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Anonymous Referee #1 

Referee comment on "Quantifying the uncertainty of precipitation forecasting using 

probabilistic deep learning" by Lei Xu et al., Hydrol. Earth Syst. Sci. Discuss., 

https://doi.org/10.5194/hess-2021-432-RC1, 2021 

 

In the presented manuscript, a joint uncertainty modeling method is proposed. The input data 

uncertainty, target data uncertainty and model uncertainty are jointly modeled in a deep 

learning precipitation forecasting framework to estimate the predictive uncertainty. The 

results show that the proposed method can improve precipitiation forecasting accuracy and 

reduce predictive uncertainty. Having said that I am lost and confused. Here are some of my 

major concern regarding the presented study: 

 

Response: Thank you very much for the reviewing of our manuscript. We carefully address your 

concerns by re-doing the experiments, enriching and revising the analysis and discussions. 

 

Precipitation forecasting datasets are usually daily. In this study, the authors use three datasets 

are all daily. Why the authors convert the data to weekly data? In Line 134, the historical 

three consecutive weeks are used to forecast the precipitation in the target week. How to 

determine the “three” weeks? 

 

Response: The weekly precipitation forecasting is used as a case to demonstrate the efficiency of 

the uncertainty quantification method. The daily data is converted into weekly data because the 

weekly averaged datasets are used as predictors and the weekly total precipitation is regarded as the 

predictand in the forecasting experiment based on deep learning method. The predictors in the 

historical three consecutive weeks are used to forecast the precipitation in the target week. For 

example, the predictors in the first week, the second week and the third week (P1, P2, P3) are used 

to forecast the total precipitation in the fourth week. This is clarified in the revised manuscript. 

 

Why the authors use NCEP R2, ERA-5 and MERRA-2 data? For exsample, NCEP CFSv2 also 

have weekly precipitation forecasting data. In this study, MERRA-2 is used as the reference 

data. Do different reference data in the uncertainty estimation? 
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Response: The three datasets, NCEP R2, ERA-5 and MERRA-2, are used to obtain the prior 

uncertainty estimation of predictors and predictands based on the three-cornered hat method. The 

uncertainty estimation by the three-cornered hat method is independent on the selection of the 

reference dataset. Therefore, any of the three datasets can be the reference data for uncertainty 

estimation. 

 

How to determine the structure of the deep learning model in Figure 3? Besides the model 

parameters, the model structure can also generate uncertainty. Have the authors considered 

this part of uncertainty in this study? 

 

Response: The model structure is constructed based on Convolutional Neural Networks (CNNs). 

We plotted the detailed model structure in the revised manuscript (Figure 3). We agree that the model 

structure can also generate uncertainty in forecasting. Since the model structure is constructed by 

CNNs, the structural uncertainty comes from to what extent the model structure can represent the 

precipitation evolution process, which can be represented by the accuracy of forecasting (e.g. the 

R-square). As the model structure is fixed here, the parametric uncertainty is the major uncertainty 

for this model. The parametric uncertainty is derived by constructing an ensemble of forecasts by 

dropout method. 

 

Figure 3: The developed deep learning model for precipitation forecasting. 

 

Lines 423-424: In the places where the annual rainfall is abundant, the water cycle process is 

accelerated and the precipitation observations may suffer from large uncertainty. Why this 

uncertainty dosen’t exhibit in Figure 7? There are no larger uncertainty observed in the 

southern China in Figure 7. Is it contradictory? 

 

Response: We checked the programming code and found a mistake in latitude processing when 
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presenting the uncertainty. The spatial patterns of uncertainty for precipitation forecasting are shown 

blow after correcting the error. The spatial uncertainty of precipitation forecasting is listed as follow 

(Figure 8 in the revised manuscript). The spatial patterns of predictive uncertainty indicate larger 

uncertainty in the southern China relative to northern China, which is consistent with the knowledge 

that the water cycle in southern China is accelerated and precipitation forecasting may suffer from 

large uncertainty. This is clarified in the revised manuscript. 

