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Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening 

water supplies and ecosystems. Few observations allow separating rain and snowmelt contributions to streamflow, so 15 

physically based models are needed for hydrological predictions and analyses. We develop an observational technique for 

detecting streamflow responses to snowmelt using incoming solar radiation and diel (daily) cycles of streamflow to detect 

when snowmelt occurs. We measure the date of the 20th percentile of snowmelt days (DOS20), across 31 watersheds affected 

by snow in the western US, as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS20 varies from mid-

January to late May, with warmer sites having earlier and more intermittent snowmelt-mediated streamflow. Mean annual 20 

DOS20 strongly correlates with the dates of 25% and 50% annual streamflow volume (DOQ25 and DOQ50, both R2 = 0.85), 

suggesting that a one-day earlier DOS20 corresponds with a one-day earlier DOQ25 and 0.7-day earlier DOQ50. Empirical 

projections of future DOS20 (RCP8.5, late 21st century), using space-for-time substitution, show that DOS20 will occur on 

average 11±4 days earlier per 1°C of warming; however, DOS20 in colder watersheds (mean November-February air 

temperature, TNDJF < -8ºC) is on average 70% more sensitive to climate change on average than in warmer watersheds (TNDJF 25 

> 0ºC). Moreover, empirical space-for-time based projections of DOQ25 and DOQ50 are about four and two times more 

sensitive to earlier streamflow than those simulated by NoahMP-WRF under the same scenario. Given the importance of 

changing streamflow timing for water resources, and the significant discrepancies in projected streamflow sensitivity between 

space-for-time substitution and a land surface model, snowmelt detection methods such as DOS20 based on diel streamflow 

cycles may constrain models and improve hydrological predictions. 30 
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1 Introduction 

The role of earlier snowmelt in driving earlier streamflow timing is of great concern in a changing climate (Barnett et al., 2005; 

Harpold and Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume 

comes at the expense of later summer streamflow in regions like the western US (Hidalgo et al., 2009; McCabe and Clark, 35 

2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et 

al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy 

inputs (Meira Neto et al., 2020), decreasing runoff from upland forested watersheds (Foster et al., 2016; Jepsen et al., 2018; 

Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting downstream systems 

(Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress (Immerzeel et al., 2020). 40 

However, it remains difficult to predict how much streamflow timing and amount will shift in future climates due to altered 

snow accumulation patterns (Mote et al., 2018), melt rates (Musselman et al., 2017), and shifts from snowfall to rainfall (Klos 

et al., 2014). 

 

Due to the complexity of upland streamflow generation, physically based hydrological models are typically used to predict 45 

how snowpack changes will interact with the critical zone (CZ), and thus affect short-term flood behavior and seasonal water 

supply forecasts (Kopp et al., 2018; Wood and Lettenmaier, 2006). In mountainous regions like the western US, models need 

to accurately simulate snow processes across watersheds with varying snowpack conditions (Serreze et al., 1999) and then 

transport and store that water in the CZ along hillslopes and watersheds with varying subsurface properties (Brooks et al., 

2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more closely mirror the timing 50 

of rainfall. Precipitation phase is mediated by basin elevation and hypsometry (Jennings et al., 2018; Wayand et al., 2015), 

which also influences precipitation amounts (Houze, 2012), with higher elevations and steeper watersheds typically having 

higher precipitation and snowfall. Solar radiation is the primary energy source for snowmelt in snow-dominated montane 

watersheds (Cline, 1997; Marks and Dozier, 1992), explaining the importance of cloudiness in regulating snowmelt and 

streamflow processes, as evidenced by negative correlations between cloud cover and melt rates (Sumargo and Cayan, 2018). 55 

Shallower snowpacks have less cold content and begin their melt earlier when solar radiation is lower (Harpold et al., 2012; 

Harpold and Brooks, 2018; Musselman et al., 2017), which shifts streamflow earlier (Clow, 2010). Storage and drainage of 

water in the CZ control the sensitivity of streamflow to earlier rain or melt water inputs. For example, snowmelt-mediated 

spring streamflow timing is more sensitive to climate change in watersheds with rapid subsurface drainage than in landscapes 

with deep groundwater reservoirs that drain slowly (Safeeq et al., 2013). In contrast, the sensitivity of snowmelt-mediated 60 

summer streamflow volume to climate change has shown to be higher in slow-draining watersheds (Tague and Grant, 2009). 

The complexity of these storage relationships is exemplified by isotopic evidence showing that the fraction of streamflow that 
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is "young water" (less than three months old) is smaller in steeper watersheds (Jasechko et al., 2016), suggesting that 

interactions between CZ water storage and changing hydrometeorology will be challenging to predict in mountainous areas. 

 65 

Hydrologists typically apply two types of modeling tools to predict future streamflow: empirical models (such as space-for-

time substitutions) and more mechanistically oriented models (conceptual or physically based land surface models). Space-

for-time substitution assumes that long-term site-to-site statistical relationships among variables (e.g., precipitation and air 

temperature) can be used to understand and model their likely changes over time (e.g., evapotranspiration and streamflow). 

Space-for-time substitution has been used in fields such as hydrology (Goulden and Bales, 2014; Jepsen et al., 2018; Sivapalan 70 

et al., 2011), biodiversity (Blois et al., 2013) and tree growth (Klesse et al., 2020) to predict responses to climate change. A 

limitation of the space-for-time approach is that it neglects non-correlated (or independent) changes in spatially varying factors 

(Jepsen et al., 2018). For example, heterogenous patterns of warming, variations in precipitation and vegetation, or changes 

that occur at different temporal scales (e.g., soil properties versus rain-snow line transition) are implicitly neglected in the 

space-for-time approach. Conversely, physically based models embed physics and state-of-the-art understanding of 75 

hydrological processes. These models typically require some degree of calibration or validation to observations (e.g., daily 

streamflow) to increase and assess their predictive skill. The current generation of regional weather models using the Weather 

Research and Forecasting model (WRF) (Skamarock et al., 2008) coupled to the Noah Multi Parameterization land surface 

model (Noah-MP) (Niu et al., 2011) has shown promising results for modeling atmospheric and snow processes in the 

contiguous US (He et al., 2019; Liu et al., 2017; Musselman et al., 2017; Scaff et al., 2020). For example, snow simulations 80 

have been used to quantify mountain snowmelt and streamflow response to climate change (Musselman et al., 2017, 2018). 

These simulations use a pseudo global warming approach, which perturbs the historical climate with a climate change signal 

from an ensemble of global climate models (GCMs); using this perturbation avoids systemic biases in the GCMs and avoids 

issues related to their interannual variability (Liu et al., 2017). Given the importance of snowmelt to streamflow generation 

and its uncertain sensitivity to climate change, new tools that allow comparisons between land surface models and space-for-85 

time predictions of future streamflow are valuable, and could help to diagnose modeling issues that can be improved for better 

predictions.   

