSy values at each watershed and their interannual variability. Table A4
shows standardized beta coefficients that indicate the importance of each climate variable in the stepwise MLR. For the 0.8
correlation cutoff we found that incoming shortwave radiation has the greatest importance (beta = 0.75), followed by relative
humidity (beta = 0.37) and air temperature (beta = -0.31).
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Space-for-time projections under climate change show earlier mean annual DOSy in all watersheds, with significant variability
from site to site (Figure 8A). Most watersheds show significant end-of-century changes in DOSy ranging from up to three
months earlier in cold sites where, historically, snowmelt under clear-sky conditions dominates (circles in Figure 8A), to as
little as 20 days earlier in warm sites under historically cloudier conditions. The cross-site average change in DOSy is 55.3
days with a standard deviation of 21.8 days. In many watersheds the mean projection of DOS,o under climate change is within
the historically observed variability in DOSy (Figure 8A). Space-for-time substitution predicts that colder watersheds (Tnps<-
8°C) on average are about 70% more sensitive to climate change (13.7+4.6 days ‘C™t) than warmer watersheds are (Tnpye>0°C)
(8.1+6.2 day ‘C™Y), as represented by the change in the DOSy per degree of warming (Figure 8B). Site #24 (South Fork Tolt
River, WA.) shows almost no change in its DOSz, which can be attributed to its weaker climate change signal compared to the
other watersheds (about +4°C, 5% precipitation increase, and virtually no change in humidity and solar radiation; Figure A4).
When we look at the mean sensitivity across all watersheds, the space-for-time analysis suggest an average sensitivity of
11.1+4.2 days °C.

3.3 Sensitivity of Streamflow Timing to Climate Change: Space-for-time versus NoahMP-WRF

We compared historical and space-for-time projections for DOQ.s and DOQsp with those from NoahMP-WRF. Streamflow
sensitivity using space-for-time projections for DOSy under climate change were built using the linear regressions presented
in Figure 5A and 5C (DOQ2s and DOQsp vs DOSy). Space-for-time projections for DOQ2s range from early January to late
May (red symbols, Figure 9A), advancing between 20 and 100 days under RCP 8.5 (x-axis, Figure 9C). The DOQsy is projected
to advance between roughly 15 and 65 days (x-axis, Figure 9D), ranging from mid-February to late May (red symbols, Figure
9B). The historical DOQ3s is greatly underestimated by NoahMP-WRF (blue symbols, Figure 9A) with a mean DOQgs in mid-
February, whereas historical DOQzs is in early April (50-day mean difference). Projected changes to DOQ2s by NoahMP-WRF
under pseudo global warming range between early January to mid-March (mean in early February), whereas space-for-time
projections range between early January and late March (mean in mid-February; Figure 9A). These results indicate that space-
for-time projections of DOQ2s are about four times more sensitive to climate change than those from NoahMP-WRF (ADOQ2s
averages about -60 days for space-for-time substitution and -15 days for NoahMP-WRF; Figure 9C). Historical DOQso is
reasonably well represented by NoahMP-WRF under the current climate (blue symbols, Figure 9B) with a mean difference of
only 7 days, but future changes of about -20 days are roughly half of the -40 days predicted by the space-for-time projections
(Figure 9D). Space-for-time projections of DOQso range between mid-February and early April, whereas NoahMP-WRF
projections range between mid-March and mid-May. Watersheds with the largest disagreement between space-for-time and
NoahMP-WRF projections for streamflow volume timing are those where DOSy is the most sensitive to climate change,
represented by the orange and yellow symbols in Figure 9C and 9D. These watersheds are characterized by historical cold
winter temperatures (Tnpir<-6°C) with snowmelt occurring mostly under sunny conditions (circle symbols) and are mostly

located in the Rocky Mountains.
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4 Discussion

