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Abstract. Precipitation forecasting is an important mission in weather science. In recent years, data-9 

driven precipitation forecasting techniques could complement numerical prediction, such as precipitation 10 

nowcasting, monthly precipitation projection and extreme precipitation event identification. In data-11 

driven precipitation forecasting, the predictive uncertainty arises mainly from data and model 12 

uncertainties. Current deep learning forecasting methods could model the parametric uncertainty by 13 

random sampling from the parameters. However, the data uncertainty is usually ignored in the forecasting 14 

process and the derivation of predictive uncertainty is incomplete. In this study, the input data uncertainty, 15 

target data uncertainty and model uncertainty are jointly modeled in a deep learning precipitation 16 

forecasting framework to estimate the predictive uncertainty. Specifically, the data uncertainty is 17 

estimated a priori and the input uncertainty is propagated forward through model weights according to 18 

the law of error propagation. The model uncertainty is considered by sampling from the parameters and 19 

is coupled with input and target data uncertainties in the objective function during the training process. 20 

Finally, the predictive uncertainty is produced by propagating the input uncertainty and sampling the 21 

weights in the testing process. The experimental results indicate that the proposed joint uncertainty 22 

modeling and precipitation forecasting framework exhibits comparable forecasting accuracy with 23 

existing methods, while could reduce the predictive uncertainty to a large extent relative to two existing 24 

joint uncertainty modeling approaches. The developed joint uncertainty modeling method is a general 25 

uncertainty estimation approach for data-driven forecasting applications. 26 

1 Introduction 27 

 Precipitation is a key hydrometeorological variable in earth system science, and is the main driving 28 
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factor of floods and droughts (Xu et al., 2019). In the year of 2019, the flood disaster driven by extreme 29 

precipitation caused a direct economic loss of 29.6 billion dollars in China, and the drought disaster led 30 

to a crop production loss of 23.6 billion kilograms (http://www.mwr.gov.cn/sj/#tjgb). Accurate 31 

precipitation forecasting is vital for the early warning of flood and drought, smart city management and 32 

agricultural water resources allocation (Van Den Hurk et al., 2012; Pozzi et al., 2013). However, the 33 

precipitation forecasting problem suffers from uncertainties from data, algorithms and random factors 34 

(Reeves et al., 2014; Kobold and Sušelj, 2005; Xu et al., 2020b). The predictive uncertainty is a 35 

measurement of the spread of precipitation forecasting and could indicate how much the forecasted 36 

precipitation values fluctuate around the mean (Papacharalampous et al., 2020). Therefore, the 37 

uncertainty range should be given when generating precipitation forecasting results. 38 

 The precipitation forecasting methods can be divided into two categories: numerical weather 39 

forecasting and statistical machine learning. Numerical models consider the physical process of earth 40 

system and could simulate the interactions between atmospheres, oceans and lands (Sikder and Hossain, 41 

2016; Molinari and Dudek, 1992). Numerical models have strong physical meaning and are the dominant 42 

ways of operational precipitation forecasting. However, the forecasting ability of numerical models is 43 

limited due to the uncertainty in initial and boundary conditions, the imperfection of parameterization 44 

schemes and the uncertainty in parameters (Reeves et al., 2014). With the development of computer 45 

technology and machine learning algorithms, using random data-driven techniques for precipitation 46 

forecasting is becoming popular in recent years (Shi et al., 2015; Trebing et al., 2021; Sønderby et al., 47 

2020). The accuracy of data-driven methods is comparable to currently advanced numerical models in 48 

short-term (e.g. from hours to weeks) precipitation forecasting. For example, the convolutional long-49 

short term memory network is shown to outperform the physical optical flow method in precipitation 50 

nowcasting based on radar images (Shi et al., 2015). Another deep learning model called MetNet showed 51 

advantages over traditional numerical models in terms of the forecasting accuracy and running time for 52 

hourly precipitation prediction (Sønderby et al., 2020). The data-driven methods also exhibit appealing 53 

results in subseasonal to seasonal precipitation forecasting relative to numerical models (Boukabara et 54 

al., 2019; Chantry et al., 2021; Hwang et al., 2019). A key drawback of data-driven precipitation 55 

forecasting method is the lack of physical meaning, also known as black-box model. Despite this feature, 56 

data-driven statistical machine learning methods have been widely used for parameter calibration, data 57 
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processing, submodel replacement and process understanding among physical simulations (Ardabili et 58 

al., 2019; Sahoo et al., 2017; Reichstein et al., 2019). The data-driven learning techniques are strong 59 

complements to numerical models for the improvement of precipitation forecasting accuracy. 60 

 The predictive uncertainty in precipitation forecasting arises mainly from data and models (Gal, 61 

2016). The data uncertainty comes from external observation conditions, instruments and processing 62 

algorithms. The data uncertainty is usually examined by perturbing initial conditions in numerical models 63 

and producing a perturbed multi-model ensemble, which is widely seen in hydrometeorological ensemble 64 

forecasting (Xu et al., 2019; Gneiting and Raftery, 2005; Duan et al., 2019; Vitart et al., 2017). The data 65 

uncertainty is rarely investigated in data-driven precipitation forecasting and is often assumed to be 66 

accurate without error. The model uncertainty is often represented by an ensemble of perturbed model 67 

physics and parameters in numerical weather forecasting (Vitart et al., 2017; Kirtman et al., 2014; Taylor 68 

et al., 2012). In data-driven models, the model uncertainty is generally modeled by random regularization 69 

of parameters (Gal, 2016; Kendall and Gal, 2017). For linear regression, the parametric uncertainty is 70 

indicated by the standard deviation of trained parameters. In deep learning, the network layers could be 71 

randomly abandoned to prevent overfitting and generate a forecasted ensemble by Monte Carlo sampling 72 