 

Few simple, low-cost observational tools exist to separate rainfall-driven from snowmelt-driven contributions to streamflow 

or to separate this year's melt from previous years' melt and storage. One method that can be straightforwardly applied to 90 

existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt, and streamflow (Kirchner et al., 

2020; Lundquist and Cayan, 2002). Diel (24-hours) cycles in streamflow and shallow groundwater levels are often found  in 

mountainous systems driven by either snow or ice melt and evapotranspiration, which are both ultimately driven by solar 

radiation inputs (Kirchner et al., 2020). This mechanistic response has been used to study watershed properties like kinematic 

wave celerity (Kirchner et al., 2020), the impact of snowpack variability on streamflow timing (Lundquist and Dettinger, 95 

2005), groundwater fluctuations (Loheide and Lundquist, 2009), and transitions from snowmelt to evapotranspiration-
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dominated streamflow fluctuations (Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More recently, Kirchner 

et al. (2020) combined local observations and remote sensing to show that streamflow diel response was tightly controlled by 

the timing of snowpack disappearance. Here, we extend the ‘diel cycle index’ approach of Kirchner et al. (2020) using diel 

streamflow observations to detect the occurrence of days when streamflow is coupled to snowmelt inputs, and investigate their 100 

contributions to historical variability in streamflow amount and timing. We compare space-for-time end-of-century predictions 

under an RCP8.5 pseudo global warming scenario against predictions from a state-of-the-art land surface model (under the 

same climate scenario) across 31 mountainous watersheds in the western US to answer the following questions: 

1. Is there evidence of earlier snowmelt in warmer watersheds and years, and can we use the timing of snowmelt to predict 

the timing of streamflow volume? 105 

2. How does snowmelt timing predict streamflow volume timing with a space-for-time approach and where is the timing of 

snowmelt most sensitive to climate change?  

3. Do historical streamflow volume timings and future space-for-time-based projections diverge from commonly used, state-

of-the-art land surface models? 

A list with the abbreviations used in this study is presented in Table 1. 110 

2 Methods 

2.1 Study Domain and Data 

We studied snowmelt-driven streamflow in 31 mountainous watersheds in the western US (Table 2), spanning snow fractions 

of 0.27 to 0.78 (Figure A3A), aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m 

(Addor et al., 2017; Pelletier et al., 2016) (Table 2). These watersheds are part of the CAMELS (Catchments Attributes and 115 

MEteorology for Large-sample Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow 

and meteorological forcing, among other observed and simulated hydrometeorological variables at the watershed scale. These 

watersheds were chosen because their streamflows are unregulated, they have relatively small drainage areas (< 250 km2), and 

they are at relatively high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-

driven streamflow regimes. The names, locations, elevations, slopes, drainage areas and other key characteristics of the 31 120 

watersheds are presented in Table 2.  

 

The data used in this analysis include hourly streamflow and incoming shortwave radiation, and mean daily relative humidity, 

air temperature and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming 

shortwave radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest 125 

grid point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are 

from CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is interpolated from existing ground 

observations. Available hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites. 

Figure A1A shows the number of years that have more than 70, 80 and 90% of days with hourly records for the period between 
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December 1 and August 1. Based on this preliminary analysis, we decided to use water years with more than 80% of days with 130 

hourly streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze 

(except for sites #10 and #30 with 4 years). 

2.2 Snowmelt and Streamflow Diel Coupling 

To infer the occurrence of days when solar radiation-driven snowmelt is coupled to the streamflow, hereafter referred as 

snowmelt days for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow 135 

(Figure 1). A snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged 

streamflow is statistically significant (p-value≤0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response 

after snowmelt, we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all 

combinations, and kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although 

having both a correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant 140 

correlations above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1 

for r>0.6) to assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used 

to avoid confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020; 

Mutzner et al., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation 

with lags below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner 145 

et al., 2020). However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel 

response or rain-on-snow events. To minimize this, we further restricted the lags that could be selected based on optimum lags 

from snowmelt days with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-

sky solar radiation (grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and 

was calculated as the lags between the 10th and 90th percentile of clear-sky days with Spearman correlations above 0.8. This 150 

second filter also helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance 

of selecting 18-hr lags that can be associated with ET. Despite efforts to select only snowmelt-driven streamflow diel responses, 

this methodology does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always 

be excluded. Excluding such cases would require hourly precipitation observations, which are not available for all of our study 

watersheds. However, we believe that any such cases will minimally affect the results of our analysis. 155 

 

To provide a better idea of the potential impact that rainfall may have on our proposed diel analysis, particularly on the effect 

of rain-on-snow events, we analyzed which days that were classified as snowmelt days also has rainfall. We assessed daily 

rainfall using the daily precipitation time series from CAMELS based on the DAYMET product for each watershed. A false 

detection rate metric was computed for each watershed, in which every day classified as a snowmelt with daily precipitation 160 

above 5 mm and a mean daily air temperature above 2 oC was assumed to be mis-classified (Figure 2). A false detection rate 

of 100% means that all snowmelt days were mis-classified and 0% means that no days had significant rainfall. On average, 
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the false detection rate was estimated at 7% with a standard deviation of 5%, and only watersheds #24 and #31 (located in WA 

and OR, respectively) are above 15%, with 21% and 29%, respectively. This suggest that the effect of potential rainfall-induced 

diel streamflow cycle (including rain-on-snow events) in most watersheds is low (except for watersheds #24 and #31), 165 

supporting further analysis. We also assessed the mean cross-site false detection rate for precipitation thresholds of 1 mm and 

10 mm and found reasonable values of 12% and 3%, respectively. However, we believe that 1 mm is not a reasonable threshold 

as a 1 mm rainfall event is unlikely to produce a distinguishable diel streamflow signal or could represent error/noise in the 

DAYMET product. 

2.3 Space-for-Time substitution for DOS20  170 

We defined the day when the 20th percentile of the snowmelt days occurs (DOS20) as a new metric to characterize the 

seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5th, 10th and 30th 

percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis. We chose 

this metric because we expect it to be associated with the timing of streamflow volume, and the choice of slightly earlier or 

later snowmelt days would not substantially change our results. We fitted a stepwise multiple linear regression model (MLR, 175 

p-value<0.01, Equation 1) to reconstruct historical DOS20 across all our sites (Figure A4) using four climate variables: total 

precipitation, air temperature, relative humidity, and solar radiation.   

𝐷𝑂𝑆20 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + 𝛽5𝑥1𝑥2 + 𝛽6𝑥1𝑥3

+ 𝛽7𝑥1𝑥4 + 𝛽8𝑥2𝑥3 + 𝛽9𝑥2𝑥4  + 𝛽10𝑥3𝑥4 

(1) 

 

Where x1 is cumulative air temperature (°C), x2 is cumulative precipitation (mm), x3 is mean relative humidity (%), x4 is mean 

solar radiation (W m-2), and βi are the regression coefficients. Mean annual climate variables were calculated for the period 

between November 1st and DOS20. This results in DOS20 being present in both sides of Equation 1; therefore, the stepwise 180 

MLR requires an iterative solution when used in a predictive mode (i.e., for the climate change analysis). We verified the 

stepwise MLR assumptions, namely, linear relationships between each predictor and DOS20, normally distributed residuals, 

homoscedasticity, and absence of strong multicollinearity (as suggested by a Variance Inflation Factor < 3). We also tested 

other metrics related to the timing of early snowmelt events. These included: the first snowmelt day, the first three consecutive 

snowmelt events, and the 5th, 10th and 30th percentiles of snowmelt days (DOS5, DOS10 and DOS30, respectively). All these 185 

metrics were also computed using each of the different Spearman correlation cutoffs (Table A1, A2, A3, A4 and A5), but the 

main analysis presented here focuses on DOS20 based on snowmelt days calculated with hourly Spearman correlations >0.8. 

We used a space-for-time approach to predict changes to DOS20 based on the stepwise MLR model and an end-of-the-century 

mean climate change signal from WRF (Liu et al., 2017). WRF was run under a high emission scenario (RCP8.5) using the 

pseudo global warming approach for the end of the century. Overall, it projects a warmer (4 – 5.2°C) and wetter (0 - 20% 190 

increase in precipitation) climate (Figure A4 and A5). As previously mentioned, predictors used in the stepwise MLR are 

calculated for the period between November 1st and DOS20; therefore, as we do not know the value of DOS20 in the future, an 
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iterative solution is required to solve for DOS20 in Equation 1. We find a numerical solution using a 2-day convergence 

threshold between iterations, so that |DOS20i+1 – DOS20i| ≤ 2 days, where ‘i’ is the number of the iteration. 

