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Abstract. Landslides are among the most dangerous natural hazards, particularly in developing countries where ground 

observations for operative early warning systems are lacking. In these areas, remote sensing can represent an important 

detection and monitoring process to predict landslide occurrence in space and time, particularly satellite rainfall products that 10 

have improved in terms of accuracy and resolution in recent times. Surprisingly, only a few studies have investigated the 

capability and effectiveness of these products in landslide prediction, to reduce the impact of this hazard on the population. 

We have performed a comparative study of ground- and satellite-based rainfall products for landslide prediction in India by 

using empirical rainfall thresholds derived from the analysis of historical landslide events. Specifically, we have tested Global 

Precipitation Measurement (GPM) and SM2RAIN-ASCAT satellite rainfall products, and their merging, at daily and hourly 15 

temporal resolution, and Indian Meteorological Department (IMD) daily rain gauge observations. A catalogue of 197 rainfall-

induced landslides occurred throughout India in the 13-year period between April 2007 and October 2019 has been used. 

Results indicate that satellite rainfall products outperform ground observations thanks to their better spatial (0.1° vs 0.25°) and 

temporal (hourly vs daily) resolution. The better performance is obtained through the merged GPM and SM2RAIN-ASCAT 

products, even though improvements in reproducing the daily rainfall (e.g., overestimation of the number of rainy days) are 20 

likely needed. These findings open a new avenue for using such satellite products in landslide early warning systems, 

particularly in poorly gauged areas. 

1  Introduction 

In India, the annual toll in terms of human lives and loss of property, due to landslides and floods, urgently demands the 

implementation of long-term strategies to prevent hydrogeological instability. India is the country with the highest number of 25 

non-seismically triggered disastrous landslides as per the global dataset published by Froude and Petley (2018), with more 

than 600 records and 16% of catalogued rainfall-induced landslides. According to the EM-DAT disaster database (Guha-Sapir 

et al., 2021), a total of 51 fatal landslide events have recorded since 1950 with 4,671 deaths and more than 400,000 people 

affected. In recent years, regional and local early warning systems were adopted in various countries to forecast rainfall-

induced landslides and to mitigate the associated risk (Guzzetti et al., 2020). When heavy and/or abundant rainfall combines 30 
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with a high landslide susceptibility, an operational warning system is the best solution to mitigate the impact of the event. The 

use of rainfall thresholds, combined with susceptibility maps, makes it possible to estimate the probability of landslide 

triggering (Rossi et al., 2018). Rainfall thresholds all over the world are derived from the statistical analysis of rainfall 

conditions that have resulted in past landslides (e.g., Guzzetti et al., 2007, 2008; Cepeda et al. 2010; Sengupta et al., 2010; 

Berti et al., 2012; Staley et al., 2013; Zêzere et al., 2015; Segoni et al., 2018; Gariano et al., 2019; Valenzuela et al., 2019; 35 

Jordanova et al., 2020; Leonarduzzi and Molnar, 2020; Salinas-Jasso et al., 2020; Uwihirwe et al., 2020). Defining rainfall 

thresholds over large and diverse areas needs statistically significant information on the occurrence of past landslides and a 

large amount of rainfall data. On the other hand, India with diverse geographical region with varied climate, complex 

topography and geomorphology does not allow such a density of rainfall stations as to accurately reconstruct the rainfall that 

caused the landslides. To make a comparison, in Italy the average density of rain gauges is about 1/130 km-2 (Peruccacci et al., 40 

2017), while in India it is about 1/470 km-2 (6995 stations over 3.287.000 km2) (Pai et al., 2014). In addition, in remote areas 

(e.g., mountainous terrain) of India the low density of rain gauges penalizes the representativeness of the measurements. Hence, 

the use of satellite rainfall products is a valid option for measuring precipitation over such large areas, provided that a 

performance analysis and assessment in capturing reliable rainfall measurements are carried out, even in areas characterized 

by complex orography and severe weather systems (e.g., Gupta et al., 2020; Thakur et al., 2019; Tang et al., 2020). 45 

So far, only a few works have studied the relationship between rainfall and landslides in India, and mainly for limited areas or 

individual states. The analysis of the rainfall conditions responsible for slope failures were conducted using both data from 

rain gauges and satellite data. Authors using ground-based measurements include Jaiswal and van Westen (2009) who 

calculated rainfall thresholds based on the daily rainfall vs. the 5-days antecedent rainfall along two sections of a historic 

railway and of a national highway in the state of Tamil Nadu, southern India. Kanungo and Sharma (2014) derived intensity-50 

duration (ID) thresholds based on daily rainfall measured by rain gauges along a stretch of a national highway of Garhwal 

Himalayas in the Uttarakhand State, northern India. More recently, Naidu et al. (2018) identified rainfall threshold based on 

the daily rainfall vs. the 2-, 3- and 5-days antecedent rainfall and in a small hamlet in Kerala, Southwest India. One-dimensional 

probabilistic thresholds were defined by Dikshit and Satyam (2019) for a small (5 km2) area in Darjeeling Himalayas, north 

eastern India. In the same area, Dikshit et al. (2020a) identified their best threshold based on the daily rainfall vs. the 20-days 55 

antecedent rainfall. ID regional and local rainfall were derived by Geethu et al. (2019) in north eastern India for the Sikkim 

region and the Gangtok area, respectively. Mandal and Sarkar (2020) estimated rainfall thresholds along a vulnerable section 

of the NH10 road in Darjeeling Himalayas.  