The new DOS;o metric describes the timing of early snowmelt-mediated streamflow based on the diel streamflow fluctuations
and suggests that shifts in snowmelt timing in colder, sunnier watersheds have a greater effect on streamflow volume timing
than in warmer, cloudier watersheds where snowmelt is more interspersed with rain. Despite the intuitive connections between
snowmelt and streamflow, empirically linking changes in earlier snowmelt rates (Harpold and Brooks, 2018; Musselman et
al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing (Stewart et al., 2004) has been challenging
(Weiler et al., 2018), partly due to the scales at which snow (point-scale) and streamflow (watershed-scale) are typically
measured. For example, evidence of snowmelt at Snow Telemetry (SNOTEL) locations in the US has shown that snowmelt
events are more intermittent at sites with higher humidity, and future modeling suggests slower, earlier snowmelt in the largest
snowpacks in areas with lower humidity and cloud cover (Harpold and Brooks, 2018; Musselman et al., 2017). However, the
potential cascading effects of earlier and slower snowmelt on streamflow amount and timing are relatively unexplored (e.g.
Berghuijs et al., 2014). Not surprisingly, the warmest and cloudiest watersheds have lower snow fractions and a more rainfall-
dominated streamflow regime, and thus have less (and often no) interannual correlation between DOS2 and the metrics DOQ2s
and DOQs, (Figure 5A and 5C), illustrating the limitations of the diel streamflow method in rain-dominated watersheds; as
also suggested by the false detection rate analysis (Figure 2) in watersheds #24 and #31 in Washington and Oregon,
respectively. Rain-on-snow events are particularly challenging to detect with our analysis, as days with low percentage of
incoming shortwave radiation (<80% of clear-sky) are filtered out to avoid issues with potential rainfall-dominated diel signals.
Conversely, the colder and sunnier watersheds, primarily in the intermountain region, have strong interannual correlations
between DOS, and DOQ2s (Figure 5A and Figure 6A), reflecting the importance of snowmelt (instead of rain) in controlling
streamflow volume timing. We currently lack physically based representations of many processes linking snowpack storage,
snowmelt, subsurface storage, and the timing of water release following a hydrologic event (i.e., snowmelt or rainfall event).
Snowmelt modeling in complex terrain is challenged by steep climate gradients and by the lack of adequate forcing data
required to run models. Characterizing precipitation phase and timing in steep watersheds remains challenging in rain-to-snow
transition zones (Harpold et al., 2017; Jennings et al., 2018; Wayand et al., 2015), which will presumably increase in extent in
the future (Klos et al., 2014). Complex terrain has a large effect on radiation fluxes, which are hard to capture at kilometer
spatial scales (Mdller and Scherer, 2005) used in some land surface models. Nonetheless, this issue is less important in warmer,
cloudier watersheds where longwave radiation and sensible heat are larger components of the energy balance (Mazurkiewicz
et al., 2008). Forests exert a strong control on the snowpack mass and energy balance (Lundquist et al., 2013; Pomeroy et al.,
1998; Safa et al., 2021) with spatially heterogeneous effects on snow accumulation and melt that remain challenging to model
(Broxton et al., 2015; Krogh et al., 2020). The presence of preferential flowpaths through the snowpack impacts the timing of
melt release (Leroux and Pomeroy, 2017) and is not typically included in hydrological models. Once snowmelt is released
from the snowpack, simulating (and validating) what fraction flows as subsurface and surface runoff remains difficult. Decades

of tracer studies (e.g., Godsey et al., 2010; Kirchner, 2003) have shown that streamflow during and after hydrologic events
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(i.e., snowmelt or rainfall events) is typically ‘old water’ that has been stored in the watershed for months to years. Land
surface models like NoahMP-WRF lack realistic groundwater stores to represent old water and are at spatial resolutions that
make hillslope and near-stream processes difficult to represent (Fan et al., 2019). For example, previous work at Sagehen
Creek (site #23) suggests that streamflow remains ~80% groundwater even during the snowmelt freshet (Uridstegui et al.,
2017). Innovative observations and/or analyses that give new physical insights, like the diel streamflow analysis, can be used

to derive such hydrologic representations, which could improve our prediction of hydrological systems (Kirchner, 2006).

Because the diel analysis does not require assumptions embedded in physically based models, it is an independent tool that
can be used to verify historical streamflow simulations from sub-daily resolved hydrological models. For example, land surface
models could be benchmarked against observed snowmelt days based on the diel analysis or metrics like the DOS2, aiming to
better represent processes associated with snowmelt-driven streamflow generation. The diel analysis is also easier to implement
than detailed process-based catchment models because it only requires observed hourly streamflow data and solar radiation.
Solar radiation can be reliably represented by land surface models with data assimilation like NLDAS-2 (Luo et al., 2003) that
assimilate field observations and remotely sensed radiation (including the effects of clouds) into an atmospheric modeling
framework. We tested the sensitivity of some modeling decisions, such as the correlation cutoff between hourly solar radiation
and streamflow used to detect snowmelt days and metrics for snowmelt timing and found similar sensitivities of DOSy to
climate change across different correlation cutoffs and snowmelt timing percentiles (Table A5). Metrics like the first snowmelt
day or the first three consecutive snowmelt days showed less consistent results (Table A5), likely due to individual early or
mid-winter melt events that do not necessarily represent the seasonal watershed behavior. The diel streamflow analysis has
four main limitations that need to be examined in future work: (1) it requires a steep enough stage-discharge relationship that
daily streamflow cycles can be detected across the flow regime, (2) it focuses on snowmelt driven by solar radiation (and
energy fluxes synchronized with it), (3) it is sensitive to assumptions about the lag time between solar radiation and streamflow,
and (4) it is sensitive to assumptions about evapotranspiration losses. A steep stage-discharge relationship, in which small
changes in discharge are associated with large changes in stage, is ideal to observe small diel streamflow changes with
sufficient precision. Another assumption is that the majority of snowmelt is correlated with solar radiation. This assumption is
supported by the importance of solar radiation in process-based studies of maritime and continental snowpacks (Cline, 1997;
Jepsen et al., 2012; Marks and Dozier, 1992). Because our method allows the lag time between solar radiation and streamflow
to vary within a predefined window, we expect it to capture other important energy fluxes like sensible heat that often lag the
diel patterns of solar radiation by several hours (Ohmura, 2001). This approach is not suitable for capturing rain-on-snow
events, which are most common in maritime watersheds, but also occur in continental settings (Musselman et al., 2018). It
may also misclassify rainfall-driven diel streamflow cycles, although we checked for rainfall-induced cycles and found that
these are, on average, a small fraction (7%, Figure 2). In rainier watersheds (lower snow fraction), our analysis may be more
uncertain than in watersheds with a more snowfall-dominated regime. Nonetheless, the relationships between streamflow