2.4 Streamflow Volume Timing from a Land-Surface Model 195 

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and 

the period 2071-2100 under pseudo global warming (Liu et al., 2017). NoahMP-WRF simulations include an improved Noah 

configuration aiming to better represent the snow physics. These improvements include (Liu et al., 2017): the rain-snow 

transition is based on a microphysics partitioning approach as opposed to a subjective temperature-based approach, patchy 

snowpack are allowed in the calculation of the surface energy balance, the heat transport from rainfall to the ground is included, 200 

and the snow depletion curve is vegetation-dependent. These improvements allow a better representation of the surface energy 

balance, and the simulation of snow accumulation and melt processes. We used daily watershed-scale outputs of surface and 

subsurface runoff from historical and future NoahMP-WRF simulations to estimate DOQ25 and DOQ50. Given the range of the 

watershed drainage areas (4 - 236 km2, Table 2), watersheds covering several grid cells use the total surface and subsurface 

runoff for their corresponding grid cells. Small watersheds are represented by only the single nearest NoahMP-WRF grid cell. 205 

The way NoahMP-WRF is implemented within WRF lacks a streamflow routing scheme such as the one in WRF-Hydro 

(Gochis et al., 2020); therefore, we use the sum of surface and subsurface runoff to estimate DOQ25 and DOQ50. We also 

repeated the analysis using surface runoff only, leading to similar results (Figure A7). Given the relatively coarse NoahMP-

WRF spatial resolution (4 km) compared to the watershed drainage areas (4 - 236 km2), we expect that mean streamflow timing 

metrics will not be significantly affected by the lack of streamflow routing. 210 

3 Results 

3.1 Empirical Relationships Between DOS20, Climate and Streamflow 

Mean DOS20 has a strong regional variability that is reasonably captured by a negative linear correlation (R2 = 0.48) with the 

mean winter air temperature (November to February, TNDJF) in watersheds with TNDJF<-3°C, whereas warmer watersheds do 

not follow the same pattern (Figure 3A and Figure 4A). Warmer sites (TNDJF > -3 °C) have a more variable mean DOS20 ranging 215 

from mid-January to early May, whereas the coldest sites (TNDJF <-8°C) have a later and less variable DOS20 around mid to 

late May. On average, the regression suggests that a 1 °C of warming results in 7.2-day earlier DOS20. The relationship between 

later DOS20 and colder TNDJF is also found in the year-to-year variations in DOS20 at most watersheds (21 out of the 31), with 

warmer years experiencing earlier DOS20 (Figure 3B). A strong linear relationship was found between the date of the 25% of 

the annual streamflow volume (DOQ25) and TNDJF. Warmer watersheds (TNDJF>0°C) generate streamflow the earliest (between 220 

mid-December and early March) compared to the coldest watersheds (TNDJF<-8°C), with DOQ25 between early and late May 

(Figure 3C). On average, the cross-site regression shows that a 1°C increase in TNDJF produces a 13-day earlier DOQ25. For 

most watersheds (25 out of 31), interannual regressions show a similar pattern with warmer years having earlier DOQ25; 
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however, these interannual regressions have shallower slopes than the cross-site relationship (Figure 3B and 3D). Previous 

work by Stewart et al. (2005) also related seasonal meteorological patterns with the spring onset and streamflow timing, and 225 

found similar relationships (e.g., warmer watersheds have earlier spring onset and streamflow timing). However, the definition 

of the spring onset was based on the cumulative hydrograph (the day when the cumulative departure from the mean streamflow 

was the minimum), as opposed to our more mechanistic diel streamflow analysis. Other definitions for spring onset based on 

streamflow, snow pillows and air temperature are presented by Lundquist et al. (2004). 

 230 

Strong correlations between DOS20 and both DOQ25 and DOQ50 (the dates at which 25% and 50% of the annual streamflow 

volume are reached) (R2 = 0.85, Figure 5A and 5C) suggest connections between the timing of snowmelt and streamflow 

generation across watersheds and years. On average, sites that melt earlier are associated with earlier DOQ25 (Figure 5A) and 

a lower ratio of snowfall to total precipitation (snow fraction<0.5). The relationship between DOS20 and DOQ25 closely follows 

the 1:1 line (Figure 5A), although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 2 and Figure 6A) 235 

deviate substantially from this pattern, perhaps because they receive relatively little of their precipitation as snow. Similar 

watershed-level relationships using interannual variability in DOQ25 were found for most watersheds, with statistically 

significant slopes varying between 0.4 and 2.5 day day-1 (Figure 5B). DOS20 also predicts DOQ50 well, with 10-day earlier 

snowmelt producing 7-day earlier DOQ50 on average (Figure 5C), and similar watershed-level interannual relationships (Figure 

5D). The same three relatively rainy watersheds have DOQ50 prior to the DOS20 (Figure 5C and Figure 6B), suggesting that 240 

early snowmelt timing is not an important predictor of DOQ50 in such places. 

3.2 Sensitivity of Snowmelt Timing (DOS20) to Climate Change: Space-For-Time Substitution 

We fitted a stepwise MLR with four climate variables (air temperature, precipitation, relative humidity, and solar radiation) to 

predict DOS20 across watersheds and years. A total of 333 watershed-year combinations of DOS20 and climate variables were 

used to train the stepwise MLR model. The watershed-year relationship between observed and MLR predictions has a relatively 245 

high R2 of 0.83, a root mean square error (RMSE) of 17.5 days, and normally distributed residuals (p < 0.01) off the 1:1 line 

and centered at 0 with a standard deviation of 17.3 days (Figure 7A). The relationship between observations and MLR 

predictions of inter-watershed mean annual DOS20 (Figure 7B) is also strong (R2 = 0.83 and RMSE = 13.2 days) and follows 

the 1:1 line. Similarly, when we look at interannual values, represented by the lines overlapping circles in Figure 7B, we find 

a good agreement, with most slopes are close to 1:1 (see inset plot Figure 7B). This analysis demonstrates that the MLR model 250 

can reasonably represent both the mean annual DOS20 values at each watershed and their interannual variability. Table A4 

shows standardized beta coefficients that indicate the importance of each climate variable in the stepwise MLR. For the 0.8 

correlation cutoff we found that incoming shortwave radiation has the greatest importance (beta = 0.75), followed by relative 

humidity (beta = 0.37) and air temperature (beta = -0.31). 

 255 
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Space-for-time projections under climate change show earlier mean annual DOS20 in all watersheds, with significant variability 

from site to site (Figure 8A). Most watersheds show significant end-of-century changes in DOS20 ranging from up to three 

months earlier in cold sites where, historically, snowmelt under clear-sky conditions dominates (circles in Figure 8A), to as 

little as 20 days earlier in warm sites under historically cloudier conditions. The cross-site average change in DOS20 is 55.3 

days with a standard deviation of 21.8 days. In many watersheds the mean projection of DOS20 under climate change is within 260 

the historically observed variability in DOS20 (Figure 8A). Space-for-time substitution predicts that colder watersheds (TNDJF≤-

8°C) on average are about 70% more sensitive to climate change (13.7±4.6 days °C-1) than warmer watersheds are (TNDJF>0°C) 

(8.1±6.2 day °C-1), as represented by the change in the DOS20 per degree of warming (Figure 8B). Site #24 (South Fork Tolt 

River, WA.) shows almost no change in its DOS20, which can be attributed to its weaker climate change signal compared to the 

other watersheds (about +4°C, 5% precipitation increase, and virtually no change in humidity and solar radiation; Figure A4). 265 

When we look at the mean sensitivity across all watersheds, the space-for-time analysis suggest an average sensitivity of 

11.1±4.2 days ºC-1. 