In a recent work, Dikshit et al. (2020b) argued the necessity to use satellite-based products in the Indian Himalayan region. 

Few authors used satellite-based data to explore the correlation between rain and the occurrence of landslides. Mathew et al. 60 

(2014) obtained and validated ID thresholds using the Tropical Rainfall Measurement Mission (TRMM) precipitation estimates 

in a small area of Garhwal Himalayas in the Uttarakhand State, northern India. They also applied a logistic regression model 

to assess the effect of the antecedent rainfall using rain gauge data. Thakur et al. (2020) analysed the rainfall triggering three 
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large landslides over Western Ghats, southern west India. They used TMPA (a product of TRMM) and IMERG (Integrated 

Multi-satellitE Retrievals for GPM, Global Precipitation Measurement) derived rainfall data. In particular, the performance of 65 

IMERG V5 was assessed during the awful Malin landslide, which occurred in 2014, at the initial stage of the GPM product. 

The above review shows that the prediction of rainfall-induced landslides in India relies mostly upon custom approaches 

applied to local areas, being a comprehensive method still missing at a larger regional scale. Conversely, at the global scale 

Hong et al. (2006) evaluated the potential of the real‐time TMPA product to assess its predictive ability for rainfall‐triggered 

landslides. Kirschbaum and Stanley (2018) proposed a model to provide the potential landslide activity combining satellite-70 

based precipitation estimates (IMERG from GPM) with a landslide susceptibility map. Moreover, examples of application of 

various satellite-based rainfall estimations for the definition of rainfall thresholds for landslide prediction at a national scale 

were proposed by Robbins (2016) in Papua New Guinea, Brunetti et al. (2018a) in Italy, He et al. (2020) in China, and by 

Monsieurs et al. (2019) over the East African Rift. 

However, a more in-depth and dedicated focus on the use of the available rainfall products at the regional scale is required to 75 

best predict the spatial and temporal occurrence of landslides in India. For this purpose, we collected information on rainfall-

induced landslides in a new catalogue. We investigated the role of the rainfall in the occurrence of landslides using empirical 

rainfall thresholds (Peruccacci et al., 2017 and references therein), and we compared the performance of satellite-based and 

ground-based rainfall products. Comparing the thresholds with rainfall measures, estimates, and forecasts is the basis of most 

current operational landslide early warning systems (Guzzetti et al., 2020). 80 

2  Study area 

India is the seventh largest country in the world and forms a well-defined peninsula of Asia, bounded to the North by the 

imposing mountain chain of the Himalayas and surrounded by the Arabian Sea to the West and the Bay of Bengal to the East, 

respectively (Fig. 1). 

Three basic structural units are usually recognized in the land: the Himalayas in the North, the peninsular Deccan plateau in 85 

the south and the Indo-Gangetic Plain between the two. The country also includes two groups of islands, Lakshadweep, in the 

Arabian Sea, and the Andaman and Nicobar Islands, between the Bay of Bengal and the Andaman Sea. Apart from the highest 

mountains in the Himalayas, the main reliefs of the Deccan plateau region are the Western Ghats, a North-South chain of 

mountains or hills in the western edge, and the Eastern Ghats, running mostly in a Northeast-Southwest direction. The steep 

topography of the diverse regions and their geological complexity produce an intense landslide activity, especially during the 90 

monsoon season. 

The climate of Southeast Asia is dominated by the monsoon for over one-third of the year (Annamalai et al., 1999). Neal et al. 

(2019) identified seven broad-scale weather regimes in India. Among them, the main monsoon season occur from June to 

September, being mostly active during July and August. The monsoon is associated to heavy and persistent rain starting 

generally on the 1st or 2nd June from the south‐west coast of India (Mooley and Shukla, 1987; Rao et al., 2005) and extending 95 
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across central and northern areas, reaching Mumbai around 10th June (Adamson and Nash, 2013) and north‐west India by 15th 

July on average (Tyagi et al., 2011). The large amount of rain in this period makes this the part of the year when the most 

landslides occur in India. Additionally, non-monsoonal precipitation patterns, the western disturbances, may occur even in 

January and February, bringing rain or snow to north western parts of India later moving to north-eastern parts in early spring. 

