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Abstract. Climate warming will cause mountain snowpacks to melt earlier, reducing summer streamflow and threatening

,.(r' d

water supplies and ecosystems. Quantifying how sensitive streamflow timing is to climate change, and where it is ynost

sensitive, remains a key question. Physically based hydrological models are often used for this purpose; however, they have
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provide reliable jnferences. The purpose of this study is to evaluate differences in projected changes to streamflow volume

timing by the end of the century between a new empirical model based on diel (daily) streamflow cycles and regional land-

surface simulations across the mountainous western US. We develop an observational technique for detecting streamflow

responses to snowmelt using incoming solar radiation and diel, cycles of streamflow to detect when snowmelt occurs. We
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measure the date of the 20" percentile of snowmelt days (DOS20), across 31 watersheds affected by snow in the western US,
as a proxy for the beginning of snowmelt-initiated streamflow. Historic DOS»o varies from mid-January to late May, with

warmer sites having earlier snowmelt-mediated streamflow. Mean annual DOS2 strongly correlates with the dates of 25% and

50% annual streamflow volume (DOQ2s and DOQso, both R? = 0.85), suggesting that a one-day earlier DOS20 corresponds

with a one-day earlier DOQ2s and 0.7-day earlier DOQso. Empirical projections of future DOS2o based on a multiple linear
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regression across sites and years jinder the RCP8.5 scenario for the late 21* century,show that DOSz will occur on average e

1144 days earlier per 1°C of warming; however, DOSz in colder watersheds (mean November-February air temperature, Tnpir

< -8°C) is on average 70% more sensitive to climate change than in warmer watersheds (Txpir > 0°C). Moreover, empirical
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to earlier streamflow than those simulated by a state-of-the-art land surface model (NoahMP-WRF) under the same scenario.

Given the importance of changing streamflow timing for water resources, and the significant discrepancies found in projected

streamflow sensitivity, snowmelt detection methods such as DOS2o based on diel streamflow cycles may help to constrain

parameter selection, and improve hydrological predictions.,

1 Introduction

The role of earlier snowmelt in driving earlier streamflow timing is of great concern in a changing climate (Barnett et al., 2005;
Harpold and Brooks, 2018; Musselman et al., 2017; Stewart et al., 2004, 2005). Earlier winter and spring streamflow volume
comes at the expense of later summer streamflow in regions like the western US (Hidalgo et al., 2009; McCabe and Clark,
2005; Regonda et al., 2005; Stewart et al., 2004, 2005) and challenges reservoir operations (Barnett et al., 2005; Immerzeel et
al., 2020; Viviroli et al., 2011). Furthermore, ecosystems may evaporate more water as reductions in albedo increase energy
inputs (Meira Neto et al., 2020), decreasing runoff from upland forested watersheds (Foster et al., 2016; Jepsen et al., 2018;
Milly and Dunne, 2020). More than 50% of mountainous watersheds play essential roles in supporting downstream systems
(Viviroli et al., 2007) and snowpack changes are likely to increase lowland agriculture water stress (Immerzeel et al., 2020).
However, it remains difficult to predict how much streamflow timing and amount will shift in future climates due to altered
snow accumulation patterns (Mote et al., 2018), melt rates (Musselman et al., 2017), and shifts from snowfall to rainfall (Klos

etal,, 2014),

Due to the complexity of upland streamflow generation, physically based hydrological models are typically used to predict
how snowpack changes will interact with the critical zone (CZ), and thus affect short-term flood behavior and seasonal water
supply forecasts (Kopp et al., 2018; Wood and Lettenmaier, 2006). In mountainous regions like the western United States
(US), models need to accurately simulate snow processes across watersheds with varying snowpack conditions (Serreze et al.,
1999) and then transport and store that water in the CZ along hillslopes and watersheds with varying subsurface properties
(Brooks et al., 2015). More precipitation falling as rain instead of snow will result in streamflow dynamics that more closely
mirror the timing of rainfall. Precipitation phase is mediated by basin elevation and hypsometry (Jennings et al., 2018; Wayand
et al., 2015), which also influences precipitation amounts (Houze, 2012), with higher elevations and steeper watersheds
typically having higher precipitation and snowfall. Solar radiation is the primary energy source for snowmelt in snow-
dominated montane watersheds (Cline, 1997; Marks and Dozier, 1992), explaining the importance of cloudiness in regulating
snowmelt and streamflow processes, as evidenced by negative correlations between cloud cover and melt rates (Sumargo and
Cayan, 2018). Shallower snowpacks have less cold content and begin their melt earlier when solar radiation is lower (Harpold
et al., 2012; Harpold and Brooks, 2018; Musselman et al., 2017), which shifts streamflow earlier (Clow, 2010). Storage and
drainage of water in the CZ control the sensitivity of streamflow to earlier rain or melt water inputs. For example, snowmelt-
mediated spring streamflow timing is more sensitive to climate change in watersheds with rapid subsurface drainage than in

landscapes with deep groundwater reservoirs that drain slowly (Safeeq et al., 2013). In contrast, the sensitivity of snowmelt-
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mediated summer streamflow volume to climate change has shown to be higher in slow-draining watersheds (Tague and Grant,
2009). The complexity of these storage relationships is exemplified by isotopic evidence showing that the fraction of
streamflow that is "young water" (less than three months old) is smaller in steeper watersheds (Jasechko et al., 2016),
suggesting that interactions between CZ water storage and changing hydrometeorology will be challenging to predict in

mountainous areas. In a recent data-driven review, Gordon et al. (2022) proposed a predictive framework composed of three

testable and inter-related mechanisms to infer changes to snowmelt-driven streamflow response under warming. Such

mechanisms are associated with snow season energy and mass exchanges, the intensity of snow season liquid water input and

the synchrony of energy and water availability, and their analysis highlights the complexities in predicting changes to

streamflow in regions where multiple mechanisms interact,

Hydrologists typically apply two types of modeling tools to predict future streamflow: empirical models, and more

mechanistically oriented models (conceptual or physically based land surface models). Empirical models assume, that long-
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term and often site-to-site statistical relationships among variables (e.g., precipitation and air temperature) can be used to
understand and model their likely changes over time or space (e.g., evapotranspiration and streamflow). Empirical models

used to predict changes over time (sometimes referred to space-for-time substitutions) have, been used in fields such as
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Few simple, low-cost observational tools exist to separate rainfall-driven from snowmelt-driven contributions to streamflow+
or to separate this year's melt from the previous years' melt-and storage: One method that can be straightforwardly applied to
existing long-term observations is based on coupled diel cycles in solar radiation, snowmelt, and streamflow (Kirchner et al.,

2020; Lundquist and Cayan, 2002). Diel (24-hours) cycles in streamflow and shallow groundwater levels are often found in

mountainous systems driven by Snow and"ice melt;-and-evapotranspiration; which-are both ultimately driven by solar radiation -

inputs (Kirchner et al., 2020). This mechanistic response has been used to study watershed properties like kinematic wave
celerity (Kirchner et al., 2020), the impact of snowpack variability on streamflow timing (Lundquist and Dettinger, 2005),
groundwater fluctuations (Loheide and Lundquist, 2009), and transitions from snowmelt to evapotranspiration-dominated
streamflow fluctuations (Kirchner et al., 2020; Mutzner et al., 2015; Woelber et al., 2018). More recently, Kirchner et al.
(2020) combined local observations and remote sensing to show that streamflow diel response was tightly controlled by the

timing of snowpack disappearance. However, it remains unknown whether information embedded in the diel streamflow

response following snowmelt events can be used to inform streamflow predictions due to climate change, and whether such

projections are consistent with current land-surface simulations. The purpose of this research is to evaluate potential differences

in projected changes to streamflow volume timing by the end of the century between a new empirical diel streamflow-based

model and regional land-surface simulations across mountainous western US headwater catchments. To this aim, Wwe-extend

the “diel cycle index’ approach of Kirchner et al. (2020) using diel streamflow observations to detect the occurrence of days

when streamflow is coupled to snowmelt inputs, and investigate their contributions to historical variability in streamflow

Wolume- timing: - We-then compare empirical-dicl streamflow=based-projections by-the-end of the tentury under-an-RCP8.5

pseudo global warming scenario against predictions from a state-of-the-art land surface model (under the same climate

scenario) across 31 mountainous watersheds in the western US to answer the following questions:

1. Does the historical diel streamflow-based analysis show, earlier snowmelt in warmer watersheds and years, and can we

; ) (Deleted:
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use the observed timing of snowmelt to predict the timing of streamflow volume?