(Kendall and Gal, 2017; Srivastava et al., 2014; Loquercio et al., 2020; Ghahramani, 2015). 73 

 The data and model uncertainties should be considered jointly in an integrated modeling framework 74 

to get the predictive uncertainty, as the data and model uncertainties could both inflate the predictive 75 

spread considerably (Gal, 2016; Kendall and Gal, 2017). It is expected that, the forecasting result would 76 

be more or less different if the used data and parameters are randomly sampled from the population. Data 77 

uncertainty is usually assumed as a constant or Gaussian distribution and could be propagated into final 78 

forecasting through error forward propagation (Loquercio et al., 2020; Xu et al., 2020a). If the data 79 

uncertainty is unknown, it can be learned from the training process by considering the data uncertainty 80 

as a trainable parameter (Kendall and Gal, 2017). However, the joint learning of data errors and model 81 

weights will increase the number of training parameters and may mix the error flow from data and 82 

parameters. A prior estimation of data uncertainty could help unravel the data error and facilitate the 83 

training process. On the other hand, previous forecasting studies usually model the input data uncertainty 84 

and ignore the uncertainty in the target (predictand) data (Kendall and Gal, 2017; Loquercio et al., 2020). 85 

The uncertainty in the target dataset also plays an important role in the parameter training process and 86 
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could influence the forecasting accuracy. 87 

There are two ways to estimate the data uncertainty. One is to use in-situ ground stations to calculate 88 

the systematic and random errors within the data and the other is to use multisource datasets to compute 89 

random error by intercomparison (Xu et al., 2021; Gruber et al., 2016; Sun et al., 2018). The in-situ 90 

validation method is limited to the number and density of ground stations and are suitable for small areas 91 

with enough station coverage. The second method is independent of the in-situ stations and requires 92 

multisource datasets with independent error distribution (Gruber et al., 2016). There are numerous 93 

precipitation datasets from various sensors and models and could be used to calculate precipitation data 94 

error at a large spatial scale (Xu et al., 2020b; Sun et al., 2018). Three-cornered hat (TCH) and triple 95 

collocation (TC) are two commonly used methods to evaluate the random error among multisource 96 

datasets, which do not require ground measurements as references (Premoli and Tavella, 1993; Mccoll 97 

et al., 2014; Stoffelen, 1998). The basic assumption of TCH and TC methods is the stationarity of both 98 

the raw dataset and its error, which may not be always satisfied for real-world data. Most of the existing 99 

studies assume that the used multisource datasets obey the stationarity condition when using TCH or TC 100 

methods (Xu et al., 2020b; Gruber et al., 2016; Gruber et al., 2017), which is useful for the determination 101 

of relative prior random error. 102 

In this study, we aim to quantify the predictive uncertainty of data-driven precipitation forecasting 103 

by fully considering the uncertainty from data and models. The data uncertainty is estimated by the TCH 104 

method a priori and is assumed as Gaussian distribution. The data uncertainty is propagated within model 105 

training by the law of error propagation. The parametric uncertainty is modeled by randomly abandoning 106 

some network layers during the training process. The data and model uncertainties are jointly considered 107 

in the objective function within a deep learning encoder-decoder framework. The forecasting 108 

experiments are conducted to see whether the accuracy of precipitation forecasting can be improved by 109 

joint data-model uncertainty modeling relative to several uncertainty processing strategies from the 110 

existing studies. 111 

2 Study area and data 112 

 The study area is located at southern and northern China, East Asia (Figure 1). The annual rainfall 113 

decreases from the southeast to the northwest, with an approximately average rainfall of 1500 mm in the 114 
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southeast regions and 300 mm in the northwest areas. Most of the southern areas feature a subtropical 115 

monsoon climate and the rainfall is relatively larger in summer and smaller in winter. From June to July 116 

in 2020, extreme precipitation hit the southern China (Wei et al., 2020) and caused a direct economic 117 

loss of 13.2 billion dollars. The precipitation forecasting in southern area of China is very challenging 118 

and meaningful. Previous studies use numerical models for precipitation forecasting in this area and show 119 

some values (Yuan et al., 2012; Luo et al., 2017). The northern area of China features the temperate moon 120 

and continental climates, with an annual rainfall of 400 to 800 mm and the main rainy season of July and 121 

August. Here we would like to explore the possibility of weekly precipitation forecasting by a data-driven 122 

deep learning method. 123 

 124 

Figure 1: The study area for short-term precipitation forecasting. 125 

 Multisource precipitation datasets are used here to obtain the data error and to measure the 126 

precipitation forecasting ability of different uncertainty processing strategies, including the Modern-Era 127 

Retrospective Analysis for Research and Applications, version 2 (MERRA-2) (Gelaro et al., 2017), the 128 

National Centers for Environmental Prediction Reanalysis version 2 (NCEP R2) (Saha et al., 2014) and 129 

the European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA-5) (Hersbach et 130 

al., 2020) datasets from 1980 to 2020. The surface 2-meter temperature and the geopotential height at 131 