timing (i.e., DOSz, DOQ2 and DOQsp) and meteorological drivers in rainier sites showed cross-site and interannual
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relationships that are consistent with those in colder, more snow-dominated places (except for watersheds #24, #25 and #31)
(e.g., Figure 3A and 3C). The third limitation is that the spatiotemporal variability in snowpack, surface and subsurface storage,
and evapotranspiration will change the magnitude and lag time of the diel streamflow response (Kirchner et al., 2020;
Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), which we address by allowing variable watershed- and month-
specific time lags. However, lag times greater than 24 hours, which are associated with large watersheds or large subsurface
storage, will make this method imposible to apply. Also, the method may miss early snowmelt-driven diel cycles in watersheds
with dry soils, as the diel signal will be buffered by the subsurface storage capacity before generating a measurable streamflow
response. The fourth limitation is that evapotranspiration losses must be small relative to snowmelt inputs, which is necessary
because the effect of evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al., 2020). Evapotranspiration
effects are minimized by focusing on early snowmelt when evapotranspiration losses are often assumed to be small (Bowling
et al., 2018; Cooper et al., 2020; Winchell et al., 2016).

Previous space-for-time implementations have been used to predict catchment-scale sensitivity of snowmelt-driven streamflow
to changing climate using observations (Berghuijs et al., 2014; Stewart et al., 2005) and historical model outputs (Barnhart et
al., 2016). Our MLR results suggest that humidity explains roughly as much or more variation in DOS than temperature does
(Table A4), and that solar radiation explains about twice as much DOSy, variation as either humidity or temperature does. This
is consistent with an energy budget dominated by solar radiation (Marks and Dozier, 1992), but also with a coupling between
humidity and latent heat and longwave radiation effects (Harpold and Brooks, 2018). Space-for-time projections of DOSz
under the pseudo global warming scenario show that colder, drier, and sunnier sites (typical of the Rocky Mountains) are about
twice as sensitive to warming as warmer, more humid, and cloudier sites (typical of the Pacific Northwest). Humid and warmer
sites have relatively low snow fractions (<0.5, more rainfall effects) and, thus, a smaller snowmelt signal in the diel streamflow
observations. In contrast, Harpold and Brooks (2018) showed that winter ablation at SNOTEL sites in humid places, like the
Pacific Northwest, are more sensitive to warming than less humid places, like the Southwest US. The difference between these
findings and our streamflow-based inferences might be explained by SNOTEL sites being preferentially situated in snowy
forest gaps that do not necessarily represent the catchment-scale, early-season snowmelt patterns focused on here. However,
Kirchner et al. (2020) show general agreement between SNOTEL snowmelt response and the snowmelt-induced diel
streamflow signal at the warm Sagehen Creek watershed (site #23). The sensitivity of the early snowmelt timing metric
(DOSy0) to climate change may be distilled into streamflow’s sensitivity to changes in precipitation partitioning (rainfall vs
snowfall) and snowmelt sensitivity (more energy for melt is available); however, these two are sometimes coupled (e.g.,
changes in snow albedo after snowfall will alter the energy balance that controls snowmelt). Due to the empirical basis of our
analysis, these two sensitivities are not easy to disentangle, but we believe that the diel analysis is better suited to investigate
streamflow’s sensitivity to snowmelt changes. We focus the analysis on mostly clear-sky days, and thus implicitly exclude the
effect of rainfall (or precipitation partitioning); we also use predictive variables in the MLR that relate to broad and regional

