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Abstract. Despite recent developments in modelling global soil erosion by water, to date, no substantial progress has been 

made towards more dynamic inter- and intra-annual assessments. In this regard, the main challenge is still represented by the 10 

limited availability of high temporal resolution rainfall data needed to estimate rainfall erosivity. As the availability of high 

temporal resolution rainfall data will most likely not increase in future decades since the monitoring networks have been 

declining since the 1980s, the suitability of alternative approaches to estimate global rainfall erosivity using satellite-based 

rainfall data was explored in this study. For this purpose, we used the high spatial and temporal resolution global precipitation 

estimates obtained with the NOAA CDR Climate Prediction Center MORPHing technique (CMORPH). Such high spatial and 15 

temporal (30 minutes) resolution data has not yet been used for the estimation of rainfall erosivity on a global scale. 

Alternatively, the erosivity density (ED) concept was also used to estimate global rainfall erosivity. The obtained global 

estimates of rainfall erosivity were validated against the pluviograph data included in the Global Rainfall Erosivity Database 

(GloREDa). Overall, results indicated that the CMORPH estimates have a marked tendency to underestimate rainfall erosivity 

when compared to the GloREDa estimates. The most substantial underestimations were observed in areas with the highest 20 

rainfall erosivity values. At the continental level, the best agreement between annual CMORPH and interpolated GloREDa 

rainfall erosivity map was observed in Europe, while the worst agreement was detected in Africa and South America. Further 

analyses conducted at the monthly scale for Europe revealed seasonal misalignments, with the occurrence of underestimation 

of the CMORPH estimates in the summer period and the overestimation in the winter period compared to GloREDa. The best 

agreement between the two approaches to estimate rainfall erosivity was found for autumn, especially in Central and Eastern 25 

Europe. Conducted analysis suggested that satellite-based approaches for estimation of rainfall erosivity appear to be more 

suitable for low-erosivity regions, while in high erosivity regions (>1,000-2,000 MJ mm ha-1 h-1 yr-1) and seasons (>150-250 

MJ mm ha-1 h-1 mo-1), the agreement with estimates obtained from pluviograph (GloREDa) is lower. Concerning the ED 

estimates, this second approach to estimate rainfall erosivity yielded better agreement with GloREDa estimates compared to 

CMORPH, which could be regarded as an expected result since this approach indirectly uses the GloREDa data. The 30 

application of a simple-linear function correction of the CMORPH data was applied to provide a better fit to the GloREDa and 

correct systematic underestimation. This correction improved the performance of the CMORPH but in areas with the highest 
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rainfall erosivity rates, the underestimation was still observed. A preliminary trend analysis of the CMORPH rainfall erosivity 

estimates was also performed for the 1998-2019 period to investigate possible changes in the rainfall erosivity at a global scale, 

which has not yet been conducted using high-frequency data such as CMORPH. According to this trend analysis, an increasing 35 

and statistically significant trend were more frequently observed than decreasing trend. 
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1 Introduction 

Rainfall erosivity is among the main drivers of soil erosion, which can be characterized by large spatial and temporal variability 

(Angulo-Martínez and Beguería, 2012; Ballabio et al., 2017; Bezak et al., 2021; Cui et al., 2020; Panagos et al., 2017; 40 

Verstraeten et al., 2006). In order to obtain robust rainfall erosivity estimates, high temporal resolution rainfall data is needed 

(Panagos et al., 2015; Yin et al., 2017). However, according to Panagos et al. (2017), the availability of stations with high-

frequency data that can be used to estimate rainfall erosivity is on average relatively low in many parts of the world. Therefore, 

in areas with scarce data availability, remotely measured precipitation data can be instrumental in estimating rainfall erosivity 

(Ganasri and Ramesh, 2016; Li et al., 2020). Alternatively, approaches using simpler and less data-demanding methods such 45 

as the erosivity density (ED) (Nearing et al., 2017; Panagos et al., 2015, 2016b) can also represent a viable option. Another 

condition that determines the accuracy of the rainfall erosivity estimates is the low availability of high-temporal-resolution 

rainfall data. Ideally, high-frequency (e.g., 1-minute) measurements obtained using optical disdrometers are necessary to 

quantify the rainfall kinetic energy (Mineo et al., 2019; Nel et al., 2010; Petan et al., 2010; Sanchez-Moreno et al., 2014) of a 

given storm and to calculate its rainfall erosivity. However, such measuring equipment is not commonly available in regional 50 

and national measuring networks. Therefore, due to instrumental limitations, rainfall erosivity is communally estimated using 

hourly or sub-hourly rainfall records (generally ranging from 5 to 60-min) collected by tipping buckets or pluviographs, which 

do not provide information about raindrop size distribution (Panagos et al., 2016a; Petan et al., 2010; Petek et al., 2018). This 

kind of data is then used together with empirically developed equations that relate rainfall kinetic power and intensity (Brown 

and Foster, 1987; Carollo et al., 2017; Petan et al., 2010) to obtain rainfall erosivity estimates. Alternatively, rainfall erosivity 55 

estimates can also be performed based on the rainfall volume, instead of the intensity, using daily, monthly, or annual rainfall 

data (Renard and Freimund, 1994; Yu and Rosewell, 1996). However, it is worth mentioning that the accuracy of rainfall 

erosivity estimates decreases with the increase of the temporal data resolution (i.e., from 1-min to hourly, daily, monthly or 

annual data). Currently, due to data scarcity, most rainfall erosivity assessments based on long-term estimates including a 

period of at least 10-years are limited to few regions (Angulo-Martínez and Beguería, 2012; Nearing et al., 2015; Panagos et 60 

al., 2015, 2017), leaving large parts of the world under-researched. In this regard, a step forward is needed to enable the 

generation of year-by-year and sub-annual rainfall erosivity assessments for under-researched national or larger scale study 

areas.  



3 

 

Recent studies have already explored the possibility to estimate rainfall erosivity using satellite-based products at regional (Li 

et al., 2020) and national scale (Chen et al., 2021; Kim et al., 2020), indicating their sources of uncertainties and a generally 65 

limited accuracy (Aghakouchak et al., 2012; Ghajarnia et al., 2018; Prakash, 2019; Prakash et al., 2015; Rahmawati and 

Lubczynski, 2018; Seo et al., 2018; Wei et al., 2018). However, to the best of the authors’ knowledge, no such study has been 

conducted on a global scale using high temporal resolution data. A promising alternative to the often-limited rain-gauge data 

may be represented by satellite-based precipitation estimates, which currently have both adequate temporal and spatial 

resolution (Chen et al., 2021; Kim et al., 2020; Li et al., 2020; dos Santos Silva et al., 2020; Teng et al., 2017). Moreover, once 70 

further developed and fully operational, the satellite-based methods to estimate rainfall erosivity will have lower purchasing 

and processing costs compared to the current ones. In addition, satellite-based rainfall erosivity estimates could be especially 

useful in regions where rainfall erosivity estimates are currently very limited such as some sizable sectors of Africa, Asia, and 

South America.  