500 hPa datasets are collected from the three datasets accordingly as predictors. All these daily datasets 132 
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are converted to weekly data and are bilinearly interpolated into 0.25 resolution. In the forecasting 133 

process, the temperature and geopotential height predictors in the historical three consecutive weeks are 134 

used to forecast the precipitation in the target week. 135 

3 Methods 136 

3.1. Estimation of data uncertainty 137 

 The TCH method (Xu et al., 2020b; Premoli and Tavella, 1993) is used to estimate the uncertainty 138 

in temperature, geopotential height and precipitation datasets. The collected three datasets are all 139 

reanalysis data, which is generated from different physical models and data assimilation algorithms. The 140 

different reanalysis datasets and their errors are generally not closely correlated and are regarded as 141 

collocated datasets for the uncertainty estimation, similar with existing studies (Xu et al., 2021; Mccoll 142 

et al., 2014; Gruber et al., 2017). In the TCH algorithm, one arbitrary dataset is chosen as the reference 143 

among the three datasets, and then the differencing operation is conducted between the reference and the 144 

other two datasets to get the differencing series. The covariance of the differencing series is connected 145 

to the variance-covariance matrix of precipitation datasets through matrix transformation. The 146 

parameters of the variance-covariance matrix are iteratively resolved by minimizing the global 147 

correlation of the covariance of the differencing series. A detailed introduction of TCH method could 148 

refer to Premoli and Tavella (1993) and Xu et al. (2020b). 149 

 The uncertainties of the predictors and predictands are estimated seasonally by the TCH method. 150 

The weekly datasets are grouped according to the weekly climatology and then used to estimate the 151 

uncertainty. For example, all the precipitation datasets which belongs to the first week of each year are 152 

concatenated to apply the TCH method in order to get the uncertainty of the datasets on the first week of 153 

each year. Similarly, the data uncertainty on the second week, third week and until the fifty-two week is 154 

evaluated sequentially. This strategy enables a time-variant uncertainty estimation, which is more 155 

reasonable as the precipitation climatology is different for different seasons. The NECP R2 and ERA-5 156 

data are used to assist the uncertainty estimation of MERRA-2 data by the TCH method, and the 157 

precipitation forecasting experiments are conducted based on MERRA-2 data to evaluate the proposed 158 

forecasting framework. 159 

https://doi.org/10.5194/hess-2021-432
Preprint. Discussion started: 25 August 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

3.2. Variational Bayesian inference 160 

 Here we introduce the variational inference theory (Hoffman et al., 2013), which is a standard 161 

Bayesian modeling technique for the estimation of model uncertainty. Given the input data X={x1,…,xN} 162 

and the output data Y={y1,…,yN}, the Bayesian regression is to find suitable parameters within the 163 

function y=fw(x) which could generate the output Y according to the input X. The parameters w is assumed 164 

to obey a prior distribution p(w) before the observations are known. When the observed data is obtained, 165 

it is possible to determine which parameters are more suitable for the function according to the data. A 166 

likelihood distribution p(y|x,w) is defined to describe the probability of y generated by x and w. For 167 

example, a Gaussian likelihood function is defined as 168 

𝑝(𝑦|𝑥, 𝑤) = 𝒩(𝑦; 𝑓𝑤(𝑥), 𝜏−1𝐼) 169 

 170 

 171 

 172 

 (1) 173 

where τ-1 is the observation noise. 174 

 Given the input data X and the output data Y, the Bayesian theorem is to find the posterior 175 

distribution of parameters in the parameter space. 176 

𝑝(𝑤|𝑋, 𝑌) =
𝑝(𝑌|𝑥,𝑤)𝑝(𝑤)

𝑝(𝑌|𝑋)
 177 

 178 

 179 

 180 

 (2) 181 

where the numerator p(Y|X) is the normalization factor, also named as model evidence. 182 

𝑝(𝑌|𝑋) = ∫ 𝑝(𝑌|𝑋, 𝑤)𝑝(𝑤)𝑑𝑤 183 

 184 

 185 
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 186 

 (3) 187 

 The solution of Equation (3) needs to marginalize the likelihood over w, which is tractable 188 

analytically for some simple models such as Bayesian regression, while is intractable for complex models 189 

such as deep learning methods (Gal, 2016). 190 

 Given the new input data x′, the forecasted value is generated by the integral of probability over the 191 

parameter space, which is called the inference process. 192 

𝑝(𝑦′|𝑥′, 𝑋, 𝑌) = ∫ 𝑝(𝑦′|𝑥′, 𝑤)𝑝(𝑤|𝑋, 𝑌)𝑑𝑤 193 

 194 

 195 

 196 

 (4) 197 

 Since the posterior distribution of parameters p(w|X,Y) cannot be obtained analytically, an 198 

approximate analytical distribution q(w) could be defined, with  as the parameter to be estimated, to 199 

be as close as the posterior distribution. The Kullback-Leibler (K-L) divergence (Kullback and Leibler, 200 

1951) is an indicator to measure the similarity of two distributions, also known as relative entropy. The 201 

objective function is to minimize the K-L divergence between the two distributions. 202 

𝐾𝐿(𝑞𝜃(𝑤)||𝑝(𝑤|𝑋, 𝑌)) = ∫ 𝑞𝜃(𝑤)𝑙𝑜𝑔
𝑞𝜃(𝑤)

