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Abstract. The travel time distribution (TTD) is a lumped representation of groundwater discharge and solute export responding

to rainfall. It reflects the mixing process of water parcels and solute particles of different ages and characterizes reactive

transport progress in hillslope aquifers. As a result of the mixing process, groundwater leaving the system at a certain time is an

integration of multiple water parcels of different ages from different historical rainfall events. Under nonstationary rainfall input

condition, the TTD varies with transit groundwater flow, leading to the time-variant TTD. Most methods for estimating time-5

variant TTD are constrained by requiring either the long-term continuous hydrogeochemical data or the intensive computations.

This study introduces a multi-fidelity model to overcome these limitations and evaluate time-variant TTD numerically. In

this multi-fidelity model, groundwater age distribution model is taken as the high-fidelity model, and particle tracking model

without random walk is taken as the low-fidelity model. Non-parametric regression by non-linear Gaussian process is applied

to correlate the two models and then build up the multi-fidelity model. The advantage of the multi-fidelity model is that it10

combines the accuracy of high-fidelity model and the computational efficiency of low-fidelity model. Moreover, in groundwater

and solute transport model with low Péclet number, as the spatial scale of the model increases, the number of particles required

for multi-fidelity model is reduced significantly compared to random walk particle tracking model. The correlation between

high and low-fidelity models is demonstrated in a one dimensional pulse injection case. In a two dimensional hypothetical

model, convergence analysis indicates that the multi-fidelity model converges well when increasing the number of high-fidelity15

models. Error analysis also confirms the good performance of the multi-fidelity model.

1 Introduction

The travel time of water in a hillslope is defined as the time duration for a water parcel to travel from one location where rainfall

enters the aquifer to another location where groundwater exits the aquifer. Distinct water parcels can have very different travel

time due to the mixing processes in the hillslope. The travel time distribution (TTD) is a lumped probability density function20

that represents the probability distribution of travel time. If water parcels are sampled from hillslope outflow, the TTD of the

water parcels is defined as the backward TTD (bTTD); if the water parcels are tracked from rainfall input, the TTD of the water

parcels is defined as the forward TTD (fTTD). TTD encapsulates the hydrologic dynamic and solute transport processes into a

mathematic function and helps to study the time-varying transport and reaction processes in the hillslope, such as the genesis
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and transport of weathering products (Ameli et al., 2017; Maher, 2010, 2011) and the attenuation of contaminants (Queloz25

et al., 2015).

Based on the time-invariant assumption of TTD, many previous studies approximated the TTD by the Gamma (Γ) distribu-

tion or some other probability density functions (Hrachowitz et al., 2009, 2010; Kirchner et al., 2000; McGuire and McDonnell,

2006). The time-invariant TTD quantifies the yearly averaged behaviors of transport processes. However, when attempting to

explore the time variability of water and solute transport in hillslopes under nonstationary rainfall input condition, it is nec-30

essary to adopt the time-variant assumption of TTD. Hence, several theories and approaches have been developed in the last

decade to study the time-variant TTD.

The age master equation in accompany with the StorAge Selection (SAS) function (Botter et al., 2011) is one of the funda-

mental theories for these approaches. The age master equation is a storage mass balance equation characterizing the evolution

of storage age, namely the residence time. In the age master equation, the backward TTD quantifies the loss of age-tagged stor-35

age, and the SAS function relates the RTD with backward TTD. The SAS function illustrates how water parcels of different

ages are released from storage. It characterizes the selection preference during the outflow generation. There are three princi-

pal types of selection preference: selection preference for younger water, selection preference for older water and no selection

preference. In transient flow systems, the time-variant SAS function indicates the internal variability of the hydrologic system,

such as the temporal variability of flow paths. If the SAS function and storage volume are known based on prior information,40

the time-variant TTDs can be calculated by solving the age master equation analytically (Botter et al., 2011). However, in most

real cases, the SAS function is unknown and is inferred from observed tracers using the age master equation.

A common approach to calculate time-variant TTDs is by coupling the age master equation with observed tracer data

(Benettin et al., 2015a, b, c, 2017, 2013; van der Velde et al., 2015). This approach requires long-term continuous records of

rainfall rate, discharge rate and concentrations of the conservative tracer in both rainfall and discharge water. The approach45

generally employs an inverse modelling scheme to infer parameters in the adopted SAS function and age master equation.

The long-term time series data are used to calibrate the model. When the posterior distributions of model parameters are

estimated, time-variant TTD can be derived immediately from the age master equation. However, in many real catchments and

hillslopes, the long-term monitored solute concentrations are not available. This approach of solving the age master equation

mainly requires the information at the recharge and discharge boundaries and does not need to have extensive hydrogeological50

information inside the hillslope, so the approach cannot be used to study the internal factors controlling the time variation of

TTD and storage selection process, such as the influence of permeability architecture and preferential flow.

In addition to the approach to infer TTD based on age master equation, (Harman and Kim, 2014) developed an approach to

derive the time-variant TTD directly from the breakthrough curve (BTC) of tracers under periodic hydrologic condition. No

pre-assumption about the SAS function is needed in this approach. The time-variant TTD can be constructed by decomposing55

the overprinted BTC into the contributions of multiple input events. This approach has been applied to indoor experimental

hillslope successfully to explore the transport variability and storage-dependent TTDs (Kim et al., 2016; Pangle et al., 2017).