3  Data and methods 100 

In order to study the relationship between landslides and rainfall, it is necessary to find information on a statistically significant 

number of slope failures (Peruccacci et al., 2012). It is necessary, as well, sufficiently long and continuous series of rainfall 

data from ground- and/or satellite-based observations. Landslides have to be geo-localized with adequate accuracy, and at least 

the occurrence day must be known (Brunetti et al., 2018b). Similarly, the rainfall series should have sufficient temporal 

resolution and range for the measurements to be representative of the rainfall conditions that have presumably triggered the 105 

slope failures. Generally, the availability of data for such events depends on the availability and accessibility of local 

information sources. In India, given the vastness and ecological diversity of the territory, the collection of accurate landslide 

information is often a challenge. The lack of detailed information associated with the rapid evolution of the landscape due to 

the high intensity and extreme rainfall often makes it difficult if not impossible locating the slope failures. In case of incomplete 

or missing data, a landslide event cannot be included in the analysis and it is therefore not included in the catalogue. Following 110 

these criteria, we discarded nearly 50% of the collected rainfall-induced landslide events. 

3.1 Landslide data 

We compiled a new catalogue of 197 rainfall-induced landslides occurred in India in the 13-year period between April 2007 

and October 2019. The geographical distribution of the slope failures is shown in Fig. 1, which reveals how landslides are 

basically clustered in four main areas corresponding to the main mountain reliefs. One area is in the north eastern part of India 115 

and includes West Bengal (30 landslides), Sikkim (12), Assam (21), Manipur (10), Arunachal Pradesh (5), Meghalaya (3), 

Nagaland (2) and Mizoram (2); another area in the north western part encompasses Uttarakhand (9), Himachal Pradesh (8), 

Jammu and Kashmir (7) and Rajasthan (1); the third area in the western coast encloses Kerala (50), Karnataka (18), 

Maharashtra (6), Tamil Nadu (6) and Goa (1); finally, 2 landslides are located near the eastern coast in Andhra Pradesh.  

Landslides collected in the catalogue are mainly located in inhabited areas and along transportation routes. Likely for this 120 

reason, about 25% of them caused one or more fatalities (see pie chart in Fig. 1) confirming how the population impact of this 

type of hazard is significant in India. A more in-depth analysis shows that the monthly distribution of the slope failures (Fig. 

2a) is peaked in June, whilst the highest number of fatalities are in August (Fig. 2b). The 2010 Ladakh (Jammu and Kashmir) 

debris flows and mudflows and the 2014 Malin (Maharashtra) landslides substantially contribute to the two peaks in Fig. 2b. 

We gathered information from multiple sources (Fig. 3a), such as online newspapers and magazines (ON), blogs (BG), 125 

technical reports (TR) made available by the Geological Survey of India (GSI, www.gsi.gov.in), scientific journals (SJ) and 
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social media (SM), e.g. Twitter, Facebook, etc. Most of the data (53.4%) in the catalogue is found in TR. When the information 

is proven accurate in terms of spatial and temporal location, the landslide is included in the catalogue and is represented as a 

point on the map (white and red dots in Fig. 1). Each landslide in the catalogue is assigned a position accuracy level in four 

classes (Fig. 3b): P1 < 1 km2 (high), 1 km2 ≤ P2 < 10 km2 (medium), 10 km2 ≤ P3 < 100 km2 (low), and 100 km2 ≤ P4 < 300 130 

km2 (very low). Similarly, a decreasing temporal accuracy in three classes is associated to each landslide (Fig. 3c). The first 

class (T1) collects the events for which the time of occurrence is known with an accuracy of one hour, while for the second 

(T2) and the third (T3) classes the part of the day is inferred or the day of occurrence is known (Peruccacci et al., 2012). 

In about half of the cases the lack of data on the landslide type, or the non-technical language used by the source of information 

make it difficult to determine the type of movement and the involved material, and the landslide is generically classified as 135 

“not specified” (NS). In other cases, the identification of the landslide type is allowed by photographs or by the assessments 

of technical personnel (as for surveys carried out by the GSI). As a result, the collected information on the landslide type has 

been grouped in five classes: complex landslide (CL), debris-flow (DF), earth or mud flow/slide (EF), rock fall/slide (RF), and 

deep-seated landslide (DL). Here it is stated that this classification follows a criterion that gives greater priority to the type of 

material (earth/mud or rock) rather than the type of movement (flow, slide or fall). Figure 4 shows the spatial distribution of 140 

landslides classified by type, and reveals that about half of the landslides are not specified (NS, 49.7%), whereas the remaining 

are mostly EF (24.4%), RF (17.1%) and DF (5.7%). CL and DL account each for a smaller percentage (≤ 2.1%). In particular, 

most of the RF are located in the Himalayas, and the remaining are scattered throughout the rest of the territory. 