𝑝(𝑤|𝑋, 𝑌)
𝑑𝑤 203 

 204 

 205 

 206 

 (5) 207 

 The optimal variational distribution 𝑞𝜃
′ (𝑤) is obtained when the K-L divergence is minimized. 208 

The estiamted variational distribution could be regarded as the posterior distribution of parameters and 209 

then the predictive distribution could be generated. 210 
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𝑝(𝑦′|𝑥′, 𝑋, 𝑌) ≈ ∫ 𝑝(𝑦′|𝑥′, 𝑤)𝑞𝜃
′ (𝑤)𝑑𝑤 =: 𝑞𝜃

′ (𝑦′|𝑥′) 211 

  212 

  (6) 213 

 The above inference process is the variational Bayesian inference. Variational inference replaces 214 

the integral of the likelihood with optimization, which simplifies the estimation of posterior distribution. 215 

3.3. Monte Carlo sampling 216 

 Monte Carlo method is a kind of stochastic simulation technology, proposed by Stanislaw Ulam 217 

and John von Neumann during the second world war (Von Neumann and Ulam, 1951). Monte Carlo 218 

methods are used to estimate unknown parameters by random sampling and are widely applied in 219 

mathematics, physics, game theory and finance (Brooks, 1998; Jacoboni and Lugli, 2012; Metropolis 220 

and Ulam, 1949; Rubinstein and Kroese, 2016). 221 

 In Equation (4), the posterior distribution p(w|X,Y) cannot be solved analytically. Assume Ui as the 222 

weight matrix KiKi-1 from i-1 layer to i layer, i.e. w={Ui}i=1,…,L, a variational weight distribution q(w) 223 

is defined to randomly replace the columns with zero (dropout process). 224 

𝑈𝑖 = 𝐻𝑖 ∙ 𝑑𝑖𝑎𝑔([𝑧𝑖,𝑗]𝑗=1
𝐾𝑖 )  225 

  226 

  (7) 227 

[𝑧𝑖,𝑗]~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖), 𝑖 = 1, … , 𝐿, 𝑗 = 1, … , 𝐾𝑖−1  228 

  229 

  (8) 230 

where pi and Hi are variational parameters; zi,j is a binary variable, with a value of zero representing the 231 

abandoning of jth unit in i-1 layer and a value of one the keeping, based on the Bernoulli distribution at 232 

the probability pi. 233 

 The predictive distribution is estimated after minimizing the K-L divergence. 234 

𝑞(𝑦′|𝑥′) = ∫ 𝑝(𝑦′|𝑥′, 𝑤)𝑞(𝑤)𝑑𝑤  235 
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  236 

  (9) 237 

 The predictive mean and variance can be obtained after repeating the dropout process multiple times. 238 

𝔼𝑞(𝑦′|𝑥′)(𝑦′) = ∫ 𝑦′𝑞(𝑦′|𝑥′)𝑑𝑦′ =239 

∫ 𝑦′𝒩(𝑦′; �̂�′(𝑥′, 𝑈1, … , 𝑈𝐿), 𝜏−1𝐼)𝐵𝑒𝑟𝑛( 𝑈1) ⋯ 𝐵𝑒𝑟𝑛(𝑈𝐿)𝑑𝑈1 ⋯ 𝑑𝑈𝐿𝑑𝑦′ =240 

∫ �̂�′ (𝑥′, 𝑈1, … , 𝑈𝐿)𝐵𝑒𝑟𝑛(𝑈1) ⋯ 𝐵𝑒𝑟𝑛(𝑈𝐿)𝑑𝑈1 ⋯ 𝑑𝑈𝐿 ≈
1

𝑇
∑ �̂�′(𝑥′, �̂�1,𝑡 , … , �̂�𝐿,𝑡)𝑇

𝑡=1   241 

  242 

  (10) 243 

𝑉𝑎𝑟
𝑞(𝑦′

|𝑥′
)
(𝑦′) ≈ 𝜏−1𝐼 +

1

𝑇
∑ �̂�′(𝑥′, �̂�1,𝑡 , … , �̂�𝐿,𝑡)

𝑇
�̂�′(𝑥′, �̂�1,𝑡 , … , �̂�𝐿,𝑡) −𝑇

𝑡=1244 

𝔼𝑞(𝑦′|𝑥′)(𝑦′)𝑇𝔼𝑞(𝑦′|𝑥′)(𝑦′)  245 

  (11) 246 

where 𝑢𝑡,𝑖 is the forecasted value for ith pixel and tth ensemble. The calculation of predictive variance 247 

is based on the standard deviation of the ensemble, which represents the spread of the forecasted values. 248 

The above Monte Carlo sampling and dropout process is the Monte Carlo dropout technique, which 249 

is used to obtain the model uncertainty here. 250 

3.4. Joint data and model uncertainties modeling 251 

 Dropout is a Bayesian method to model the model uncertainty in forecasting (Srivastava et al., 252 

2014). However, the data uncertainty also needs to be considered. Kendall and Gal (2017) regarded the 253 

data uncertainty as a trainable parameter and jointly considered data and model uncertainties. However, 254 

the predictand data uncertainty is ignored and the learning of data uncertainty increases the number of 255 

training parameters. Here we propose an integrated modeling framework to fully incorporate the data 256 

and model uncertainties during the training process (Figure 2). First, the data uncertainties of predictors 257 

and predictands are estimated by the TCH method and are assumed as Gaussian distribution. 258 