In this study, we aim to deepen the research on the use of satellite-based rainfall data in estimating rainfall erosivity by 75 

performing a first inter‐ and intra‐annual global scale assessment. The GloREDa data (Panagos et al., 2017) was used to 

evaluate both a) the rainfall erosivity estimates obtained by satellite-based rainfall data (i.e. CMORPH) and b) rainfall erosivity 

using the ED concept. Finally, a temporal trend analysis of global rainfall erosivity is presented with corrections between data 

based on the CMORPH and GloREDa databases. 

2 Data and methods 80 

2.1 CMORPH 

The CMORPH product is a reprocessed and bias corrected global precipitation dataset covering the area between the 60°S and 

60°N parallels, with a 30-min time step and a spatial resolution of 8 km x 8 km (Xie et al., 2021, 2017). The CMORPH data 

is developed by the National Oceanic and Atmospheric Administration (NOAA) and covers the period from 1998 onwards. 

This method generally uses the precipitation estimates derived from the low Earth orbit satellite-based passive microwave 85 

observations (Kim et al., 2020). Additionally, the geostationary satellite infrared imagery is used to account for possible 

coverage issues (Kim et al., 2020). Since CMORPH provides an estimate of the 30-min precipitation, each 30-min rainfall rate 

was assumed to be constant during this time interval (Kim et al., 2020; Xie et al., 2021). This dataset has already been applied 

to several practical applications, such as validating the climate model simulations, identifying climate extremes, forcing 

numerical weather models, and characterizing the global precipitation (Xie et al., 2021). Additionally, details about the 90 

methodology can be found in the literature (Chen et al., 2020; Xie et al., 2017, 2021). 

2.2 GloREDa database 

The Global Rainfall Erosivity Database (GloREDa) was created with the objective to develop the first ever global rainfall 

erosivity map using high-temporal resolution data (Panagos et al., 2017) and to move towards a new generation of RUSLE-
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based soil erosion assessments for the present (Borrelli et al., 2017) and future climate change and land use dynamics (Borrelli 95 

et al., 2020). GloREDa contains annual rainfall estimates for 3,625 stations from 63 countries with temporal resolution ranging 

from 1-min to 60-min (Panagos et al., 2017). The data sample lengths ranged from 5 to 52 years with a mean value of around 

17 years with most of the data covering the period from 2000 to 2010 (Panagos et al., 2017). The number of stations in different 

continents greatly varied from around 5% (i.e. South America and Africa) to around 48% (i.e. Europe). Based on the station 

data and applying the Gaussian Process Regression model, the global rainfall erosivity map was also prepared (Panagos et al., 100 

2017). Therefore, in the scope of this study, both the station (i.e. point) estimated annual rainfall erosivity and a global rainfall 

erosivity map (Panagos et al., 2017) were used. The spatial resolution of the global rainfall erosivity map prepared by Panagos 

et al. (2017) is 30 arc-seconds (i.e. around 1 km at the Equator). The Rainfall Erosivity Database on the European Scale 

(REDES) is the predecessor of GloREDa as it was developed in 2015 (Panagos et al., 2015). As the REDES made the monthly 

erosivity values available (Ballabio et al., 2017), the monthly rainfall erosivity maps of Europe were also used here for the 105 

comparison of the CMORPH with station-based rainfall erosivity. All datasets are available in European Soil Data Centre 

(ESDAC) (Panagos et al., 2012). 

2.3 Rainfall erosivity calculation 

In order to calculate the annual and monthly rainfall erosivity for each grid cell that is covered by the CMORPH product, the 

time series with a 30-min time step were extracted from the original CMORPH dataset (Xie et al., 2021). For each grid cell 110 

covered by the CMORPH, a 30-min precipitation time series [mm/h] were extracted for the 1998-2019 period. The erosive 

events were defined according to the procedure described in the Revised Universal Soil Loss Equation (RUSLE) handbook 

(Renard et al., 1997). Thus, two events were separated in case of less than 1.27 mm of rain within 6 h. Only erosive rainfall 

events with more than 12.7 mm of rain in total or 6.35 mm in 15 min were considered in the calculations (Kim et al., 2020; 

Renard et al., 1997). In order to calculate the specific kinetic energy eb [MJ ha-1 mm-1], the Brown and Foster (1987) equation 115 

was applied since this equation was also used by Panagos et al. (2017): 

𝑒𝐵 = 0.29 ∙ [1 − 0.72 ∙ exp(−0.05 ∙ 𝐼)] ,         (1) 

where I is rainfall intensity [mm h-1]. In order to calculate the annual rainfall erosivity R-factor [MJ mm ha-1 h-1 yr-1], the 

following two equations were also used (Renard et al., 1997): 

𝐸 = 𝑒𝐵 ∙ 𝐼 ∙ ∆𝑡,            (2) 120 

𝑅 =
∑ 𝐸∙𝐼30𝑛

𝑁
 ,            (3) 

where E is the kinetic energy of individual erosive event [MJ ha-1], t is the time interval [h] and 𝐼30 is the maximum 30-

minute intensity [mm h−1] of erosive event 𝑛, which occurred within a time span of 𝑁 years. This procedure was repeated for 

all grid cells covered by the CMORPH product. 
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2.4 Erosivity density (ED) and ERA5 125 

The erosivity density (ED) concept was first introduced by Kinnell (2010) and was also used in the scope of the enhanced 

RUSLE approach, named RUSLE2, which led to the improvements of rainfall erosivity mapping (Dabney et al., 2012; Nearing 

et al., 2017). The ED is defined as the ratio between annual or monthly rainfall erosivity and annual or monthly precipitation 

(Panagos et al., 2016b). Thus, ED is calculated as the ratio of rainfall erosivity (R) and rainfall depth (P) (Nearing et al., 2017): 

𝐸𝐷 =
𝑅

𝑃
,             (4) 130 

Since the introduction of the ED, it has been applied in numerous studies (Diodato et al., 2019; Kinnell, 2019; Nearing et al., 

2017; Panagos et al., 2016b). The global rainfall erosivity map obtained by Panagos et al. (2017) was used in this study to 

obtain a global rainfall erosivity density map (ED). For the calculation of rainfall volume for specific years, the ERA5 

reanalysis product was used.  