The periodic condition is easy to control in experimental hillslopes, but such a condition is rare in real-world hillslopes.
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Random walk particle tracking is another approach to simulate the time-variant travel time distribution. Given the hydroge-

ological properties and boundary conditions in hillslope, the flow field can be determined by solving the governing equation60

of groundwater flow. A set of particles are released at the input boundary and are tracked thereafter. The movement of each

particle depends on the transient flow field and molecular diffusion and mechanical dispersion. The molecular diffusion and

mechanical dispersion are approximated by random walk scheme. Several studies utilized this approach to analyze the time-

variant travel time distributions and compared the results of the SAS function from numerical simulations with analytical SAS

functions (Ameli et al., 2016a, b, 2017; Danesh-Yazdi et al., 2018; Kaandorp et al., 2018; Yang et al., 2018). This approach65

makes it convenient to study the relation between the internal variability of transport processes and time-variant TTD, such as

the variability of flow path and preferential flow. However, if the transport is strongly influenced by molecular diffusion and

mechanical dispersion indicating a low Péclet number, this approach requires releasing a large number of particles during each

input event to reduce the random noise when implementing the random walk scheme.

Time-variant travel time distribution can also be evaluated by groundwater age distribution model. This approach adds an70

age dimension to the governing equation of groundwater and solute transport (Benettin et al., 2013; Ginn et al., 2009; Gomez

and Wilson, 2013; Massoudieh and Ginn, 2011; Massoudieh, 2013). In a three dimensional (3D) transient flow system, it is

challenging to solve the five dimensional (5D) partial differential equation to obtain the groundwater age distribution. The five

dimensions consist of three spatial dimensions, one age dimension and one time dimension. Even so, there are some methods to

solve this 5D equation. Ginn et al. (2009) solved this equation numerically by directly discretizing this equation in a 5D space,75

but most current softwares or codes do not have the module to visualize and discretize the 5D space, let alone solve the 5D

equation. Gomez and Wilson (2013) solved this equation by tracking each rainfall input which requires solving breakthrough

curves for each rainfall event. Cornaton (2012) solved this equation numerically in a Laplace space. The advantage of this

groundwater age distribution model is that it is valid to depict advection-dispersion transport processes with any Péclet number.

In this study, a multi-fidelity model is proposed to quantify the time-variant TTD. It consists of two models with different80

levels of fidelities. The high-fidelity model is the groundwater age distribution model, and the low-fidelity model is the particle

tracking model without considering random walk. Nonlinear Gaussian process regression method is applied to relate the high-

fidelity with low-fidelity models. Then, the 5D governing equation of groundwater and solute transport can be solved and time-

variant TTD can be calculated by the multi-fidelity model. The multi-fidelity model takes advantages of both the efficiency of

low-fidelity model and the accuracy of high-fidelity model, so it is easier to be implemented numerically in real-world aquifers85

compared with previous methods especially for those aquifers with low Pécelt number and large spatial scale.

2 Theoretic framework of multi-fidelity model

The multi-fidelity model is designed to calculate TTD, RTD and SAS function by solving the equation of groundwater age

distribution. It combines the groundwater age distribution model and particle tracking model to evaluate the time-variant TTD

in a system. The two models which have different levels of fidelities will be introduced first.90
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2.1 Groundwater age distribution model

Due to the mixing process undergoing along groundwater flow lines, the groundwater or solutes sampled from a certain point is

a mixture of constituents (e.g., groundwater, solutes, and suspended colloids) of various ages. The groundwater age distribution

describes the portion of the constituent of a certain age τ at a point. The governing equation for groundwater age distribution

was primarily introduced by Ginn (1999) and is modified with variable saturation in this study as follows:95

∂φSwρ

∂t
+
∂φSwρ

∂τ
=∇ · (φSwD · ∇ρ)−∇ · (vρ) (1)

where φ is porosity; Sw is water saturation; v is Darcy velocity; D is the diffusion coefficient including molecular diffusion

and mechanical dispersion. ρ(x, t, τ) is the age density function of a constituent at time t and point x. If integrating ρ(x, t, τ)

along age-axis (τ -axis), the mass density c(x, t) of this constituent is obtained, that is,

c(x, t) =

∞∫

0

ρ(x, t, τ)dτ (2)100

The definition of mass density is the ratio of mass to volume. If the concerned constituent is water, mass density is the water

density and equal to 1 g/cm3; if the concerned constituent is solute, mass density is the solute concentration. Equation (1)

describes the evolution of the age of groundwater in the system in Eularian method. The groundwater age distribution can be

obtained by normalizing the age density function ρ(x, t, τ) over the mass density c(x, t), that is, ρ(x,t,τ)
c(x,t) . The transport of mass

density obeys the rules described in the following equation (3), i.e. the advection-dispersion equation (ADE) for conservative105

solute transport:

∂φSwc

∂t
=∇ · (φSwD · ∇c)−∇ · (vc) (3)

If groundwater flow is under steady state condition, the groundwater age distribution is a time-invariant distribution, i.e.,

ρ(x, t, τ) = ρ(x,0, τ) and c(x, t) = c(x,0), and the governing equation for groundwater age distribution (equation (1)) be-

comes:110

∂φSwρ

∂τ
=∇ · (φSwD · ∇ρ)−∇ · (vρ) (4)

Equation (4) is similar to the ADE in equation (3) and can be solved using the methods to solve the ADE.