snowmelt controls (i.e., seasonal meteorology) as opposed to specific event-scale meteorology required to predict precipitation
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partitioning. The reliability of the space-for-time projections partially depends on whether climate projections are within or
outside the range of observed climate conditions. Under the pseudo global warming scenario, cold, sunny watersheds like those
in the Rocky Mountains (site #9 and #10) will shift toward more humid, warmer conditions (Figure A6), like those observed
in Southern Idaho (site #29) and the northern Sierra Nevada (site #23). In contrast, the pseudo global warming scenario in
places like the Pacific Northwest, particularly those involving changes in atmospheric humidity above 5 g/m? (Figure A4),
have not been observed, and therefore are more uncertain. Overall, climate changes from pseudo global warming are mostly
within the observed interannual and inter-watershed climate variability used to train the stepwise MLR (Figure A4). Space-
for-time substitution assumes that other variables not included in the analysis vary together with the predictive variables
(climate), and neglects variables like the catchment’s physical (e.g., soil storage) and biological (e.g., vegetation) properties
that do not necessarily co-vary with climate. Determining under what conditions we can reasonably apply space-for-time
remains an open question and has been posed as one the 23 unsolved problems in hydrology (Bl6schl et al., 2019), highlighting

the value of comparing our space-for-time approach to a physically-based model.

The sensitivity of historical snowmelt-mediated streamflow volume timing (DOQ2s and DOQsp) to climate change differs
between the space-for-time approach and a land surface model, particularly in cold watersheds (Figure 9C and 9D), raising
questions about current state-of-the-art projections of early season streamflow timing from NoahMP-WRF. The observed data
used in the space-for-time approach have larger and more variable streamflow timing responses to climate change (10 — 17
days °C™) in cold, drier, sunnier places that are representative of small, high-elevation Rocky Mountain watersheds (Figure
8B). The historical diel streamflow analysis suggests that NoahMP-WRF may be systematically under-predicting the
sensitivity of streamflow volume timing to earlier snowmelt-induced streamflow in colder and sunnier places (Figure 9C) that
are most likely to have increased temperature and increased cloudiness in the future. The same mean annual future climate
scenarios were applied to both approaches; however, important differences in the streamflow timing response were found
between NoahMP-WRF and the space-for-time projections (Figure 9C and 9D). NoahMP-WRF underpredicts DOQ2s (Figure
9A) across most sites, whereas the DOQs is much better represented. Historically, NoahMP-WRF performed the best in rainier
sites (see circled blue symbols in Figure 9A) and other sites classified as ‘cloudy’ and ‘partly cloudy’, whereas the Rocky
Mountain sites, characterized by ‘sunny’ snowmelt event, were among the most biased (see blue filled circles in Figure 9A).
This suggest that the timing of streamflow volume is better represented in areas where snowmelt processes are less important,
though other variables like topographic and climatic gradients can also be important. It is worth noting that when DOQ2s
simulated by NoahMP-WRF is calculated using surface runoff only (Figure A7A) it performs better against observed DOQ2s;
however, the projected sensitivity in streamflow timing to climate change remains significantly lower that predictions by the
space-for-time substitution (Figure A7C). The fact that NoahMP-WRF has a biased DOQ2s simulation represents a challenge
that goes beyond the scope of this study; however, these simulations have been tested in detail in terms of the meteorology
and snow components (Liu et al., 2017; Scaff et al., 2020) and have been used for climate change analyses (Musselman et al.,
2017, 2018). We used these simulations in the analysis because NoahMP underlies the US National Water Model and thus its
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relevance to policy and research is high. There are many differences in the way that NoahMP-WRF and the space-for-time
approach simulate the sensitivity of streamflow timing. NoahMP-WRF operating at sub-daily time steps has several advantages
over space-for-time substitution. For example, NoahMP-WRF can track the hourly covariance in precipitation, temperature,
and humidity to estimate precipitation partitioning between rain and snow. It is also able to represent hourly radiative and
turbulent energy at the snowpack, and the cold content needed to predict snowmelt. The physical hydrology is also advanced
and able to consider antecedent conditions and allow evapotranspiration losses that also modulate streamflow. Despite the
advantages of land surface models like NoahMP-WREF in constraining processes for future projections, the simplicity of space-
for-time substitution also provides several advantages. One of the main advantages is that it is derived from observations and
thus it is well constrained by the observed spatial and temporal variability of snowmelt across watersheds and years (Figure
7B). Also, the space-for-time approach does not assume anything about the complex spatial distribution of snowpacks and
precipitation or subsurface properties and interactions with the surface, which are major constraints to physically-based models
(Baroni et al., 2010; Christiaens and Feyen, 2001; Wilby et al., 2002). While a space-for-time approach is not a replacement
for land surface models like NoahMP-WRF, partly because the underlying streamflow datasets are not available everywhere,
we believe that there is added value in including new benchmarks like the proposed DOSy to further constrain modeling

decisions and improve model fidelity required for reliable and accurate hydrological predictions.