2. Where is the timing of snowmelt the most sensitive to climate change as projected by an empirical diel streamflow-based
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3. Do historical streamflow volume timings and future gmpirical diel streamflow-based projections diverge from commonly

used, state-of-the-art land surface models?

A list with the abbreviations used in this study is presented in Table 1.

2 Methods

2.1  Study Domain and Data

We studied snowmelt-driven streamflow in 31 mountainous watersheds in the western US (Table 2), spanning snow fractions

of 0.27 to 0.78 (Figure A3A), aridity index values from 0.22 to 2.86 (Addor et al., 2017), and soil depths from 0.27 to 2.52 m
(Addor et al., 2017; Pelletier et al., 2016) (Table 2). These watersheds are part of the CAMELS (Catchments Attributes and
MEteorology for Large-sample Studies) dataset (Addor et al., 2017; Newman et al., 2015), which provides daily streamflow
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and meteorological forcing, among other observed and simulated hydrometeorological variables at the watershed scale. These
watersheds were chosen because their streamflows are unregulated, they have relatively small drainage areas (< 250 km?), and
they are at relatively high elevations (> 1,000 masl). This last criterion was introduced to focus on watersheds with snowmelt-
driven streamflow regimes. The names, locations, elevations, slopes, drainage areas and other key characteristics of the 31

watersheds are presented in Table 2,

The data used in this analysis include hourly streamflow and incoming shortwave radiation, and mean daily relative humidity,
air temperature and precipitation. Hourly streamflow was obtained from the US Geological Survey. Hourly incoming
shortwave radiation is from phase 2 of the National Land Data Assimilation System (NLDAS-2) (Xia et al., 2012) at the nearest
grid point to the watershed outlet. Mean daily relative humidity, air temperature and precipitation at the watershed scale are
from CAMELS, based on the DAYMET dataset (daymet.ornl.gov), which in turn is interpolated from existing ground
observations. Available hourly streamflow records vary significantly across watersheds, extending back to 1986 for some sites.
Figure A1A shows the number of years that have more than 70, 80 and 90% of days with hourly records for the period between

December 1 and August 1. Based on this preliminary analysis, we selected water years with more than 80% of days with hourly

streamflow records. This threshold for data availability results in most watersheds having more than 5 years to analyze (except

for sites #10 and #30 with 4 years).

2.2 Snowmelt and Streamflow Diel Coupling

To infer the occurrence of days when solar radiation-driven snowmelt is coupled to the streamflow, hereafter referred as
snowmelt days for simplicity, we calculated the correlation between hourly values of solar radiation and lagged streamflow

(Figure 1). A snowmelt day is defined as a day in which the Spearman correlation between hourly solar radiation and lagged

streamflow is statistically significant (p-value<0.01) and exceeds a given cutoff. Due to the lagged diel streamflow response
after snowmelt, we lagged diel streamflow from solar radiation between 6 and 18 hours, computed the correlation of all
combinations, and kept those statistically significant correlations that were above a pre-defined correlation cutoff. Although
having both a correlation cutoff and a statistical significance criterion may be redundant, we used both to guarantee significant
correlations above different correlation cutoffs. We tried several correlation cutoffs (r>0.5, 0.6, 0.7, 0.8 and 0.9; see Figure 1,
for r>0.6) to assess their effects on the detection algorithm (Figure A2). The preliminary lag window of 6 to 18 hours was used
to avoid confounding snowmelt signals with evapotranspiration (ET)-induced streamflow diel responses (Kirchner et al., 2020;
Mutzner et al., 2015; Woelber et al., 2018). ET-induced streamflow diel response can positively correlate with solar radiation
with lags below 6 hours due to the previous day’s ET, and above 18 hours due to the next day’s ET diurnal signal (Kirchner
et al., 2020). However, this preliminary lag window may incorrectly select days with a rainfall-induced streamflow diel
response or rain-on-snow events. To minimize this, we further restricted the lags that could be selected based on optimum lags
from snowmelt days with clear skies. Clear-sky days were defined as days with solar radiation greater than 80% of the clear-

sky solar radiation (grey areas in left panels on Figure 1). This lag window was defined on a monthly and watershed basis and
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was calculated as the lags between the 10" and 90™ percentile of clear-sky days with Spearman correlations above 0.8. This
second filter also helped to avoid the incorrect selection of ET-induced streamflow diel response, as it minimized the chance
of selecting 18-hr lags that can be associated with ET. Despite efforts to select only snowmelt-driven streamflow diel responses,
this methodology does not guarantee that rainfall-driven streamflow diel changes with lags within our lag window will always
be excluded. Excluding such cases would require hourly precipitation observations, which are not available for all of our study

watersheds. However, we believe that any such cases will minimally affect the results of our analysis.

To provide a better idea of the potential impact that rainfall may have on our proposed diel analysis, particularly on the effect

of rain-on-snow events, we analyzed which snowmelt days also had rainfall. We assessed daily rainfall using the daily

precipitation time series from CAMELS based on the DAYMET product for each watershed. A false detection rate metric was
computed for each watershed, in which every day classified as a snowmelt with daily precipitation above 5 mm and a mean
daily air temperature above 2 °C was assumed to be mis-classified (Figure 2). A false detection rate of 100% means that all
snowmelt days were mis-classified and 0% means that no days had significant rainfall. On average, the false detection rate
was estimated at 7% with a standard deviation of 5%, and only watersheds #24 and #31 (located in WA and OR, respectively)
are above 15%, with 21% and 29%, respectively. This suggest that the effect of potential rainfall-induced diel streamflow
cycle (including rain-on-snow events) in most watersheds is low (except for watersheds #24 and #31), supporting further
analysis. We also assessed the mean cross-site false detection rate for precipitation thresholds of 1 mm and 10 mm and found
reasonable values of 12% and 3%, respectively. However, we believe that I mm is not a reasonable threshold as a 1 mm rainfall

event is unlikely to produce a distinguishable diel streamflow signal or could represent error/noise in the DAYMET product.