However, if groundwater flow is under unsteady state condition, the groundwater age distribution is a time-variant distribu-

tion, which means that the age density function ρ(x, t, τ) and groundwater age distribution ρ(x,t,τ)
c(x,t) varies in both clock-time

t and field point x. As a result, the groundwater age distribution can only be obtained by solving equation (1) which is a 5D115

equation with 3 space dimensions, 1 clock-time dimension and 1 age dimension. Equation (1) resolves the evolution of age

distribution of a constituent in the system, and it is challenging to solve equation (1) either analytically or numerically.

Referring to the study of Gomez and Wilson (2013), one approach to obtain the numerical solution (i.e. ρ(x, t, τ)) of equation

(1) is to decompose equation (1) into a series of independent ADEs. Each ADE has a different initial condition. In this approach,
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the input time η is introduced as a new variable to replace the age variable τ , such that:120

η = t− τ (5)

ρ′(x, t,η) = ρ(x, t, τ) (6)

∂ρ

∂τ
=−∂ρ

′

∂η
;

∂ρ

∂t
=
∂ρ′
∂t

+
∂ρ′
∂η

(7)

Then equation (1) becomes:

∂φSwρ
′

∂t
=∇ · (φSwD · ∇ρ′)−∇ · (vρ′) (8)125

where ρ′ is age density function which represents the mass density of water entering the system at the time η as is shown

in equation (6). Equation (8) is similar to the ADE, i.e., equation (3), but they have different physical meanings, because the

variable ρ′ depends on the input time η. Equation (8) must be solved for each input event occurred during the study period.

The BTC at the discharge boundary for a certain input time η can be derived from ρ′:

BTC(τ,η) =
∫

∂Ω

(φSwvρ′−φSwD · ∇ρ′) ·ndΣdischarge (9)130

where τ is the travel time defined as the age at the discharge boundary Σdischarge. Therefore, equation (9) quantifies the

mass flux along the discharge boundary for a certain travel time. Since TTD can be decomposed into a series of overprinted

BTCs induced by different pulse injections (Harman and Kim, 2014), the time-variant TTDs at the outflow boundary can be

constructed by assembling these sets of BTCs.

The advantage of this approach is that it reduces the dimension of the problem by changing the age variable τ into the input135

time variable η, because the water from the same input event must have the same age. However, in real problems, the model

should be simulated for each input event to acquire a good resolution of age distribution. Therefore, in this study, the ADE for

a certain input event is defined as high-fidelity model. This high-fidelity model is required to run only a few times for several

input events in multi-fidelity model to capture the trend of the variation of age distributions and ensure the multi-fidelity model

unbiased.140

2.2 Particle tracking model

Particle tracking is a popular approach to model the time-variant TTDs based on Lagrangian advective transport. As all particles

are tagged with their own ages, the time-variant TTDs can be evaluated by counting the particles at the discharge boundary. To

simulate the molecular diffusion and mechanical dispersion of solutes, it is necessary to add an random walk velocity to the

advection velocity for each particle. Yang et al. (2018) used the random walk particle tracking model to evaluate time-variant145

TTD in an agricultural catchment. However, the random walk particle tracking model may suffer from random noise when the

number of particles released is insufficient to simulate the diffusion and mechanical dispersion behaviors. This random noise

is even inevitable if using particle tracking method in the problems with large space scales. Therefore, in this multi-fidelity

model, random walk velocity is excluded from particle velocity, and the particle tracking without considering random walk
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is defined as the low-fidelity model. Particles are released at the recharge boundary during each rainfall event. Each particle150

represents a certain volume of water parcels based on the rainfall infiltration rate. As the random walk velocity is not included

in the low-fidelity model, the random noise disappears, and the number of particles decreases drastically. Generally, as the

scale of the model becomes larger, more particles are required to be released in random walk particle tracking model, so the

number of particles in the low fidelity model decreases even more.

2.3 Analytical theorem for one dimensional scenario155

Prior to establishing the multi-fidelity model, the correlation between particle tracking model and ADE is investigated analyti-

cally in 1D condition. In the particle tracking model, a particle represents a pulse signal of water or solute entering the domain

at a certain injection time. The transport of the pulse signal in 1D domain is studied to illustrate the relation between the two

models. Assume the advection velocity is a constant in the entire domain, the transport of the pulse injection can be expressed

as:160

∂ρ′

∂t
=−v ∂ρ

′

∂x
(10)

with the initial condition:

ρ′ =Mδ (x−x0) (11)

where ρ′ is defined in equation (6); δ(x−x0) is the Dirac delta function which represents a pulse signal ocurred at the point

x0; M is the intensity of the pulse signal, namely the input mass density. The solution of equation (10) is explicative:165