5 Conclusions

Water management in the western US relies on accurate predictions of how both short-term climate variability and long-term
climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between
empirical space-for-time projections and a land surface model (NoahMP-WRF) raise important questions about the sensitivity
of streamflow timing to climate change, particularly in cold regions, and its impact on water planning. Significant differences
exist in the way space-for-time substitution and land surface models predict changes to snowmelt and streamflow timing, with
both approaches having strengths and weaknesses; however, the land surface model misrepresents historical patterns in
streamflow response that at are more accurately estimated by the empirical space-for-time model. Specifically, we show that
DOSy is a strong predictor of the early season hydrograph response, particularly in cold, sunny areas where the NoahMP-
WREF streamflow timing simulations lack sensitivity to climate change. Rigorously validating future model predictions is
impossible, but snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to refine land surface
models and better determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 2017; Viviroli et al.,
2007), particularly in cold regions. Our novel approach that can complement the benchmarking or calibration of physically
based hydrological models, beyond typical benchmarking against daily streamflow or snow accumulation metrics. For
example, the snowmelt timing metric DOSy, based on diel streamflow observations, could be used to test the performance of
land surface models running at sub-daily scales and fine spatial resolution in representing the historical snowmelt regime across

watersheds and years. As land surface models move towards real application for water management (Kopp et al., 2018), the
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hydrology community must seek ways to test and improve models using widely-available datasets if we are to meet the grand

water management challenges posed by climate change and altered snowmelt regimes in key mountainous regions.
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Figure 1: Examples of the diel cycle analysis applied to two watersheds located in California (A) (B) (WY2016) and Colorado (C)
(D) (WY2014). (A) and (C) show hourly solar radiation (orange) and streamflow (blue); the first statistically significant (p<0.01)
lagged spearman correlation (r>0.6) between streamflow and solar radiation is shown on a text box for clear-sky days only (>80%
of clear-sky solar radiation). (B) and (D) show the solar radiation-driven snowmelt days (blue circles) on top of the annual
hydrograph (semi-log scale) for the period of analysis (white background, December to July).
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Figure 2: Percentage of days that were classified as having snowmelt following the diel streamflow cycle analysis that also had
daily precipitation above 5 mm and a mean daily air temperature above 2 °C. Symbols are associated with the mean annual
percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have >90%, clear-sky snowmelt days, partly cloudy

715  sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt
days are defined as those with more than 80% of the potential clear-sky solar radiation.
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Date of 25% of Streamflow Volume (DOst)

Figure 3: (A) and (C) show cross-site relationships between mean winter air temperature (November to February) and DOSz and
the date of 25% of annual streamflow volume (DOQz2s), respectively. Slopes of individual sites’ interannual relationships are shown
as the lines on top of each symbol, where statistically significant (p-value <0.05) slopes are red. Non-significant interannual slopes
are presented to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of
snowmelt days under clear-sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares)
have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined
as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) show histograms of interannual slopes (for all
watershed and those with statistically significant relationships) and the cross-site relationships presented in their respective left

panel.

S .
5 (A) &
= 28
g
5
El')a =
8 %
T g
£ - O Partly Cloudy *E‘
‘i N $  Cloudy
3 2
2| R?=048 *n
& | slope=-7
5 RMSE = 23.8 days B
e
S0 -8 6 -4 -2 0
Mean Winter Air Temperature (°C)
N
&9 (C) Cross-site relationship
3 > Interannual slope
S
&
&
AN
S
=
N S
&
& -+
«© R?=0.71 S
o slope=-12.8
| RMSE = 26.9 days »-
N
N
000 -10 -8 -6 -4 -2 0

Mean Winter Air Temperature (°C)

0.4

o
w

Mean Solar Radiation (W m'z) (November to DOSm)

Snow Fraction (snowfall/precipitation)

25

Number of watersheds

Number of Watersheds

6 I A
[ Statistically significant slope (p<0.05)
= = cross-site slope

(B)

Interannual slope (day °C'1)

=20 15 -10 -5 0 5 15
Interannual slope (day °C'1)
1
12 - | AN (D) .
I statitically significant slopes (p<0.05)
10+ = = cross-site slope
1
8t I
I
I
60
I
4r
I
2r 1
|
0




DOS,, vs Winter Air Temperature DOQ,5 vs Winter Air Temperature

2
50 N (A
Fg o
45°N I 2 %
) 3
k) )
0 ~ [0)]
2 Y2
40°N 5 n %
=X w 6 3
- €
0 8 g
| el - 8 2
BN £ £
O  Sunny
O  Partly Cloudy -15 -10
| 0 Couy |
-20 , .
125° : ; W 25w 120w 115w 10w 105 W
W 1200w 1155w 1100w 105

Figure 4: Spatial variability of watershed-level interannual slopes for (A) DOS20 vs winter air temperature, and (B) DOQ2s vs winter
air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are