 

Figure 8: The spatial patterns of uncertainty for precipitation forecasting. 

 

How to calculate RMSE and uncertainty in Table 1? Are they the average of all the grid cells? 



4 

 

How dose the uncertainty processing to improve forecasting accuracy and reduce predictive 

uncertainty? Why some methods have considered uncertainty processing but their RMSE 

increase compared with the no-uncertainty method? Loquercio’s method also considers the 

data and model uncertainties. Why the uncertainty of Loquercio’s method is so large? 

 

Response: The RMSE and uncertainty in Table 1 are calculated based on the averaged values of all 

the grid cells. The predictive accuracy generally increases with the uncertainty processing 

procedures. The predictive RMSE decreases when incorporating the predictor uncertainty 

processing relative to the prediction without uncertainty handling. Further improvement is expected 

when considering the predictor and predictand uncertainties from the data aspect, relative to the sole 

predictor treatment. The R-square exhibits slight improvement when incorporating model 

uncertainty (Srivastava et al., 2014) relative to the prediction without uncertainty processing. In 

Loquercio et al. (2020)’s method, the input data uncertainty and model uncertainty are both 

considered and the predictive performance increases relative to the no uncertainty and predictor 

uncertainty processings. In our method, the input data uncertainty, target data uncertainty and model 

uncertainty are jointly considered, reaching the lowest RMSE and the highest R-square relative to 

the above uncertainty processing methods. 

Table 2. The accuracy of precipitation forecasting based on different uncertainty processing strategies. 

The best RMSE and the highest R-square are shown in bold for each column. 

Uncertainty processing RMSE Uncertainty R-square 

No uncertainty 25.138 - 0.503 

Predictor uncertainty 25.065 14.729 0.517 

Predictor and predictand uncertainties 24.679 9.290 0.533 

Model uncertainty (Srivastava et al., 2014) 25.156 1.570 0.506 

Data and model uncertainties (Loquercio et al., 2020) 25.056 15.232 0.523 

Data and model uncertainties (This study) 24.531 10.859 0.539 
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Figure 11: The mean and standard deviation of squared weights of the precipitation forecasting model. 

The predictive uncertainty is closely related to the input data uncertainty and model weights. In 

Figure 2, the input data uncertainty is propagated into predictive uncertainty through model parameters, 

while the target data uncertainty is incorporated into the training process by the objective function. The 

incorporation of uncertainty processing changes the training process and the distributions of model 

weights (Figure 11). The last CNN layer (Layer 13) weights of the precipitation forecasting model are 

generally higher than the other layers, which may contribute largely to the predictive uncertainty by 

propagating the data uncertainty. The mean and the standard deviation of the squared weights of the last 

CNN layer for the Loquercio et al. (2020)’s method are higher than other uncertainty processing methods, 

suggesting an overall larger and more dispersive weight distribution for Loquercio et al. (2020)’s method 

than the others, which could partly explain the high uncertainty of the Loquercio et al. (2020)’s method 

in Table 2. 

Figure 7 demonstrates the difference of the predictive RMSE between other uncertainty processing 

approaches and the proposed method for precipitation forecasting. It can be seen that there is little 

difference of the predictive RMSE between the proposed method and other uncertainty processing 

approaches. However, the RMSE is larger for some uncertainty processing methods relative to the 

proposed method in some areas, including the Hainan and Taiwan provinces and part of eastern China. 

It is likely that the predictive RMSE is reduced in the proposed method by improving the prediction 
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performance in the areas with accelerated water cycle and abundant rainfall. The target data uncertainty 

is incorporated into the objective function to pay different attentions in space during the training process, 

leading to a different weight distribution of the forecasting model for the proposed method relative to 

others. The changing weight distribution improves the forecasting accuracy in the southeast areas by 

reducing the forecasting error of extreme precipitation. 

 

Figure 7: The difference of the predictive RMSE between the proposed method and other uncertainty 

processing approaches for precipitation forecasting. 

 

The section “results” is too brief. The authors may analyse how the proposed framework 

improve RMSE and uncertainties in detail, for example, the contribution of model uncertainty, 

input data uncertainty and target data uncertainty. 