3.3 Sensitivity of Streamflow Timing to Climate Change: Space-for-time versus NoahMP-WRF 

We compared historical and space-for-time projections for DOQ25 and DOQ50 with those from NoahMP-WRF. Streamflow 

sensitivity using space-for-time projections for DOS20 under climate change were built using the linear regressions presented 270 

in Figure 5A and 5C (DOQ25 and DOQ50 vs DOS20). Space-for-time projections for DOQ25 range from early January to late 

May (red symbols, Figure 9A), advancing between 20 and 100 days under RCP 8.5 (x-axis, Figure 9C). The DOQ50 is projected 

to advance between roughly 15 and 65 days (x-axis, Figure 9D), ranging from mid-February to late May (red symbols, Figure 

9B). The historical DOQ25 is greatly underestimated by NoahMP-WRF (blue symbols, Figure 9A) with a mean DOQ25 in mid-

February, whereas historical DOQ25 is in early April (50-day mean difference). Projected changes to DOQ25 by NoahMP-WRF 275 

under pseudo global warming range between early January to mid-March (mean in early February), whereas space-for-time 

projections range between early January and late March (mean in mid-February; Figure 9A). These results indicate that space-

for-time projections of DOQ25 are about four times more sensitive to climate change than those from NoahMP-WRF (ΔDOQ25 

averages about -60 days for space-for-time substitution and -15 days for NoahMP-WRF; Figure 9C). Historical DOQ50 is 

reasonably well represented by NoahMP-WRF under the current climate (blue symbols, Figure 9B) with a mean difference of 280 

only 7 days, but future changes of about -20 days are roughly half of the -40 days predicted by the space-for-time projections 

(Figure 9D). Space-for-time projections of DOQ50 range between mid-February and early April, whereas NoahMP-WRF 

projections range between mid-March and mid-May. Watersheds with the largest disagreement between space-for-time and 

NoahMP-WRF projections for streamflow volume timing are those where DOS20 is the most sensitive to climate change, 

represented by the orange and yellow symbols in Figure 9C and 9D. These watersheds are characterized by historical cold 285 

winter temperatures (TNDJF<-6ºC) with snowmelt occurring mostly under sunny conditions (circle symbols) and are mostly 

located in the Rocky Mountains. 
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4 Discussion 

The new DOS20 metric describes the timing of early snowmelt-mediated streamflow based on the diel streamflow fluctuations 290 

and suggests that shifts in snowmelt timing in colder, sunnier watersheds have a greater effect on streamflow volume timing 

than in warmer, cloudier watersheds where snowmelt is more interspersed with rain. Despite the intuitive connections between 

snowmelt and streamflow, empirically linking changes in earlier snowmelt rates (Harpold and Brooks, 2018; Musselman et 

al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing (Stewart et al., 2004) has been challenging 

(Weiler et al., 2018), partly due to the scales at which snow (point-scale) and streamflow (watershed-scale) are typically 295 

measured. For example, evidence of snowmelt at Snow Telemetry (SNOTEL) locations in the US has shown that snowmelt 

events are more intermittent at sites with higher humidity, and future modeling suggests slower, earlier snowmelt in the largest 

snowpacks in areas with lower humidity and cloud cover (Harpold and Brooks, 2018; Musselman et al., 2017). However, the 

potential cascading effects of earlier and slower snowmelt on streamflow amount and timing are relatively unexplored (e.g. 

Berghuijs et al., 2014). Not surprisingly, the warmest and cloudiest watersheds have lower snow fractions and a more rainfall-300 

dominated streamflow regime, and thus have less (and often no) interannual correlation between DOS20 and the metrics DOQ25 

and DOQ50 (Figure 5A and 5C), illustrating the limitations of the diel streamflow method in rain-dominated watersheds; as 

also suggested by the false detection rate analysis (Figure 2) in watersheds #24 and #31 in Washington and Oregon, 

respectively. Rain-on-snow events are particularly challenging to detect with our analysis, as days with low percentage of 

incoming shortwave radiation (<80% of clear-sky) are filtered out to avoid issues with potential rainfall-dominated diel signals. 305 

Conversely, the colder and sunnier watersheds, primarily in the intermountain region, have strong interannual correlations 

between DOS20 and DOQ25 (Figure 5A and Figure 6A), reflecting the importance of snowmelt (instead of rain) in controlling 

streamflow volume timing. We currently lack physically based representations of many processes linking snowpack storage, 

snowmelt, subsurface storage, and the timing of water release following a hydrologic event (i.e., snowmelt or rainfall event). 

Snowmelt modeling in complex terrain is challenged by steep climate gradients and by the lack of adequate forcing data 310 

required to run models. Characterizing precipitation phase and timing in steep watersheds remains challenging in rain-to-snow 

transition zones (Harpold et al., 2017; Jennings et al., 2018; Wayand et al., 2015), which will presumably increase in extent in 

the future (Klos et al., 2014). Complex terrain has a large effect on radiation fluxes, which are hard to capture at kilometer 

spatial scales (Müller and Scherer, 2005) used in some land surface models. Nonetheless, this issue is less important in warmer, 

cloudier watersheds where longwave radiation and sensible heat are larger components of the energy balance (Mazurkiewicz 315 

et al., 2008). Forests exert a strong control on the snowpack mass and energy balance (Lundquist et al., 2013; Pomeroy et al., 

1998; Safa et al., 2021) with spatially heterogeneous effects on snow accumulation and melt that remain challenging to model 

(Broxton et al., 2015; Krogh et al., 2020). The presence of preferential flowpaths through the snowpack impacts the timing of 

melt release (Leroux and Pomeroy, 2017) and is not typically included in hydrological models. Once snowmelt is released 

from the snowpack, simulating (and validating) what fraction flows as subsurface and surface runoff remains difficult. Decades 320 

of tracer studies (e.g., Godsey et al., 2010; Kirchner, 2003) have shown that streamflow during and after hydrologic events 
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(i.e., snowmelt or rainfall events) is typically ‘old water’ that has been stored in the watershed for months to years. Land 

surface models like NoahMP-WRF lack realistic groundwater stores to represent old water and are at spatial resolutions that 

make hillslope and near-stream processes difficult to represent (Fan et al., 2019). For example, previous work at Sagehen 

Creek (site #23) suggests that streamflow remains ~80% groundwater even during the snowmelt freshet (Urióstegui et al., 325 

2017). Innovative observations and/or analyses that give new physical insights, like the diel streamflow analysis, can be used 

to derive such hydrologic representations, which could improve our prediction of hydrological systems (Kirchner, 2006).  

 

Because the diel analysis does not require assumptions embedded in physically based models, it is an independent tool that 

can be used to verify historical streamflow simulations from sub-daily resolved hydrological models. For example, land surface 330 

models could be benchmarked against observed snowmelt days based on the diel analysis or metrics like the DOS20, aiming to 

better represent processes associated with snowmelt-driven streamflow generation. The diel analysis is also easier to implement 

than detailed process-based catchment models because it only requires observed hourly streamflow data and solar radiation. 

