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Abstract. State-of-the-art evaporation models usually assume the net radiation (Rn) and surface 10 

temperature (Ts; or near-surface air temperature) to be independent forcings on evaporation. However, 

Rn depends directly on Ts via outgoing longwave radiation and this creates a physical coupling between 

Rn and Ts that extends to evaporation. In this study, we test a maximum evaporation theory originally 

developed for global ocean over saturated land surfaces, which explicitly acknowledges the interactions 

between radiation, Ts and evaporation. Similar to the ocean surface, we find a maximum evaporation 15 

(LEmax) emerges over saturated land that represents a generic trade-off between a lower Rn and a higher 

evaporation fraction as Ts increases. Compared with flux site observations at the daily scale, we show 

that LEmax corresponds well to observed evaporation under non-water-limited conditions and that the Ts 

at which LEmax occurs also corresponds with the observed Ts. Our results suggest that saturated land 

surfaces behave essentially the same as ocean surfaces at time scales longer than a day and further 20 

imply that the maximum evaporation concept is a natural attribute of saturated land surfaces, which can 

be the basis of a new approach to estimating evaporation. 

1 Introduction 

Potential evaporation (EP), defined as the rate of evaporation (E) that would occur under non-water-

stressed conditions, determines the upper boundary of E over a specific land surface for a given 25 

meteorological forcing. Although EP is more of a hypothetical variable and is generally very difficult to 

observe, it is often the starting point for partitioning rainfall between E, runoff, and soil moisture 

changes in hydrological, agricultural, ecological and other related studies (Maes et al., 2019; Milly and 

Dunne, 2016; Scheff and Frierson, 2014; Schellekens et al., 2017; Sheffield et al., 2012; Vicente-

Serrano et al., 2013; Wang and Dickinson, 2012). Over the years, numerous mathematical models have 30 

been proposed with varying structures and complexities to quantify EP (e.g., Allen et al., 1998; Priestley 

and Taylor, 1972; Penman, 1948; Shuttleworth, 1993; Thornthwaite, 1948). Among them, the Penman-

Monteith type models (e.g., either the Open Water Penman model (Shuttleworth, 1993) or the Food and 

Agriculture Organization Penman-Monteith model (Allen et al., 1998)) are most widely used, given 

their explicit consideration of the radiative and aerodynamic components of E, and are hence generally 35 

considered as a physical-based and accurate approximation of the real E processes.  
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Nevertheless, recent empirical evidence shows that the Penman-Monteith type models perform 

unsatisfactorily in estimating EP compared with eddy-covariance observations (i.e., the observed E 

under non-water-stressed conditions; Maes et al., 2019). Instead, the energy balance-based approaches 

work better in reproducing EP in both observations (Maes et al., 2019) and climate model simulations 40 

(Milly and Dunne, 2016). From an energy balance point of view, the magnitude of E (or in its energy 

form – latent heat flux or LE) is determined by the energy balance equation,  

n
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+
                                                                                                                                      (1) 

with Rn the net radiation (W m-2) and G the ground heat flux (W m-2), which is often negligibly small 

over land for time scales longer than a day. In Eq. (1), β is the Bowen ratio and represents the ratio of 45 

sensible heat flux (H) over LE (Bowen, 1926). As a result, LE is determined by the available energy at 

the evaporating surface (i.e., Rn – G) and the ability of that evaporating surface to convert the available 

energy into LE, which is represented by the 1/(1+β) term and often known as the evaporative fraction. 

With no restriction on water supply, β is known to be a decreasing function of temperature at the 

evaporating surface (Ts) (Aminzadeh et al., 2016; Andreas et al., 2013; Guo et al., 2015; Philip, 1987; 50 

Priestley and Taylor, 1972; Slatyer and McIlroy, 1961; Yang and Roderick, 2019). This implies that 

when water is not limiting, both Ts and the available energy determine the rate of E. Hence, with fixed 

available energy, a higher Ts corresponds to a lower β (or a higher evaporative fraction) and therefore a 

larger LE. This line of reasoning has directly led to the development of energy balance-based 

evaporation models, including the classic Equilibrium evaporation approach (Slatyer and McIlroy, 1961) 55 

and the Priestley-Taylor evaporation model (Priestley and Taylor, 1972). Compared with Penman-

Monteith type models, the energy balance-based approach simplifies the representation of the 

aerodynamic component of E and usually takes the aerodynamic component of E as a fixed fraction of 

its radiative counterpart (e.g., 0.26 in the Priestley-Taylor model). 