ρ′ =Mδ (x− vt−x0) (12)

when considering molecular diffusion and mechanical dispersion in ADE, equation (10) is manifested as:

∂ρ′

∂t
=D

∂2ρ′

∂x2
− v ∂ρ

′

∂x
(13)

The analytical solution of equation (13) with respect to the initial condition of equation (11) at infinite domain is:

ρ′ =
M√
4πDt

e−
(x−vt−x0)2

4Dt (14)170

Comparing solution (14) with solution (12), it can be found that as the parameter D goes to zero, the bell-shape curve of

solution (14) converges to the Dirac delta function of solution (12), that is,

lim
D→0

M√
4πDt

e−
(x−vt−x0)2

4Dt =Mδ (x− vt−x0) (15)

This is consistent with the relation between the two governing equations: equation (13) has an additional diffusion term com-

pared with equation (10). Therefore, no matter under what boundary conditions, the solution of equation (13) will always175

converge to equation (12) when D approaches zero.

Theoretically, a mapping is capable of being setting up between the solutions (12) and (14) for a given hydrogeological

model if the diffusion parameter D is known. This is the theoretical foundation of the multi-fidelity model.
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2.4 Multi-fidelity model for arbitrary 2D/3D models

In the approach proposed by Gomez and Wilson (2013), the equation of groundwater age distribution is decomposed into a180

series of ADE to track the transport of water from each rainfall event separately, because the water from the same rainfall event

always has the same age. The ADE can be solved either by numerical simulation or by random walk particle tracking model.

For random walk particle tracking model, the problem of random noise has already been discussed in the previous section.

For the numerical simulation method, it should be run separately for each rainfall input, or a different chemical species need

to be assigned for each rainfall event to differentiate the transport among different rainfall events. Specifically, if there are185

200 rainfall events in one year, the numerical simulation should be run 200 times, or 200 different chemical species should be

assigned for this 200 rainfall events. Moreover, the water from two rainfall events which are closed to each other may have

similar transport process, so the simulation for all rainfall event is redundant.

The aim of the multi-fidelity model is to quantify the time-variant TTD through equation (1), i.e., the equation of groundwater

age distribution. This multi-fidelity model is implemented by four steps: firstly decomposing the equation of ADEs into a series190

of ADE, secondly solving these ADEs through particle tracking without random walk (low-fidelity model), thirdly solving

several ADEs by numerical simulation (high-fidelity model), and finally establishing multi-fidelity model for the relation

between the BTCs from low-fidelity model and high-fidelity model and calculating the time-variant TTD from the BTCs of

multi-fidelity model.

The results of the low-fidelity model is the solution of equation (16) derived from omitting the diffusion term in equation195

(8):

∂φSwρ
′

∂t
=−∇ · (vρ′) (16)

Based on the nonlinear correlation between equations (13) and (10) described previously, the solution of equation (8) can

be obtained by mapping from the low-fidelity model to the high-fidelity model. The mapping is expressed as a nonlinear

autoregressive model:200

fH(t,η) = g (fL(t,η), t,η) (17)

where fH(t,η) is the solution of ADE model which has high-fidelity, fL(t,η) is the solution of particle tracking model with-

out conidering random walk which has low-fidelity, and g represents the nonlinear mapping. Given a certain hydrogeological

model, the nonlinear mapping g only depends on the diffusion coefficient D, but the mathematical form of the nonlinear map-

ping can vary with different hydrogeological models. The mapping of equation (17) can also be applied to link the cumulative205

breakthrough curves (cBTC) between two models of different levels of fidelity, because the evaluation of BTC through equa-

tion (9) and the transformation of BTC to cBTC are both linear operations with respect to age mass density ρ′. Therefore,

in this study, fH(t,η) is the cBTC from ADE model, and fL(t,η) is the cBTC from particle tracking model without random

walk. To ensure the mapping accommodate any hydrogeological model, non-parametric regression with Gaussian processes

(GPs) (Raissi et al., 2017; Zhang et al., 2018) is adopted to build up the multi-fidelity model. Let m= [fL(t,η), t,η], then the210
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nonlinear mapping g (fL(t,η), t,η) in equation (17) can be written as g(m) and is assigned to a GP prior:

g(m)∼ GP (fH |0,k (m,m′;θ)) (18)

where GP represents the Gaussian process; 0 is the prior mean value; k (m,m′;θ) is the kernel function with hyper-parameters

θ. The kernel function in GP prior quantifies the pairwise correlation between fHi and fHj and leads to a symmetric covariance

matrix Kij =Kji = k (mi,mj ;θ) between the points (mi,fHi) and (mj ,fHj). If mi and mj are close to each other, the215

correlation between fHi and fHj will be high. The term on the right hand side of equation (18) is the GP prior which means

the probability distribution of fH is a Gaussian distribution with mean value 0 and variance k (m,m′;θ).