2.3  The empirical diel streamflow-based mode

We defined the day when the 20" percentile of the snowmelt days occurs (DOS20) as a new metric to characterize the
seasonality of early snowmelt for each water year and watershed. However, other metrics such as the 5%, 10® and 30"
percentiles (presented in the appendices) were also investigated to assess the impact of this choice on the analysis. We chose
this metric because we expected it to be associated with the timing of streamflow volume, and that the choice of slightly earlier

or later snowmelt days would not substantially change our results. The empirical model is based on a stepwise multiple linear

regression model (MLR, p-value<0.01, Equation 1) to reconstruct historical DOSzo across all our sites (Figure A4) using four
climate variables as predictors: total precipitation, air temperature, relative humidity, and solar radiation.
DOSyo = B1x1 + Baxz + Baxz + Baxs + Bsx1X; + Bex1X3 M
+ Brx1x4 + BeXaxs + BoxaXxy + ProXaXs
Where x1 is cumulative air temperature (°C), x2 is cumulative precipitation (mm), x3 is mean relative humidity (%), x4 is mean

solar radiation (W m), and ; are the regression coefficients. Mean annual climate variables were calculated for the period

between November 1% and DOSz. This results in DOSzo being present in both sides of Equation 1; therefore, the stepwise
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MLR requires an iterative solution when used in a predictive mode (i.e., for the climate change analysis_ when DOSp is

unknown). The MLR model is the basis of our empirical diel streamflow-based model, which is used to assess changes in

DOSpo due to climate change (i.c.. changes in x;, xp. X3 and x4 in Eq. (1)). We verified the stepwise MLR assumptions, namely, _

linear relationships between each predictor and DOS20, normally distributed residuals, homoscedasticity, and absence of strong
multicollinearity (as suggested by a Variance Inflation Factor < 3). We also tested other metrics related to the timing of early
snowmelt events. These included: the first snowmelt day, the first three consecutive snowmelt events, and the 5%, 10™ and 30"

percentiles of snowmelt days (DOSs, DOS10 and DOS30, respectively). All ynetrics were also computed using each of the

different Spearman correlation cutoffs (Table A1, A2, A3, A4 and AS), but the main analysis presented here focuses on DOS20

based on snowmelt days calculated with hourly Spearman correlations >0.8.

We predict changes to DOS2o based on the stepwise MLR model and an end-of-the-century mean climate change signal from

WREF (Liu et al., 2017). WRF was run under a high emission scenario (RCP8.5) using the pseudo global warming approach

for the end of the century. Overall, it projects a warmer (4 — 5.2°C), wetter (0 - 20% increase in precipitation) climate (Figure

A4 and AS5). These mean annual changes in climate gvere applied to_the predictors in _the stepwise MLR model to predict

changes in DOSpo. As previously mentioned, predictors used in the stepwise MLR jwere calculated for the period between

November 1% and DOSzo; therefore, as we do not know the value of DOSxo in the future, an iterative solution is required to
solve for DOSzo in Equation 1. We find a numerical solution using a 2-day convergence threshold between iterations, so that

[DOS20::1 — DOS20: < 2 days, where ‘i’ is the number of the iteration.

2.4  Streamflow Volume Timing from a Land-Surface Model

Historical NoahMP-WRF simulations include the period 2001-2013 over the contiguous US at 4-km spatial resolution, and
the period 2071-2100 under pseudo global warming (Liu et al., 2017). NoahMP-WRF simulations include an improved Noah
configuration aiming to better represent the snow physics. These improvements include (Liu et al., 2017): the rain-snow
transition is based on a microphysics partitioning approach as opposed to a subjective temperature-based approach, patchy
snowpack are allowed in the calculation of the surface energy balance, the heat transport from rainfall to the ground is included,
and the snow depletion curve is vegetation-dependent. These improvements allow for a better representation of the surface
energy balance, and the simulation of snow accumulation and melt processes. We used daily watershed-scale outputs of surface
and subsurface runoff from historical and future NoahMP-WRF simulations to estimate DOQzs and DOQso. Given the range
of the watershed drainage areas (4 - 236 km?, Table 2), watersheds covering several grid cells use the total surface and
subsurface runoff for their corresponding grid cells. Small watersheds are represented by only the single nearest NoahMP-
WREF grid cell. The way NoahMP-WREF is implemented within WRF lacks a streamflow routing scheme such as the one in
WRF-Hydro (Gochis et al., 2020); therefore, we used the sum of surface and subsurface runoff to estimate DOQ2s and DOQso.

We also repeated the analysis using surface runoff only, leading to similar results (Figure A7). Given the relatively coarse
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streamflow timing metrics are not significantly affected by the lack of streamflow routing. (Deleted: will not be

3 Results
300 3.1 Empirical Relationships Between DOS20, Climate and Streamflow

Mean DOSx has a strong regional variability that is reasonably captured by a negative linear correlation (R?= 0.48) with the

mean winter air temperature (November to February, Txpyr) in watersheds with Tnpir<-3°C, whereas warmer watersheds do

not follow the same pattern (Figure 3A and Figure 4A). Warmer sites (Tnpsr > -3 °C) have a more variable mean DOS» ranging (Deleted: Figure 3

from mid-January to early May, whereas the coldest sites (Tnpsr <-8°C) have a later and less variable DOS>o around mid to
305 late May. On average, the regression suggests that a 1 °C of warming results in 7.2-day earlier DOS2o. The relationship between

later DOS20 and colder Tnosr is also found in the year-to-year variations in DOS2o at most watersheds (21 out of the 31), with

| warmer years experiencing earlier DOSzo (Figure 3B). A strong linear relationship was found between the date of the 25% of (Deleted: Figure 3

the annual streamflow volume (DOQ:s) and Tnpir. Warmer watersheds (Tnpir>0°C) generate streamflow the earliest (between

mid-December and early March) compared to the coldest watersheds (Tnpir<-8°C), with DOQzs between early and late May

|310 (Figure 3C). On average, the cross-site regression shows that a 1°C increase in Txoir produces a 13-day earlier DOQas. For (Deleted: Figure 3

most watersheds (25 out of 31), interannual regressions show a similar pattern with warmer years having earlier DOQas;

| however, these interannual regressions have shallower slopes than the cross-site relationship (Figure 3B and 3D). Previous CDeIeted: Figure 3

work by Stewart et al. (2005) also related seasonal meteorological patterns with the spring onset and streamflow timing, and
found similar relationships (e.g., warmer watersheds have earlier spring onset and streamflow timing). However, the definition
315 of'the spring onset was based on the cumulative hydrograph (the day when the cumulative departure from the mean streamflow
was the minimum), as opposed to our more mechanistic diel streamflow analysis. Other definitions for spring onset based on

streamflow, snow pillows and air temperature are presented by Lundquist et al. (2004).

Strong correlations between DOS20 and both DOQ2s and DOQso (the dates at which 25% and 50% of the annual streamflow

320 volume are reached) (R? = 0.85, Figure SA and 5C) suggest connections between the timing of snowmelt and streamflow (Deleted: Figure 5
generation across watersheds and years. On average, sites that melt earlier are associated with earlier DOQ2s (Figure 5A) and (Deleted: Figure 5

a lower ratio of snowfall to total precipitation (snow fraction<0.5). The relationship between DOS20 and DOQ2s closely follows

the 1:1 line (Figure 5A), although three sites in Washington and Oregon (sites #24, #25 and #31, see Table 2 and Figure 6A) (Deleted: Figure 5

deviate substantially from this pattern, perhaps because they receive relatively little of their precipitation as snow. Similar

325 watershed-level relationships using interannual variability in DOQ2s were found for most watersheds, with statistically

significant slopes varying between 0.4 and 2.5 day day”' (Figure 5B). DOSa also predicts DOQso well, with 10-day earlier (Deleted: Figure 5

snowmelt producing 7-day earlier DOQso on average (Figure 5C), and similar watershed-level interannual relationships (Figure CDeIeted: Figure 5
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5D). The same three relatively rainy watersheds have DOQso prior to the DOSyo (Figure 5C and Figure 6B), suggesting that

early snowmelt timing is not an important predictor of DOQso in such places.