The ERA5 is one of the latest reanalysis products produced by the European Centre for Medium-Range Weather Forecasts 135 

(ECMWF) that provide atmospheric, land-surface, and sea-state data. ERA5 includes a large number of historical observations 

and provides a long-term solution for ED estimation. The reanalysis data combine the model data and observations across the 

globe into a complete and consistent dataset based on the laws of physics (ERA5, 2021a). Therefore, the ERA5 product is 

widely used for different purposes (Reder and Rianna, 2021; Sutanto et al., 2020; Tang et al., 2020). The monthly temporal 

resolution on a single level was used and a horizontal resolution of 0.25° x 0.25°. The temporal coverage used in this study 140 

was from 1979 until 2020. Comparison with the CMORPH and GloREDa was made using the 1998-2019 period. Additional 

information can be found in existing literature (An et al., 2020; ERA5, 2021b; Tang et al., 2020). ERA5 is updated regularly 

(i.e., monthly updates), which makes it the best option for the dynamic rainfall erosivity assessment at a global scale using the 

ED concept. In the case of the ED concept, the annual and monthly ED maps (Ballabio et al., 2017; Panagos et al., 2017) were 

multiplied with mean monthly or annual precipitation estimates provided by the ERA5. 145 

2.5 Data evaluation 

The performance of the rainfall erosivity derived using the CMORPH product and ED concept was evaluated using the 

GloREDa point dataset (Panagos et al., 2017). This evaluation was performed for the period 1998-2019 at global, continental, 

catchment, and local scales. For the latter, point data values (stations) were compared against values derived at this location 

from both methodologies. At the catchment scale, the HydroSHEDS catchment boundaries at the 3rd level were used (Lehner 150 

and Grill, 2013). The idea of using 3rd level catchment boundaries was to evaluate if the accuracy of the CMORPH and ED 

derived rainfall erosivity changes with scale (i.e., from global to large regional or even point scale). Moreover, a more detailed 

comparison was made for Europe since monthly rainfall erosivity maps (REDES) are also available (Ballabio et al., 2017) and 

were also used for the comparison.  

In the data evaluation process, we used the following metrics: Pearson correlation coefficient, percent bias, and Gini 155 

coefficient. The Pearson correlation coefficient is a measure of linear correlation between two data sets. The percent bias is a 
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measure of the mean tendency of the modelled data to be smaller or larger than the observed data. The Gini coefficient is a 

scalar metric that can be derived based on the Lorenz curve and is frequently used in economics to describe the inequality of 

wealth (Gini, 1914; Lorenz, 1905; Masaki et al., 2014). The Gini coefficient ranges from 0 to 1 where a value close to 1 and 0 

indicates significant inequality and no inequality, respectively (Masaki et al., 2014). Thus, the idea behind using the Gini 160 

coefficient was to use an additional metric that describes the distribution of rainfall erosivity in the selected area (e.g., the 

distribution of rainfall erosivity grid cells at catchment or continental scale). Therefore, the Gini coefficient can be used as an 

indicator of the rainfall erosivity spatial patterns. Figure 1 shows an example of different Gini coefficient values for three 

examples. In the first one, there are similar grid values and the Gini coefficient is close to 0. The third example shows 

significant inequality where the Gini coefficient is close to 1 and the second example represents more diverse grid values with 165 

a Gini coefficient of around 0.5 (Figure 1). 

Since the spatial resolution of the input datasets (CMORPH, GloREDa, and REDES) were not the same, the GloREDa and 

REDES data (and the ED) were resampled to the same grid system extent and resolution that was used by the CMORPH using 

the mean value (cell area weighted) method that is included in the SAGA GIS software (SAGA GIS, 2021). The same applied 

to the ERA5 product that was also resampled to the same grid system using B-spline interpolation (SAGA GIS, 2021). 170 

Therefore, the above-described comparison at global, continental, regional, and point scales was made using the resampled 

GloREDa and REDES maps (Panagos et al., 2017). A preliminary investigation was done to estimate the resampling effect on 

the mean global rainfall erosivity. The global mean rainfall erosivity using GloREDa map (1 km spatial resolution) was 2,190 

MJ mm ha-1 h-1 yr-1 while in the case of resampled (i.e., mean) data at 10 km resolution, this value is equal to 2,260 MJ mm 

ha-1 h-1 yr-1. Thus, resampling led to around 3% difference in the global mean value. However, further aggregation of the 175 

GloREDa data led to larger differences. 
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Figure 1: Gini coefficients for three examples of 10 grid cells with the same mean value (i.e., 100) as an illustration of the added value 

of the Gini coefficient. Example 1 has similar grid values (i.e. low Gini value), example 2 has more diverse grid values (i.e. Gini value 

around 0.5) and example 3 has significant inequality (i.e. Gini value close to 1). 180 

2.6 Trends 

Based on the annual CMORPH and ED global rainfall erosivity maps for specific years in the period from 1998-2019, the 

Mann-Kendall trend test was also calculated for each grid cell. The Mann-Kendall test is one of the most widely applied tests 

for the detection of changes in the environmental data (Burn and Hag Elnur, 2002; Rodrigues da Silva et al., 2016). A detailed 

description of the Mann-Kendall test can be found in the literature (Burn and Hag Elnur, 2002; Hamed, 2008; McLeod, 2011). 185 

The objective was to identify areas where the detected trend in the annual rainfall erosivity data was positive or negative with 

a significance level of 0.05. 

3 Results 

3.1 Spatial distribution of annual rainfall erosivity 

The mean global annual rainfall erosivity using the CMORPH (Figure 2a) data is 1,236 MJ mm ha-1 h-1 yr-1, with a standard 190 

deviation of 1,895 MJ mm ha-1 h-1yr-1. The mean global annual rainfall erosivity using the erosivity density (ED) approach 

(Figure 2b) is 2,480 MJ mm ha-1 h-1 yr-1. As can be inferred from Figure 2 and further indicated in Table 1, CMORPH and ED 

approaches both agreed that the highest values of rainfall erosivity at the continental level were estimated for South America, 

while the smallest ones were estimated for Europe.  

Concerning the inequality of  CMORPH estimates, the Gini coefficient reflects a high level of rainfall erosivity inequality for 195 

Asia, followed by Africa and North America, while the smallest value was observed for Europe (Table 1). Also, with regard 

to the ED concept, the largest Gini coefficient was obtained for Asia, whereas Europe has the smallest value (Table 1). Both 

the mean global rainfall erosivity map for the 1998-2019 period based on the CMORPH product (Fig 2a) and the one developed 

by using the erosivity density (ED) concept and ERA5 will be available in the European Soil Data Centre (ESDAC) (Panagos 

et al., 2012). 200 

 

Table 1: Mean, standard deviation, and Gini coefficient of the global rainfall erosivity maps derived using the CMORPH and ED. 