However, a key issue in the above energy balance-based approach is that it takes Rn to be an 60 

independent forcing of E. A similar idea was also adopted in Penman-Monteith type models (Penman, 

1948; Monteith, 1965). Nevertheless, it is clear that Rn cannot be physically independent of either E or 

Ts. On one hand, a higher Ts corresponds to a higher outgoing longwave radiation and therefore a lower 
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Rn. On the other hand, a higher E is associated with a larger evaporative cooling, which lowers Ts and 

ultimately feedbacks to Rn. This latter process confirms that Ts is not independent of E. Consequently, 65 

the intrinsic interdependence between Rn, E and Ts has long been ignored in the state-of-art evaporation 

models that require Rn as model input (Yang and Roderick, 2019). 

To deal with the above issue, a recent study by Yang and Roderick (2019) explicitly considered the 

interdependence between radiation, Ts and evaporation and tested the new approach over global ocean 

surfaces. They found that with the increase of Ts, Rn decreases while evaporative fraction increases 70 

(since β decreases as Ts increases) in agreement with a number of previous studies (Aminzadeh et al., 

2016; Andreas et al., 2013; Guo et al., 2015; Philip, 1987; Priestley and Taylor, 1972; Slatyer and 

McIlroy, 1961). This generic and explicit trade-off between a lower Rn and a higher evaporative fraction 

with the increase of Ts directly yields a maximum evaporation along the Ts gradient according to Eq. (1) 

(Yang and Roderick, 2019, also see Sect. 2.2). This maximum evaporation emerges naturally from the 75 

Rn-Ts-E interactions and does not require a priori knowledge of Ts thereby alleviating the need for the 

assumption that Rn and Ts are independent of E in traditional evaporation models. As a result, the 

maximum evaporation theory does not consider Rn to be an independent forcing of E. Instead, it only 

requires the incoming and reflected solar radiation and an assumption that β decreases with the increase 

of Ts (see Sect. 2.2). Compared with observations of ocean surface evaporation and temperature, Yang 80 

and Roderick (2019) demonstrated the validity of the maximum evaporation theory over global ocean 

surfaces. Here, we test this new maximum evaporation theory over land by asking and answering two 

questions: does the theory recover the (i) observed E and (ii) does it recover the observed Ts? By 

recovering, we mean that the maximum E as per theory corresponds to the observed E and the Ts at 

which the maximum E occurs corresponds to the observed Ts under non-water-stressed conditions. 85 

Testing the maximum evaporation theory over land is important, as vegetation transpiration generally 

dominants the total evaporative flux over land (Jasechko et al., 2013; Lian et al., 2018), which is 

essentially different from ocean surfaces where the evaporative flux only consists of evaporation from 

open water surfaces. In addition, land surfaces usually have a larger surface roughness than ocean 

surfaces, which may result in a different energy partitioning (into sensible heat and latent heat) between 90 

the ocean and the land. Therefore, it is crucial to test the maximum evaporation theory over land to 
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determine whether saturated land behaves like the ocean surface and whether the maximum evaporation 

theory can be the basis of a new approach to estimating EP over land.  

2 Materials and methods 

2.1 Flux site observations 95 

Observations of daily actual evaporation (or latent heat flux), sensible heat flux, ground heat flux along 

with relevant meteorological variables, radiative fluxes and soil moisture were originally obtained from 

212 flux sites collected in the FLUXNET2015 database (http://fluxnet.fluxdata.org/data/fluxnet2015-

dataset/). Only days with the data quality metric for LE and H higher than 0.9 (on a scale of 0-1) were 

used. The daily scale variables were obtained based on 15-min/30min observations using the standard 100 

approach (Pastorello et al., 2015). The residual approach (i.e., assuming the observed H is correct and 

LE is considered as the residual of the energy balance equation) was used to recalculate the fluxes based 

on a forced energy balance closure at each flux site (Ershadi et al., 2014). We also used the Bowen ratio 

approach (Twine et al., 2000) to force the flux-site energy balance closure and this resulted in similar 

model performance (Supplementary Figure S1). Surface temperature for each site-day combination was 105 

calculated based on the observed longwave radiation following: 

lo li4
s

(1 )R R
T





− −
=                                                                                                                                      (2) 

where Rlo and Rli are respectively the outgoing and incoming longwave radiation, σ is the Stefan-