3.2 Diel Streamflow-Based Sensitivity of Snowmelt Timing (DOSz0) to Climate Change,

We fitted a stepwise MLR with four climate variables (air temperature, precipitation, relative humidity, and solar radiation) to

predict the diel streamflowgbased DOS20 metric across watersheds and years. A total of 333 watershed-year combinations of

DOS2o and climate variables were used to train the stepwise MLR model. The watershed-year relationship between observed
and MLR predictions has a relatively high R? of 0.83, a root mean square error (RMSE) of 17.5 days, and normally distributed
residuals (p < 0.01) off the 1:1 line and centered at 0 with a standard deviation of 17.3 days (Figure 7A). The relationship

between observations and MLR predictions of inter-watershed mean annual DOS2o (Figure 7B) is also strong (R? = 0.83 and

RMSE = 13.2 days) and follows the 1:1 line. Similarly, when we look at interannual values, represented by the lines
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3.3 Sensitivity of Streamflow Timing to Climate Change: Empirical diel streamflow-based model versus NoahMP-

WRF

We compared historical and gmpirical diel streamflow-based projections for DOQ2s and DOQso with those from NoahMP-

WREF. Empirical streamflow timing sensitivity projections for DOS2o under climate change were built using the linear
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4  Discussion

The new DOS20 metric yepresents the timing of early snowmelt-mediated streamflow based on the diel streamflow fluctuations

and suggests that shifts in snowmelt timing in colder, sunnier watersheds have a greater effect on streamflow volume timing
than in warmer, cloudier watersheds where snowmelt is more interspersed with rain. Despite the intuitive connections between
snowmelt and streamflow, empirically linking changes in earlier snowmelt rates (Harpold and Brooks, 2018; Musselman et
al., 2017) with changes in streamflow amount (Barnhart et al., 2016) and timing (Stewart et al., 2004) has been challenging

(Weiler etal., 2018). This is inpart due to the scales at which snow (point-scale) and streamflow (watershed-scale) are typically

measured. For example, evidence of snowmelt at Snow Telemetry (SNOTEL) locations in the US has shown that snowmelt
events are more intermittent at sites with higher humidity, and future modeling suggests slower, earlier snowmelt in the largest
snowpacks in areas with lower humidity and cloud cover (Harpold and Brooks, 2018; Musselman et al., 2017). However, the
potential cascading effects of earlier and slower snowmelt on streamflow amount and timing are relatively unexplored (e.g.
Berghuijs et al., 2014). Not surprisingly, the warmest and cloudiest watersheds have lower snow fractions and a more rainfall-
dominated streamflow regime, and thus have less (and often no) interannual correlation between DOS20 and the metrics DOQ2s

and DOQso (Figure 5A and 5C), illustrating the limitations of the diel streamflow method in rain-dominated watersheds; as

also suggested by the false detection rate analysis (Figure 2) in watersheds #24 and #31 in Washington and Oregon,
respectively. Rain-on-snow events are particularly challenging to detect with our analysis, as days with a lower percentage of
incoming shortwave radiation (<80% of clear-sky) are filtered out to avoid issues with potential rainfall-dominated diel signals.
Conversely, the colder and sunnier watersheds, primarily in the intermountain region, have strong interannual correlations

between DOS20 and DOQ>s (Figure SA and Figure 6A), reflecting the importance of snowmelt (instead of rain) in controlling

streamflow volume timing. We currently lack physically based representations of many processes linking snowpack storage,
snowmelt, subsurface storage, and the timing of water release following a hydrologic event (i.e., snowmelt or rainfall event).
Snowmelt modeling in complex terrain is challenged by steep climate gradients and by the lack of adequate forcing data
required to run models. Characterizing precipitation phase and timing in steep watersheds remains challenging in rain-to-snow
transition zones (Harpold et al., 2017; Jennings et al., 2018; Wayand et al., 2015), which will presumably increase in extent in
the future (Klos et al., 2014). Complex terrain has a large effect on radiation fluxes, which are hard to capture at kilometer
spatial scales (Miiller and Scherer, 2005) used in some land surface models. Nonetheless, this issue is less important in warmer,
cloudier watersheds where longwave radiation and sensible heat are larger components of the energy balance (Mazurkiewicz
et al., 2008). Forests exert a strong control on the snowpack mass and energy balance (Lundquist et al., 2013; Pomeroy et al.,
1998; Safa et al., 2021) with spatially heterogeneous effects on snow accumulation and melt that remain challenging to model
(Broxton et al., 2015; Krogh et al., 2020). The presence of preferential flowpaths through the snowpack impacts the timing of
melt release (Leroux and Pomeroy, 2017) and is not typically included in hydrological models. Once snowmelt is released
from the snowpack, simulating (and validating) what fraction flows as subsurface and surface runoff remains difficult. Decades

of tracer studies (e.g., Godsey et al., 2010; Kirchner, 2003) have shown that streamflow during and after hydrologic events
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(i.e., snowmelt or rainfall events) is typically ‘old water’ that has been stored in the watershed for months to years. Land
surface models like NoahMP-WRF lack realistic groundwater stores to represent old water and are at spatial resolutions that
make hillslope and near-stream processes difficult to represent (Fan et al., 2019). For example, previous work at Sagehen
Creek (site #23) suggests that streamflow remains ~80% groundwater even during the snowmelt freshet (Uridstegui et al.,
2017). Innovative observations and/or analyses that give new physical insights, like the diel streamflow analysis, can be used

to derive such hydrologic representations, which could improve our prediction of hydrological systems (Kirchner, 2006).

Because the diel streamflow analysis does not require the many assumptions that are embedded in physically based models, it

is an independent tool that can be used to verify historical streamflow simulations from sub-daily resolved hydrological models.
For example, land surface models could be benchmarked against observed snowmelt days based on the diel streamflow analysis
or metrics like the DOS20, aiming to better represent processes associated with snowmelt-driven streamflow generation. The
diel streamflow analysis is also easier to implement than detailed process-based catchment models because it only requires
observed hourly streamflow data and solar radiation. Solar radiation can be reliably represented by land surface models Jike
NLDAS-2 (Luo et al., 2003) that assimilate field observations and remotely sensed radiation (including the effects of clouds)
into an atmospheric modeling framework. We tested the sensitivity of some modeling decisions, such as the correlation cutoff
between hourly solar radiation and streamflow used to detect snowmelt days and metrics for snowmelt timing, and found
similar sensitivities of DOS2¢ to climate change across different correlation cutoffs and snowmelt timing percentiles (Table
A5). Metrics like the first snowmelt day or the first three consecutive snowmelt days showed less consistent results (Table
A5), likely due to individual early or mid-winter melt events that do not necessarily represent the seasonal watershed behavior.
The diel streamflow analysis has four main limitations that need to be examined in future work: (1) it requires a steep enough
stage-discharge relationship that daily streamflow cycles can be detected across the flow regime, (2) it focuses on snowmelt
driven by solar radiation (and energy fluxes synchronized with it), (3) it is sensitive to assumptions about the lag time between
solar radiation and streamflow, and (4) it is sensitive to assumptions about evapotranspiration losses. A steep stage-discharge
relationship, in which small changes in discharge are associated with large changes in stage, is ideal to observe small diel
streamflow changes with sufficient precision. Another assumption is that the majority of snowmelt is correlated with solar
radiation. This assumption is supported by the importance of solar radiation in process-based studies of maritime and
continental snowpacks (Cline, 1997; Jepsen et al., 2012; Marks and Dozier, 1992). Because our method allows the lag time
between solar radiation and streamflow to vary within a predefined window, we expect it to capture other important energy
fluxes like sensible heat that often lag the diel patterns of solar radiation by several hours (Ohmura, 2001). This approach is
not suitable for capturing rain-on-snow events, which are most common in maritime watersheds, but also occur in continental
settings (Musselman et al., 2018). It may also misclassify rainfall-driven diel streamflow cycles, although we checked for
rainfall-induced cycles and found that these are, on average, a small fraction (7%, Figure 2). In rainier watersheds (lower snow
fraction), our analysis may be more uncertain than in watersheds with a more snowfall-dominated regime. Nonetheless, the