3.2 Rainfall data 

The rainfall measurements are obtained through three datasets available over the study area. In order to provide a robust and 145 

thorough analysis, we used observations obtained from ground stations as well as satellite sensors. The following assumptions 

apply to each of the considered datasets: 

 1)  the rainfall estimate is used at its own native spatial resolution; 

 2)  the analysis has been carried out at hourly and daily temporal scale; if the resolution was higher, the data have been 

summed up in order to obtain hourly rainfall. 150 

The Indian Meteorological Department (IMD) dataset is based on ground observations coming from more than 6900 rain 

gauges (Pai et al., 2014). The rainfall recorded at each station is interpolated in space by using an inverse distance weighted 

algorithm, providing a daily gridded dataset with a spatial resolution of 0.25° over the territory of India. Hereinafter this dataset 

is referred as IMD. 

SM2RAIN-derived rainfall is obtained by applying the SM2RAIN algorithm (Brocca et al., 2014) to satellite-based soil 155 

moisture data. By inverting the soil water balance equation, the algorithm allows to estimate rainfall directly from soil moisture 

observations. The algorithm has proven to provide accurate and reliable rainfall estimates that have been already used for 

natural hazard evaluation studies (Ciabatta et al., 2017, Brunetti et al., 2018a, Camici et al., 2020) ensuring satisfactory results 

in Europe. In this study, rainfall data obtained through the application of SM2RAIN to ASCAT satellite soil moisture product 
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(Wagner et al., 2013) provided by H SAF (the EUMETSAT Satellite Application Facility on Support to Operational Hydrology 160 

and Water Management) as product H117 is used. The product, hereinafter referred as SM2R, has a spatial resolution of 0.1° 

and a daily temporal resolution. 

The Integrated Multi-satellitE Retrievals for GPM (IMERG, Huffman et al., 2018) Early Run is used in this study as state-of-

the-art satellite rainfall product. The dataset is obtained by running the algorithm at 0.1° spatial and at half-hourly temporal 

resolution from a constellation of microwave and infrared satellites. The Early Run version is characterized by a latency of 4-165 

6 hours after sensing. In order to achieve the hourly temporal resolution used for the analysis, two subsequent rainfall data are 

summed up. Hereinafter this dataset is referred as IMERG-ER. 

The satellite rainfall products here considered allow to test the capabilities of two different retrieval algorithms, i.e. a state-of-

the-art classical satellite rainfall product and a novel technique that estimates rainfall through soil moisture observations. Other 

reanalysis data were not considered as we wanted to investigate the use of near-real time satellite products for a possible future 170 

operational application. 

In order to test and highlight the added value of integrating rainfall estimates obtained through different approaches for 

landslide prediction, two additional merged products obtained through the merging of SM2R and IMERG-ER are created and 

used as input for determining the rainfall thresholds. The integration between these two different products has already been 

tested satisfactorily (Ciabatta et al., 2017; Massari et al., 2020). The integration allows to take benefit of the capabilities of 175 

each approach and to limit the drawbacks, i.e. underestimation of rainfall by SM2RAIN when the soil is close to saturation or 

the overestimation by IMERG-ER for low-intensity rainfall events. The integration has been performed by following the 

approach proposed in Ciabatta et al. (2017). For the first merged product IMERG-ER is summed up in order to obtain a daily 

temporal resolution. The merging between the two products is obtained by using Eq. (1): 

Smerged = SSM2R + 𝑤𝑖(SIMERG−ER − SSM2R) ,           (1) 180 

where wi is the integration weight, ranging from 0 to 1, and it is estimated for each pixel using Eq. (2) (Kim et al., 2015): 

𝑤𝑖 =
𝜌SM2R−R−(𝜌𝐼MERG−ER,SM2R·𝜌IMERG−ER,R)

𝜌IMERG−ER,R−(𝜌IMERG−ER,SM2R·𝜌SM2R,R)+𝜌SM2R,R−(𝜌IMERG−ER,SM2R·𝜌IMERG−ER,R)
 ,      (2) 

where 𝜌S1,S2 is the correlation between two generic datasets S1 and S2 and R is a reference rainfall product. In this analysis, 

ERA5 (Hersbach et al., 2020) is chosen as reference rainfall product for estimating the integration weights. The integration 

between IMERG-ER and SM2R is the PMERG-D (daily) dataset. 185 

The second merged product is obtained taking the total amount of rainfall estimated by PMERG-D and distributing it within 

each day by considering the hourly temporal distribution of IMERG-ER. In this way, the SM2R rainfall at the hourly temporal 

resolution is obtained. Hereinafter this dataset is referred as PMERG-H. 