Boltzmann constant (5.67 × 10-8 W m-2 K-4) and ε is the surface emissivity, which is acquired from the 

MODIS (Moderate Resolution Imaging Spectroradiometer) emissivity product (i.e., MOD11A1 Version 110 

6; https://lpdaac.usgs.gov/products/mod11a1v006). The MOD11A1 surface emissivity has a daily 

temporal resolution and a 1 km spatial resolution. To obtain the emissivity for each EC flux site, we 

center on the pixel where the site is located and take the mean value of the 81 neighbouring pixels (9×9 

pixels) as the emissivity value of the site. For conditions when the MOD11A1 emissivity are not 

available, we deleted these site-days. 115 

To select a subset of observations at each flux site in which the actual evaporation is not limited by 

water availability, the energy balance criterion and the soil moisture criterion used by Maes et al (2019) 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
https://lpdaac.usgs.gov/products/mod11a1v006
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were adopted. Specifically, at each flux site, the evaporative fraction EF (i.e., EF=LE/(LE+H)) was first 

calculated and the unstressed measurements consisted of all days with EF exceeding the 95th percentile 

EF threshold at each site. Following that, we removed days with soil moisture (averaged over all 120 

measured depths) lower than 50% of the maximum soil moisture (taken to be the soil moisture at the 

98th percentile) at each site. In addition, any remaining site-days with daily EF lower than 0.6 were also 

removed. Finally, we removed days having a negative H value (account for ~5% of the total daily data) 

to avoid dealing with strongly advective conditions when accurate measurements are not guaranteed 

(Paw et al., 2000; Wilson et al., 2002). As a result, a total of 1128 non-water-stressed site-days from 86 125 

sites passed the above criterion and were used in this study (Figure 1 and Supplementary Table S1).  

2.2 The maximum evaporation model 

2.2.1 Overview of the maximum evaporation model 

The maximum evaporation model calculates evaporation from a wet surface based essentially on 

surface energy balance (Eq. (1)) with Rn and β both explicitly represented as functions of Ts (Yang and 130 

Roderick, 2019): 

n s

s

1
[ ( ) ]

1 ( )
LE R T G

T
= −

+
                                                                                                                             (3) 

In the above equation, the first term on the right-hand side (i.e., 1/[1+β(Ts)]) is the evaporative fraction, 

which is the ratio of the latent heat flux over the total available energy. Over wet surfaces, since the 

Bowen ratio decreases with Ts (Aminzadeh et al., 2016; Andreas et al., 2013; Guo et al., 2015; Philip, 135 

1987; Priestley and Taylor, 1972; Slatyer and McIlroy, 1961; Yang and Roderick, 2019), evaporative 

fraction increases with Ts. On the other hand, the second term on the right-hand side of Eq. (3) is the 

total available energy, which decreases with the increase of Ts as a higher Ts directly leads to a higher 

outgoing longwave radiation and hence a lower Rn (Yang and Roderick, 2019). As a result, the trade-off 

between a higher evaporative fraction and a lower Rn with the increase of Ts would naturally lead to a 140 

maximum LE along the Ts gradient according to Eq. (3). A previous study by Yang and Roderick (2019) 

have demonstrated that this naturally emergent maximum LE corresponds well to the actual LE over 

global ocean surfaces and the Ts at which the maximum LE occurs also corresponds to the observed sea 
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surface temperature. Here we will test whether this maximum evaporation approach is also valid over 

land under non-water-stressed conditions.  145 

2.2.2 Parameterization of Rn and   as a function of Ts 

To explicitly acknowledge the dependence of Rn on Ts, Rn(Ts) is expressed as: 