relationships between streamflow timing (i.e., DOS20, DOQ2s and DOQso) and meteorological drivers in rainier sites showed
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cross-site and interannual relationships that are consistent with those in colder, more snow-dominated places (except for
watersheds #24, #25 and #31) (e.g., Figure 3A and 3C). The third limitation is that the spatiotemporal variability in snowpack,
surface and subsurface storage, and evapotranspiration will change the magnitude and lag time of the diel streamflow response
(Kirchner et al., 2020; Lundquist and Cayan, 2002; Lundquist and Dettinger, 2005), which we address by allowing variable
watershed- and month-specific time lags. However, lag times greater than 24 hours, which are associated with large watersheds

or large subsurface storage, will make this method jmpossible to apply. Also, the method may miss early snowmelt-driven diel

cycles in watersheds with dry soils, as the diel signal will be buffered by the subsurface storage capacity before generating a
measurable streamflow response. The fourth limitation is that evapotranspiration losses must be small relative to snowmelt
inputs, which is necessary because the effect of evapotranspiration is out of phase with the effect of snowmelt (Kirchner et al.,
2020). Evapotranspiration effects are minimized by focusing on early snowmelt when evapotranspiration losses are often

assumed to be small (Bowling et al., 2018; Cooper et al., 2020; Winchell et al., 2016).

Previous empirically, based implementations have been used to predict catchment-scale sensitivity of snowmelt-driven

streamflow to changing climate using observations (Berghuijs et al., 2014; Stewart et al., 2005) and historical model outputs

(Barnhart et al., 2016). The empirical diel streamflow model based on the stepwise MLR suggests that humidity explains

roughly as much or more variation in DOS2o than temperature does (Table A4), and that solar radiation explains about twice
as much DOSz variation as either humidity or temperature does. This is consistent with an energy budget dominated by solar
radiation (Marks and Dozier, 1992), but also with a coupling between humidity and latent heat and longwave radiation effects

(Harpold and Brooks, 2018). Empirical projections of DOS2o under the pseudo global warming scenario show that colder,

drier, and sunnier sites (typical of the Rocky Mountains) are about twice as sensitive to warming as warmer, more humid, and
cloudier sites (typical of the Pacific Northwest). Humid and warmer sites have relatively low snow fractions (<0.5, more

rainfall effects) and, thus, a smaller snowmelt signal in the diel streamflow observations. In contrast, Harpold and Brooks

(2018) showed that winter ablation at SNOTEL sites in humid places, like the Pacific Northwest, are more sensitive to warming
than less humid places, like the Southwest US. The difference between these findings and our streamflow-based inferences
might be explained by SNOTEL sites being preferentially situated in snowy forest gaps that do not necessarily represent the
catchment-scale, early-season snowmelt patterns focused on here. However, Kirchner et al. (2020) showed general agreement
between SNOTEL snowmelt response and the snowmelt-induced diel streamflow signal at the warm Sagehen Creek watershed
(site #23). The sensitivity of the early snowmelt timing metric (DOS20) to climate change may be distilled into streamflow’s
sensitivity to changes in precipitation partitioning (rainfall vs snowfall) and snowmelt sensitivity (more energy for melt is
available); however, these two are sometimes coupled (e.g., changes in snow albedo after snowfall will alter the energy balance
that controls snowmelt). Due to the empirical basis of our analysis, these two sensitivities are not easy to disentangle, but we
believe that the diel analysis is better suited to investigate streamflow’s sensitivity to snowmelt changes. We focus the analysis
on mostly clear-sky days, and thus implicitly exclude the effect of rainfall (or precipitation partitioning); we also use predictive

variables in the MLR that relate to broad and regional snowmelt controls (i.e., seasonal meteorology) as opposed to specific
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event-scale meteorology required to predict precipitation partitioning. The reliability of the gmpirical diel streamflow-based

projections partially depends on whether climate projections are within or outside the range of observed climate conditions

across the large climatic gradient found in the western US. Under the pseudo global warming scenario, cold, sunny watersheds

like those in the Rocky Mountains (site #9 and #10) will shift toward more humid, warmer conditions (Figure A6), like those
observed in Southern Idaho (site #29) and the northern Sierra Nevada (site #23). In contrast, the pseudo global warming
scenario in places like the Pacific Northwest, particularly those involving changes in atmospheric humidity above 5 g/m?
(Figure A4), have not been observed, and therefore are more uncertain. Overall, climate changes from pseudo global warming

are mostly within the observed interannual and inter-watershed climate variability used to train the stepwise MLR_model
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against observed DOQ:s; however, the projected sensitivity in streamflow timing to climate change remains significantly lower (D ted
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DOQ:s simulation represents a challenge that goes beyond the scope of this study,although these simulations have been tested
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in detail in terms of the meteorology and snow components (Liu et al., 2017; Scaff et al., 2020) and have been used for climate
change analyses (Musselman et al., 2017, 2018). We used these simulations in the analysis because NoahMP underlies the US
National Water Model and thus its relevance to policy and research is high. There are many differences in the way that

NoahMP-WRF and the gmpirical diel streamflow-based approach simulate the sensitivity of streamflow timing. NoahMP-

WREF operating at sub-daily time steps has several advantages, For example, NoahMP-WRF can track the hourly covariance

in precipitation, temperature, and humidity to estimate precipitation partitioning between rain and snow. It is also able to
represent hourly radiative and turbulent energy at the snowpack, and the cold content needed to predict snowmelt. The physical
hydrology is also advanced and able to consider antecedent conditions and allow evapotranspiration losses that also modulate
streamflow. Despite the advantages of land surface models like NoahMP-WRF in constraining processes for future projections,

the simplicity of diel streamflow-based analysis also provides several advantages. One of the main advantages is that it is

derived from observations and thus it is well constrained by the observed spatial and temporal variability of snowmelt across

watersheds and years (Figure 7B). Also, jt does not assume anything about the complex spatial distribution of snowpacks and

precipitation or subsurface properties and interactions with the surface, which are major constraints to physically-based models

(Baroni et al., 2010; Christiaens and Feyen, 2001; Wilby et al., 2002). While the empirical diel streamflow-based ynodel is not
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areplacement for land surface models like NoahMP-WREF, partly because the underlying streamflow datasets are not available

everywhere, there is added value in including new benchmarks like the proposed DOS2 to further constrain modeling decisions

and improve model fidelity required for reliable and accurate hydrological predictions.