With reference to the work of Perdikaris et al. (2017), the kernel function is expressed as:

k (m,m′;θ) = k1 ((t,η),(t,η)′;θ1) · k2 (fL,f ′L;θ2) + k3 ((t,η),(t,η)′;θ3) (19)

In equation (19), the kernel function k (m,m′;θ) consists of three components: k1 denotes the correlation dependence of the220

modeling time and input time, k2 denotes the correlation dependence of the results of low-fidelity model, and k3 denotes the

correlation of the regression errors. Each correlation is quantified by a squared exponential covariance function which means

that the covariance between fHi and fHj decreases exponentially as the distance betweenmi andmj decreases:

kp (x,x′,θp) = σ2
pe
− 1

2

∑d
q=1wp,q(xq−x′q)2

(20)

where θp =
[
σ2
p,(wp,q)

d
q=1

]
, and θ is the vector of hyper-parameters for the covariance function kp (p= 1,2,3) in equation225

(19), σ2
p is the variance parameter, (wp,q)

d
q=1 are the automatic relevance determination weights, and x is a d-dimensional

input vector which can be (t,η) or fL in equation (19).

The vector of hyper-parameters θp (p= 1,2,3) in equation (19) determines the performance of the mapping. With a given

regression data set (Min,FH) = (mi,fHi)i=1...n obtained from particle tracking model and ADE model, the hyper-parameters

Θ = [θ1,θ2,θ3] can be estimated by minimizing the negative marginal log-likelihood:230

− logp(FH |Min,Θ) =
1
2
F THK

−1FH +
1
2

log |K|+ n

2
log2π (21)

where F TH = [fH1,fH2,fH3, . . . ], Min = [m1,m2,m3, . . . ]; K is the covariance matrix which is evaluated by equation (20)

based on the input datami and hyper-parameters Θ; n is the number of pairs of data for regression.

Once the hyper-parameters are determined based on the regression data set (Min,FH), the value of fHnew at new point

mnew can be predicted. The prediction is implemented by computing the posterior distribution p(fHnew|FH). Referring to235

the definition of GP, the joint distribution of fHnew and FH is expressed as a joint Gaussian distribution:

 fHnew
−→
F H


∼N




 0
−→
0


 ,


 KHnew−Hnew KHnew−H

KH−Hnew KH−H




 (22)

where Kx−y represents the covariance between x and y. Then, the posterior distribution is exactly the marginal distribution of

the joint Gaussian distribution:

fHnew = g
(−→mnew

) ∣∣−→F H ∼N
(
µ,σ2

)
(23)240
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where the predicted mean is µ=KT
Hnew−HK

−1
H−HFH , and the predicted variance is σ2

out =KHnew−Hnew−KT
Hnew−HK

−1
H−HKHnew−H .

In this way, the BTCs for all rainfall events can be inferred from the mapping based on the solution of the particle tracking

model without random walk. For a complex hydrogeological system, it is difficult to derive the mapping analytically, so the

non-parametric regression model is employed to estimate the mapping. Overall, the number of rainfall events considered in

ADE model is reduced compared with the groundwater age distribution model (Gomez and Wilson, 2013); and the number of245

particles released is reduced significantly compared with the random particle tracking model (Yang et al., 2018). The multi-

fidelity model also makes the evaluation of time-variant TTD simpler to be implemented compared with the approach that

evaluates time-variant TTD numerically in Laplace space (Cornaton, 2012). There is a tradeoff between the computational cost

and accuracy. Larger the size of regression data set is, the more accurate the regression will be, but the computational cost will

also be higher. The problem of how to determine the size of regression data set will be discussed in the illustrative example.250

2.5 Evaluation of the time variant TTD and SAS function

Referring to the definition of forward TTD of water (fTTD), each BTC can be transformed to a fTTD by normalizing it with

the total rainfall recharge volume. Let −→p T (η,τ) represents the fTTD conditional to rainfall event occurred at time η, then

−→p T (η,τ) =
BTC(τ,η)
P (η)

(24)

where τ is the age known as travel time at the outflow site, P (η) is the rainfall recharge volume at time η, BTC(τ,η) is the255

BTC of water which is input at time η. Equation (24) displays a one-to-one mapping between the BTC and fTTD. The fTTD

quantifies the portion of water leaving the system at time t within the same rainfall event.

To study the time-variant behavior of the storage selection process, backward TTD of water (bTTD) and residence time

distribution of water (RTD) are evaluated to explore the dynamic storage selection process. Similar to the evaluation of fTTD,

bTTD can be calculated by normalizing the BTCs with the discharge rate as follows,260

←−p T (t,τ) =
BTC(τ, t− τ)

Q(t)
(25)

where ←−p T (t,τ) is the bTTD. Given a certain time t in equation (25), the evaluation of bTTD requires the BTCs before the

time t. This is because the water in the hillslope discharging at the time t comes from the rainfall occurred before the time t.

Up to now, most studies employ BTC to calculate fTTD and bTTD directly (Harman and Kim, 2014; Kim et al., 2016), but

few studies calculate RTD by the BTC. As the results obtained from multi-fidelity model are a set of BTCs conditional on each265

rainfall event, it is necessary to put forward a method to calculate RTD using BTCs. The cBTC is defined as:

cBTC(t,η) =

t∫

η

BTC(tout,η)dtout (26)

The cBTC cBTC(t,η) characterizes the total volume of water or solutes from the same rainfall event at the discharge boundary

before the time t. Therefore, the water or solutes that still remains in the system at the time t is equal to P (η)− cBTC (t,η).
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The RTD ps (t,τ) describes the age distribution in storage calculated as follows:270

ps(t, t− η) =
P (η)− cBTC(t,η)∑

η<t(P (η)− cBTC(t,η))
(27)

where P (η) is the total volume of rainfall which is infiltrated at the time η. By assembling these cBTCs, the denominator in

equation (27) represents the total storage volume at time t.