4 4
n s sn s s( ) ( )R T R T T T = + − −                                                                                                           (4) 

where Rsn is the net shortwave radiation (W m-2) and is taken to be unchanged with Ts. ΔT is the 

temperature difference between Ts and the effective radiating temperature of the atmosphere (Trad; 150 

assuming blackbody radiation, Trad=√Rli σ⁄
4

) and is parameterized as a function of atmospheric 

transmissivity and geographic latitude (Yang and Roderick, 2019), 

1 2 3exp( )T n n n lat = +                                                                                                                          (5) 

where τ is the atmospheric transmissivity for shortwave radiation (dimensionless) and is calculated as 

the ratio of incoming shortwave radiation at the Earth’s surface to that at the top of the atmosphere. The 155 

parameter lat is the geographic latitude (in decimal degrees), which is considered here to account for a 

longer pathway of short-wave radiation going through the atmosphere in higher latitudes compared to 

lower latitudes. n1, n2, and n3 are fitting coefficients. Using extensive data over the global ocean (n = 

202,794), Yang and Roderick (2019) determined the values of these coefficients to be n1=2.52, n2=2.38 

and n3=0.035, respectively. Here, we directly adopt these same coefficient values over land for two 160 

reasons: (i) the key processes governing the interactions between incoming and outgoing longwave 

radiations are essentially the same for ocean and land (mainly greenhouse gases that affect the vertical 

temperature structure of the atmosphere, and water vapor and aerosols that affect the formation of 

clouds), and (ii) there were many more samples available for parameterizing Eq. (5) over the ocean than 

that over land. Validation against observations from all 1128 non-water-limited site-days demonstrates 165 

an overall good performance of Eq. (5) in estimating ΔT over land under saturated conditions 

(Supplementary Figure S2).  

The Bowen ratio (β) is expressed as a function of Ts:  
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where m is a fitting coefficient. γ is the psychrometric constant (kPa K-1), and Δ is the slope of the 170 

saturation vapor pressure curve (kPa K-1), both of which are functions of Ts: 

P a

s

s

( )
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T

L T
 =                                                                                                                                        (7) 
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−
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where CP is the specific heat of air at constant pressure (1.01 kJ kg-1 K-1), Pa is the air pressure (kPa), es 175 

is the saturated vapor pressure (kPa). L is the latent heat of vaporization (kJ kg-1) and is calculated as 

weak function of temperature: 

3( ) 2.51 10 2.32 ( 273.15)s sL T T −  −=                                                                                                                          

(9) 

To apply the maximum evaporation model, an array of Ts (e.g., from 250 K to 330 K at an interval of 180 

0.1 K) is generated along with the observed Rsn and G and these are applied to Eq. (4) and Eq. (6) and 

then Eq. (3) to estimate LE at each corresponding Ts. The maximum evaporation is then located in that 

array as well as the surface temperature at which this maximum occurs (see Figure 3 for an example).  

3 Results 

The maximum evaporation theory is tested at 86 flux sites globally, covering a wide range of bio-185 

climates (Figure 1 and Supplementary Table S1). By pooling daily observations of H, LE and Ts across 

all 1128 site-days, we first obtain a generic β-Ts relationship as β = 0.27γ/Δ. Similarly, we also obtained 

a β-Ts relationship for each separate biome type as shown in Figure 2. By comparison, Yang and 

Roderick (2019) reported a β-Ts relationship over ocean as β = 0.24γ/Δ. This means that for the same Ts, 

β over land is generally larger than that over ocean. Interestingly, the ocean surface β-Ts relationship is 190 

identical to that in wetlands obtained here. These β-Ts relationships will be used in the following 

calculations of LE using the maximum evaporation approach.  
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To get an overview of how each of the energy fluxes varies with Ts we first examine the maximum 

evaporation theory using the pooled data over all 1128 site-days (Figure 3). Under this condition, the 

mean observed net shortwave radiation (Rsn) over all site-days is 176.6 W m-2 and G is 1.0 W m-2. Since 195 

Rsn is not directly dependent on Ts and G is negligibly small, the term Rsn minus G is held constant 

across the entire Ts range. With the increase of Ts, it is readily apparent that both outgoing and incoming 

longwave radiation (Rlo and Rli) steadily increase (see Sect. 2.2 for details about the coupling between 

Rlo and Rli), with Rlo increasing slightly faster than Rli, leading to a decreased net longwave radiation and 

thus a decreased Rn as Ts increases (Figure 3). With this and the observed generic dependence of β on Ts 200 