5  Conclusions

Water management in the western US relies on accurate predictions of how both short-term climate variability and long-term
climate change will alter snowmelt and streamflow. Differences in predictions of snowmelt-induced streamflow between

empirical diel streamflow-based projections and a land surface model (NoahMP-WRF) raise important questions about the

sensitivity of streamflow timing to climate change, particularly in cold regions, and its impact on water planning. Significant

differences exist in the way diel streamflow-based and land surface models predict changes to snowmelt and streamflow

timing, with both approaches having strengths and weaknesses; however, the land surface model misrepresents historical

patterns in streamflow response that at are more accurately estimated by the empirical model. We show that DOSy is a strong

predictor of the early season hydrograph response, particularly in cold, sunny areas where the NoahMP-WRF streamflow
timing simulations lack sensitivity to climate change. Rigorously validating future model predictions is impossible, but
snowmelt and streamflow timing, inferred from diel streamflow cycles, could be used to refine land surface models and better
determine the risk to valuable snow water resources (Barnett et al., 2005; Sturm et al., 2017; Viviroli et al., 2007), particularly

in cold regions. Our novel approach can complement the benchmarking or calibration of physically based hydrological models,

beyond typical benchmarking against daily streamflow or snow accumulation metrics. For example, the snowmelt timing

metric DOSzq based on diel streamflow observations,could be used to test the performance of land surface models running at
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sub-daily scales and fine spatial resolution in representing the historical snowmelt regime across watersheds and years. As
land surface models move towards real application for water management (Kopp et al., 2018), the hydrology community must
seck ways to test and improve models using widely-available datasets if we are to meet the grand water management challenges

posed by climate change and altered snowmelt regimes in key mountainous regions.
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Figure 1: Examples of the diel cycle analysis applied to two watersheds located in California (A) (B) (WY2016) and Colorado (C)
(D) (WY2014). (A) and (C) show hourly solar radiation (orange) and streamflow (blue); the first statistically significant (p<0.01)
lagged spearman correlation (r>0.6) between streamflow and solar radiation is shown on a text box for clear-sky days only (>80%
of clear-sky solar radiation). (B) and (D) show the solar radiation-driven snowmelt days (blue circles) on top of the annual
hydrograph (semi-log scale) for the period of analysis (white background, December to July).
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Figure 2: Percentage of days that were classified as having snowmelt following the diel streamflow cycle analysis that also had
daily precipitation above 5 mm and a mean daily air temperature above 2 °C. Symbols are associated with the mean annual
percentage of snowmelt days under clear-sky conditions. Sunny sites (circles) have >90%, clear-sky snowmelt days, partly cloudy
sites (squares) have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt
days are defined as those with more than 80% of the potential clear-sky solar radiation.
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Figure 3: (A) and (C) show cross-site relationships between mean winter air temperature (November to February) and DOS;) and
the date of 25% of annual streamflow volume (DOQ):s), respectively. Slopes of individual sites’ interannual relationships are shown
as the lines on top of each symbol, where statistically significant (p-value <0.05) slopes are red. Non-significant interannual slopes
are presented to show the overall tendency in their spatial distribution. Symbols are associated with the mean annual percentage of
snowmelt days under clear-sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares)
have between 70 and 90%, and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined

as those with more than 80% of the potential clear-sky solar radiation. (B) and (D) show histograms of interannual slopes (for all
watershed and those with statistically significant relationships) and the cr ite relationships pr d in their respective left
panel.
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Figure 4: Spatial variability of watershed-level interannual slopes for (A) DOS; vs winter air temperature, and (B) DOQ:s vs winter
air temperature. Watersheds with statistically significant relationships are highlighted in symbols with thicker edges and are
associated with those presented in Figure 3. Symbols are associated with the mean annual percentage of snowmelt days under clear-
sky conditions. Sunny sites (circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%,
and cloudy sites (diamonds) have <70% clear-sky snowmelt days. Clear-sky snowmelt days are defined as those with more than 80%
of the potential clear-sky solar radiation.
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Figure 5: (A) The day when the 20™ percentile of snowmelt days occurs (DOSz), compared to the date of the 25% of the annual
streamflow volume (DOQ);s). (C) DOS;, against the date of 50% of the annual streamflow volume (DOQs¢). Dashed lines in (A) and
(C) are 1:1 lines, and the slopes of sites’ interannual relationships are shown as the lines on top of each symbol, with statistically
significant (p-value <0.05) slopes shown in red. Sites #24, #25 and #31, indicated by dashed circles, fall far from the linear regression
and are not included in its calculation. Symbols indicate the mean annual percentage of clear-sky snowmelt days, where sunny sites
(circles) have >90% clear-sky snowmelt days, partly cloudy sites (squares) have between 70 and 90%, and cloudy sites (diamonds)
have <70%; clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. (B) and (D)
show histograms of interannual slopes (for all watershed and those with statistically significant relationships) and the cross-site
relationships presented in their respective left panels.
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Clear-sky snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation.
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1010  Table 1: List of Abbreviations

Abbreviation | Definition

CAMELS Catchments Attributes and MEteorology for Large-sample Studies

DOQ2s Date of 25% of annual streamflow volume

DOQso Date of 50% of annual streamflow volume

DOS The day when the 20" percentile of the snowmelt days occurs, with snowmelt days as defined by the
streamflow diel cycle analysis

GCM Global Climate Model

MLR Multiple Linear Regression Model

NLDAS-2 Phase 2 of the National Land Data Assimilation System

Noah-MP Noah Multi Parameterization land surface model

NoahMP-WRF | Simulations by WRF using the Noah-MP land surface model

RCP8.5 Representative Concentration Pathway 8.5

WRF Weather Research and Forecasting Model
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Table 2: List of the 31 watersheds from the CAMELS dataset included in this study. Data from Addor et al. (2017).

Drainage | Mean Mean Soil
Lat. | Lon. Snow Aridity
ID | USGSID Watershed Name Area Elevation slope (m Depth
| (°N) °wW) Fraction | index
(km?) (masl) km™) (m)
1 06278300 Shell Creek, WY. 58.9 2,953 86.7 44.51 | 107.40 | 0.73 1.32 0.74
North Fork Powder
2 06311000 61.2 2,516 41.1 44.03 | 107.08 | 0.57 1.68 0.90
River, WY.
Michigan River,
3 06614800 co 4.0 3,297 145.8 40.50 | 105.87 | 0.76 1.29 0.57
North Brush Creek,
4 06622700 98.7 2,837 713 41.37 | 106.52 | 0.72 1.48 2.20
WY.
Encampment
5 06623800 . 187.7 2,971 90.9 41.02 | 106.82 | 0.75 1.06 1.14
River, WY.
6 06632400 Rock Creek, WY. 163.0 3,002 69.0 41.59 | 106.22 | 0.74 1.46 2.52
7 08267500 Rio Hondo, NM. 96.3 3,007 149.1 36.54 | 105.56 | 0.47 2.12 0.50
8 08377900 Rio Mora, NM. 139.0 3,018 105.3 35.78 | 105.66 | 0.47 1.50 0.85
9 09034900 Bobtail Creek, CO. | 15.7 3,571 102.8 39.76 | 10591 | 0.73 1.16 0.47
South Fork of
10 | 09035900 Williams Fork, 72.8 3,241 1239 39.80 | 106.03 | 0.69 1.44 0.56
Co.
Keystone Gulch,
11 | 09047700 o 23.6 3,334 103.8 39.59 | 105.97 | 0.63 1.92 0.45
12 | 09066200 Booth Creek, CO. 16.1 3,072 145.4 39.65 | 106.32 | 0.71 1.40 0.27
13 | 09066300 Middle Creek, CO. | 15.5 2,944 143.8 39.65 | 106.38 | 0.69 1.49 0.48
Vallecito Creek,
14 | 09352900 o 188.2 3,283 156.1 37.48 | 107.54 | 0.63 1.24 0.50
15 | 09378170 South Creek, UT. 21.9 2,308 67.7 37.85 | 109.37 | 0.50 1.79 1.16
Recapture Creek,
16 | 09378630 uT 10.4 2,125 534 37.76 | 109.48 | 0.50 1.88 0.55
17 | 09386900 Rio Nutria, NM. 184.9 2,342 374 35.28 | 108.55 | 0.31 2.48 1.07
East Fork Virgin
18 | 09404450 . 193.0 2,070 56.2 37.34 | 112.60 | 0.42 2.86 0.82
River, UT.
East Fork White
19 | 09492400 129.0 2,469 65.4 33.82 | 109.81 | 0.27 1.88 0.92
River, AZ.
20 | 10205030 Salina Creek, UT. 134.6 2,489 76.2 3891 | 111.53 | 0.58 2.46 0.67
21 | 10234500 Beaver River, UT. | 236.4 2,499 95.2 38.28 | 112.57 | 0.63 2.06 0.60
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1015

