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Abstract. The improvement of flood forecast ability of models is a key issue in hydrology, particularly in Mediterranean

catchments that are subjected to strong convective events. This contribution compared models of different complexities, lumped

GR4H, continuous SMASH and process-oriented MARINE. The objective was to understand how they simulate catchment’s

hydrological behavior, the differences in terms of their simulated discharge, the soil moisture, and how these can help to

improve the relevance of the models. The study was applied on two Mediterranean catchments in the South of France. The5

methodology involved global sensitivity analysis, investigations of the response surface, calibration and validation, signature

comparison at event scale, and comparison of soil moisture simulated with respect to the outputs of the surface model, SIM. The

results revealed contrasted and catchment specific parameter sensitivity to the same efficiency measure and equifinality issues

are highlighted via response surface plots. Higher sensitivity is found for all models to transfer parameters on the Gardon and

for production parameters on the Ardeche. The exchange parameter controlling a non conservative flow component of GR4H10

is found to be sensitive. All models had good calibration efficiencies, with MARINE having the highest, and GR4H being more

robust in validation. At the event scale, indices of discharge showed that, the event based MARINE was better in reproducing

the peak and its timing. It is followed by SMASH, while GR4H was the least in this aspect. SMASH performed relatively

better in the volume of water exported and is followed by GR4H. Regarding the soil moisture simulated by the three models

and using the outputs of the operational surface model SIM as the benchmark, MARINE emerged as the most accurate in15

terms of both the dynamics and the amplitude. GR4H followed closely while SMASH was the least in comparison. This study

paves the way for extended model hypothesis and calibration-regionalization methods testing and intercomparison in the light

of multi-sourced signatures in order to assess/discriminate internal model behaviours. It highlights in particular the need for

future investigations on combinations of vertical and lateral flow components, including groundwater exchanges, in distributed

hydrological models along with new optimization methods for optimally exploiting, at the regional scale, multi-source datasets20

composed of both physiographic data and hydrological signatures.
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1 Introduction

Performing accurate flood forecasts in terms of location, magnitude and timing of runoff and flooding remains a key chal-

lenge especially for intense convective rainfall events affecting Mediterranean areas. This need is particularly acute given

the potential intensification of the frequency of extreme precipitations in this region (e.g. Pujol et al. (2007); Tramblay et al.25

(2013); Tramblay and Somot (2018)), in which Mediterranean climate is characterized by a significant variability with warm

and dry summers and heavy rainfall events in autumn (Drobinski et al., 2014). Nevertheless, given the complexity of the

hydro-meteorological processes involved and their heterogeneous and limited observability, flash floods hydrological model-

ing remains a hard task and internal fluxes are generally tinged with large uncertainties.

The “resolution–complexity continuum” (Clark et al., 2017) has been investigated over the past 5 decades by many studies30

with various modeling approaches, ranging from point-scale processes numerically integrated at larger scales (e.g. catchment)

to spatially lumped representation of the system response (Hrachowitz and Clark, 2017). Among the variety of existing hy-

drological models, and hypothesis they rely on, their components generally describe water storage and transfer (e.g. Fenicia

et al. (2011)) via various combinations and parameterizations of vertical and lateral storage-flux operators. All hydrological

models are to some degree conceptual and due to limitations and uncertainties in their structure, parameters representativity,35

data availability, and even initial and boundary conditions, calibration/learning is generally required.

Whatever their status and complexity, hydrological models are most often calibrated and validated using integrative discharge

time series at the outlet of a catchment (Sebben et al., 2013). However, multiple models configurations and associated parame-

ters can lead to similar value of discharge (unicity problem so-called equifinality in hydrology (Beven, 2001)). Whereas a model

can be capable of reproducing the system response (e.g. discharge) it has been trained for, it can fail in reproducing meaningful40

system-internal dynamics and patterns (Hrachowitz and Clark, 2017), thus providing right answers for wrong reasons (Kirch-

ner, 2006). Then arises the problem of better calibrating/validating hydrological models, and in particular distributed models,

which makes it possible to take into account the spatial variabilities in the properties of the basins and atmospheric signals, to

simulate spatialized hydrological quantities, but are confronted to the problem of equifinality and over-parameterizations (see

discussion in Jay-Allemand et al. (2020) in a flash flood context with spatially distributed calibration of SMASH model).45

Recent works have investigated the effect of various modeling strategies on the performance at modeling discharge in some

flash flood cases. Lobligeois et al. (2014) in a study on 181 catchments in France to check the effect of higher rainfall and con-

ceptual model resolution on streamflow simulation have shown that semi distributed approach based on GR4 model (Mathevet,