𝜎 = 𝑇𝐶𝐻(𝐷𝑖), 𝑖 = 1,2,3  259 

  260 
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  (12) 261 

𝜎𝑥~𝒩(0, 𝜎)  262 

  263 

  (13) 264 

𝜎𝑦~𝒩(0, 𝜎)  265 

  266 

  (14) 267 

The data uncertainty is randomly sampled T times to generate an ensemble of predictors and 268 

predictands. In the meantime, the parameters are randomly dropped out for T times to construct a 269 

parametric ensemble. The perturbed data and parameter values are jointly used to calculate the training 270 

loss. The objective function is expressed as follows (Kendall and Gal, 2017), which is obtained from the 271 

likelihood of a Gaussian process (Srivastava et al., 2014). 272 

ℒ(𝜃, 𝑝) = −
1

𝑁
∑ log 𝑝 (𝑦𝑖,𝜎|𝑓𝑈𝑖(𝑥𝑖,𝜎)) +

1−𝑝

2𝑁
‖𝜃‖2𝑁

𝑖=1  273 

  274 

  (15) 275 

𝜎 = √(𝜎𝒙
(𝑙)

)2 + 𝜎𝑦
2  276 

  277 

  (16) 278 

where N is the sample size; p is the dropout probability; �̂�𝑖𝑞𝜃
′ (𝑈);  is the parameter to be estimated; 279 

x and y are the data uncertainty for predictor and predictand, respectively. The negative log-likelihood 280 

function can be deduced according to the objective function. 281 

−log 𝑝 (𝑦𝑖,𝜎|𝑓𝑈𝑖(𝑥𝑖,𝜎)) ∝
1

2𝜎2 ‖𝑦𝑖 − 𝑓𝑈𝑖(𝑥𝑖)‖
2

+
1

2
log (𝜎2) 282 

  283 

  (17) 284 
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where  is the regression noise, with the mean of zero in a Gaussian distribution. 285 

The objective function consists of a mean square error (MSE) term adjusted by data uncertainty and 286 

a regularization term, which is the negative logarithm of the Gaussian likelihood function. The objective 287 

function includes an uncertainty parameter 2, which is determined by the sum of propagated uncertainty 288 

and target data uncertainty. The minimization of the negative log-likelihood function could be reached 289 

by differentiating the optimization function and setting to zero. 290 

𝜕

𝜕𝜎2 [
1

2𝜎2 ‖𝑦𝑖 − 𝑓𝑈𝑖(𝑥𝑖)‖
2

+
1

2
log (𝜎2)] = 0  291 

  292 

  (18) 293 

⟹ −
1

2𝜎4 ‖𝑦𝑖 − 𝑓𝑈𝑖(𝑥𝑖)‖
2

+
1

2𝜎2 = 0  294 

  295 

  (19) 296 

⟹ 𝜎2 = ‖𝑦𝑖 − 𝑓𝑈𝑖(𝑥𝑖)‖
2
  297 

  298 

  (20) 299 

where the minimum value of the negative log-likelihood function could be reached when the data 300 

variance equals to the square of the difference between the forecasted value and the observation. 301 

Once the network weights are determined according to the objective function, the new input data 302 

uncertainty is propagated and the weights are randomly sampled to produce the forecasted ensemble. 303 

The predictive mean and variance are calculated from the predictive ensembles. 304 

𝜇𝑖 =
1

𝑇
∑ 𝑦𝑡,𝑖

𝑇
𝑡=1   305 

  306 

  (21) 307 

𝑉𝑎𝑟𝑖 ≈
1

𝑇
∑ 𝑦𝑡,𝑖

2𝑇
𝑡=1 − (

1

𝑇
∑ 𝑦𝑡,𝑖

𝑇
𝑡=1 )

2

+
1

𝑇
∑ 𝜎𝑡,𝑖

2𝑇
𝑡=1   308 
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  309 

  (22) 310 

 311 

Figure 2: The proposed integrated data-model uncertainty modeling framework in precipitation 312 

forecasting. 313 

3.5. The deep learning forecasting framework 314 

 In deep learning, encoder-decoder is a commonly used forecasting model (Badrinarayanan et al., 315 

2017; Cho et al., 2014). In the encoder process, an input signal is converted into a one-dimension vector 316 

with fixed length. In the decoder process, the one-dimension vector is transformed into the target data 317 

with variable length. The available networks used for encoder and decoder processes are arbitrary and 318 

depend on the specific problem, such as convolutional neural network (CNN), recurrent neural network 319 

(RNN) and long-short term memory (LSTM) network (Hochreiter and Schmidhuber, 1997; Goodfellow 320 

et al., 2016). Here we designed a deep learning encoder-decoder model for weekly precipitation 321 

forecasting (Figure 3). The temperature and geopotential height data for previous three weeks are 322 

regarded as inputs, with an image size of 64646. In the encoder process, the input image is down-323 

sampled by a series of convolution, pooling and dropout operations, resulting in a one-dimension vector 324 