Solar radiation can be reliably represented by land surface models with data assimilation like NLDAS-2 (Luo et al., 2003) that 

assimilate field observations and remotely sensed radiation (including the effects of clouds) into an atmospheric modeling 335 

framework. We tested the sensitivity of some modeling decisions, such as the correlation cutoff between hourly solar radiation 

and streamflow used to detect snowmelt days and metrics for snowmelt timing and found similar sensitivities of DOS20 to 

climate change across different correlation cutoffs and snowmelt timing percentiles (Table A5). Metrics like the first snowmelt 

day or the first three consecutive snowmelt days showed less consistent results (Table A5), likely due to individual early or 

mid-winter melt events that do not necessarily represent the seasonal watershed behavior. The diel streamflow analysis has 340 

four main limitations that need to be examined in future work: (1) it requires a steep enough stage-discharge relationship that 

daily streamflow cycles can be detected across the flow regime, (2) it focuses on snowmelt driven by solar radiation (and 

energy fluxes synchronized with it), (3) it is sensitive to assumptions about the lag time between solar radiation and streamflow, 

and (4) it is sensitive to assumptions about evapotranspiration losses. A steep stage-discharge relationship, in which small 

changes in discharge are associated with large changes in stage, is ideal to observe small diel streamflow changes with 345 

sufficient precision. Another assumption is that the majority of snowmelt is correlated with solar radiation. This assumption is 

supported by the importance of solar radiation in process-based studies of maritime and continental snowpacks (Cline, 1997; 

Jepsen et al., 2012; Marks and Dozier, 1992). Because our method allows the lag time between solar radiation and streamflow 

to vary within a predefined window, we expect it to capture other important energy fluxes like sensible heat that often lag the 

diel patterns of solar radiation by several hours (Ohmura, 2001). This approach is not suitable for capturing rain-on-snow 350 

events, which are most common in maritime watersheds, but also occur in continental settings (Musselman et al., 2018). It 

may also misclassify rainfall-driven diel streamflow cycles, although we checked for rainfall-induced cycles and found that 

these are, on average, a small fraction (7%, Figure 2). In rainier watersheds (lower snow fraction), our analysis may be more 

uncertain than in watersheds with a more snowfall-dominated regime. Nonetheless, the relationships between streamflow 

timing (i.e., DOS20, DOQ25 and DOQ50) and meteorological drivers in rainier sites showed cross-site and interannual 355 
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relationships that are consistent with those in colder, more snow-dominated places (except for watersheds #24, #25 and #31) 

(e.g., Figure 3A and 3C). The third limitation is that the spatiotemporal variability in snowpack, surface and subsurface storage, 

and evapotranspiration will change the magnitude and lag time of the diel streamflow response (Kirchner et al., 2020; 

Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), which we address by allowing variable watershed- and month-

specific time lags. However, lag times greater than 24 hours, which are associated with large watersheds or large subsurface 360 

storage, will make this method imposible to apply. Also, the method may miss early snowmelt-driven diel cycles in watersheds 

with dry soils, as the diel signal will be buffered by the subsurface storage capacity before generating a measurable streamflow 

response. The fourth limitation is that evapotranspiration losses must be small relative to snowmelt inputs, which is necessary 

because the effect of evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al., 2020). Evapotranspiration 

effects are minimized by focusing on early snowmelt when evapotranspiration losses are often assumed to be small (Bowling 365 

et al., 2018; Cooper et al., 2020; Winchell et al., 2016).  

  

Previous space-for-time implementations have been used to predict catchment-scale sensitivity of snowmelt-driven streamflow 

to changing climate using observations (Berghuijs et al., 2014; Stewart et al., 2005) and historical model outputs (Barnhart et 

al., 2016). Our MLR results suggest that humidity explains roughly as much or more variation in DOS20 than temperature does 370 

(Table A4), and that solar radiation explains about twice as much DOS20 variation as either humidity or temperature does. This 

is consistent with an energy budget dominated by solar radiation (Marks and Dozier, 1992), but also with a coupling between 

humidity and latent heat and longwave radiation effects (Harpold and Brooks, 2018). Space-for-time projections of DOS20 

under the pseudo global warming scenario show that colder, drier, and sunnier sites (typical of the Rocky Mountains) are about 

twice as sensitive to warming as warmer, more humid, and cloudier sites (typical of the Pacific Northwest). Humid and warmer 375 

sites have relatively low snow fractions (<0.5, more rainfall effects) and, thus, a smaller snowmelt signal in the diel streamflow 

observations. In contrast, Harpold and Brooks (2018) showed that winter ablation at SNOTEL sites in humid places, like the 

Pacific Northwest, are more sensitive to warming than less humid places, like the Southwest US. The difference between these 

findings and our streamflow-based inferences might be explained by SNOTEL sites being preferentially situated in snowy 

forest gaps that do not necessarily represent the catchment-scale, early-season snowmelt patterns focused on here. However, 380 

Kirchner et al. (2020) show general agreement between SNOTEL snowmelt response and the snowmelt-induced diel 

streamflow signal at the warm Sagehen Creek watershed (site #23). The sensitivity of the early snowmelt timing metric 

(DOS20) to climate change may be distilled into streamflow´s sensitivity to changes in precipitation partitioning (rainfall vs 

snowfall) and snowmelt sensitivity (more energy for melt is available); however, these two are sometimes coupled (e.g., 

changes in snow albedo after snowfall will alter the energy balance that controls snowmelt). Due to the empirical basis of our 385 

analysis, these two sensitivities are not easy to disentangle, but we believe that the diel analysis is better suited to investigate 

streamflow´s sensitivity to snowmelt changes. We focus the analysis on mostly clear-sky days, and thus implicitly exclude the 

effect of rainfall (or precipitation partitioning); we also use predictive variables in the MLR that relate to broad and regional 

snowmelt controls (i.e., seasonal meteorology) as opposed to specific event-scale meteorology required to predict precipitation 
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partitioning. The reliability of the space-for-time projections partially depends on whether climate projections are within or 390 

outside the range of observed climate conditions. Under the pseudo global warming scenario, cold, sunny watersheds like those 

in the Rocky Mountains (site #9 and #10) will shift toward more humid, warmer conditions (Figure A6), like those observed 

in Southern Idaho (site #29) and the northern Sierra Nevada (site #23). In contrast, the pseudo global warming scenario in 

places like the Pacific Northwest, particularly those involving changes in atmospheric humidity above 5 g/m3 (Figure A4), 

have not been observed, and therefore are more uncertain. Overall, climate changes from pseudo global warming are mostly 395 

within the observed interannual and inter-watershed climate variability used to train the stepwise MLR (Figure A4). Space-

for-time substitution assumes that other variables not included in the analysis vary together with the predictive variables 

(climate), and neglects variables like the catchment’s physical (e.g., soil storage) and biological (e.g., vegetation) properties 

that do not necessarily co-vary with climate. Determining under what conditions we can reasonably apply space-for-time 

remains an open question and has been posed as one the 23 unsolved problems in hydrology (Blöschl et al., 2019), highlighting 400 

the value of comparing our space-for-time approach to a physically-based model.  