Having calculated the bTTD and RTD, the storage selection (SAS) function can be quantified according to its definition.

To characterize the time-variant behaviors of storage selection process conveniently, the fractional SAS function (fSAS) is275

calculated based on the results of bTTD and RTD (van der Velde et al., 2012). Because there is a one-to-one mapping between

the groundwater residence time (groundwater age) and cumulative RTD, fSAS function is defined as a function of cumulative

RTD and time:

ωQ(t,Ps) =
←−p T (t,τ(Ps))
ps(t,τ(Ps))

(28)

where ωQ(t,Ps) is the fSAS and Ps(t,τ) is the cumulative RTD. Many studies employ beta distribution to quantify this fSAS280

function (van der Velde et al., 2012; Danesh-Yazdi et al., 2016).

3 Illustrative example: a hypothetical model with nonstationary rainfall input

A hypothetical 2D hillslope model is setup to illustrate the performance of the multi-fidelity model. With nonstationary rainfall

recharge applied on the upper boundary of the model, the time-variant TTD and SAS function are calculated. The errors of

TTD and SAS function are compared between multi-fidelity model and low-fidelity model.285

3.1 Model setup

As shown in Figure 1, the geometry of the model is a quadrangle that is 100 m long in the x-axis direction. The thickness of

the model at the left and right boundaries are 8 m and 5 m, respectively. The bottom of domain represents boundary of the

impermeable bedrock. The depth of the fresh bedrock head increases from the toe to the top of the hillslope. This model is based

on a real hillslope of igneous rock in Hong Kong under subtropic climate condition. The groundwater at up-slope generally has290

a lower solute concentration and a higher water-rock reaction rate compared with the groundwater at the down-slope (Braun

et al., 2016; Rempe and Dietrich, 2014). This leads to the wedge-shaped profile of weathered rock zone.

The numerical simulation of ADE model and particle tracking model without random walk are implemented in the soft-

ware COMSOL Multiphysics (COMSOL AB, 2018). Three modules in COMSOL are employed, namely Richards’ equation

module, transport of dilute species in porous media module, and mathematical particle tracing module.295

In Richards’ equation module, hydraulic head and Darcy velocity are solved to couple with the other two modules. The

left boundary and bottom boundary are no-flow boundaries, the right boundary is a fix-head boundary with hydraulic head

equal to 4.5 meters. The top boundary is a time-variant rainfall infiltration boundary. Figure 2 shows the variation of 2-year

nonstationary rainfall volume per day with 2728.5 mm rainfall volume in total during the first year and 2678.5 mm during the
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Figure 1. A hypothetic two dimensional modeling domain based on a hillslope of weathered igneous rock

second year, which are taken from the real rainfall record of Hong Kong Observatory in 2016 and 2017. The rainfall infiltration300

rate is set to be 0.2. The modeling period is 10046 days. The 2-year rainfall will be repeated every two years.

Figure 2. Two-year rainfall for recharge boundary

As the goal of this study is to explore the time-variant TTD and storage selection process in hillslope, the spatial hetero-

geneity of hydrogeological properties is ignored and only one layer with constant hydraulic conductivity is considered in this

hypothetic model. The detailed hydraulic parameters are shown in Table 1. Theoretically, the initial condition for Richards’

equation can be arbitrary, but in order to reach a periodic quasi-steady state rapidly, the initial condition is set to be:305

h(x) =−0.15x+ 19.5 (29)

where the initial hydraulic gradient is equal to the slope gradient. After running a spin-up period of 4 years, the solution

of Richards’ equation reaches a periodic quasi-steady state. Then the solution of this module is coupled with the other two

modules through Darcy velocity to further solve for the BTCs.

The transport of dilute species in the porous media module in COMSOL is used to solve for the groundwater age distribution310

model. This is because equation (8) has the same mathematical form as the solute transport equation. Therefore, the mass

density in equation (8) can be regarded as a solute concentration while modeling. As is discussed in the section 2.1, this

module should be run for each single rainfall event independently to obtain BTCs. The advection velocity required in this
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Table 1. Hydraulic parameters applied in Richards’ equation module

Parameters K Dm φ Sr α n l

Values 7.5× 10−6m/s 1× 10−9m2/s 0.3 0.05 1.5 1.5 0.5

K: hydraulic conductivity

Dm: molecular diffusion coefficient

φ: porosity

Sr : Residual saturation

α,n, l: parameters in VG model

Longitudinal mechanical dispersivity: aL = 0.05m

Transverse mechanical dispersivity: aT = 0.01m

module is the Darcy velocity which has been solved in the first module. The left and bottom boundaries are no-flux boundary

for transport. The right boundary is a free outflow boundary meaning that the outflow of water and solute is dominated by315

advection and the diffusion term is equal to zero. This kind of outflow boundary condition is widely used in the transport

problems where no constrain of solute concentration exists at the outflow boundary. The top boundary is a given flux boundary

dependent on the rainfall intensity. Since rainfall is the only source in the model, the initial condition of the mass density is zero

in the whole domain. Then the BTCs are evaluated at the right outflow boundary according to equation (9). The BTCs obtained

in this module are taken as the solution of high-fidelity model, because this model is based on the real physical process with320

very limited assumptions.