735 associated with those presented in Figure 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-
sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%,
and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80%
of the potential clear-sky solar radiation.
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Figure 5: (A) The day when the 20t percentile of snowmelt days occurs (DOS20), compared to the date of the 25% of the annual
streamflow volume (DOQz25). (C) DOS20 against the date of 50% of the annual streamflow volume (DOQso). Dashed lines in (A) and
(C) are 1:1 lines, and the slopes of sites’ interannual relationships are shown as the lines on top of each symbol, with statistically
significant (p-value <0.05) slopes shown in red. Sites #24, #25 and #31, indicated by dashed circles, fall far from the linear regression
and are not included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites
(circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds)
have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. (B) and (D)
show histograms of interannual slopes (for all watershed and those with statistically significant relationships) and the cross-site
relationships presented in their respective left panels.
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Figure 6: Spatial variability of the watershed-level interannual slopes for (A) DOQz2s vs DOS20, and (B) DOQso0 vs DOS2.
Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with those

760 presented in Figure 5. Watersheds that fall far from the linear regression presented in Figure 5 are surrounded by a dashed circle.
Symbols are associated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have
>90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%.
Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation.
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770 Interannual variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e., watershed);
red and blue lines indicate statistically significant (p<0.05) and insignificant slopes, respectively.
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780 with more than 80% of the potential clear-sky solar radiation. (B) Relationship between mean winter air temperature and the
sensitivity of DOSzo to climate change as projected by the space-for-time.
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Figure 9: Changes to DOQ2s and DOQso due to climate change under an RCP8.5 pseudo global warming climate scenario by the
end of the century. (A) and (B) compare historical against projected values between NoahMP-WRF and the space-for-time
substitution. (C) and (D) compare the projected change (future minus historical) between NoahMP-WRF and space-for-time
substitution, colored by the sensitivity of DOS2o to climate change as projected by the space-for-time analysis (Figure 8b). Symbols
surrounded by black circles indicate sites that were excluded from the regression analysis in Figure 5 (rainier sites #24, #25 and
#31). Symbols represent the historical mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90%
clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%; clear-sky
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Table 1: List of Abbreviations

Abbreviation

Definition

CAMELS Catchments Attributes and MEteorology for Large-sample Studies

DOQzs Date of 25% of annual streamflow volume

DOQso Date of 50% of annual streamflow volume

DOS1s The day when the 20" percentile of the snowmelt days occurs, with snowmelt days as defined by the
streamflow diel cycle analysis

GCM Global Climate Model

MLR Multiple Linear Regression Model

NLDAS-2 Phase 2 of the National Land Data Assimilation System

Noah-MP Noah Multi Parameterization land surface model

NoahMP-WRF | Simulations by WRF using the Noah-MP land surface model

RCP8.5 Representative Concentration Pathway 8.5

WRF Weather Research and Forecasting Model
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Table 2: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017).

Drainage | Mean Mean o Soil
. Lat. | Lon. Snow Aridity
ID | USGSID | Watershed Name | Area Elevation slope (m ) ) Depth
°N) | (°W) Fraction | index
(km?) (masl) kmt) (m)
1 06278300 Shell Creek, WY. 58.9 2,953 86.7 4451 | 107.40 | 0.73 1.32 0.74
North Fork Powder
2 06311000 61.2 2,516 411 44.03 | 107.08 | 0.57 1.68 0.90
River, WY.
Michigan River,
3 06614800 co 4.0 3,297 145.8 40.50 | 105.87 | 0.76 1.29 0.57
North Brush Creek,
4 06622700 WY 98.7 2,837 71.3 41.37 | 106.52 | 0.72 1.48 2.20
Encampment
5 06623800 ) 187.7 2,971 90.9 41.02 | 106.82 | 0.75 1.06 1.14
River, WY.
6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 | 106.22 | 0.74 1.46 2.52
7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 | 105.56 | 0.47 2.12 0.50
8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 | 105.66 | 0.47 1.50 0.85
9 09034900 Bobtail Creek, CO. | 15.7 3,571 102.8 39.76 | 105.91 | 0.73 1.16 0.47
South Fork of
10 | 09035900 Williams Fork, 72.8 3,241 123.9 39.80 | 106.03 | 0.69 1.44 0.56
Co.
Keystone Gulch,
11 | 09047700 co 23.6 3,334 103.8 39.59 | 105.97 | 0.63 1.92 0.45
12 | 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 | 106.32 | 0.71 1.40 0.27
13 | 09066300 Middle Creek, CO. | 15.5 2,944 143.8 39.65 | 106.38 | 0.69 1.49 0.48
Vallecito Creek,
14 | 09352900 co 188.2 3,283 156.1 37.48 | 107.54 | 0.63 1.24 0.50
15 | 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 | 109.37 | 0.50 1.79 1.16
Recapture Creek,
16 | 09378630 Ut 10.4 2,125 53.4 37.76 | 109.48 | 0.50 1.88 0.55
17 | 09386900 Rio Nutria, NM. 184.9 2,342 374 35.28 | 108.55 | 0.31 2.48 1.07
East Fork Virgin
18 | 09404450 193.0 2,070 56.2 37.34 | 112.60 | 0.42 2.86 0.82
River, UT.
East Fork White
19 | 09492400 ) 129.0 2,469 65.4 33.82 | 109.81 | 0.27 1.88 0.92
River, AZ.
20 | 10205030 Salina Creek, UT. 134.6 2,489 76.2 38.91 | 111.53 | 0.58 2.46 0.67
21 | 10234500 Beaver River, UT. | 236.4 2,499 95.2 38.28 | 112.57 | 0.63 2.06 0.60
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Blackwood Creek,