 

The sensitivity of historical snowmelt-mediated streamflow volume timing (DOQ25 and DOQ50) to climate change differs 

between the space-for-time approach and a land surface model, particularly in cold watersheds (Figure 9C and 9D), raising 

questions about current state-of-the-art projections of early season streamflow timing from NoahMP-WRF. The observed data 405 

used in the space-for-time approach have larger and more variable streamflow timing responses to climate change (10 – 17 

days °C-1) in cold, drier, sunnier places that are representative of small, high-elevation Rocky Mountain watersheds (Figure 

8B). The historical diel streamflow analysis suggests that NoahMP-WRF may be systematically under-predicting the 

sensitivity of streamflow volume timing to earlier snowmelt-induced streamflow in colder and sunnier places (Figure 9C) that 

are most likely to have increased temperature and increased cloudiness in the future. The same mean annual future climate 410 

scenarios were applied to both approaches; however, important differences in the streamflow timing response were found 

between NoahMP-WRF and the space-for-time projections (Figure 9C and 9D). NoahMP-WRF underpredicts DOQ25 (Figure 

9A) across most sites, whereas the DOQ50 is much better represented. Historically, NoahMP-WRF performed the best in rainier 

sites (see circled blue symbols in Figure 9A) and other sites classified as ‘cloudy’ and ‘partly cloudy’, whereas the Rocky 

Mountain sites, characterized by ‘sunny’ snowmelt event, were among the most biased (see blue filled circles in Figure 9A). 415 

This suggest that the timing of streamflow volume is better represented in areas where snowmelt processes are less important, 

though other variables like topographic and climatic gradients can also be important. It is worth noting that when DOQ25 

simulated by NoahMP-WRF is calculated using surface runoff only (Figure A7A) it performs better against observed DOQ25; 

however, the projected sensitivity in streamflow timing to climate change remains significantly lower that predictions by the 

space-for-time substitution (Figure A7C). The fact that NoahMP-WRF has a biased DOQ25 simulation represents a challenge 420 

that goes beyond the scope of this study; however, these simulations have been tested in detail in terms of the meteorology 

and snow components (Liu et al., 2017; Scaff et al., 2020) and have been used for climate change analyses (Musselman et al., 

2017, 2018). We used these simulations in the analysis because NoahMP underlies the US National Water Model and thus its 
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relevance to policy and research is high. There are many differences in the way that NoahMP-WRF and the space-for-time 

approach simulate the sensitivity of streamflow timing. NoahMP-WRF operating at sub-daily time steps has several advantages 425 

over space-for-time substitution. For example, NoahMP-WRF can track the hourly covariance in precipitation, temperature, 

and humidity to estimate precipitation partitioning between rain and snow. It is also able to represent hourly radiative and 

turbulent energy at the snowpack, and the cold content needed to predict snowmelt. The physical hydrology is also advanced 

and able to consider antecedent conditions and allow evapotranspiration losses that also modulate streamflow. Despite the 

advantages of land surface models like NoahMP-WRF in constraining processes for future projections, the simplicity of space-430 

for-time substitution also provides several advantages. One of the main advantages is that it is derived from observations and 

thus it is well constrained by the observed spatial and temporal variability of snowmelt across watersheds and years (Figure 

7B). Also, the space-for-time approach does not assume anything about the complex spatial distribution of snowpacks and 

precipitation or subsurface properties and interactions with the surface, which are major constraints to physically-based models 

(Baroni et al., 2010; Christiaens and Feyen, 2001; Wilby et al., 2002). While a space-for-time approach is not a replacement 435 

for land surface models like NoahMP-WRF, partly because the underlying streamflow datasets are not available everywhere, 

we believe that there is added value in including new benchmarks like the proposed DOS20 to further constrain modeling 

decisions and improve model fidelity required for reliable and accurate hydrological predictions.    

5 Conclusions 

Water management in the western US relies on accurate predictions of how both short-term climate variability and long-term 440 

climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between 

empirical space-for-time projections and a land surface model (NoahMP-WRF) raise important questions about the sensitivity 

of streamflow timing to climate change, particularly in cold regions, and its impact on water planning. Significant differences 

exist in the way space-for-time substitution and land surface models predict changes to snowmelt and streamflow timing, with 

both approaches having strengths and weaknesses; however, the land surface model misrepresents historical patterns in 445 

streamflow response that at are more accurately estimated by the empirical space-for-time model. Specifically, we show that 

DOS20 is a strong predictor of the early season hydrograph response, particularly in cold, sunny areas where the NoahMP-

WRF streamflow timing simulations lack sensitivity to climate change. Rigorously validating future model predictions is 

impossible, but snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to refine land surface 

models and better determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 2017; Viviroli et al., 450 

2007), particularly in cold regions. Our novel approach that can complement the benchmarking or calibration of physically 

based hydrological models, beyond typical benchmarking against daily streamflow or snow accumulation metrics. For 

example, the snowmelt timing metric DOS20, based on diel streamflow observations, could be used to test the performance of 

land surface models running at sub-daily scales and fine spatial resolution in representing the historical snowmelt regime across 

watersheds and years. As land surface models move towards real application for water management (Kopp et al., 2018), the 455 
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hydrology community must seek ways to test and improve models using widely-available datasets if we are to meet the grand 

water management challenges posed by climate change and altered snowmelt regimes in key mountainous regions. 
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Figure 1: Examples of the diel cycle analysis applied to two watersheds located in California (A) (B) (WY2016) and Colorado (C) 705 
(D) (WY2014). (A) and (C) show hourly solar radiation (orange) and streamflow (blue); the first statistically significant (p<0.01) 

lagged spearman correlation (r>0.6) between streamflow and solar radiation is shown on a text box for clear-sky days only (>80% 

of clear-sky solar radiation). (B) and (D) show the solar radiation-driven snowmelt days (blue circles) on top of the annual 

hydrograph (semi-log scale) for the period of analysis (white background, December to July).  
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Figure 2: Percentage of days that were classified as having snowmelt following the diel streamflow cycle analysis that also had 

daily precipitation above 5 mm and a mean daily air temperature above 2 oC. Symbols are associated with the mean annual 

percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have >90%, clear-sky snowmelt days, partly cloudy 

sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt 715 
days are defined as those with more than 80% of the potential clear-sky solar radiation. 

  



25 

 

 

 

Figure 3: (A) and (C) show cross-site relationships between mean winter air temperature (November to February) and DOS20 and 720 
the date of 25% of annual streamflow volume (DOQ25), respectively. Slopes of individual sites’ interannual relationships are shown 

as the lines on top of each symbol, where statistically significant (p-value ≤0.05) slopes are red. Non-significant interannual slopes 

are presented to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of 

snowmelt days under clear-sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) 

have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined 725 
as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) show histograms of interannual slopes (for all 

watershed and those with statistically significant relationships) and the cross-site relationships presented in their respective left 

panel. 
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Figure 4: Spatial variability of watershed-level interannual slopes for (A) DOS20 vs winter air temperature, and (B) DOQ25 vs winter 

air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are 

associated with those presented in Figure 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-735 
sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, 

and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80% 

of the potential clear-sky solar radiation. 
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Figure 5: (A) The day when the 20th percentile of snowmelt days occurs (DOS20), compared to the date of the 25% of the annual 745 
streamflow volume (DOQ25). (C) DOS20 against the date of 50% of the annual streamflow volume (DOQ50). Dashed lines in (A) and 

(C) are 1:1 lines, and the slopes of sites’ interannual relationships are shown as the lines on top of each symbol, with statistically 

significant (p-value ≤0.05) slopes shown in red. Sites #24, #25 and #31, indicated by dashed circles, fall far from the linear regression 

and are not included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites 

(circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) 750 
have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) 

show histograms of interannual slopes (for all watershed and those with statistically significant relationships) and the cross-site 

relationships presented in their respective left panels. 
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 755 

 
 
Figure 6: Spatial variability of the watershed-level interannual slopes for (A) DOQ25 vs DOS20, and (B) DOQ50 vs DOS20. 

Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are associated with those 

presented in Figure 5. Watersheds that fall far from the linear regression presented in Figure 5 are surrounded by a dashed circle. 760 
Symbols are associated with the mean annual percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have 

>90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%. 

Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. 
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Figure 7: (A) scatterplot showing the fit of the stepwise multiple linear regression (MLR) model to the observed DOS20 across all 

sites and years. (B) shows the same stepwise MLR model applied at the mean annual watershed level across all watersheds. 