 

Response: Thanks for your suggestions. The “results” section is expanded by including the 

contribution of model uncertainty and data uncertainty, the distribution of mode weights and the 

detailed analysis of how the proposed framework improves RMSE and uncertainties. 
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Figure 9 demonstrates the relationship between the predictive uncertainty by the proposed method and 

the summation of the predictive uncertainty from data and model. The predictive uncertainty by the 

proposed method (xy) agrees well with the summation of the predictive uncertainty from data and model, 

with a regressed slope of 1.004 and a R2 of 0.98, indicating the good consistency of the predictive 

uncertainty between joint and separate uncertainty modeling. The median predictive uncertainty is 8.04, 

1.40 and 9.49 mm for data, model and joint data-model uncertainty modeling, respectively in the 

precipitation forecasting experiments (Figure 10). The data and model uncertainty account for ~85% and 

~15% of the total predictive uncertainty by the proposed method respectively. The model structure is 

fixed in this study and thus the model uncertainty comes from mainly the parameters. The dropout 

method enables the random abandoning of network parameters over the specific layer and prevents the 

overfitting of the forecasting model. The distributions of model weights are changed when incorporating 

the data uncertainty into the objective function (Figure 11). The model weights become larger and more 

dispersive relative to the prediction without uncertainty processing or with model uncertainty 

consideration. The data uncertainty is propagated into the prediction through model weights and thus the 

data uncertainty contributes more to the predictive uncertainty than model uncertainty. Although the 

model weights appear more scattered, the predictive accuracy exhibits small improvement due to the 

uncertainty consideration in the objective function. 
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Figure 9: The relationship between the summation of predictive uncertainty from data (input and target 

data) and model and the predictive uncertainty from joint consideration of data (input and target data) 

and model. 
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Figure 10: The distributions of the predictive uncertainty from data, model and joint data-model 

modeling methods for precipitation forecasting. 

Figure 7 demonstrates the difference of the predictive RMSE between other uncertainty processing 

approaches and the proposed method for precipitation forecasting. It can be seen that there is little 

difference of the predictive RMSE between the proposed method and other uncertainty processing 

approaches. However, the RMSE is larger for some uncertainty processing methods relative to the 

proposed method in some areas, including the Hainan and Taiwan provinces and part of eastern China. 

It is likely that the predictive RMSE is reduced in the proposed method by improving the prediction 

performance in the areas with accelerated water cycle and abundant rainfall. The target data 

uncertainty is incorporated into the objective function to pay different attentions in space during 

the training process, leading to a different weight distribution of the forecasting model for the 

proposed method relative to others. The changing weight distribution improves the forecasting 

accuracy in the southeast areas by reducing the forecasting error of extreme precipitation. 

 

Minor comments:  

The abstract is not complete in my point of view. There are four parts in the abstract usually, i.e., 

background, method, results and conclusion. The results and conclusion are missing in the 

abstract.  

 

Response: Thank you for the instructive comments. The results and conclusion parts are added in 

the abstract in the revised version. 

The experimental results indicate that the proposed joint uncertainty modeling framework for 

precipitation forecasting exhibits better forecasting accuracy (improve RMSE by 1-2% and R-

square by 1-7% on average) relative to several existing methods, and could reduce the predictive 

uncertainty by ~28% relative to Loquercio et al. (2020)’s approach. The incorporation of data 

uncertainty in the objective function changes the distributions of model weights of the forecasting 

model and the proposed method can slightly smooth the model weights, leading to the reduction of 

predictive uncertainty relative to Loquercio et al. (2020)’s method. The predictive accuracy is 

improved in the proposed method by incorporating the target data uncertainty and reducing the 
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forecasting error of extreme precipitation. The developed joint uncertainty modeling method can be 

regarded as a general uncertainty modeling approach to estimate predictive uncertainty from data 

and model in forecasting applications. 

 

Line 150. Is it seasonal or weekly?  

 

Response: Thanks for pointing out this error. It’s weekly. 