Both PMERG-D and PMERG-H have the native spatial resolution of SM2R, i.e., 0.1°. 
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3.3 Reconstruction of the triggering rainfall 190 

The quantitative reconstruction of the rainfall conditions that likely caused the observed landslides is the first step for the 

identification of effective rainfall thresholds. We used CTRL-T software tool proposed by Melillo et al. (2018) to single out 

rainfall events starting from continuous rainfall series. For each landslide, the tool: 1) selects automatically the representative 

pixel; 2) identifies the most probable duration and cumulated rainfall (D,E) conditions assumed to have caused the landslides 

collected in the catalogue; 3) calculates empirical cumulated event rainfall-rainfall duration (ED) thresholds at various non-195 

exceedance probability (NEP) adopting the frequentist approach and a bootstrap technique (Brunetti et al., 2010; Peruccacci 

et al., 2012). 

CTRL-T works on a continuous series of hourly or daily rainfall measurements or estimates for each pixel. We found that 

rainfall records both for the ground-based and the satellite-based products contain some spurious values that prevent the 

reconstruction of the individual rainfall events by the CTRL-T tool (Melillo et al., 2015). To recognize and remove spurious 200 

events, we calibrated the cumulated rainfall in each pixel at the proper temporal resolution (hourly or daily) using the rainfall 

series of the Darjeeling District in the driest January and February months as a reference. The comparison between hyetographs 

from ground-based and satellite-based products highlighted that the remote sensing signal was found even though it was not 

actually raining, and it was independent of the satellite product and of its temporal resolution. Therefore, we set heuristically 

a filter that removes 2 mm per hour for IMERG-ER and PMERG-H and 2 mm per day for IMD, SM2R and PMERG-D. We 205 

verified that the filter removes a small percentage (5 mm as a median) of the daily cumulated rainfall, nonetheless this amount 

is nearly irrelevant for the landslide triggering.  

Each landslide is associated to a single pixel of each product. Figure 5a shows a nested view of the cell grids for the ground-

based (IMD) and two satellite-based (IMERG-ER and SM2R) products. To increase the reliability of the rainfall estimates all 

the pixels whose centre falls into a circular buffer of 20 km-radius from the landslide are enclosed in the analysis (Fig. 5b). 210 

The reason for this choice is that often the pixel where the landslide falls may not faithfully measure the triggering rainfall. 

Possible causes for this are: (i) malfunctioning of the sensor, (ii) the spatial averaging in the grid cell (e.g., an intense 

precipitation limited to a small area around the landslide), (iii) the case of landslides with medium (P2) to low (P4) position 

accuracy, and/or (iv) low temporal accuracy (T2 and T3). For one or more of the above reasons, CTRL-T is generally not able 

to reconstruct the triggering rainfall for all the landslides in the catalogue. 215 

To identify the representative pixel to be analysed, we used a weight, w = E2·D-1 (modified after Melillo et al., 2018). For the 

pool of pixels enclosed in the 20-km buffer centred on the landslide the representative pixel is the one for which the (D,E) pair 

provides the highest weight. For a given landslide in the catalogue, Fig. 6 portrays the colour associated with the pixels selected 

for the reconstruction of the triggering rainfall for each product. The darker the colour, the highest the weight and hence the 

expected representativeness of the pixel. It can be observed that in many cases, the representative pixel (the darkest one) is not 220 

necessarily the one containing the landslide (yellow dot). 
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Once rainfall conditions have been reconstructed, CTRL-T calculates the rainfall thresholds. Empirical ED thresholds are 

power law curves with the form: 

E = (α ± Δα)·D (γ ± Δγ) ,              (3) 

where E is in mm, D is in hours (or in days), α and γ are the scale and the slope parameters of the curve, respectively, and Δα 225 

and Δγ are the associated uncertainties (Peruccacci et al., 2012). It is worth to notice that the two temporal scales for daily and 

hourly datasets have to be expressed in days and hours, respectively (Gariano et al., 2020). 

In order to assess the performance of the ground- and satellite-based rainfall products in predicting landslides in India a 

validation of the thresholds has been carried out, following Brunetti et al., (2018a). For each product, we sampled randomly 

without repetition 70% of the reconstructed (D,E) pairs to obtain 100 new datasets. Then, for each dataset we calculated rainfall 230 

thresholds at varying NEP. The remaining 30% of (D,E) pairs was used to evaluate the threshold performance by means of 

contingency table (reporting binary classifiers of rainfall conditions that triggered or did not trigger landslides), skill scores 

and ROC (Receiver Operating characteristic) analysis, following Gariano et al. (2015) and Brunetti et al. (2018a). In particular 

POD (Probability of detection) and POFD (Probability of False Detection) are calculated as follows: POD = TP/(TP+FN) and 

POFD = FP/(FP+TN), where TP is a true positive and FN is a false negative, i.e. a landslide-triggering rainfall condition 235 

located above and below the threshold, respectively, while FP is a false positive and TN is a true negative, i.e. a rainfall 

condition without landslides located above and below the threshold, respectively. POD and POFD are used as y- and x- values 

of the ROC space, respectively (Fawcett, 2006). Each (POFD, POD) pair represents the prediction performance of a threshold, 

and the Euclidean distance of the pair from the upper left corner in the ROC plane (POD=1, POFD=0) is used as a measure of 

the goodness of the threshold. The ROC curve for each rainfall product is drawn by varying the NEP of the threshold and the 240 

area under curve (AUC) is used as a measure of the goodness of each product.  