Interannual variability represented by the slope of the linear relationship is shown as a line overlapping each circle (i.e., watershed); 770 
red and blue lines indicate statistically significant (p≤0.05) and insignificant slopes, respectively.  
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Figure 8: (A) Historical DOS20 from the diel analysis and projected changes in DOS20 using space-for-time projections under a RCP 

8.5 pseudo global warming climate for the end of the 21st century. Watersheds are sorted from earlier (left) to later (right) historical 775 
DOS20. Symbols associated with future projections (stars) are not classified by sunny, partly cloudy, or cloudy, as we make no 

inference about the cloudiness condition of snowmelt days under the climate change scenario. Blue symbols in (A) represent the 

mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy 

sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%. Clear-sky snowmelt days are defined as those 

with more than 80% of the potential clear-sky solar radiation. (B) Relationship between mean winter air temperature and the 780 
sensitivity of DOS20 to climate change as projected by the space-for-time. 
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Figure 9: Changes to DOQ25 and DOQ50 due to climate change under an RCP8.5 pseudo global warming climate scenario by the 785 
end of the century. (A) and (B) compare historical against projected values between NoahMP-WRF and the space-for-time 

substitution. (C) and (D) compare the projected change (future minus historical) between NoahMP-WRF and space-for-time 

substitution, colored by the sensitivity of DOS20 to climate change as projected by the space-for-time analysis (Figure 8b). Symbols 

surrounded by black circles indicate sites that were excluded from the regression analysis in Figure 5 (rainier sites #24, #25 and 

#31). Symbols represent the historical mean annual percentage of clear-sky snowmelt days, where sunny sites (circles) have >90% 790 
clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70%; clear-sky 

snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. We make no inference about the 

cloudiness condition of snowmelt days under the RCP8.5 P climate scenario; however, red symbols (upper panels) follow the same 

symbology for easier interpretation. 
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Table 1: List of Abbreviations 

Abbreviation Definition 

CAMELS Catchments Attributes and MEteorology for Large-sample Studies 

DOQ25 Date of 25% of annual streamflow volume 

DOQ50 Date of 50% of annual streamflow volume 

DOS20 
The day when the 20th percentile of the snowmelt days occurs, with snowmelt days as defined by the 

streamflow diel cycle analysis 

GCM Global Climate Model 

MLR Multiple Linear Regression Model 

NLDAS-2 Phase 2 of the National Land Data Assimilation System 

Noah-MP Noah Multi Parameterization land surface model 

NoahMP-WRF Simulations by WRF using the Noah-MP land surface model 

RCP8.5 Representative Concentration Pathway 8.5 

WRF Weather Research and Forecasting Model 
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Table 2: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017). 

ID USGS ID Watershed Name 

Drainage 

Area 

(km2) 

Mean 

Elevation 

(masl) 

Mean 

slope (m 

km-1) 

Lat. 

(°N) 

Lon. 

(°W) 

Snow 

Fraction 

Aridity 

index 

Soil 

Depth 

(m) 

1 06278300 Shell Creek, WY. 58.9 2,953 86.7 44.51 107.40 0.73 1.32 0.74 

2 06311000 
North Fork Powder 

River, WY. 
61.2 2,516 41.1 44.03 107.08 0.57 1.68 0.90 

3 06614800 
Michigan River, 

CO. 
4.0 3,297 145.8 40.50 105.87 0.76 1.29 0.57 

4 06622700 
North Brush Creek, 

WY. 
98.7 2,837 71.3 41.37 106.52 0.72 1.48 2.20 

5 06623800 
Encampment 

River, WY. 
187.7 2,971 90.9 41.02 106.82 0.75 1.06 1.14 

6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 106.22 0.74 1.46 2.52 

7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 105.56 0.47 2.12 0.50 

8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 105.66 0.47 1.50 0.85 

9 09034900 Bobtail Creek, CO. 15.7 3,571 102.8 39.76 105.91 0.73 1.16 0.47 

10 09035900 

South Fork of 

Williams Fork, 

CO. 

72.8 3,241 123.9 39.80 106.03 0.69 1.44 0.56 

11 09047700 
Keystone Gulch, 

CO. 
23.6 3,334 103.8 39.59 105.97 0.63 1.92 0.45 

12 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 106.32 0.71 1.40 0.27 

13 09066300 Middle Creek, CO. 15.5 2,944 143.8 39.65 106.38 0.69 1.49 0.48 

14 09352900 
Vallecito Creek, 

CO. 
188.2 3,283 156.1 37.48 107.54 0.63 1.24 0.50 

15 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 109.37 0.50 1.79 1.16 

16 09378630 
Recapture Creek, 

UT. 
10.4 2,125 53.4 37.76 109.48 0.50 1.88 0.55 

17 09386900 Rio Nutria, NM. 184.9 2,342 37.4 35.28 108.55 0.31 2.48 1.07 

18 09404450 
East Fork Virgin 

River, UT. 
193.0 2,070 56.2 37.34 112.60 0.42 2.86 0.82 

19 09492400 
East Fork White 

River, AZ. 
129.0 2,469 65.4 33.82 109.81 0.27 1.88 0.92 

20 10205030 Salina Creek, UT. 134.6 2,489 76.2 38.91 111.53 0.58 2.46 0.67 

21 10234500 Beaver River, UT. 236.4 2,499 95.2 38.28 112.57 0.63 2.06 0.60 
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22 10336660 
Blackwood Creek, 

CA. 
29.8 2,113 83.5 39.11 120.16 0.67 0.77 0.79 

23 10343500 
Sagehen Creek, 

CA. 
27.6 2,157 81.2 39.43 120.24 0.71 1.10 1.20 

24 12147600 
South Fork Tolt 

River, WA. 
14.1 1,068 159.4 47.71 121.60 0.27 0.22 0.63 

25 12178100 
Newhalem Creek, 

WA. 
69.7 1,305 255.7 48.66 121.24 0.53 0.33 0.54 

26 12381400 
South Fork Jocko 

River, MT. 
151.0 1,877 102.2 47.20 113.85 0.59 0.97 0.62 

27 12447390 
Andrews Creek, 

WA. 
58.1 1,701 172.6 48.82 120.15 0.78 0.86 0.47 

28 13018300 Cache Creek, WY. 27.9 2,198 109.5 43.45 110.70 0.66 1.50 0.69 

29 13083000 Trapper Creek, ID. 133.2 1,863 69.1 42.17 113.98 0.49 2.11 1.04 

30 13240000 
Lake Fork Payette 

River, ID. 
125.6 1,965 110.1 44.91 116.00 0.73 0.75 0.44 

31 14158790 Smith River, OR. 40.6 1,027 116.4 44.33 122.05 0.37 0.36 0.85 

 805 
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7 Appendices 

 

Figure A1: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between 

December 1 and August 1. Gauge ID is as presented in Table 2. Numbers of years at site #13 are the same for all thresholds 810 
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation 

cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation. 
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Figure A2: (A): CAMELS mean winter (November to February) air temperature, (B) mean annual DOS20, and (C) mean annual 815 
DOQ25. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites 

have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are 

defined as those with more than 80% of the potential clear-sky solar radiation. 
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 820 

Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between 

December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater 

than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky 

conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-

sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where 825 
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70. 
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between 

November and DOS20 in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the 830 
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis 

suggests that most of the climate change signal from NoahMP-WRF pseudo global warming is within the observed climate 

variability, except for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond) 

associated with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% 

clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as 835 
those with more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of 

snowmelt days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. 
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 840 

Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the 

century. (A) shows changes in precipitation against air temperature. (B) shows incoming shortwave against absolute humidity. 

Numbers represent the Gauge IDs as presented in Table 2. 
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Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and 

shortwave radiation (SWR) at each watershed, and the changes associated with the pseudo global warming as simulated by WRF. 