 

Line 156. NECP or NCEP?  

 

Response: It should be NCEP. Corrected in the revised version. 

 

Lines 268-269. This sentence is unclear; what is the point the authors want to make with it?  

 

Response: We would like to express that the sampling methods are used to sample from the data 

distribution to produce ensemble forecasts. The sampling process is conducted both for predictor 

data and predictand data. This is clarified in the revised version. 

 

There are many symbols without introduction in Figure 2, such as 𝒙𝒏
𝒍 , 𝝈𝒏

𝒍 , etc. The 𝒙𝒏
𝒍  is also 

seen in Equation 16 without introduction.  

 

Response: Sorry for the unclear clarification. The unclarified symbols are explained in the revised 

manuscript. 

x and y are the predictor and predictand uncertainty, respectively. 𝑥𝑛
𝑙  and 𝜎𝑛

𝑙  represents the 

propagated data value and uncertainty, respectively, for the lth network layer. 

 

Lines 319-320. Which deep learning network is used in this study? CNN, RNN, LSTM or all of 

them? Please make it clear.  
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Response: The CNN network is used in this study. This is clarified in the revision. 

 

Line 376. Typographical error.  

 

Response: This error is corrected in revision. 

 

Lines 453-454. Please rephrase. 

 

Response: This sentence is rephrased as “The higher the data and model uncertainties, the more 

divergent and less reliable the forecasting”. 
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Anonymous Referee #2 

Referee comment on "Quantifying the uncertainty of precipitation forecasting using 

probabilistic deep learning" by Lei Xu et al., Hydrol. Earth Syst. Sci. Discuss., 

https://doi.org/10.5194/hess-2021-432-RC2, 2022 

 

This study attempts to improve the accuracy of precipitation forecasting by jointly considering 

multi-source data-model uncertainties in deep learning based modeling framework. A case 

study conducted in the southern and northern China showed that the developed modeling 

framework is effective to reduce the uncertainty in precipitation forecasting. In my opinion, 

this study is valuable and the methodology developed is based on rigorous mathematical 

formulas that is worthy of recognition. Some of my main comments are listed below 

 

Response: Thank you very much for the reviewing of our manuscript. 

 

Line 9-26. It is suggested that some summative results should be added to the Abstract. 

 

Response: Thanks for your suggestion. The key results are included in the abstract in the revision. 

The experimental results indicate that the proposed joint uncertainty modeling framework for 

precipitation forecasting exhibits better forecasting accuracy (improve RMSE by 1-2% and R-

square by 1-7% on average) relative to several existing methods, and could reduce the predictive 

uncertainty by ~28% relative to Loquercio et al. (2020)’s approach. The incorporation of data 

uncertainty in the objective function changes the distributions of model weights of the forecasting 

model and the proposed method can slightly smooth the model weights, leading to the reduction of 

predictive uncertainty relative to Loquercio et al. (2020)’s method. The predictive accuracy is 

improved in the proposed method by incorporating the target data uncertainty and reducing the 

forecasting error of extreme precipitation. The developed joint uncertainty modeling method can be 

regarded as a general uncertainty modeling approach to estimate predictive uncertainty from data 

and model in forecasting applications. 

 

Line 138-159. Adding some key formulas about the TCH algorithm can facilitate the 

understanding of whole framework. 

 

Response: Thanks. The key formulas for TCH method are added in the manuscript. 

 

Some variables in equations need further explanation, such as the ‘I’ in Equation (1). 

 

Response: We checked all the equations and symbols to make sure that all the variables are 

explained clearly. The I in Equation (1) is the identity matrix. 
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Line 209. Typographical error. Should be ‘estimated’ 

 

Response: This error is corrected. 

 

Line 349-366. There are many experimental settings. It is suggested to explain them in bullet 

points, or use a clearer presentation. 

 

Response: Thanks for your suggestion. A summary table is used to clearly express the experimental 

settings. 

Table 1. A summary of the experiment setup in this study. The √ and  symbol indicates that the specific 

factor is considered and omitted, respectively. 