(β = 0.27γ/Δ, Figure 2), a maximum LE emerges along the Ts gradient that represents the interaction 

between decreasing Rn and increasing evaporative fraction as Ts increases. For the pooled dataset used 

here, the maximum LE (LEmax) is found to be 105.6 W m-2 and the corresponding Ts is 294.7 K, both of 

which are very close to the averages computed from all daily flux site observations (i.e., LEobs = 102.4 

W m-2 and Ts_obs = 292.3 K) (Figure 3). 205 

Having demonstrated the overall concept, we next perform the detailed calculations using data for all 

individual site-days (Figures 4-6). Using the same generic β dependence on Ts (β = 0.27γ/Δ), LEmax 

estimated from the maximum evaporation model agrees very well with flux site observations, yielding 

an R2 of 0.92, a root-mean-squared error (RMSE) of 14.6 W m-2 and a mean bias of 1.6 W m-2 (Figure 

4a). The performance of the maximum evaporation model improves slightly when the biome-specific 210 

model parameters are used (RMSE decreases to 14.1 W m-2 and mean bias decreases to 1.4 W m-2; 

Figure 4b). This result demonstrates that LEmax corresponds to the observed evaporation under well-

watered conditions across a broad range of bio-climates. In fact, when the previously identified ocean 

surface β-Ts relationship is adopted, the maximum evaporation approach performs only slightly worse 

than those based on the calibrated β-Ts relationship over saturated lands, yielding an R2 of 0.91, an 215 

RMSE of 14.8 W m-2 and a mean bias of 2.8 W m-2 (Figure 4c).  

We next test whether the maximum evaporation approach could recover Ts over the same saturated land 

surfaces. Similar to the test of LE, the three β-Ts relationships are respectively used. Results show that 

when the generic β-Ts relationship over land is used (i.e., β = 0.27γ/Δ), the Ts at which LEmax occurs 
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corresponds reasonably well to the observed Ts, with an R2 of 0.62, an RMSE of 4.3 K and a mean bias 220 

of 0.3 K (Figure 5a), indicating that the maximum evaporation approach is also able to recover Ts under 

saturated conditions. Again, the model’s performance in recovering Ts increases slightly when the 

biome-specific β-Ts relationships are used (Figure 5b). When the ocean surface β-Ts relationship is used, 

the model performs similarly in estimating the variability of Ts to that of the generic land β-Ts 

relationship (Figure 5c). However, the ocean surface β-Ts relationship (Figure 5c) results in a higher Ts 225 

mean bias compared to the β-Ts relationships obtained over land (Figure 5a).  

Different from most state-of-the-art evaporation models, the maximum evaporation approach does not 

rely on observed Rn (or independent Rn estimates) as model input but estimates Rn as a result of the Rn-

Ts-E interaction. Here, we also test the estimated Rn calculated using the maximum evaporation 

approach as the discrepancy between LEmax and LEobs is mainly caused by the slight difference between 230 

Ts_max and Ts_obs that leads to different Rlo and Rli (and thus a different Rn) to be used in the calculation of 

LEmax. It should be noted that since the observed shortwave radiation is used in the maximum 

evaporation model, validation of Rn is essentially the same as the validation of net longwave radiation. 

We find that the maximum evaporation model could satisfactorily reproduce the observed Rn when the 

generic land β-Ts relationship is used, as indicated by an R2 of 0.93, an RMSE of 14.4 W m-2 and a mean 235 

bias of 2.3 W m-2 (Figure 6a). Using biome-specific β-Ts relationships or the ocean surface β-Ts 

relationship does not considerably increase or decrease the model’s performance in estimating Rn 

(Figures 6b and 6c). 

4 Discussion 

Taking Rn and/or Ts (or near-surface air temperature) to be independent forcings has long been 240 

identified as a scientific concern in the use of evaporation models (Milly, 1991; Monteith and Unsworth, 

2013; Philip, 1987). Here, we test a maximum evaporation theory developed over the global ocean 

surface that addresses this concern by explicitly acknowledging the interdependence between radiation, 

surface temperature and evaporation (Yang and Roderick, 2019). Our new results show that there exists 

a maximum evaporation along the Ts gradient that corresponds to the observed evaporation under 245 



11 

 

saturated conditions over land (Figures 3 and 4). In addition, the Ts at which LEmax occurs also 

corresponds reasonably well to the observed Ts (Figures 3 and 5). These results mirror those found 

previously over the global ocean (Yang and Roderick, 2019). This is not a surprise since the basic 

principles are the same for a wet land surface and the ocean surface. These results suggest that saturated 

land surfaces behave essentially the same as ocean surfaces and imply that LEmax is a natural attribute of 250 

the land surface when water availability does not limit evaporation.  