Continent CMORPH ED 

 

Mean 

[MJ mm ha-1 h-

1 yr-1] 

St. dev. 

[MJ mm ha-1 h-1 

yr-1] 

Gini 

[/] 

Mean 

[MJ mm ha-1 h-1 

yr-1] 

St. dev. 

[MJ mm ha-1 h-1 

yr-1] 

Gini 

[/] 

Africa 1,038 1,619 0.62 3,037 3,277 0.56 

Asia 1,138 2,242 0.73 2,255 3,554 0.69 
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Oceania 1,004 1,207 0.48 1,630 1,916 0.51 

Europe 614 490 0.36 646 500 0.36 

North America 892 1,072 0.53 1,748 1,947 0.52 

South America 2,556 2,179 0.41 6,640 3,961 0.32 

 

Figure 2: Mean global rainfall erosivity map for the 1998-2019 period based on the CMORPH product (A) and ED concept using 

the ERA5 (B).  205 

3.2 Temporal trends in rainfall erosivity 

Table 2 shows the mean and standard deviation of monthly rainfall erosivity derived using the CMORPH product. One can 

notice that the highest rainfall erosivity values were obtained in July followed by August and the lowest were in November 

(Table 2).  

The temporal trends for both CMORPH and ED-derived rainfall erosivity datasets were also calculated. The annual rainfall 210 

erosivity in the period 1998-2019 ranged from 990 to 1,440 MJ mm ha-1 h-1 yr-1 using the CMORPH data (Figure 3; Figure 

S1). Using the ED concept for global rainfall erosivity assessment, the mean value ranged from 2,380 to 2,602 MJ mm ha-1 h-

1 yr-1 (Figure 3; Figure S1) for the period 1998-2019. In addition, the fluctuation of the mean annual erosivity in relation to the 

ED concept was smaller compared to the CMORPH (Figure 3), a condition which can be related to the fact that the adopted 

ED concept used a constant ED map for the entire period, while only annual precipitation (i.e. ERA5) changed from year to 215 

year.  
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Figure 3: Trend analysis for the mean and standard deviation (ST DEV) for annual rainfall erosivity (R) using CMORPH and ED.  

 

Table 2: Global monthly rainfall erosivity values using the CMORPH product, mean and standard deviation are shown.  220 

Month Mean  [MJ mm ha-1 h-1 mo-1] St. dev. [MJ mm ha-1 h-1 mo-1] 

January 101 213 

February 96 198 

March 99 200 

April 96 193 

May 99 208 

June 109 227 

July 124 245 

August 120 228 

September 102 204 

October 97 195 

November 93 200 

December 100 221 

3.3 Data evaluation 

3.3.1 Comparison at a global scale 

For most continents, relatively large differences in the mean long-term annual rainfall erosivity between GloREDa and 

CMORPH were observed, while smaller differences were observed between ED and GloREDa which could be expected due 



10 

 

to the selected ED input data (Table 3). The most significant differences in the case of the CMORPH were detected for Africa, 225 

South America, and North America (Table 3). As for the ED concept, the most considerable differences were calculated for 

Asia, Europe, and South America. On the other hand, a much better agreement between the CMORPH and GloREDa maps 

was observed for Europe and partly for Asia (Table 3). In terms of the Gini coefficient, smaller bias values were obtained 

compared to the mean annual rainfall erosivity (Table 3). Thus, it seems that the distribution of the rainfall erosivity of the 

CMORPH, ED concept, and GloREDa was relatively similar (i.e. smaller bias) despite the fact that the GloREDa map was 230 

based on interpolation. It should be noted that the ED provided a better fit to the GloREDa compared to the CMORPH at most 

of the continents in terms of the Gini coefficient, which means that the spatial rainfall erosivity patterns are quite similar. This 

can be regarded as an expected result since the ED indirectly uses the GloREDa data.  

 

Table 3: A comparison between the CMORPH, ED concept and GloREDa derived global rainfall erosivity at a continental scale. 235 

Continent 
CMORPH bias compared to 

GloREDa [%] 

ED bias compared to 

GloREDa [%] 

GloREDa [MJ mm ha-1 h-1 

yr-1] 

 Mean St. dev. 
Gini 

[/] 
Mean St. dev. 

Gini 

[/] 
Mean St. dev. Gini [/] 

Africa -66 -46 17 -1 +9 6 3,055 2,992 0.53 

Asia -38 -23 4 +23 +22 -1 1,839 2,925 0.70 

Australia-

Oceania 
-40 -39 -8 -3 -3 -2 1,676 1,975 0.52 

Europe +11 +17 0 +17 +20 0 553 418 0.36 

North 

America 
-47 -48 -7 +4 -7 -9 1,683 2,082 0.57 

South 

America 
-56 -36 24 +13 +17 -3 5,866 3,381 0.33 

3.3.2 Comparison at regional scale 

The HydroSHEDS catchment boundaries (Lehner and Grill, 2013) at the 3rd level were used to compare the data of CMORPH 

with the GloREDa at the regional scale. Thus, the global land surface was divided into 288 sub-catchments at the 3rd level with 

a mean catchment area of around 460,000 km2. Hence, this can be regarded as an extensive regional-scale investigation. The 

results demonstrated that the Pearson correlation between the mean annual rainfall erosivity at the sub-catchment level (sub-240 

catchment average values were used) between the CMORPH and GloREDa was 0.81 (R2 = 0.66 with p-value < 0.01). 

Moreover, the mean bias was around -50% in case GloREDa data was considered as the observed data. In terms of the Gini 

coefficient, the Pearson correlation coefficient was 0.56 (R2 = 0.31 with p-value < 0.01), while the mean bias was equal to 
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45%. Therefore, the CMORPH yielded more unequal (i.e., larger Gini coefficient) spatial erosivity patterns compared to the 

GloREDa, which was based on interpolation. The spatial interpolations tend to smooth the extreme values (Dodson and Marks, 245 

1997); therefore the Gini is smaller. 

The comparison between the ED concept and GloREDa revealed that the Pearson correlation coefficient was equal to 0.95 (R2 

= 0.90 with p-value < 0.01) and the mean bias was 7%. Regarding the Gini coefficient, the Pearson correlation coefficient and 

the mean percent bias were 0.91 (R2 = 0.83 with p-value < 0.01) and 3.4%, respectively. Therefore, GloREDa and ED maps 

have similar spatial erosivity patterns, which can be regarded as an expected result since the ED indirectly uses the GloREDa 250 

information. Furthermore, two examples of good (Figures 4) and bad (Figures 5) agreement between the CMORPH, ED and 

GloREDa are presented.  

 

Figure 4: An example of relatively good agreement between the GloREDa (A), ED (B), and CMORPH (C) maps for parts of Eastern 

Europe and Turkey. 255 
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Figure 5: An example of worse agreement between the GloREDa (A), ED (B), and CMORPH (C) maps for the parts of Southern 

America. 