The mathematical particle tracing module in COMSOL is employed to solve for the BTCs without considering molecular

diffusion and mechanical dispersion. The particles are released along the hillslope surface uniformly during rainfall. The

number of particles released at the upper boundary is the same for each rainfall event. Each particle represents a certain volume

of water parcels depending on the rainfall intensity. As the diffusion effect is not considered in this module, the movements325

of these particles are deterministic based on the groundwater velocity. A particle counter is set at the discharge boundary to

keep counting the arriving particles to evaluate the BTCs. The BTCs calculated in this module are taken as the solution of

low-fidelity model, because the solution is biased against the high-fidelity model due to the absence of molecular diffusion and

mechanical dispersion effect.

Figure 3 compares the result at day 1050 calculated from high-fidelity model with the result calculated from low-fidelity330

model qualitatively. The red dots represent the distribution of water parcels in low-fidelity model. The colored contour plot

shows the spatial distribution of age density function ρ(x, t, τ) (unit: kg/m3) in high-fidelity model. These two results displayed

in figure 3 are for the water entering the system during the rainfall event occurred at day 165. In figure 3, the age density function

spreads around the red dots due to molecular diffusion and mechanical dispersion, and this is consistent with the analytical 1D

correlation of equation (15).335

12

https://doi.org/10.5194/hess-2021-430
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



Figure 3. Comparison of the results between particle tracking model and solute transport model at time=1050 day. The results are for the

water entering the system during the rainfall event occurred at day 165.

3.2 Selecting regression data set for multi-fidelity model

Having set up these modules in COMSOL, there are two more factors affecting the result of the multi-fidelity model and should

be specified before running the multi-fidelity model, that is, (1) the selection of specific high-fidelity models for regression data

set and (2) the number of selected high-fidelity models in regression data set. To study how these two factors affect the results,

correlation, error and convergence analysis are implemented. The nonlinear regression with Gaussian process used in multi-340

fidelity model is realized in python using the Gpy package (GPy, since 2012).

There are many methods available to assist in selecting the high-fidelity models for regression data set. In this study, the

distance method is employed and is fully described by Scheidt and Caers (2009); Josset et al. (2015). Specifically, as the

distance of selected parameters between high-fidelity models becomes short, the results of multi-fidelity model are closer to

the results of high-fidelity models. In high-fidelity models, the selected parameter is the time when rainfall occurred. If the345

two rainfall events are very close, the two BTCs at the discharge boundary will be similar due to the similarity of hydraulic

conditions. Therefore, the selection of the data set for regression is based on the ‘distance’ between the rainfall time, i.e. the

interval between two rainfall events. In this hypothetical model, there are 290 rainfall events every 2 years, and the rainfall

events are selected successively from 290 events with a constant distance. The cBTCs calculated from high-fidelity models

within the selected rainfall events make up the regression data set for regression.350

The distance among the rainfall events is used to control the number of high-fidelity models in regression data set. Therefore,

it is vital to determine a reasonable distance, and this will be discussed in the following error analysis and convergence analysis.

To evaluate the error of regression and study the convergence of the multi-fidelity model, the high-fidelity model is solved

for all the 290 rainfall events intensively to generate the test data set. Practically, only error analysis is required during the

implementation of multi-fidelity model, so the size of test data set can be much smaller .355

The 2-norm error of a certain BTC reflects the overall deviations of the predicted BTC from the BTC in the test data set, and

is calculated below:

‖e‖2 =

√√√√ 1
N

N∑

n=1

|yn− y(tn)|2 (30)

13

https://doi.org/10.5194/hess-2021-430
Preprint. Discussion started: 6 September 2021
c© Author(s) 2021. CC BY 4.0 License.



where ‖e‖2 is the 2-norm error of a certain BTC, N is the number of points in the BTC, yn and y(tn) are the points in BTC

calculated by multi-fidelity model and high-fidelity model respectively. The 2-norm error is used to quantify the goodness-of-fit360

of the calculated BTC by multi-fidelity model.

In the convergence analysis, the size of the regression data set increases by shortening the interval between rainfall events.

Figure 4 shows the relation between the 2-norm errors of BTCs calculated by multi-fidelity model and the interval between

rainfall events.
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Figure 4. Box plot of the 2-norm errors of BTCs calculated by multi-fidelity model with respect to rainfall interval. The last box is the

2-norm errors of BTCs calculated by low-fidelity model.

As shown in Figure 4, the goodness-of-fit improves as the interval among rainfall events shortens. This confirms that multi-365

fidelity model converges as the size of regression data set increases.