(112048). In the decoder process, the one-dimension vector is up-sampled by deconvolution, dropout 325 

and convolution operations, resulting in a forecasted precipitation image (64641). The down-sampling 326 

and up-sampling procedures are used to learn the nonlinear mapping relationships between predictors 327 

and predictands. 328 
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In the training process, the optimization algorithm is set to Adam (Kingma and Ba, 2014), which is 329 

a stochastic learning algorithm based on adaptive moment. The network learning rate is set to 0.001 and 330 

the stopping rule of iteration is that the validating error does not decrease for at least 100 times. The data 331 

uncertainty is propagated forward according to the law of uncertainty propagation and the dropout 332 

process is repeated 10 times with a dropout rate of 0.5. The random seed is set to 1 to enable the 333 

reproducibility of the experiment. The experimental data spans from 1980 to 2020 (2139 weeks), of 334 

which 60%, 20% and 20% of the data are used for training, validating and testing, respectively. The 335 

optimal model parameters are determined based on the minimal validating loss. 336 

 337 

Figure 3: The developed deep learning model for precipitation forecasting. 338 

 The proposed deep learning framework for precipitation forecasting is demonstrated in Figure 4. 339 

The input data and its uncertainty are prepared and are considered as inputs for the forecasting model. 340 

The model weights are initialized and the input uncertainty is propagated forward according to the 341 

weights. The loss function value is calculated according to the forecasted value, the propagated 342 

uncertainty, target data and its uncertainty. The forecasting model is trained according to the optimization 343 

algorithm and then the trained model is obtained. Next the test data is used to produce the forecasted 344 

value and variance based on the model weights and uncertainty propagation. Finally, the forecasted value 345 

and variance are evaluated and compared with several precipitation forecasting methods. 346 
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 347 

Figure 4: The proposed deep learning framework for precipitation forecasting. 348 

We designed a series of comparison experiments to investigate the effect of different uncertainty 349 

processing strategies on the forecasting performance. The precipitation forecasting experiment without 350 

considering uncertainty is used as the baseline (Experiment 1). The mean square error is used as the loss 351 

function and the data and model uncertainties are not considered in Experiment 1. The uncertainty 352 

sources are incorporated differently into the experiments, including predictor uncertainty (Experiment 353 

2), predictor and predictand uncertainties (Experiment 3), model uncertainty  based on Srivastava et al. 354 

(2014)’s method (Experiment 4), data and model uncertainties based on Kendall and Gal (2017)’s method 355 

(Experiment 5), data and model uncertainties based on Loquercio et al. (2020)’s method (Experiment 6), 356 

and data and model uncertainties (Experiment 7) based on the proposed framework here. The data 357 

uncertainty only includes the propagated uncertainty from the input data in Equation (16) in Experiment 358 

2, while the propagated uncertainty from the input data and the target data uncertainty are both included 359 

in Experiment 3. In Experiment 4, the data uncertainty is ignored and the model parameters are randomly 360 

sampled for 10 times to get the model spread. In Experiment 5, the input uncertainty is regarded as the 361 

trainable parameter and the trained uncertainty value is used as the data uncertainty in Equation (16), and 362 

the model uncertainty is considered the same way as Experiment 4. In Experiment 6, the input data 363 

uncertainty is propagated and the model uncertainty is modeled by sampling the parameters. In 364 
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Experiment 7, the input uncertainty is propagated and the target data uncertainty is included in Equation 365 

(16) and the model uncertainty is represented by multiple sampling process. 366 

The root mean square error (RMSE) statistic is used to measure the difference between forecasted 367 

value and true value. 368 

RMSE = √
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

𝑛
  369 

  370 

  (23) 371 

where yi is the true value or observation and ŷi is the forecasted value; n is the sample size. 372 

4 Results and discussion 373 

4.1. The uncertainty of input and output datasets 374 

 The data uncertainty of predictors and predictand is calculated based on the TCH method and is 375 

shown in Figure 5. The precipitation data uncertainty is much higher than  376 

 377 
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Figure 5: The data uncertainty calculated by the TCH method. The uncertainty distribution is plotted 378 

according to the uncertainty over all the pixels of the study area. The red cross indicates the outliers. 379 

the temperature and geopotential height variables, with a median of ~43% relative uncertainty fraction 380 

for precipitation, ~2% for temperature and ~1% for geopotential height. Therefore, the precipitation data 381 

suffer from greater uncertainty relative to the input data and the predictand uncertainty should not be 382 

ignored in the training process. The combination of the propagated input uncertainty and the predictand 383 

uncertainty is used as the adjusted parameter to regularize the loss function, which is relatively reasonable 384 

as the data with larger uncertainty should contribute less to the total training loss. It should be noted that 385 

the predictor and predictand data are normalized to [0,1] before uncertainty estimation to ensure a fair 386 

comparison of uncertainty value. The high uncertainty for precipitation data is related to strong 387 

spatiotemporal heterogeneity of precipitation and the high inconsistency among the reanalysis data (Xu 388 

et al., 2020b), while temperature and geopotential height data are much more homogeneous in space and 389 

time. 390 

4.2. Overall precipitation forecasting performance 391 

As for the predictive uncertainty, the forecasting method that only considers model uncertainty 392 