 

In Europe, we found the best agreement between the CMORPH and GloREDa (Table 3) and the smallest uncertainty in 260 

GloREDa. For those reasons and due to the availability of monthly rainfall erosivity estimates (Ballabio et al., 2017), a more 

in-depth assessment was made for Europe. According to GloREDa, the mean annual rainfall erosivity in Europe (i.e., without 

Russia) was 668 MJ mm ha-1 h-1 yr-1 with a standard deviation of 429 MJ mm ha-1 h-1 yr-1 (Figure 6). According to the CMORPH 

product, the mean and standard deviation were equal to 752 and 533 MJ mm ha-1 h-1 yr-1, respectively (Figure 6). Additionally, 

the ED concept yielded a mean annual rainfall erosivity value of 804 with a standard deviation of 541 MJ mm ha -1 h-1 yr-1 265 

(Figure 6). Moreover, the calculated Gini coefficient using all grid cells was 0.31 in all cases (Figure 6). Thus, it can be seen 

that the CMORPH product yielded relatively similar erosivity distribution across Europe (without Russia) compared to the 



13 

 

GloREDa, which means that all maps have a similar level of inequality (i.e., non-uniform distribution of rainfall erosivity). A 

bit larger rainfall erosivity values were obtained using the ED concept. It should be noted that part of these differences can be 

attributed to the fact that the GloREDa dataset mostly used data in the 2000-2010 period (Panagos et al., 2017). Moreover, in 270 

some areas (e.g., Italy, Balkan Peninsula, parts of Eastern Europe), spatial patterns in all cases were similar, although 

CMORPH product and ED concept yielded slightly variable rates (Figure 6). On the other hand, the CMORPH yielded higher 

annual rainfall erosivity values compared to the GloREDa map in some parts of the British Isles and Eastern Europe (Figure 

6). Furthermore, CMORPH tends to underestimate areas with relatively high rainfall erosivity such as the Alpine region, Spain, 

Italy, and other parts of the Mediterranean basin (Figure 6). 275 

As there are available monthly erosivity datasets in the EU (Ballabio et al., 2017), we compared them with the CMORPH and 

ED derived maps (Table 4). A better agreement between CMORPH and GloREDa for autumn compared to winter and summer 

were found (Table 4). The ED concept yielded higher rainfall erosivity values in almost all months, which also resulted in 

higher differences at the annual level (Table 4). This could be attributed to the underestimation of the WorldClim V1 map 

(Beck et al., 2020). In addition, GloREDa has lower values compared to REDES in Europe.  280 

Moreover, Figure 7 shows monthly erosivity values for selected months where three cases were selected (i.e. under-, over-

estimation, and almost complete agreement between CMORPH and GloREDa). In July, the CMORPH product in the Alpine 

region generally yielded smaller erosivity values compared to both the monthly erosivity maps prepared by Ballabio et al. 

(2017) and the ED map (Figure 7). The same conclusion is reached for other regions such as parts of Western Europe or the 

Iberian Peninsula (Figure 7). In December, parts of Eastern Europe have better agreement among the three maps (Figure 7). 285 

On the other hand, October is the month with the best agreement among the three tested maps (Figure 7). For October, the best 

agreement is found in parts of Eastern and Central Europe, while the worst was detected in parts of the Iberian Peninsula 

(Figure 7). The CMORPH derived rainfall erosivity, in some cases, is more equally distributed (i.e. winter) and in other cases, 

it is more unequally distributed (i.e. summer) compared to the GloREDa. While, in the case of the ED concept and GloREDa, 

the derived Gini coefficients are relatively similar throughout the year (Table 4). 290 
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Figure 6: Comparison between the GloREDa rainfall erosivity map prepared by Panagos et al. (2017) (A), CMORPH derived rainfall 

erosivity map (B) and ED concept derived map (C) for Europe.  

Table 4: Comparison between monthly rainfall erosivity characteristics for Europe using Ballabio et al. (2017), ED concept, and 

CMOPRH product. Values in brackets indicate percent bias compared to the GloREDa map. 295 

Month 
CMORPH bias compared to 

GloREDa [%] 

ED bias compared to GloREDa 

[%] 

Monthly R (Ballabio et al., 

2017) 

 Mean St. dev. Gini Mean St. dev. Gini 

Mean [MJ 

mm ha-1 h-1 

mo-1] 

St. dev. [MJ 

mm ha-1 h-1 

mo-1] 

Gini 

[/] 

January +196 +164 -11 +4 +3 -5 26 36 0.63 

February +117 +105 -8 +4 0 -2 24 37 0.65 

March +93 +74 -20 +33 +49 +3 27 43 0.64 

April +56 +71 -16 +25 +26 +2 32 34 0.51 

May -15 +25 +9 +24 +43 +6 67 40 0.32 

June -40 -29 +6 +12 +20 +3 101 66 0.35 

July -42 -25 +22 +24 +38 +6 121 72 0.32 

August -41 -35 +12 +16 +25 +3 112 72 0.33 

September -29 -29 -16 +18 +36 +9 82 80 0.44 

October -3 -21 -24 +13 +20 0 79 90 0.54 

November +64 +46 -18 +16 +38 +5 56 74 0.61 

December +80 +23 -25 -5 -7 -3 44 70 0.67 
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Figure 7: Comparison between monthly erosivity maps for Europe prepared by Ballabio et al. (2017) (A, D, G), CMORPH (B, E, H) 

and ED concept (C, F, I) maps for July (A, B, C), October (D, E, F) and December (G, H, I).  
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3.3.3 Comparison at the local scale using GloREDa stations 300 

The station data of GloREDa was also compared with grid cell values at the same location from the derived CMORPH and 

ED rainfall erosivity maps. The Pearson correlation coefficient between CMORPH and GloREDa datasets was equal to 0.74 

(R2 = 0.55 with p-value < 0.01) and the mean bias was equal to -32% (Figure 8). In general, the CMORPH product yielded 

smaller rainfall erosivity estimates, especially for locations where annual rainfall erosivity exceeded 5,000 MJ mm ha-1 h-1 yr-

1 (Figure 8). Additionally, CMORPH products tended to overestimate rainfall erosivity in locations near water bodies, which 305 

are also the points located above the orange line shown in Figure 8. A comparison between the ED concept and the GloREDa 

yielded a Pearson correlation coefficient of 0.77 (R2 = 0.59 with p-value < 0.01) and a mean bias of 10%. Similarly, a better 

agreement between the ED concept and GloREDa was detected at a global, continental, or large catchment scale compared 

with CMORPH versus GloREDa.   