4  Results 

In the following, we report the analyses of the rainfall measurements and rainfall estimates of the five products to compare 

their capability to capture the rainfall over India. 

Figure 7a shows the box-and-whiskers plots of the monthly rainfall for each product in the analysed time period (2007-2019) 245 

for the selected pixels with landslides. With regard to the daily temporal resolution, Fig. 7a reveals that the rainfall estimated 

by PMERG-D is comparable to that of SM2R, as expected for a derived product. The two exhibit median values similar or 

higher than the ground-based IMD product especially during the rainy season. At the hourly temporal resolution, the two 

IMERG-ER and PMERG-H products look noticeably different, being the rainfall from IMERG-ER steadily higher over time. 

As an example, in the two peak monsoon months of July and August the median value is nearly constant and amounts to about 250 

480 mm for IMERG-ER, while it decreases from 340 mm to 280 mm for PMERG-H. Overall for the two months, the median 

of IMERG-ER is from 1.4 to 1.6 times higher than that of PMERG-H, while in the dry period this proportion is even more 
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than six (e.g., November and December). The PMERG-H merged product is comparable to IMD, whereas on average the 

median value of IMERG-ER is about 1.5 and 2.5 times higher than IMD in the rainy and dry season, respectively. In order to 

investigate how the rainfall is distributed over a daily scale, we calculated the number of rainy days per month for each product 255 

(Fig. 7b). 

A variable number of rainy days is observed among the various datasets except for SM2R and PMERG-D, which are very 

similar. These two products exhibit the highest number of rainy days along the whole year, and they show a kind of saturation 

in July and August when the rainfall turns out to be uninterrupted for the whole month (30 days). Among the satellite-based 

datasets, IMERG-ER is the one with the lowest number of rainy days, nearly comparable to that of IMD, even though IMERG-260 

ER has the most abundant rainfall (Fig. 7a). Overall, Fig. 7b highlights that SM2R and PMERG-D likely overestimate the 

number of rainy days, especially from May to October. In particular, in October we obtain median values of 7 rainy days for 

IMD, 9 for IMERG-ER, 12 for PMERG-H, and 23 for SM2R and PMERG-D. 

Once we have reconstructed for each product the rainfall (D,E) conditions that have triggered the landslides in the catalogue, 

we calculated ED rainfall thresholds at varying NEP for the daily and the hourly datasets. As an example, Fig. 8a shows the 265 

comparison between rainfall (D,E) pairs and relative thresholds at 5% NEP for SM2R and PMERGE-D. From the figure it is 

evident that SM2R and PMERGE-D (D,E) pairs are shifted towards longer durations than those associated with IMD. The 

T5,SM2R threshold is the lowest one and is parallel to T5,IMD. For rainfall duration shorter than 12 days, T5,PMERGE-D is the highest 

one. Figure 8b compares the thresholds of the two hourly datasets and shows that rainfall (D,E) conditions from IMERG-ER 

are on average more severe than those reconstructed using PMERG-H data. As a consequence, T5,IMERG-ER turns to be higher 270 

than T5,PMERG-H. 

Table 1 lists for each product the number of landslides, the descriptive statistics of the rainfall (D,E) conditions used to define 

the thresholds and the equations of the curves, with their uncertainties. For the daily-based satellite data, the median duration 

(D) of the triggering rainfall is more than seven times longer than that of IMD, and the maximum duration is about three times, 

confirming what observed in Fig. 8a. Consequently, the median value of the cumulated rainfall for SM2R and PMERG-D is 275 

4.5 to 5.2 times higher than that of IMD. For the hourly-based data, the duration median value for IMERG-ER is higher than 

that of PMERG-H, whereas the maximum value is about one-half. According to Fig. 7a, the median and the maximum 

cumulated rainfall (E) for IMERG-ER is largely higher than that of PMERG-H. For an easier comparison between the 

thresholds, the uncertainties have not been drawn in Figs. 8a,b, but are shown in Table 1. 