A key assumption involved in the maximum evaporation model is that β decreases with the increase of 

Ts under saturated conditions. Nevertheless, this key assumption that β decreases with the increase of Ts 

under saturated conditions has been extensively validated in previous studies based on theoretical 

relationships (Philip, 1987; Priestley and Taylor, 1972; Slatyer and McIlroy, 1961; Lhomme, 1997) and 255 

in situ observations (Andreas et al., 2013; Guo et al., 2015; Yang and Roderick, 2019; also see 

Supplementary Figure S3). Moreover, our results also found this held over saturated lands (Figure 2). 

The original maximum evaporation study reported that β = 0.24γ/Δ over global ocean surfaces (Yang 

and Roderick, 2019). Here, we find the generic land surface coefficient increases to 0.27 (i.e., β = 

0.27γ/Δ, Figure 2) which indicates a slightly higher β over wet vegetated land than that over the ocean 260 

surface for the same Ts. This is biophysically reasonable, as the stoma of plant leaves represents an 

additional resistance to vapor transfer between the land and the atmosphere (Swann et al., 2016; Yang et 

al., 2019), which lowers the ability of a generic vegetated surface to convert available energy into LE 

for a given Ts, compared to open water surfaces. In addition, different surface roughness can also lead to 

different β-Ts relationships between the land and the ocean. Compared with the ocean surface that 265 

shows a tight β-Ts relationship (Yang and Roderick, 2019), the β-Ts relationships over saturated 

vegetated land are relatively weak with considerable scatter (Figure 2). This data scatter could be 

caused by several reasons. First, the observations by eddy covariance (EC) towers can be a source of 

uncertainty. This is threefold, including (i) the quality of the observations, (ii) the footprint within each 

EC tower may be heterogeneous (Lee et al., 2004; Paw et al., 2000), and (iii) whether the selected days 270 

are truly non-water-limited (however, see Supplementary Figure S4). Second, as is seen in Figure 2, 

different biome types exhibit different β-Ts relationships. This can be caused by different surface 

resistance and roughness between biome types and even between sites. Nevertheless, these data-based 
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limitations only have limited impacts on the model performance, as similar performance is obtained 

using both the generic β-Ts relationship (i.e., β = 0.27γ/Δ) and biome-specific β-Ts relationships (Figure 275 

4). Third, wind speed could be another factor that leads to the scatter. For the same surface roughness, a 

different wind speed will lead to a different aerodynamic resistance and therefore a different β. However, 

this effect is usually very small, as demonstrated by the long-standing similarity theory (the transfer of 

mass and heat share the same aerodynamic process in the lower atmospheric boundary layer; Monin and 

Obukhov, 1954). In fact, our findings that one can make a reasonable estimate of LE using a generic 280 

land or ocean β-Ts relationship instead of a site-specific relationship (Figure 4) imply that Rn is the 

primary determinant of LE over saturated surfaces. As evaporation tends to operate at its maximum 

strength, sensible heat (and β) are usually very small over warm saturated land surfaces. As a result, 

once Rn can be accurately determined, any reasonable β-Ts relationship (Figure 2) would result in a 

satisfactory LE estimate (Figure 4 and Supplementary Figure S5). Our result highlighted in Figure 3 285 

shows that Rn (and hence LE) is only a weak function of Ts and this explains why one can obtain an 

accurate estimate of LE using a generic β-Ts relation. However, the same logic also leads to the 

conclusion that an accurate β-Ts relationship will be necessary to estimate Ts, since Ts is very sensitive to 

changes in LE (Figure 3). In this regard, using the land β-Ts relationships (preferably site-specific 

relations) is preferable to a generic ocean surface relation (Figure 5). To further demonstrate the above 290 

points, we conduct an uncertainty test by varying the coefficient m in the β-Ts relationship in 

Supplementary Figure S6. We find that when m ranges from 0.18 to 0.36 (all other forcings as per 

Figure 3), the change in estimated LEmax is only 9 W m-2 (101.7 – 110.7 W m-2), whereas the change in 

estimated Ts_max is as high as 11.6 K (287.9 – 299.5 K). 