 310 

 

Figure 8: Comparison between local (i.e. grid cell values) long-term annual rainfall erosivity from CMORPH and ED and stations’ 

values of GloREDa.  
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3.4 CMORPH data correction using GloREDa point data 

Considering the results and comparisons presented above, the attempt to adjust the CMORPH rainfall erosivity estimates using 315 

the estimates of the GloREDa ground stations database was made. A similar attempt was also made by Kim et al. (2020) and 

Wang et al. (2020). In the scope of this study, we developed correction factors (or functions) for each of the Kopper-Geiger 

climate zones (Peel et al., 2007). The corrections were made both at a global scale using all GloREDa stations and per climate 

zone (Figure 9). In Table 5, we propose the best linear function, which can be applied at CMORPH estimated values in order 

to be as close as possible to the measured rainfall erosivity values of the GloREDa.  320 

 

Table 5:  Correction factors that were developed based on the GloRED-CMORPH relationship per climate zone. R2 is the 

coefficient of determination. 

Climate Zone Number of 

stations 

Number 

of 

outliers 

Mean erosivity in 

GloREDa (MJ mm 

ha-1 h-1 yr-1) 

Mean erosivity in 

CMORPH (MJ mm 

ha-1 h-1 yr-1) 

Correction 

factor  

R2 

Globe (all) 3,373 25 1,923 1,264 1.53 0.71 

Tropical 198 12 7,368 3,214 1.85 0.69 

Cold 1,028 17 1,004 793 1.36 0.83 

Temperate 1,620 19 2,168 1,514 1.48 0.74 

Arid 435 8 941 652 1.36 0.69 

Polar 92 7 794 826 0.88 0.72 

 

Therefore, a generic correction linear function that can be used to derive the corrected CMORPH data (CMORPHCOR) for the 325 

whole globe can be written as follows:  

CMORPHCOR = 1.53 *CMORPH              (5) 

From the results of comparing GloREDa with the CMORPH, it is evident that CMORH underestimates the rainfall erosivity 

for a factor close to 2 (1.85) in tropical areas where we estimate a high R-factor (Panagos et al., 2017). In temperate areas 

where the R-factor is close to the global mean, the CMORPH underestimation is about 1.5, while a better agreement can be 330 

seen in low erosivity areas (arid, cold) (Figure 9). Thus, applying this simple linear transformation can yield a better agreement 

between the GloREDa and CMORPHCOR both at station scale (Figure 9) as well as at a global scale (Figure S2). The same 

correction was also applied to the global rainfall erosivity map derived using the CMORPH product (Figure S2) and yielded a 

global mean rainfall erosivity of 2,000 MJ mm ha-1 h-1 yr-1with a standard deviation of 3,314 MJ mm ha-1 h-1 yr-1. Even if one 

notices a much better agreement between the CMORPHCOR and GloREDa after the correction, this is relevant only for long-335 

term mean rainfall erosivity assessments. With regard to dynamic rainfall erosivity maps (i.e., for specific years or months), 
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different corrections factors should be applied based on the relationship between CMORPH and stations rainfall erosivity for 

specific years. It is worth mentioning that the applied correction can be regarded as a relatively simple one, which could be 

suitable for global-scale modelling applications. By applying a correction factor to the CMORPH, we aim to provide a simple 

method that uses available remote sensing data to develop dynamic erosivity values. 340 

 

Figure 9: Comparison between CMORPH and GloREDa datasets at station scale and proposed correction factors for the whole 

dataset and per climate zone (tropical, cold, temperate, arid, polar). Blue line indicates the linear trend. Red dots are few outliers 

(i.e. identified based on the Cook’s distance) excluded from the correlation. 

 345 

3.5 Temporal global erosivity trends for the period 1998-2019 

The Mann-Kendall test was applied to identify areas with statistically significant (i.e., with the 0.05 significance level) changes 

(Figure S3) during the period 1998-2019. According to CMORPH erosivity output, 15% of the globe has a statistically 

significant change (Figure S3). In case of the detected changes, most of the regions show a positive trend rather than negative 

according to the CMORPH product (Figure S3). Therefore, the positive trend covers 80% of the area where statistically 350 
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significant change was detected (i.e., around 12% of the total area) (Figure S3) while the remaining 20% (3% of the total area) 

has a negative trend.  

On the other hand, the ED concept yielded different results as around 13% of the total area shows a statistically significant 

trend with positive and negative trends having similar shares (i.e., around 6.5% each). Consistent trends for using both methods 

(i.e., CMORPH and ED concept) were estimated in parts of North America and Asia while opposite trends were found in parts 355 

of Africa, Asia, and Europe. A direct comparison with the study conducted by Bezak et al. (2020) that investigated rainfall 

erosivity trends in Europe (1961-2018) was not possible since the investigated periods did not overlap. 

4 Discussion 

The global mean annual rainfall erosivity derived by Panagos et al. (2017) totals about 2,190 MJ mm ha-1 h-1 yr-1 (i.e. initial 

1-km cell size map), with a standard deviation of 2,974 MJ mm ha-1 h-1 yr-1. The area covered by CMORPH is slightly smaller 360 

(between 60°S and 60°N parallels) than the one covered by the GloREDa map (between 60°N and ~75°N parallels, including 

some parts of Scandinavia, Siberia, Canada). However, a GloREDa global mean rainfall erosivity value of about 1.8 times 

higher than the one derived based on the CMORPH data (shown in section 3.1) cannot be explained by the slight difference 

between the two study areas. It should be noted that Kim et al. (2020) also reported that the CMORPH derived rainfall erosivity 

was 1.65 lower than the GloREDa estimates (Panagos et al., 2017) for the United States of America (USA), with some USA 365 

regions showing a bias smaller than -80% (Kim et al., 2020). More specifically, Kim et al. (2020) reported a mean annual 

value of 1,260 MJ mm ha-1 h-1 yr-1 for the USA, while in this study a mean value of 1,173 MJ mm ha-1 h-1 yr-1 was calculated 

using a slightly different methodology (e.g., different eb-I equation was applied) and different time period. As the station 

density was quite low in the case of Panagos et al. (2017) study for Africa and North America and also parts of Asia, this can 

partly explain the larger differences between CMORH and GloREDa. On the other hand, the largest number of stations was 370 

positioned in Europe and also parts of Asia (Panagos et al., 2017) where the agreement between CMORPH and GloREDa was 

the best (Table 3). Thus, part of the differences between the CMORPH and GloREDa can be attributed to the station density 

used by the GloREDa and partly to the issues related to the detection of rainfall by the satellite-based products in mountainous 

regions (e.g., Stampoulis and Anagnostou, 2012).  