The performance of the ground- and satellite-based rainfall products in predicting landslides in India is evaluated through the 280 

ROC analysis. Figure 9 portrays the comparison between the rainfall products varying the NEP of the threshold, where error 

bars represent their uncertainties. For a quantitative analysis, the inset graph in the figure shows AUC for each product. Based 

on this outcome, the two hourly PMERGE-H and IMERG-ER are performing best in predicting landslides in India, whereas 

the ground-based IMD is the less performing product. We acknowledge that the comparison may be biased by the different 

temporal and spatial resolution of the data. 285 
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5  Discussion and conclusions 

The comparative study among different rainfall products in predicting rainfall-induced landslides have shown the 

outperformance of satellite products over ground-based observations in India (Fig. 9). Nevertheless, a detailed analysis of the 

procedure used and the results obtained is mandatory to infer the actual potential of the satellite rainfall estimations to predict 

the rainfall conditions that may initiate future landslides. First, we acknowledge that the landslides gathered in the catalogue 290 

are a limited sample of the analysed time period for which we found detailed spatial and temporal information (Figs. 3b,c). 

Nevertheless, we maintain that the dataset is a good sample being most of the information found in technical reports (Fig. 3a) 

that usually meet reliability requirements. 

Analysing the impact of landslides on the population, Fig. 2b shows that the highest numbers of deaths is reported in July and 

August, while instead the highest number of slope failures occurred in June (Fig. 2a). The lack of a proportion could be ascribed 295 

to the abundant and intense rainfall of July and August throughout the territory (Fig. 7a) that is able to initiate extensive, fast 

landslides (e.g. mudflows) so severe as to destroy homes and villages, causing human losses. We observed that the landslides 

in the catalogue for which we know the type and that have caused more victims (82%) are earth or mud flow/slides (EF).  

In order to reconstruct the individual rainfall events with the CTRL-T tool, we removed a sort of white noise from data by 

using the rainfall series of the Darjeeling District in January and February. We acknowledge that such calibration could be 300 

dependent on the location where it was performed and may also be dependent on the amount of rain (e.g., in monsoon months). 

The rainfall estimated by SM2R and PMERGE-D is almost continuous in the monsoon months as shown by the number of 

rainy days, considerably higher than that of IMD and of the hourly IMERG-ER and PMERG-H products (Fig. 7b). This is in 

spite of the median monthly rainfall, which is in the same range of that measured or estimated by the other products. Overall, 

the rainfall (D,E) conditions reconstructed by SM2R and PMERGE-D are by far longer than those obtained from IMD (Fig. 305 

8a, Table 1).  

Given the vastness and variety of the Indian territory, the thresholds defined in this work (Figs. 8a,b) do not claim to be used 

in local landslide early warning systems. To calculate trigger thresholds based on local homogeneous sub-areas would require 

a larger amount of data (Peruccacci et al., 2012). Here, the use of thresholds at wider regional scale aims at comparing the 

performance of satellite- and ground-based rainfall data in order to identify those products, which are suited to give a robust 310 

landslide prediction. A further improvement would be the same analysis at local scale, in order to highlight which product 

works better or worse in a given sub-area. As stated above, this also requires to enrich the landslide catalogue. 

The ROC analysis (Fig. 9) shows that in India the products that work best are the hourly-based PMERG-H and IMERG-ER. 

A similar performance is also achieved with PMERG-D, while among satellite products, SM2R is the least performing. 

Overall, the efficiency of the ground-based IMD is the lowest in predicting the rainfall-induce slope failures. This outcome 315 

could be somewhat unexpected since IMD is obtained by the interpolation of point rainfall measurements from rain gauges 

and, hence, we would expect more precise rainfall data than the spatially averaged (pixel scale) estimates of the satellite rainfall 

products. As an example, Brunetti et al. (2018a) in Italy found a better performance of the ground-based rainfall data compared 
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to satellite data. Thomas et al. (2019) in the San Francisco Bay Area, using a network of 96 tipping buckets (~2.5 km spacing), 

found that the ground-based dataset was able to capture the orographic influence on rainfall intensity and cumulated amounts 320 

more accurately than the IMERG dataset. In our case, we hypothesize that the 0.25° grid spacing (Fig. 6) is able to explain a 

possible underestimation of the rainfall in many areas of India where the rain gauge density is low or even the stations are not 

properly working. Moreover, the degree to which ground-based measurements out- or under-perform relative to satellite 

products may depend on where the in-situ measurements are placed within the landscape especially in steep, landslide-prone 

terrain. The above considerations would also explain the larger dispersion of the IMD rainfall (D,E) conditions with respect to 325 

SM2R and PMERG-D (Fig. 8a). Conversely, the other products have significantly finer spatial resolutions, i.e. 0.1° for 

IMERG-ER, SM2R, PMERG-D and PMERG-H. In addition to the spatial resolution issues, Marra (2019) and Gariano et al. 

(2020) observed that the use of daily resolution data leads to a general worsening of the predicting capability compared to 

hourly data. 