(B) shows the same analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated 

with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky 

snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with 850 
more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt 

days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers 

next to blue symbols represent the Gauge IDs as presented in Table 2. 
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 855 

Figure A7: Same as Figure 9 but using streamflow timing metrics from NoahMP-WRF for an RCP8.5 pseudo global warming 

scenario, calculated using surface runoff only instead of using surface plus subsurface runoff (as in Figure 6). Note the improved fit 

in historical DOQ25; however, this analysis yields very similar results to those of Figure 6, with NoahMP-WRF streamflow 

simulations being much less sensitive to climate change than space-for-time substitution would suggest. (A) and (B) compare 

historical against projected values between NoahMP-WRF and the space-for-time approach. (C) and (D) compare the projected 860 
change (future minus historical) between NoahMP-WRF and space-for-time, colored by the sensitivity of DOS20 to climate change 

as projected by the space-for-time analysis (Figure 5b). Symbols surrounded by black circles indicate sites that were excluded from 

the regression analysis in Figure 3 (rainier sites #24, #25 and #31). Symbols (circle, square and diamond) represent the historical 

mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky snowmelt days, partly cloudy have 

between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential 865 
clear-sky solar radiation. We make no inference about the cloudiness condition of snowmelt days under the RCP8.5 pseudo global 

warming climate scenario; however, red symbols (upper panels) follow the same symbology for easier interpretation. 
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Table A1: Coefficient of determination (R2) and slope (in parenthesis, day/day) of the linear regression between different early 870 
snowmelt timing metrics and DOQ25 and DOQ50, as presented in Figure 5, for different correlation cutoffs (r) between hourly solar 

radiation and streamflow. DOSxx represent the date when the xxth percentile of snowmelt days occurs. Sites #24, #35 and #31, are 

excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections. 

Early snowmelt timing metrics  vs DOQ25  vs DOQ50 

r > 0.5 

1st snowmelt day 0.13 (0.61) 0.06 (0.25) 

1st 3 consecutive snowmelt day 0.5 (0.71) 0.4 (0.4) 

DOS5 0.37 (0.83) 0.28 (0.45) 

DOS10 0.49 (0.91) 0.43 (0.52) 

DOS20 0.69 (1.1) 0.66 (0.67) 

DOS30 0.73 (1.1) 0.72 (0.68) 

r > 0.6 

1st snowmelt day 0.24 (0.73) 0.15 (0.35) 

1st 3 consecutive snowmelt day 0.59 (0.77) 0.49 (0.44) 

DOS5 0.46 (0.82) 0.37 (0.45) 

DOS10 0.63 (0.97) 0.53 (0.55) 

DOS20 0.76 (1.05) 0.72 (0.64) 

DOS30 0.77 (1.07) 0.78 (0.67) 

r > 0.7 

1st snowmelt day 0.42 (0.73) 0.3 (0.39) 

1st 3 consecutive snowmelt day 0.62 (0.85) 0.59 (0.53) 

DOS5 0.61 (0.86) 0.51 (0.49) 

DOS10 0.71 (0.94) 0.63 (0.55) 

DOS20 0.76 (0.99) 0.75 (0.62) 

DOS30 0.79 (1.03) 0.82 (0.65) 

r > 0.8 

1st snowmelt day 0.66 (0.87) 0.54 (0.5) 

1st 3 consecutive snowmelt day 0.76 (1.09) 0.78 (0.71) 

DOS5 0.79 (1.01) 0.7 (0.6) 

DOS10 0.83 (1.03) 0.78 (0.64) 

DOS20 0.85 (1.07) 0.85 (0.68) 

DOS30 0.85 (1.1) 0.88 (0.72) 
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Table A2: Root mean square error (RMSE) and coefficient of determination (R2, in parentheses) associated with several stepwise 875 
multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g., Equation 1 uses 

DOS20) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents 

the date when the xxth percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 also 

shown in Figure 7A. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 11.1 (0.87) 12.3 (0.88) 15.2 (0.88) 21.7 (0.82) 

First 3 consecutive snowmelt days 24.6 (0.8) 24.8 (0.8) 26.1 (0.77) 20.2 (0.8) 

DOS5 14.9 (0.83) 15.4 (0.85) 17.3 (0.86) 21.1 (0.8) 

DOS10 16.4 (0.82) 17.3 (0.83) 19.9 (0.82) 19.6 (0.82) 

DOS20 16.5 (0.82) 17.9 (0.82) 18.9 (0.82) 17.5 (0.83) 

DOS30 16.3 (0.82) 17.4 (0.82) 17.8 (0.82) 16.3 (0.83) 
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Table A3: Coefficient of determination (R2) for the site-average stepwise multiple linear regression, analogous to that presented in 

Figure 7B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt 

days metrics). DOSxx represents the date when the xxth percentile of snowmelt days occurs. Bolded number is associated with the 

stepwise MLR in Equation 1 using DOS20. 885 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.8 0.82 0.89 0.79 

First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69 

DOS5 0.84 0.85 0.87 0.83 

DOS10 0.84 0.85 0.86 0.84 

DOS20 0.83 0.82 0.82 0.82 

DOS30 0.83 0.81 0.81 0.8 
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly 

solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that 

of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp: 890 
Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xxth percentile of 

snowmelt days occurs. *Indicates rows that do not meet all the MLR assumptions. Bolded numbers are associated with the modeling 

decisions used in the result and discussion sections. 

Early snowmelt timing metrics β1: AT β2: Pp β3: RH β4: SWR 
β 5: 

ATxPp 

β 6: 

ATxRH 

β 7: 

ATxSWR 

β 8: 

PpxRH 

β 9: 

PpxSWR 

β 10: 

RHxSWR 

r > 0.5 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.41 0.74 0.002 0.38 0.19 n/a n/a -0.33 n/a -0.19 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.55 0.45 0.22 0.56 0.26 n/a n/a n/a 0.23 -0.21 

DOS20 -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28 

DOS30 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27 

r > 0.6 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16 

DOS20 -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24 

DOS30 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24 

r > 0.7 

1st snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

1st 3 consecutive 

snowmelt days 
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23 

DOS5* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

DOS10 -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17 

DOS20 -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24 

DOS30 -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26 

r > 0.8 

1st snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06 

1st 3 consecutive 

snowmelt days 
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27 

DOS5 -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19 

DOS10 -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26 

DOS20 -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29 

DOS30 -0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 -0.26 
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Table A5: Coefficient of determination (R2) and slope (in parenthesis, days °C-1) of the linear regression between space-for-time 

sensitivity to warming and sites’ mean winter air temperature as presented in Figure 8B, for different early snowmelt day metrics 

and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when the xxth percentile of 

snowmelt days occurs. Bolded numbers are associated with the modeling decisions used in the result and discussion sections. 

Early snowmelt timing metrics r > 0.5 r > 0.6 r > 0.7 r > 0.8 

First snowmelt day 0.08 (0.61) 0.09 (0.47) 0.03 (0.47) 0.23 (-0.75) 

First 3 consecutive snowmelt days 0.02 (-0.30) 0.08 (-0.51) 0.00 (-0.05) 0.00 (-0.07) 

DOS5 0.00 (0.04) 0.01 (-0.18) 0.02 (-0.32) 0.25 (-1.00) 

DOS10 0.00 (-0.09) 0.25 (-0.86) 0.37 (-1.17) 0.2 (-0.66) 

DOS20 0.27 (-0.68) 0.35 (-0.89) 0.37 (-0.99) 0.33 (-0.75) 

DOS30 0.22 (-0.57) 0.26 (-0.65) 0.27 (-0.66) 0.20 (-0.52) 
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