In line with what was already discussed by Kim et al. (2020), the insights gained by conducting global analysis suggest that 375 

the CMORPH satellite-based rainfall erosivity estimates provide more seamless erosivity distribution without employing 

interpolation, uniform, and good spatial coverage, 30-time temporal resolution. However, it is also clear that this product has 

important disadvantages, i.e., overestimated precipitation over water bodies, detection accuracy in hilly terrains can be 

problematic, the accuracy of annual precipitation can be low and relative bias at event scale can be significant.  

As previously noted, several studies have indicated that the difference between satellite-based products and ground-based 380 

precipitation data can be quite significant (Habib et al., 2012; Haile et al., 2015; Jiang et al., 2018). The differences in the 

rainfall intensity patterns can also be transformed into rainfall erosivity patterns. There were numerous studies published that 
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investigated the accuracy of the CMORPH product in terms of precipitation. For example, Islam et al. (2020) showed that 

CMORPH overestimated the daily precipitation amount in Australia. A similar conclusion was made by An et al. (2020) for 

the Yellow River in China or by Wei et al. (2018) for mainland China. Some studies also showed a significant underestimation 385 

of the CMORPH in winter seasons (Gebregiorgis and Hossain, 2015). Additionally, Palharini et al. (2020) showed that 

satellite-based products tended to underestimate extreme precipitation, which can have an important effect on rainfall erosivity. 

Underestimation of extreme rainfall events was also reported in multiple other studies (Jiang et al., 2019; Rahmawati and 

Lubczynski, 2018; Stampoulis et al., 2013; Sunilkumar et al., 2015; Wei et al., 2018b). This kind of underestimation can also 

lead to negative bias of the satellite-based products compared to the station-based rainfall erosivity. Moreover, Tian et al. 390 

(2009) also showed that in USA, overestimation was seen for summer (i.e. overestimation of heavy precipitation with intensity 

over 40 mm/day) and underestimation for winter (i.e. miss of significant amount of light precipitation with intensity lower 

than 10 mm/day). Tian et al. (2009) also found out that hit bias (i.e. with respect to satellite-based data and reference data 

reporting precipitation coincidently) and missed precipitation were the two dominant error sources. A similar conclusion was 

also made by Jiang et al. (2018) who pointed the limited detection accuracy of summer thunderstorms by the CMOPRH product 395 

in the Shanghai region. These drawbacks of CMORPH can also lead to under- or over-estimation of the rainfall erosivity by 

the CMORPH. Comparing the CMORPH outputs with the GloREDa measured erosivity values for almost 3,400 ground 

stations, we found that CMORPH underestimates erosivity in tropical areas by a factor close to 2, while there is a better 

agreement for low erosivity areas (cold, arid, polar). For the temperate climatic regions, CMORPH underestimates erosivity 

by a factor close to 1.5. 400 

On the other hand, the only study that, to the best of the authors’ knowledge, investigated this satellite-based derived rainfall 

erosivity (Kim et al., 2020) showed that CMORPH underestimated rainfall erosivity in the USA compared to the GloREDa 

map. Thus, it is clear that underestimation of the most extreme rainfall events can lead to large differences in the derived 

rainfall erosivity map. Such characteristics can also lead to relatively large differences in case satellite products are used for 

flood investigations (Dis et al., 2018). Underestimation of the precipitation amount by the CMOPRH product in Southern 405 

Europe as shown in the Results section was also indicated by some other studies (Skok et al., 2016). Furthermore, Stampoulis 

and Anagnostou (2012) also pointed out that satellite-based precipitation products accuracy tended to be lower over the 

mountainous regions such as the Alpine region (or Andes). This was especially evident during the cold season (Stampoulis 

and Anagnostou, 2012) and was also highlighted in some other studies (Kidd et al., 2012). Also, other studies pointed a 

detection problem for winter precipitation and high-intensity rainfall events in some parts of Europe (Stampoulis and 410 

Anagnostou, 2012).  

Different examples of good and worse agreement among presented rainfall erosivity maps can be seen around the globe (Figure 

4 and Figure 5). Comparing the three maps (i.e., GloREDa, CMORPH, and ED) for parts of the Eastern Europe and Turkey 

(Figure 4), a relatively good agreement between all the three maps was detected. The main reasons for this good agreement 

are a) the relatively large number of stations with measured R-factor which contributed to GloREDa map in countries such as 415 

Romania or Turkey (Panagos et al., 2017); b) the relatively flat terrain without major mountainous regions in parts of Eastern 
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Europe and c) the relatively low-medium erosivity (< 1,000 MJ mm ha-1 h-1 yr-1). On the contrary, there are many regions 

where differences are much larger. An example is the Andes mountain region (Figure 5) where the GloREDa includes only 15 

stations in the central part of Chile (Panagos et al., 2017) and also gridded precipitation products such as WorldClim 

underestimate precipitation (Beck et al., 2020).  420 

The ED (based on the ERA5 and GloREDa data) rainfall erosivity estimates showed a better agreement with the GloREDa 

point estimates, which could be regarded as an expected result due to the selected input data. The largest differences between 

the ED and the GloREDa estimates were observed in Asia, Europe, and South America because of the precipitation 

underestimation in mountainous regions such as the Andes, Himalayas, and Alps (Beck et al., 2020). The deviation of ED 

compared to GloREDa map could be explained by two main reasons: a) the difference in the spatial resolution of the GloREDa 425 

and CMORPH maps as aggregating the 1-km GloREDa map to the 0.25° that is used by the ERA5 yielded a global mean value 

of 2,329 MJ mm ha-1 h-1 yr-1; b) the WorldClim V1 map that was used as input to produce the GloREDa map underestimates 

the precipitation and that updated version of the WorldClim map (i.e. V2) yields around 10% higher annual global precipitation 

(Beck et al., 2020). It should be noted that the ED concept indirectly uses the GloREDa data for the estimation.  

ED has the following advantages compared to the CMORPH approach: a) the ED concept can be used to prepare dynamic 430 

rainfall erosivity maps that have better agreement with GloREDa and b) there are no issues with the accuracy near water 

bodies. On the other hand, ED also has some shortcomings: a) most of the gridded precipitation datasets underestimate 

precipitation over mountain regions (Beck et al., 2020); b) considers the erosivity/precipitation relationship as constant; c) 

rainfall erosivity map is needed as input. 

5 Study limitations and other products 435 

The density of stations used to produce the GloREDa map is locally low, especially in the African and South American 

continents. Obviously, this could have a substantial effect on the produced global rainfall erosivity map (Panagos et al., 2017), 

and consequently on the results presented in this study since the GloREDa map was here used as a reference. However, to the 

best of the authors’ knowledge, GloREDa is the only global assessment using hourly and sub-hourly rainfall data and the best 

performing among the global assessments currently available (Panagos et al., 2017). This is due to the coarser time step of 440 

other potential global rainfall erosivity sources (Liu et al., 2020). Since the ED concept directly uses the GloREDa map, the 

results produced by the ED method are directly influenced by the potential shortcomings of the GloREDa and this should be 

taken into account when making further applications using the ED. 