Besides the data scattering that leads to an uncertainty in the β-Ts relationships, there are also 295 

uncertainties associated with (i) parameterization of the longwave coupling and (ii) selection of non-

water-stressed observations in the current study. In the maximum evaporation approach, the coupling 

between outgoing and incoming longwave radiation is calculated using the temperature difference 

between the surface and an effective radiating height in the atmosphere (ΔT) and is parameterized as a 

function of shortwave atmospheric transmissivity and geographic latitude. However, the shortwave 300 

atmospheric transmissivity is primarily affected by aerosols while the longwave transmissivity is mainly 
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affected by the concentration of greenhouse gases. Nevertheless, here we only deal with wet conditions, 

under which the vapor concentration of the atmosphere is also relatively high and more aerosols would 

favor the development of more clouds that simultaneously affect both shortwave and longwave 

radiations. We suspect that this underlies the excellent performance of Eq. (5) in estimating ΔT at the 305 

flux sites (Supplementary Figure S2). To further evaluate that conclusion, we additionally evaluate the 

estimated longwave radiation against four global products (i.e., ERA5, Hersbach et al., 2019; CERES, 

Kato et al., 2018; the Princeton global forcing data, Sheffield et al., 2006; the GLDAS global forcing 

data, Rodell et al., 2004) and compare our longwave estimates with other two semi-empirical models 

(i.e., Brutsaert, 1975 and Shakespeare and Roderick, 2021). The results show our ΔT-based approach to 310 

be the best performer across a wide of conditions when the surface is wet (Supplementary Figure S7). In 

addition, we further note that our maximum evaporation model is only tested at the daily time scale 

(Figures 4-6) and longer (Figure 3). In particular, for time scales shorter than that (e.g., hourly), the 

diurnal cycle of E can be very different for ocean and land surfaces (Kleidon and Renner, 2017). In 

addition, the parameterization of the coupling between incoming and outgoing longwave radiation via 315 

Eq. (5) requires a time scale that is long enough to allow the surface heat fluxes to be fully redistributed 

through the atmospheric column (Yang and Roderick, 2019). At sub-daily scales, Eq. (5) is likely 

invalid because Rlo usually exhibits a larger diurnal range than Rli during a typical cloudless day 

(Monteith and Unsworth, 2013). For even longer periods, especially for assessing the impacts of climate 

change, the relationship between shortwave and longwave radiations used herein may be also invalid, as 320 

we expect this relationship to evolve with anthropogenic climate change.  

As for the selection of non-water-stressed evaporation observations from global EC towers, we rely 

largely on the same selection criteria used in a previous study (Maes et al., 2019). However, these 

selection criteria are somewhat subjective and represent a compromise between better data quality and 

more data samples. As a result, the selected site-days are not necessarily non-water-limited. 325 

Nevertheless, varying the selection criteria (changing the thresholds) of non-water-stressed evaporation 

only resulted in minor changes in the overall model performance (Supplementary Figure S4), which 

suggests that the uncertainties in the selection of non-water-stressed evaporation observations would not 

materially change our conclusion.  
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The ability of the maximum evaporation model to recover LE and Ts over vegetated lands under 330 

saturated conditions has an important implication for the estimation of potential evaporation, which is a 

central concept in hydrology and agriculture (and especially in irrigation). The underlying idea of EP is 

straightforward – it is the evaporation that would occur with an unlimited supply of water. However, the 

formal physical definition of EP has been widely debated in the literature (Brutsaert, 2005; Donohue et 

al., 2010; Granger, 1989; Nash, 1989) and the calculation of EP using conventional evaporation models 335 

is problematic (Aminzadeh et al., 2016; Roderick et al., 2015). The key scientific issue is that the 

meteorological forcing variables observed over actual surfaces are generally not equivalent to the 

meteorological variables that would be measured over a hypothetical surface with an unlimited water 

supply. Compared with existing evaporation models, the maximum evaporation model presented here 

requires fewer meteorological variables than existing approaches (but performs similarly with existing 340 

approaches under wet conditions, see Supplementary Figure S8 for details). This new approach only 

requires the incoming and reflected solar radiation, a relationship that describes a decreasing 

dependence of β on Ts, and a relation for the coupling of the incoming and outgoing longwave radiation. 