Then an interval of 10 rainfall events is employed to calculate the predicted errors of cBTCs in details. The predicted error is

defined as the difference value between the predicted BTC and the BTC evaluated by high-fidelity model. Figure 5 compares

the predicted errors for all 290 realizations between the multi-fidelity model and low-fidelity model. Each grey curve in Figure

5 represents the predicted errors of a BTC. The mean predicted errors in Figure 5a are very close to zero, which indicates that370

the predicted curves are unbiased and the selected high-fidelity models with the interval of 10 days for regression data set is

representative of all high-fidelity BTCs. However, the mean predicted errors in Figure 5b are biased against the negative value.

The biased errors are identified as the system errors. It implies that the solute concentration in discharge predicted by particle

tracking without random walk is generally smaller than that predicted by high-fidelity model, because except for the advection

process, the molecular diffusion and mechanical dispersion can also transport solute from recharge boundary to discharge375

boundary.

The goodness-of-fit for model with ’distance’ of the interval 10 is shown in Figure 6 directly. It can be seen that most of

the predicted cBTCs match the high-fidelity model well. Also, these inconsistencies between predicted cBTCs and cBTCs
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a. Multi-fidelity Model
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Figure 5. Predicted error (grey line) of BTCs for all 290 rainfall events of the multi-fidelity model (sub-figure a) and low-fidelity model

(sub-figure b), the mean error (black solid line) and the standard deviation (black dash line) are also shown.

evaluated from high fidelity model in day 510 and day 654 are acceptable, because the overall errors shown in figure 5 are

unbiased and decreased. These predicted cBTCs are further applied to evaluate the time-variant TTD and SAS. The interval of380

10 rainfall events is recommended for the application of the multi-fidelity model in other problems, because the interval of 10

rainfall events is equivalent to about one-month interval in wet season and about two-or-three month interval in dry season.

3.3 Errors of time-variant bTTD, RTD and fSAS function

With reference to equations (25) and (27), time-variant bTTD and RTD are obtained based on the cBTC, while fSAS function

is calculated based on bTTD and RTD using equation (28). The 2-norm errors of bTTD, RTD and fSAS function calculated by385

multi-fidelity model are compared with the 2-norm errors calculated by low-fidelity model. The results of bTTD, cumulative

bTTD, RTD, cumulative RTD and fSAS function from different models in two years are presented in figures 7, 8 and 9. These

curves are colored by storage volume to illustrate how the bTTD and RTD change with the system storage. Similar to the

calculation of 2-norm errors of BTC, the calculations of 2-norm errors of bTTD, cumulative bTTD, RTD, cumulative RTD and

fSAS function are also based on equation (30). In the box plots of 2-norm errors in figures 7, 8 and 9, the 2-norm errors of390

bTTD, cumulative bTTD, RTD, cumulative RTD and fSAS function calculated by high-fidelity model are reduced significantly

compared with those calculated by low-fidelity model.

In figures 7 and 8, the bTTD and cumulative TTD are significantly distinctive among the multi-fidelity model, high-fidelity

model and low-fidelity model, but the difference of the RTD and cumulative RTD among the three models is not identifiable.

This phenomenon is ascribed to the difference of kinetics (i.e., molecular diffusion and mechanical dispersion) of water parcels395
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and solutes among the three models. As the goal of study is to introduce a method to calculate time-variant TTD, the influences

of molecular diffusion and mechanical dispersion on time-variant TTD and RTD will be discussed in future studies.

4 Conclusions

The TTD provides basic information on travel time of water and solute flowing through the system. The travel time of water

characterizes the transport and reaction progresses in the hillslope system. Several methods had been introduced to estimate400

TTD in previous studies, such as the age master equation model, particle tracking model, groundwater age distribution model,

etc. However most of these methods have their limitations. This study develops a new method to calculate the TTD and SAS

function directly, and the errors are compared with the particle tracking method without considering random walk.

This multi-fidelity model combines the ADE model (high-fidelity model) and particle tracking model without random walk

(low-fidelity model) by non-linear Gaussian process regression. It reduces the computational time of high-fidelity model and405

improves the accuracy of low-fidelity model. For the development of multi-fidelity model, the goodness-of-fit of the multi-

fidelity model increases with the size of regression data set, i.e., the number of high-fidelity models. In the convergence

analysis, a criterion and a feasible method are put forward for multi-fidelity model to determine the size of regression data set

and select high-fidelity models for regression. The errors of cBTCs calculated from multi-fidelity model is unbiased, but these

errors calculated from particle tracking model are biased against negative values due to the absence of molecular diffusion and410

mechanical dispersion. The 2-norm errors of bTTD, cumulative bTTD, RTD, cumulative RTD and fSAS function calculated

by multi-fidelity model are also reduced significantly compared with the 2-norm errors calculated by low-fidelity model.

Meanwhile, as the spatial scale of the model increases, the number of particles required for multi-fidelity model reduces

dramatically compared with the number of particles required for random walk particle tracking method. Therefore, in the

large-scale water and solute transport model with a low Péclet number, the multi-fidelity model is better than the groundwater415

age distribution model and random walk particle tracking model to calculate time-variant TTD numerically.

Code and data availability. The modeling files, modeling results and codes writen for this multi-fidelity model have been archived and are

available at Zenodo (Mao, 2021).
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