Inspection of Fig. 8b reveals that the rainfall (D,E) conditions that have triggered the majority of the landslides listed in the 330 

catalogue (58% and 64% for IMERG-ER and PMERGE-H, respectively) have a rainfall duration less than 24 h. As a 

consequence, the use of daily resolution data alters the actual triggering rainfall of those landslides. For SM2R and PMERG-

D datasets, only a 7% of rainfall (D,E) conditions have a duration D <7 days (IMD median value), and only 1% equal to one 

day. This is ascribed to the nearly continuous rainfall detected by SM2R and PMERG-D, especially in the monsoon months 

(Fig. 7b). For this reason, it would eventually be more appropriate to implement landslide early warning systems that use 335 

rainfall thresholds defined with hourly data. 

This work represents a first attempt to ascertain at the regional (sub-continental) scale of India which are the best products for 

the prediction of rainfall-induced landslides. The results suggest that among the available satellite and ground-based products, 

the best performing ones are those meeting an hourly temporal resolution with an adequate spatial sampling. 
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 520 

Figure 1: Map of India with the location of landslides triggered by rainfall. Red and white dots highlight the slope failures with and 

without associated fatalities, respectively. Background image from Bing © Microsoft.
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Figure 2: Monthly distribution of (a) landslides and (b) landslide fatalities in the catalogue for the period 2007-2019.525 
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Figure 3: Donut charts with statistics of the landslide catalogue. (a) Number and percentage of landslide information source; key: 

ON, online newspapers and magazines; BG, blogs; TR, technical reports; SJ, scientific journals; SM, social media; (b) number and 

percentage of landslides with decreasing mapping accuracy; key: P1 < 1 km2 (high), 1 km2 ≤ P2 < 10 km2 (medium), 10 km2 ≤ P3 < 530 
100 km2 (low), 100 km2 ≤ P4 < 300 km2 (very low); (c) number and percentage of landslides with decreasing temporal accuracy; key: 

T1, hour of occurrence known; T2, part of the day known; T3, only day of occurrence known.
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Figure 4: Map of the location of the six types of landslide and the relative percentages. Key: CL, complex landslides; DF, debris-535 
flow; EF, earth or mud flow/slide; RF, rock fall/slide; DL, unspecified deep-seated landslide; NS, not specified landslide. Background 

image from Bing © Microsoft.
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Figure 5: (a) Comparison of the pixel resolution for the satellite-based IMERG, SM2RAIN and the ground-based IMD rainfall 540 
products. (b) Example of the pixel selection for three landslides using a 20 km buffer (yellow circle) for the state of Assam. 

Background image from Bing © Microsoft.
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Figure 6: Pixels enclosed in the buffer of a landslide (yellow dot) for each rainfall product coloured based on the weight. The 545 
representative pixel is the darkest one. The colour scale is qualitative, since it is different for each product.
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Figure 7: Box-and-whiskers plots showing the distribution of (a) monthly amount of rainfall as estimated by the satellite-based and 

measured ground-based products in the selected pixels, and (b) monthly number of rainy days.550 
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Figure 8: Rainfall (D,E) conditions and rainfall thresholds at 5% NEP level for (a) the daily resolution products IMD, SM2RASC 

and PMERGE-D, and (b) the hourly resolution products IMERG and PMERGE-D.
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Figure 9: ROC analysis derived varying the NEP for IMD (orange), SM2R (red), PMERGE-D (purple), IMERG (magenta) and 

PMERGE-H (blue) data sets. Error bars depict the interval of variation of POFD and POD. Inset graph shows AUC for each 

product.
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Table 1. ED thresholds for possible landslide occurrence in India. Label identifies the thresholds established in this work for the 

listed product. NL, number of landslides with reconstructed rainfall conditions. D and E, the rainfall duration (in days or hours) 

and cumulated event rainfall (in mm). Threshold column lists the equations for the 5% ED thresholds.  

Label Product NL D (d) E (mm) Threshold 
 

  # min median max min median max 
 

T5,IMD IMD 130 1 7.0 67 5.0 181.8 2912,0 E = (7.4±1.2)·D(1.1±0.06) 

T5,SM2R SM2R 135 1 52.0 179 2.4 823.5 3813.8 E = (5.7±1.6)·D(1.1±0.06) 

T5,PMERGE-D PMERGE-D 138 1 52.5 182 6.1 938.6 3609.3 E = (9.5±2.0)·D(1.0±0.04) 

      

Label Product NL D (h) E (mm) Threshold 

   # min median max min median max  

T5,IMERG-ER IMERG-ER 126 1 17.0 269 2.9 143.1 1413.4 E = (5.3±0.8)·D(0.74±0.04) 

T5,PMERGE-H PMERGE-H 132 1 11.5 533 4.7 66.8 874.7 E = (5.7±0.5)·D(0.61±0.02) 

 