Blackwood Creek,

22 | 10336660 caA 29.8 2,113 83.5 39.11 | 120.16 | 0.67 0.77 0.79
Sagehen Creek,

23 | 10343500 CA 27.6 2,157 81.2 39.43 | 120.24 | 0.71 1.10 1.20
South Fork Tolt

24 | 12147600 14.1 1,068 159.4 47.71 | 121.60 | 0.27 0.22 0.63
River, WA.
Newhalem Creek,

25 | 12178100 69.7 1,305 255.7 48.66 | 121.24 | 0.53 0.33 0.54
WA.
South Fork Jocko

26 | 12381400 151.0 1,877 102.2 47.20 | 113.85 | 0.59 0.97 0.62
River, MT.
Andrews Creek,

27 | 12447390 58.1 1,701 172.6 48.82 | 120.15 | 0.78 0.86 0.47
WA.

28 | 13018300 Cache Creek, WY. | 27.9 2,198 109.5 43.45 | 110.70 | 0.66 1.50 0.69

29 | 13083000 Trapper Creek, ID. | 133.2 1,863 69.1 42.17 | 11398 | 0.49 2.11 1.04
Lake Fork Payette

30 | 13240000 125.6 1,965 110.1 4491 | 116.00 | 0.73 0.75 0.44
River, ID.

31 | 14158790 Smith River, OR. 40.6 1,027 116.4 44.33 | 122.05 | 0.37 0.36 0.85
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Figure Al: (A) Number of available years with less than 30, 20 and 10% gaps in days with hourly streamflow records between
December 1 and August 1. Gauge ID is as presented in Table 2. Numbers of years at site #13 are the same for all thresholds
(overlapping symbols). (B) Sensitivity of the mean annual number of detected snowmelt days to different Spearman correlation
cutoffs (0.5, 0.6, 0.7 and 0.9) between hourly solar radiation and streamflow. Error bar represents the standard deviation.
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Figure A2: (A): CAMELS mean winter (November to February) air temperature, (B) mean annual DOS;¢, and (C) mean annual

1025 DOQ:s. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where sunny sites
have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are
defined as those with more than 80% of the potential clear-sky solar radiation.
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1030  Figure A3: (A): CAMELS mean annual snow fraction (snowfall/precipitation), (B) mean annual number of snowmelt days between
December 1 and August 1 (calculated as the days with a correlation between hourly solar radiation and lagged streamflow greater
than 0.8), and (C) mean annual fraction of clear-sky snowmelt days, calculated as the number of snowmelt days with clear-sky
conditions as a fraction of total snowmelt days. A clear-sky snowmelt day is defined as having more than 80% of the potential clear-
sky solar radiation. Symbols (circle, square and diamond) represent the mean annual percentage of clear-sky snowmelt days, where

1035  sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70.
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Figure A4: Historic winter climate variability for each predictor used in the stepwise MLR model (Equation 1) for the period between
November and DOSy in blue. (A) Precipitation, (B) air temperature, (C) absolute humidity and (D) solar radiation. In red are the
perturbed mean climate variables under the RCP8.5 pseudo global warming scenario by the end of the century. This analysis
suggests that most of the climate change signal from NoahMP-WRF pseudo global warming is within the observed climate
variability, except for air temperature and atmospheric humidity in some watersheds. Blue symbols (circle, square and diamond)
associated with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90%
clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as
those with more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition of
snowmelt days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario.
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1050  Figure A5: Mean annual climate changes projected by WRF under an RCP8.5 pseudo global warming scenario by the end of the
century. (A) shows changes in precipitation against air temperature. (B) shows incoming shortwave against absolute humidity.
Numbers represent the Gauge IDs as presented in Table 2.
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Figure A6: (A) Principal Component Analysis for historical precipitation (Pp), air temperature (AT), absolute humidity (AH) and
shortwave radiation (SWR) at each watershed, and the ch iated with the pseudo global warming as simulated by WRF.
(B) shows the same analysis but excluding precipitation from the analysis. Blue symbols (circle, square and diamond) associated
with historical values represent the mean annual percentage of clear-sky snowmelt days, where sunny sites have >90% clear-sky
snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky snowmelt days are defined as those with
more than 80% of the potential clear-sky solar radiation. We make no inference about the cloudiness condition during snowmelt
days under the RCP8.5 pseudo global warming scenario, and thus, we use a five-point star (in red) for the future scenario. Numbers
next to blue symbols represent the Gauge IDs as presented in Table 2.
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Figure A7: Same as Figure 9 but using streamflow timing metrics from NoahMP-WRF for an RCP8.5 pseudo global warming
scenario, calculated using surface runoff only instead of using surface plus subsurface runoff (as in Figure 6). Note the improved fit
in historical DOQ:s; however, this analysis yields very similar results to those of Figure 6, with NoahMP-WRF streamflow

simulations being much less sensitive to climate change than the empirical diel streamflow-based, model suggests. (A) and (B)

compare historical against projected values between NoahMP-WRF and the empirical diel streamflow-based model, (C) and (D)
compare the projected change (future minus historical) between NoahMP-WRF and the diel streamflow-based model, colored by
the sensitivity of DOSy) to climate change as projected by the empirical diel streamflow-based model (Figure 5b). Symbols

surrounded by black circles indicate sites that were excluded from the regression analysis in Figure 3 (rainier sites #24, #25 and

#31). Symbols (circle, square and diamond) represent the historical mean annual percentage of clear-sky snowmelt days, where
sunny sites have >90% clear-sky snowmelt days, partly cloudy have between 70 and 90%, and cloudy have <70%; clear-sky
snowmelt days are defined as those with more than 80% of the potential clear-sky solar radiation. We make no inference about the
cloudiness condition of snowmelt days under the RCP8.5 pseudo global warming climate scenario; however, red symbols (upper
panels) follow the same symbology for easier interpretation.
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1085

Table Al: Coefficient of determination (R?) and slope (in parenthesis, day/day) of the linear regression between different early
snowmelt timing metrics and DOQ:s and DOQsy, as presented in Figure 5, for different correlation cutoffs (r) between hourly solar
radiation and streamflow. DOSxx represent the date when the xx'" percentile of snowmelt days occurs. Sites #24, #35 and #31, are
excluded from the linear relationship. Bolded numbers are those used in the result and discussion sections.