22 | 10336660 CA 29.8 2,113 83.5 39.11 | 120.16 | 0.67 0.77 0.79
Sagehen Creek,

23 | 10343500 cA 27.6 2,157 81.2 39.43 | 120.24 | 0.71 1.10 1.20
South Fork Tolt

24 | 12147600 . 14.1 1,068 159.4 47.71 | 121.60 | 0.27 0.22 0.63
River, WA.
Newhalem Creek,

25 | 12178100 WA 69.7 1,305 255.7 48.66 | 121.24 | 0.53 0.33 0.54
South Fork Jocko

26 | 12381400 151.0 1,877 102.2 47.20 | 113.85 | 0.59 0.97 0.62
River, MT.
Andrews Creek,

27 | 12447390 WA 58.1 1,701 172.6 48.82 | 120.15 | 0.78 0.86 0.47

28 | 13018300 Cache Creek, WY. | 27.9 2,198 109.5 43.45 | 110.70 | 0.66 1.50 0.69

29 | 13083000 Trapper Creek, ID. | 133.2 1,863 69.1 42.17 | 113.98 | 0.49 211 1.04
Lake Fork Payette

30 | 13240000 125.6 1,965 110.1 4491 | 116.00 | 0.73 0.75 0.44
River, ID.

31 | 14158790 Smith River, OR. 40.6 1,027 116.4 44,33 | 122.05 | 0.37 0.36 0.85
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Figure Al: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between
December 1 and August 1. Gauge ID is as presented in Table 2. Numbers of years at site #13 are the same for all thresholds
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation
cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation.
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Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between
December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater
than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky
conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-
sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70.
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between
November and DOSz in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis
suggests that most of the climate change signal from NoahMP-WRF pseudo global warming is within the observed climate
variability, except for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond)
associated with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%
clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as
those with more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of
snowmelt days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario.
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Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the
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Numbers represent the Gauge IDs as presented in Table 2.
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Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and
shortwave radiation (SWR) at each watershed, and the changes associated with the pseudo global warming as simulated by WRF.
(B) shows the same analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated
with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky
snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with
more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt
days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers
next to blue symbols represent the Gauge IDs as presented in Table 2.
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Figure A7: Same as Figure 9 but using streamflow timing metrics from NoahMP-WRF for an RCP8.5 pseudo global warming
scenario, calculated using surface runoff only instead of using surface plus subsurface runoff (as in Figure 6). Note the improved fit
in historical DOQg2s; however, this analysis yields very similar results to those of Figure 6, with NoahMP-WRF streamflow
simulations being much less sensitive to climate change than space-for-time substitution would suggest. (A) and (B) compare
historical against projected values between NoahMP-WRF and the space-for-time approach. (C) and (D) compare the projected
change (future minus historical) between NoahMP-WRF and space-for-time, colored by the sensitivity of DOSzo to climate change
as projected by the space-for-time analysis (Figure 5b). Symbols surrounded by black circles indicate sites that were excluded from
the regression analysis in Figure 3 (rainier sites #24, #25 and #31). Symbols (circle, square and diamond) represent the historical
mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky snowmelt days, partly cloudy have
between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential
clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global
warming climate scenario; however, red symbols (upper panels) follow the same symbology for easier interpretation.
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870 Table Al: Coefficient of determination (R?) and slope (in parenthesis, day/day) of the linear regression between different early
snowmelt timing metrics and DOQ2s and DOQso, as presented in Figure 5, for different correlation cutoffs (r) between hourly solar
radiation and streamflow. DOSxx represent the date when the xx™ percentile of snowmelt days occurs. Sites #24, #35 and #31, are

excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections.