With these modest requirements, LEmax naturally follows from the physical interdependence between 

radiation, surface temperature and evaporation. These features suggest that the maximum evaporation 345 

model can be used to make a strictly independent estimate of EP. In fact, the maximum evaporation 

formulation directly maps to one particular definition of Ep that was proposed by Brutsaert (2015) as 

“the maximum evaporation that would occur over real surfaces with the actual solar forcing and a 

prescribed Bowen ratio”.   

5 Conclusions 350 

In this study, we test a maximum evaporation theory that explicitly acknowledges the interdependence 

between radiation, surface temperature and evaporation over saturated land surfaces. Validated against 

flux site observations, we show that the maximum evaporation approach could recover the observed 

evaporation across a broad range of bioclimates. In comparison, although the model is also able to 

reasonably recover the observed Ts, the model’s performance in recovering Ts is not as good as that for 355 

LE. Nevertheless, this does not materially lead to larger errors in LE estimates, as we additionally 
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demonstrate that LE is not sensitive to Ts changes. The overall good performance of the maximum 

evaporation approach over saturated surfaces implies a great potential of the method to be used for 

estimating potential evaporation. To calculate EP in practice using the maximum evaporation approach, 

a detailed site (or biome) specific β-Ts relationship (e.g., Figure 2) would be favorable; otherwise, a 360 

generic default β-Ts relationship (β = 0.27γ/Δ or even β = 0.24γ/Δ) can also lead to a reasonable EP 

estimate that remains consistent with the EP definition by Brutsaert (2015). Supplementary Table S2 

gives a worked example of applying the maximum evaporation model for EP estimation. 
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Figure 1. Location of the 86 flux sites used in this study. Numbers in the brackets indicate the number 

of sites for each biome type.   

 

 

Figure 2. Relationship between Bowen ratio (β) and surface temperature (Ts) over saturated land 520 

surfaces. The thick black curve represents the fitted β-Ts relationship across all data points (i.e., n=1128, 

β = 0.27γ/Δ, R2=0.11, p<0.001), and the colored lines represent different biome types with the number 

of data points (n site-days) and fitted β-Ts relationship for each biome type shown in the legend.  

 



24 

 

 525 

Figure 3. Variation of energy fluxes with Ts. Plot shows how the energy fluxes vary with Ts for a fixed 

value of Rsn – G at 176.6 W m-2 (Rsn is the net shortwave radiation, see Eq. (4) in Sect. 2.2). The red dot 

indicates the maximum evaporation and the red triangle shows the observed evaporation. The Ts at 

which the maximum evaporation occurs is shown by the dashed vertical line.  
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Figure 4. Comparison of the maximum evaporation and observed evaporation over saturated land 

surfaces using three different β-Ts relationships. (a) Generic land β-Ts relationship (β = 0.27γ/Δ, n = 

1128). (b) Biome-specific β-Ts relationships (per Figure 2). (c) Ocean surface β-Ts relationship (β = 

0.24γ/Δ, Yang and Roderick, 2019). The colors indicate different biome types (as provided in Figure 1). 535 

The dashed black line indicates the 1:1 line.  
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Figure 5. Comparison of the estimated and observed surface temperature over saturated land surfaces 

using three different β-Ts relationships. Comparison of estimated surface temperature (Ts_max) with flux 540 

site observations (Ts_obs). (a) Generic land β-Ts relationship (β = 0.27γ/Δ, n = 1128). (b) Biome-specific 

β-Ts relationships (per Figure 2). (c) Ocean surface β-Ts relationship (β = 0.24γ/Δ, Yang and Roderick, 

2019). The colors indicate different biome types (as provided in Figure 1). The dashed black line 

indicates the 1:1 line.  
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Figure 6. Comparison of the estimated and observed net radiation over saturated land surfaces using 

three different β-Ts relationships. Comparison of estimated net radiation (Rn_max) with flux site 

observations (Rn_obs).  (a) Generic land β-Ts relationship (β = 0.27γ/Δ, n = 1128). (b) Biome-specific β-

Ts relationships (per Figure 2). (c) Ocean surface β-Ts relationship (β = 0.24γ/Δ, Yang and Roderick, 550 

2019). The colors indicate different biome types (as provided in Figure 1). The dashed black line 

indicates the 1:1 line.  