Early snowmelt timing metrics vs DOQ>s vs DOQso
1% snowmelt day 0.13 (0.61) 0.06 (0.25)
1% 3 consecutive snowmelt day | 0.5 (0.71) 0.4 (0.4)
DOS;s 0.37 (0.83) 0.28 (0.45)
r>0.5
DOSio 0.49 (0.91) 0.43 (0.52)
DOS2 0.69 (1.1) 0.66 (0.67)
DOS3o 0.73 (1.1) 0.72 (0.68)
1* snowmelt day 0.24 (0.73) 0.15(0.35)
1% 3 consecutive snowmelt day | 0.59 (0.77) 0.49 (0.44)
DOS;s 0.46 (0.82) 0.37 (0.45)
r>0.6
DOSio 0.63 (0.97) 0.53 (0.55)
DOS2 0.76 (1.05) 0.72 (0.64)
DOS30 0.77 (1.07) 0.78 (0.67)
1* snowmelt day 0.42 (0.73) 0.3 (0.39)
1% 3 consecutive snowmelt day | 0.62 (0.85) 0.59 (0.53)
DOS;s 0.61 (0.86) 0.51 (0.49)
r>0.7
DOSio 0.71 (0.94) 0.63 (0.55)
DOS2 0.76 (0.99) 0.75 (0.62)
DOS30 0.79 (1.03) 0.82 (0.65)
1% snowmelt day 0.66 (0.87) 0.54 (0.5)
1% 3 consecutive snowmelt day | 0.76 (1.09) 0.78 (0.71)
DOS;s 0.79 (1.01) 0.7 (0.6)
r>0.8
DOSio 0.83 (1.03) 0.78 (0.64)
DOS20 0.85 (1.07) 0.85 (0.68)
DOS3o 0.85(1.1) 0.88 (0.72)
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Table A2: Root mean square error (RMSE) and coefficient of determination (R, in parentheses) associated with several stepwise

multiple linear regressions (similar to the one in Equation 1) using different early snowmelt timing metrics (e.g., Equation 1 uses

DOS30) and correlation cutoffs (r) between hourly solar radiation and streamflow used to define snowmelt days. DOSxx represents

the date when the xx™ percentile of snowmelt days occurs. Bolded numbers are associated with the stepwise MLR in Equation 1 also
1095  shown in Figure 7A.

Early snowmelt timing metrics r>0.5 r>0.6 r>0.7 r>0.8
First snowmelt day 11.1(0.87) | 12.3(0.88) | 15.2(0.88) | 21.7(0.82)
First 3 consecutive snowmelt days | 24.6 (0.8) 24.8 (0.8) 26.1(0.77) | 20.2(0.8)
DOS;s 14.9 (0.83) | 15.4(0.85) | 17.3(0.86) |21.1(0.8)
DOSo 16.4 (0.82) | 17.3(0.83) | 19.9(0.82) | 19.6(0.82)
DOSz0 16.5(0.82) | 17.9(0.82) | 18.9(0.82) | 17.5(0.83)
DOS30 16.3(0.82) | 17.4(0.82) | 17.8(0.82) | 16.3(0.83)
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Table A3: Coefficient of determination (R?) for the site-average stepwise multiple linear regression, analogous to that pr lin
Figure 7B, for different modeling decisions (correlation cutoff between hourly solar radiation and streamflow, r, and early snowmelt

1100  days metrics). DOSxx represents the date when the xx'" percentile of snowmelt days occurs. Bolded number is associated with the
stepwise MLR in Equation 1 using DOSy.

Early snowmelt timing metrics r>05 [r>06 |[r>07 |r>038
First snowmelt day 0.8 0.82 0.89 0.79
First 3 consecutive snowmelt days 0.81 0.77 0.73 0.69
DOS;s 0.84 0.85 0.87 0.83
DOS1o 0.84 0.85 0.86 0.84
DOS20 0.83 0.82 0.82 0.82
DOS30 0.83 0.81 0.81 0.8
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Table A4: Standardized beta coefficients for the stepwise MLR associated with the different correlation cutoffs (r) between hourly
solar radiation and streamflow, and different early snowmelt metrics. These stepwise MLR models follow the same structure as that
of Equation 1; however, in this case predictors were standardized to estimate their relative importance. AT: Air Temperature, Pp:
Precipitation, RH: Relative Humidity, SWR: Incoming Shortwave Radiation. DOSxx represent the date when the xx'" percentile of
snowmelt days occurs. *Indicates rows that do not meet all the MLR ptions. Bolded bers are iated with the modeling
decisions used in the result and discussion sections.

Bs: Be: B Ps: Bo: B 1oz
Early snowmelt timing metrics | Bi: AT p2: Pp Bs: RH | Bs: SWR
ATxPp ATXRH | ATxSWR PpxRH PpxSWR RHxSWR
1% snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1" 3 consecutive
-0.41 0.74 0.002 0.38 0.19 n/a n/a -0.33 n/a -0.19
snowmelt days
r>0.5 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOS1o -0.55 0.45 0.22 0.56 0.26 n/a n/a n/a 0.23 -0.21
DOS20 -0.39 0.46 0.33 0.68 0.10 n/a n/a -0.10 0.12 -0.28
DOS30 -0.32 0.39 0.38 0.76 n/a 0.06 n/a n/a 0.15 -0.27
1* snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1** 3 consecutive
-0.39 0.69 0.03 0.43 0.15 n/a n/a -0.26 0.08 -0.21
snowmelt days
r>0.6 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSio 0.54 0.42 0.18 0.52 0.23 n/a n/a n/a 0.22 -0.16
DOS2o -0.35 0.41 0.31 0.69 0.10 n/a n/a -0.08 0.10 -0.24
DOS30 -0.30 0.33 0.37 0.75 0.07 n/a n/a n/a 0.15 -0.24
1* snowmelt day* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
1% 3 consecutive
-0.45 0.69 0.03 0.46 n/a 0.11 n/a -0.16 0.09 -0.23
snowmelt days
r>0.7 DOSs* n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
DOSio -0.46 0.39 0.20 0.55 0.21 -0.08 n/a -0.09 0.11 -0.17
DOS2 -0.31 0.30 0.36 0.77 0.10 n/a n/a n/a 0.14 -0.24
DOS30 -0.29 0.29 0.38 0.77 0.08 n/a n/a n/a 0.17 -0.26
1* snowmelt day -0.57 0.41 0.08 0.34 0.28 n/a n/a n/a 0.21 -0.06
1% 3 consecutive
-0.35 0.43 0.26 0.67 n/a 0.09 n/a n/a 0.22 -0.27
snowmelt days
r>0.8 DOSs -0.43 0.39 0.21 0.56 0.23 n/a n/a -0.09 0.14 -0.19
DOSio -0.34 0.37 0.28 0.68 0.16 n/a n/a -0.09 0.13 -0.26
DOSz0 -0.31 0.29 0.37 0.75 0.11 n/a n/a n/a 0.18 -0.29
DOS30 -0.29 0.29 0.37 0.76 0.09 n/a n/a n/a 0.18 -0.26
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Table A5: Coefficient of determination (R?) and slope (in parenthesis, days °C™'") of the linear regression between the empirical diel
streamflow-based model sensitivity to warming and sites’ mean winter air temperature as pr

1in Figure 8B, for different early

d: space-for-time

snowmelt day metrics and correlation cutoffs (r) between hourly solar radiation and streamflow. DOSxx represent the date when
the xx™ percentile of snowmelt days occurs. Bolded

discussion sections.

bers are

iated with the

R e

used in the result and

Early snowmelt timing metrics r>0.5 r>0.6 r>0.7 r>0.8
First snowmelt day 0.08 (0.61) | 0.09(0.47) |0.03(0.47) | 0.23(-0.75)
First 3 consecutive snowmelt days 0.02 (-0.30) | 0.08 (-0.51) | 0.00 (-0.05) | 0.00 (-0.07)
DOS;s 0.00 (0.04) | 0.01(-0.18) |0.02(-0.32) | 0.25(-1.00)
DOSio 0.00 (-0.09) | 0.25(-0.86) | 0.37(-1.17) | 0.2 (-0.66)
DOSzo 0.27 (-0.68) | 0.35(-0.89) | 0.37(-0.99) | 0.33 (-0.75)
DOS;30 0.22 (-0.57) | 0.26 (-0.65) | 0.27 (-0.66) | 0.20 (-0.52)
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