Early snowmelt timing metrics vs DOQ2s vs DOQso
1%t snowmelt day 0.13 (0.61) 0.06 (0.25)
1%t 3 consecutive snowmelt day | 0.5 (0.71) 0.4 (0.4)
DOSs 0.37 (0.83) 0.28 (0.45)
r>0.5
DOS1o 0.49 (0.91) 0.43 (0.52)
DOSzo 0.69 (1.1) 0.66 (0.67)
DOSzo 0.73(1.1) 0.72 (0.68)
1t snowmelt day 0.24 (0.73) 0.15 (0.35)
1% 3 consecutive snowmelt day | 0.59 (0.77) 0.49 (0.44)
DOSs 0.46 (0.82) 0.37 (0.45)
r>0.6
DOS1o 0.63 (0.97) 0.53 (0.55)
DOS2 0.76 (1.05) 0.72 (0.64)
DOS3o 0.77 (1.07) 0.78 (0.67)
1%t snowmelt day 0.42 (0.73) 0.3(0.39)
1% 3 consecutive snowmelt day | 0.62 (0.85) 0.59 (0.53)
DOSs 0.61 (0.86) 0.51 (0.49)
r>0.7
DOS1o 0.71 (0.94) 0.63 (0.55)
DOS2 0.76 (0.99) 0.75 (0.62)
DOS3o 0.79 (1.03) 0.82 (0.65)
1%t snowmelt day 0.66 (0.87) 0.54 (0.5)
1%t 3 consecutive snowmelt day | 0.76 (1.09) 0.78 (0.71)
DOSs 0.79 (1.01) 0.7 (0.6)
r>0.8
DOS1o 0.83 (1.03) 0.78 (0.64)
DOS2 0.85 (1.07) 0.85 (0.68)
DOSzo 0.85(1.1) 0.88 (0.72)
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Table A2: Root mean square error (RMSE) and coefficient of determination (R?, in parentheses) associated with several stepwise
multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g., Equation 1 uses
DOS20) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents
the date when the xxt" percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 also

shown in Figure 7A.

Early snowmelt timing metrics r>05 r>0.6 r>0.7 r>0.8
First snowmelt day 11.1(0.87) | 12.3(0.88) | 15.2(0.88) | 21.7(0.82)
First 3 consecutive snowmelt days | 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) | 20.2(0.8)
DOSs 14.9(0.83) | 15.4(0.85) | 17.3(0.86) | 21.1(0.8)
DOS1o 16.4 (0.82) | 17.3(0.83) | 19.9(0.82) | 19.6 (0.82)
DOS2 16.5(0.82) |17.9(0.82) | 18.9(0.82) | 17.5(0.83)
DOS3 16.3(0.82) | 17.4(0.82) |17.8(0.82) | 16.3(0.83)
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Table A3: Coefficient of determination (R?) for the site-average stepwise multiple linear regression, analogous to that presented in

Figure 7B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt

days metrics). DOSxx represents the date when the xxt" percentile of snowmelt days occurs. Bolded number is associated with the
885 stepwise MLR in Equation 1 using DOSz.

Early snowmelt timing metrics r>05 [r>06 |[r>07 |r>038
First snowmelt day 0.8 0.82 0.89 0.79
First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69
DOSs 0.84 0.85 0.87 0.83
DOS1o 0.84 0.85 0.86 0.84
DOS2 0.83 0.82 0.82 0.82
DOS3zo 0.83 0.81 0.81 0.8
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly
solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that

890 of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp:
Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xx™ percentile of
snowmelt days occurs. *Indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling
decisions used in the result and discussion sections.

Early snowmelt timing metrics | Bi: AT | p:Pp | Bs: RH | Ba: SWR P Pe: b P bs: Pro-
ATxPp ATXRH | ATxSWR PpxRH PpxSWR | RHXSWR
1 snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1°* 3 consecutive
-0.41 0.74 0.002 0.38 0.19 n/a nla -0.33 nla -0.19
snowmelt days
r>05 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyo -0.55 0.45 0.22 0.56 0.26 n/a nla n/a 0.23 -0.21
DOSy -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28
DOS3 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27
1 snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a nla
1%t 3 consecutive
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21
snowmelt days
r>0.6 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyy 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16
DOSy -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24
DOS3 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24
1%t snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1%t 3 consecutive
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23
snowmelt days
r>0.7 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSyo -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17
DOS; -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24
DOSs -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26
1 snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06
1%t 3 consecutive
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27
snowmelt days
r>0.8 DOSs -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19
DOSyo -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26
DOS; -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29
DOSs -0.29 0.29 0.37 0.76 0.09 n/a nla n/a 0.18 -0.26

895
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Table A5: Coefficient of determination (R?) and slope (in parenthesis, days °C™) of the linear regression between space-for-time
sensitivity to warming and sites’ mean winter air temperature as presented in Figure 8B, for different early snowmelt day metrics
and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when the xx™ percentile of
snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and discussion sections.

900

Early snowmelt timing metrics r>05 r>0.6 r>0.7 r>0.8
First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (-0.75)
First 3 consecutive snowmelt days 0.02 (-0.30) | 0.08 (-0.51) | 0.00 (-0.05) | 0.00 (-0.07)
DOSs 0.00 (0.04) |0.01(-0.18) |0.02(-0.32) | 0.25(-1.00)
DOS1o 0.00 (-0.09) | 0.25(-0.86) | 0.37(-1.17) | 0.2 (-0.66)
DOS» 0.27 (-0.68) | 0.35(-0.89) | 0.37 (-0.99) | 0.33(-0.75)
DOS3o 0.22 (-0.57) | 0.26 (-0.65) | 0.27 (-0.66) | 0.20 (-0.52)
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