(Srivastava et al., 2014) obtains the minimum predictive uncertainty (Table 1). However, the data 393 

uncertainty is not considered when only sampling from the parameters and thus the impact of data error 394 

on forecasting is not evaluated. In Kendall and Gal (2017)’s method, the data uncertainty is regarded as 395 

a trainable parameter and the model uncertainty is modeled by random parameter sampling. Whether the 396 

learned parameter value for data uncertainty parameter could represent the real data error needs further 397 

investigation. Loquercio et al. (2020) used the law of uncertainty propagation to propagate the data 398 

uncertainty and sampled the parameters randomly during training. In our proposed method, the input 399 

data uncertainty, target data uncertainty and model uncertainty are jointly coupled by uncertainty 400 

propagation and random parameter sampling. The average predictive uncertainty (3.460) based on the 401 

proposed method is smaller than the Loquercio et al. (2020)’s and Srivastava et al. (2014)’s methods. In 402 

this regard, the proposed method could reduce the predictive uncertainty of precipitation forecasting to 403 

some extent, when jointly modeling data and model uncertainties. The proposed method could slightly 404 

improve the precipitation forecasting performance and could improve the reliability of precipitation 405 

forecasting by reducing the uncertainty. 406 

When only the input uncertainty is modeled in the forecasting model, the predictive uncertainty is 407 

12.950. If the target data uncertainty is coupled with input uncertainty, the predictive uncertainty is 408 

substantially reduced (3.022). In Equation (20), when the predictive error on the right side of the equation 409 

reaches local minimum and remains unchanged basically, the left side of the equation includes the input 410 
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uncertainty propagation and the target data uncertainty. When new data is used to make prediction, the 411 

predictive uncertainty is generated by the input uncertainty and the law of error propagation. Thus, when 412 

only the input uncertainty is modeled in Equation (20), the left side of this Equation equals to the 413 

propagated uncertainty from the input data. If the left side of the Equation (20) is replaced from the 414 

propagated input uncertainty with the combination of propagated input uncertainty and target uncertainty, 415 

the propagated input uncertainty after replacement will be smaller than that of no replacement, i.e. 416 

(𝜎𝒙
(𝑙)

)2 = 𝜎2 − 𝜎𝑦
2 < 𝜎2 = ‖𝑦𝑖 − 𝑓𝑈𝑖(𝑥𝑖)‖

2
. 417 

Table 1. The accuracy of precipitation forecasting based on different uncertainty processing strategies. 418 

The best RMSE is shown in bold for each column. 419 

Uncertainty processing RMSE Uncertainty 

No uncertainty 25.357 - 

Predictor uncertainty 25.500 12.950 

Predictor and predictand uncertainties 25.932 3.022 

Model uncertainty (Srivastava et al., 2014) 25.368 1.778 

Data and model uncertainties (Kendall and Gal, 2017) 25.225 4.914 

Data and model uncertainties (Loquercio et al., 2020) 25.324 13.169 

Data and model uncertainties (This study) 25.199 3.460 

4.3. Spatial patterns of precipitation forecasting 420 

 In Figure 6, the spatial patterns of the RMSE for precipitation forecasting demonstrate some 421 

similarities and differences between different uncertainty processing strategies. Overall, the spatial 422 

distribution of RMSE is similar with each other and is smaller in the northwest region but larger in the 423 

southeast region. In the places where the annual rainfall is abundant, the water cycle process is 424 

accelerated and the precipitation observations may suffer from large uncertainty. The difficulty of 425 

forecasting extreme high precipitation volume also increases the average RMSE in the southeast region 426 

relative to the northwest region (Yuan et al., 2012; Huang et al., 2013). There are some differences of the 427 

forecasting error among different forecasting methods in local areas. For example, the forecasting 428 

performance based on our proposed method could outperform the methods in Experiments 1, 2 and 4 429 

and is comparable with the methods in Experiments 3, 5 and 6 for the local areas covered by black circles 430 

in Figure 6. 431 
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 432 

Figure 6: The spatial patterns of RMSE for precipitation forecasting. In this figure, x means the modeling 433 

of input uncertainty; x+y represents the modeling of input and output uncertainty; x+y+ indicates the 434 

modeling of input uncertainty, output uncertainty and model uncertainty. The black circles represent the 435 

highlighted areas. 436 

 437 

 Figure 7 demonstrates the impact of different uncertainty processing methods on the predictive 438 

uncertainty of precipitation. If only the input uncertainty is considered in the forecasting model, the 439 

predictive uncertainty is large in the central and southwest regions. The predictive uncertainty could be 440 

substantially reduced when incorporating the target data uncertainty besides the input uncertainty. The 441 

modeling of model uncertainty only could produce the minimum predictive uncertainty spatially in the 442 

experiment. The predictive uncertainty is relatively small based on Kendall and Gal (2017)’s method. In 443 

Loquercio et al. (2020)’s method, the predictive uncertainty is close to the result of input uncertainty 444 

modeling in space, suggesting that the coupled modeling of input and model uncertainties fails to help 445 

reduce the forecasting spread. Our proposed method could include the input, target and model 446 

uncertainties jointly and could help reduce the predictive uncertainty to a large extent, relative to the 447 

methods in Experiment 2 and 6. 448 
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 449 

Figure 7: The spatial patterns of uncertainty for precipitation forecasting. 450 

4.4. Uncertainty analysis and discussion 451 

 In precipitation forecasting, data and model uncertainties both bring uncertainty to the forecasting 452 

result. The higher the data and model uncertainties, the more divergent the forecasting, suggesting the 453 

forecasting less reliable. Therefore, the data and model uncertainties should be jointly considered in the 454 

forecasting process (Gal, 2016; Kendall and Gal, 2017; Loquercio et al., 2020; Parrish et al., 2012). 455 