Experiments 

Uncertainty processing 

Data uncertainty 
Model 

uncertainty 
Input data (predictor) 

uncertainty 

Target data (predictand) 

uncertainty 

Experiment 1    

Experiment 2 √   

Experiment 3 √ √  

Experiment 4 (Srivastava et 

al., 2014) 
  √ 

Experiment 5 (Loquercio et 

al., 2020) 
√  √ 

Experiment 6 (This study) √ √ √ 

 

Line 377. In Figure 5, it is recommended to plot the uncertainty estimation results of all 

datasets for visual comparison. 

 

Response: Sure. The uncertainty estimation for all datasets is plotted in the revision. 
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Figure 5: The data uncertainty calculated by the TCH method. The uncertainty distribution is plotted 

according to the uncertainty over all the pixels of the study area. 

 

Line 402: Add two numbers estimated by Loquercio et al. (2020)’s and Srivastava et al. 

(2014)’s methods for an intuitive comparison. 

 

Response: Thanks for your suggestion. The specific mathematical values are added in this sentence 

for intuitive comparison. The average predictive uncertainty (10.859) based on the proposed method is 

smaller than the Loquercio et al. (2020)’s method (15.232), and the predictive R2 is higher (0.539) than 

the latter (0.523). 

 

The Results Section lacks some detailed analysis on how the developed method can improve 

the prediction accuracy. 

 

Response: We added detailed analysis on how the proposed framework can improve the prediction 

accuracy. 

Figure 7 demonstrates the difference of the predictive RMSE between other uncertainty processing 

approaches and the proposed method for precipitation forecasting. It can be seen that there is little 

difference of the predictive RMSE between the proposed method and other uncertainty processing 
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approaches. However, the RMSE is larger for some uncertainty processing methods relative to the 

proposed method in some areas, including the Hainan and Taiwan provinces and part of eastern China. 

It is likely that the predictive RMSE is reduced in the proposed method by improving the prediction 

performance in the areas with accelerated water cycle and abundant rainfall. The target data uncertainty 

is incorporated into the objective function to pay different attentions in space during the training process, 

leading to a different weight distribution of the forecasting model for the proposed method relative to 

others. The changing weight distribution improves the forecasting accuracy in the southeast areas by 

reducing the forecasting error of extreme precipitation. 

 

Figure 7: The difference of the predictive RMSE between the proposed method and other uncertainty 

processing approaches for precipitation forecasting. 

 

Table 2. The accuracy of precipitation forecasting based on different uncertainty processing strategies. 

The best RMSE and the highest R-square are shown in bold for each column. 

Uncertainty processing RMSE Uncertainty R-square 

No uncertainty 25.138 - 0.503 

Predictor uncertainty 25.065 14.729 0.517 

Predictor and predictand uncertainties 24.679 9.290 0.533 
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Model uncertainty (Srivastava et al., 2014) 25.156 1.570 0.506 

Data and model uncertainties (Loquercio et al., 2020) 25.056 15.232 0.523 

Data and model uncertainties (This study) 24.531 10.859 0.539 

 

 

Figure 11: The mean and standard deviation of squared weights of the precipitation forecasting model. 

The predictive uncertainty is closely related to the input data uncertainty and model weights. In 

Figure 2, the input data uncertainty is propagated into predictive uncertainty through model parameters, 

while the target data uncertainty is incorporated into the training process by the objective function. The 

incorporation of uncertainty processing changes the training process and the distributions of model 

weights (Figure 11). The last CNN layer (Layer 13) weights of the precipitation forecasting model are 

generally higher than the other layers, which may contribute largely to the predictive uncertainty by 

propagating the data uncertainty. The mean and the standard deviation of the squared weights of the last 

CNN layer for the Loquercio et al. (2020)’s method are higher than other uncertainty processing methods, 

suggesting an overall larger and more dispersive weight distribution for Loquercio et al. (2020)’s method 

than the others, which could partly explain the high uncertainty of the Loquercio et al. (2020)’s method 

in Table 2. 

 