On the other hand, the satellite-based precipitation products have their own sources of uncertainty as highlighted in the previous 

sections and consequently, CMORH significantly underestimates global rainfall erosivity rates compared to GloREDa. It 445 

should be noted that there are other potential products that could have been used to produce global rainfall erosivity maps and 

that could perhaps yield better results than the CMORPH. For example, Multi-Source Weighted-Ensemble Precipitation 

(MSWEP) uses gauge, reanalysis, and satellite data sources and it was shown that outperforms some other products such as 
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CMORPH (Beck et al., 2019a, 2019b). Its spatial resolution is 0.1° and it is available from 1979. Moreover, the Tropical 

Rainfall Measuring Mission (TRMM) rainfall products can also be used to derive the rainfall erosivity (Li et al., 2020). 450 

However, it should be noted that the temporal resolution of these two products is 3 hours, which requires a non-standard 

RUSLE approach to derive the rainfall erosivity (Renard et al., 1997). Thus, alternative approaches for rainfall erosivity 

estimation are needed. For example, Li et al. (2020) used a modified Brown and Foster equation to calculate the specific kinetic 

energy and consequently the rainfall kinetic energy. However, this equation was developed based on the case study from China 

and can be therefore regarded as a local (not global) equation. Thus, applying this equation to the global scale could introduce 455 

additional uncertainty to the results. Furthermore, one could also apply the correction (i.e. conversion) factor that was suggested 

by Panagos et al. (2016b). However, a relatively high value is obtained for the 3 hours duration (i.e. a value of 6.6) and the 

equation used to calculate the conversion factors was only developed for durations up to 1 hour. Therefore, applying the 

correction factors developed by Panagos et al. (2016b) could lead to uncertain results. Thus, there is no globally accepted 

method for the calculation of the global rainfall erosivity using 3 hours data set. Moreover, these two products also have coarser 460 

spatial resolution compared to the CMORPH, which also affects the detection of the most extreme rainfall events. Other 

potential sources (e.g., reanalysis, satellite-based, or combined) with a different temporal and spatial resolution could be 

additionally tested (Beck et al., 2019a). 

6 Conclusions 

The global rainfall erosivity was assessed using the CMORPH product and the erosivity density (ED) concept. To the best of 465 

the author’s knowledge, high temporal (30 minutes) and spatial resolution satellite-based products such as CMORPH have not 

yet been used for the development of global rainfall erosivity maps. Past attempts to develop a global erosivity dataset based 

on satellite-based or reanalysis products have used either monthly or daily data. The comparison of the derived maps was 

performed at global and multiple regional scales using annual and monthly rainfall erosivity values.  

The CMORPH product leads to a marked underestimation of annual rainfall erosivity across the globe, with an average value 470 

of 1.53 times lower than the GloREDa station-based rainfall erosivity. The agreement between CMORPH and GloREDa 

estimates varied significantly among continents and climatic zones. While the best agreement was detected for Europe (i.e., 

percent bias around 10%), on average, it has relatively low erosivity values and a considerably lower performance was 

observed for Africa and South America (i.e., percent bias around -60%). Besides having a higher average rainfall erosivity 

value than Europe, these regions are also suffering a considerably lower number of measurement stations in the GloREDa 475 

database. Interpretation of the obtained results suggested that satellite-based products such as CMORPH cannot correctly 

capture the most extreme rainfall events that contribute to the largest proportion of the annual rainfall erosivity in some parts 

of the globe. A better agreement was generally detected between the ED concept and GloREDa (i.e. percent bias up to around 

20%), which can be regarded as an expected result since the ED concept indirectly uses the information from the GloREDa.  
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A more detailed comparison was performed for Europe, where an investigation was also performed at a monthly time scale. 480 

Some spatial erosivity patterns were well detected by the CMORPH product in some regions and monthly erosivity values in 

spring and autumn were relatively close to the ones reported by the monthly erosivity maps prepared by Ballabio et al. (2017) 

(e.g., in parts of Eastern and Central Europe). Additionally, underestimation and overestimation were detected in summer 

(percent bias up to -40%) and winter (percent bias up to 100%) compared to the GloREDa, respectively. On the other hand, 

the ED concept consistently slightly overestimated the GloREDa but yielded better agreement with the GloREDa both 485 

temporally and spatially than the CMORPH (i.e. percent bias was in the range of around 30%). As mentioned, the ED approach 

indirectly uses the GloREDa information but it is to some extent independent as it uses a completely different rainfall dataset 

(i.e. ERA5 instead of WorldClim).    

We also estimated a temporal trend analysis at a global scale using  high temporal and spatial resolution data of CMORPH for 

the period 1998-2019. A preliminary trend investigation revealed that around 15% of the investigated area was characterized 490 

by the statistically significant change in the annual rainfall erosivity, while around 80% of this change was positive (i.e. 12% 

of the total area) according to the CMORPH product for the 1998-2019 period. According to the ED concept, 13% of the area 

was characterized by a statistically significant trend. In some regions (e.g., parts of South or North America), the detected 

trends were consistent while others were not consistent (e.g., parts of Africa or Asia). Thus, detected trends according to the 

CMORPH could indicate that rainfall erosivity has been slightly increasing in 12% of the globe during the last 2 decades. 495 

However, a more detailed investigation using longer time series is needed to confirm or reject this preliminary result. 

It should be noted that in case CMORPH product is used for the preparation of the rainfall erosivity map, it would be further 

used for soil erosion modelling where an uncertainty assessment should be included in such investigation similar to some other 

scientific disciplines (e.g., Kim et al., 2016; Sun et al., 2018).   

Despite the mentioned shortcomings and strong underestimation of the rainfall erosivity in some parts of the globe, the satellite-500 

based precipitation products tend to be an interesting option for the estimation of the rainfall erosivity, especially in regions 

with limited ground data. However, in some regions and seasons, such products require additional correction to remove bias, 

which is of course related to the availability of ground-based precipitation. Thus, it is clear that such ground-based high-

frequency precipitation measurements are (still) essential for accurate rainfall erosivity estimates, however, one can expect 

that technological development in the next decades will lead to improved accuracy (Tang et al., 2020) of satellite-based 505 

products such as CMORPH. These kind of products could be used as an input to the dynamic soil erosion models, which could 

be used by relevant stakeholders. At the moment, alternative approaches such as the ED concept can provide more accurate 

rainfall erosivity estimates, which can be computed more easily. 
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