Although the predictive error is close to each other among different forecasting methods in Figure 6 and 456 

Table 1, the predictive uncertainty has some discrepancies. The modeling of input uncertainty only in the 457 

forecasting model would bring high predictive uncertainty and ignore the target data uncertainty. The 458 

joint modeling of input and target uncertainties could reduce the predictive uncertainty substantially, 459 

which is related to the change of the variance in Equations (16) and (20) corresponding to the minimum 460 

value of the forecasting error term. The propagation of input uncertainty is constrained by refining the 461 

uncertainty representation in Equation (16) after incorporating the target uncertainty term and thus 462 

changing the weight training process. 463 

The proposed method in this study could model the input uncertainty, target uncertainty and model 464 
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uncertainty jointly and could reduce the predictive uncertainty relative to Kendall and Gal (2017)’s and 465 

Loquercio et al. (2020)’s methods. The developed method does not increase the training parameter and 466 

is a general forecasting uncertainty method for geophysical applications such as temperature forecasting, 467 

runoff forecasting and wind speed forecasting, especially for data-driven forecasting models (Ham et al., 468 

2019; Zheng et al., 2020; Hossain et al., 2015). 469 

 In numerical precipitation forecasting systems, ensemble forecasting is commonly used to quantify 470 

the predictive uncertainty (Duan et al., 2019). In ensemble forecasting, the model parameters and data 471 

are perturbed to produce a forecasted ensemble and thus the data and model uncertainties are both 472 

considered. However, it would be time-consuming and cost-expensive to conduct large-sample sampling 473 

for complex physical models. In our developed method, the law of error propagation is used to propagate 474 

the data uncertainty. The uncertainty propagation of convolution, max-pooling and deconvolution in the 475 

deep learning forecasting model is tractable in an analytical form. However, the uncertainty propagation 476 

process is generally intractable analytically for complex statistical or physical models. Therefore, the 477 

theory and implementation technology for uncertainty modeling require further development, such as 478 

surrogate modeling, Monte Carlo methods, polynomial chaos expansions and Bayesian approaches 479 

(Linde et al., 2017; Sudret et al., 2017; Zhu and Zabaras, 2018; Schiavazzi et al., 2017; Nitzler et al., 480 

2020). 481 

5 Conclusion 482 

 In this study, we proposed a data-model uncertainty coupling framework to estimate the predictive 483 

uncertainty of precipitation forecasting. In this framework, the predictor and predictand uncertainties are 484 

estimated a prior by the TCH method and are assumed as Gaussian distribution. The predictor uncertainty 485 

is propagated forward during training and testing processes by the law of error propagation. The model 486 

uncertainty is represented by randomly abandoning model weights from deep learning layers. The data 487 

and model uncertainties are jointly modeled in the objective function during training and are also used 488 

during the testing process. The loss function is constructed by the MSE statistic adjusted by data 489 

uncertainty and a regularization term based on logarithmic data uncertainty. In the loss function, the 490 

adjusting parameter is determined by the combination of the square of predictor and predictand 491 

uncertainties. The forecasted ensembles are used to calculate the predictive mean and variance to estimate 492 
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the predictive uncertainty of precipitation. 493 

 The weekly precipitation forecasting in southern and northern China is used as an example to 494 

examine the effectiveness of the proposed joint uncertainty modeling framework. Temperature and 495 

geopotential height data in previous three weeks are used to forecast the precipitation in the target week. 496 

The forecasting model is developed based on an encoder-decoder deep neural network, with multivariate 497 

spatiotemporal predictor data as inputs and spatiotemporal precipitation data as output. The results 498 

exhibit comparable precipitation forecasting accuracy for the proposed method with several existing 499 

uncertainty processing strategies, while the predictive uncertainty is reduced relative to two data-model 500 

uncertainty modeling methods. The reduction of predictive uncertainty is significative for quantitative 501 

precipitation forecasting from a data-driven view. 502 

 The data-driven precipitation forecasting method has limitations in the interpretation part relative 503 

to numerical weather prediction. The precipitation forecasting accuracy for numerical models could still 504 

be improved by improving the parameterization schemes and resolving the uncertainties in observations, 505 

parameters and models. The proposed uncertainty modeling framework may also provide some insights 506 

for the uncertainty quantification in numerical prediction models. For example, the uncertainty 507 

propagation for the input data and the coupling with target data uncertainty could be used in a data 508 

assimilation scheme to estimate the propagated uncertainty in weather forecasting. 509 

 Data-driven precipitation forecasting could be used as a tool to assist regional prediction and 510 

warning of extreme weather events together with numerical models. The proposed joint data-model 511 

uncertainty modeling framework could help estimate the forecasting spread and is a general approach to 512 

derive predictive uncertainty for geophysical forecasting applications. Further research should focus on 513 

the non-Gaussian uncertainty modeling for complex integrated statistical-physical models. 514 

Data availability 515 

The meteorological data are publicly available and can be obtained via the website https://gma516 

o.gsfc.nasa.gov/reanalysis/MERRA-2/ for MERRA-2, https://psl.noaa.gov/data/gridded/data.ncep.rea517 

nalysis2.html for NCEP R2 and https://climate.copernicus.eu/climate-reanalysis for ERA-5. 518 
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