2005) has performed better on Cévennes and Mediterranean regions where the rainfall spatial variability is very high. Boithias

et al. (2017) compared the performance of the distributed event-based MARINE model and the lumped continuous SWAT50

model in flash flood modeling on a French Mediterranean catchment, and found that while MARINE model simulated the peak

and timing better, SWAT model was better at simulating the recession discharge and the exported water volume. Jay-Allemand

(2020) proposed a variational (assimilation) algorithm and showed its potential for spatially distributed calibration of SMASH

model parameters on a flash flood prone catchment.
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In addition to river discharge, surface runoff controlled by soil infiltration rates, is also a key factor for flash floods simulation55

(Berthet et al., 2009; Douinot et al., 2018; Vincendon et al., 2010). Reaching coherent representation of state-fluxes variabilities

both at the outlet and within catchments remains a challenge in spatially distributed modeling which could be moved ahead

using the information from hydrological signatures (see review in McMillan (2020) and references in Bouaziz et al. (2021))

in combination with sensitivity analysis (Horner, 2020). Information selection and distributed model constrain can benefit

from sensitivity analysis as done with the MARINE model on flash flood Mediterranean catchments by Roux et al. (2011) or60

Garambois et al. (2013), guiding the design of regionalization methods accounting for bedrock types among other descriptors

(Garambois et al., 2015). In the case of Mediterranean flash floods, Eeckman et al. (2020) recently assessed multi-hypothesis

modeling of subsurface flows (Douinot et al., 2018) with MARINE using multi-sourced local and gridded soil saturation

signatures.

The present study is aimed at understanding how models of varying complexity, namely simple conceptual, lumped or dis-65

tributed, and process oriented distributed hydrological models, enable to simulate flash flood prone catchment behavior: what

are the differences between the simulated dynamics, of both outlet discharge and internal states, and how this understanding can

be used to improve the relevance of the models? To address these questions a methodology is designed based on global para-

metric sensitivity analysis, calibration-validation, analysis of response surfaces, performances and simulated signatures. We

consider two flash flood prone catchments in the South of France and three models of increasing complexity for hydrological70

modeling analysis: lumped conceptual model GR4H (Génie Rural) (Mathevet, 2005), spatially distributed conceptual models

SMASH (Spatially-distributed Modeling and ASsimilation for Hydrology) (Jay-Allemand et al., 2020) with a Green and Ampt

infiltration component, process oriented distributed model MARINE (Modélisation de l’Anticipation du Ruissellement et des

Inondations pour des évéNements Extremes) (Roux et al., 2011). The parameters sensitivity and identifiability is investigated

for each model followed by a split sample calibration-validation with global performance analysis in time. Signatures analysis75

is performed at flood event scale considering simulated discharge features and soil moisture patterns from the operational sur-

face model SIM (Habets et al., 2008). Finally a global sensitivity analysis is performed for event soil storage capacity evolution

which is a critical quantity involved in flood flows genesis. It is related to both models parameters and simulated hydrological

processes.

This paper is organized as follows: section 1 introduces the objectives and scope of the study. Section 2 details the mod-80

els, tools and data. Section 3 details the methodology. Results are analyzed and discussed in section 4 and conclusions and

perspectives are presented in section 5.

2 Models, Tools and Data

The approach is based on three hydrological models of increasing complexity that are presented here along with their calibration

methods. The regional sensitivity analysis method is detailed and next the study area and data.85
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2.1 Hydrological Models

Three hydrological models of varying complexities are used for this study: GR4H (lumped and conceptual), SMASH (spatially-

distributed and conceptual), MARINE (process-oriented and spatially distributed). GR4H and SMASH are continuous models

whereas MARINE is event based but its state is initialized with the outputs of the SIM operational surface model. All models

represent a limited number of hydrological processes and some of their flow operators share similarities as analyzed later in90

this study. Note that GR4H is the only model in this study with a “non conservative” flow operator. This section presents the

formulation of all the models and their flow operators are detailed in appendix A

This section also presents the calibration algorithm of each model, used to optimize their parameters in order to reduce the

discrepancy between simulated and observed discharges at a catchment outlet. The objective function used for calibration is

the classical NSE efficiency (given in section 3.4) that is adequate for the present flood modeling context. For all models,95

considering J = 1−NSE, the parameter calibration inverse problem reads:

θ∗ = argmin
θ
J (θ)

where the cost function J depends on the sought model parameters θ through hydrological model response. For each model,

bound constrains are applied on the sought parameters using the same ranges as in sensitivity analysis (cf. section 3).

We consider a 2D-spatial domain Ω (catchment) covered by a regular rectangular grid of resolution ∆x. The unique constrain100

applied to this lattice is that a unique point has the highest drainage area, that is catchment outlet, given flow directions. The

time is denoted t > 0. The spatio-temporal rainfall and evaporation fields are respectively P and E, stepwise approximations

over time steps ∆t are assumed.

Figure 1. Conceptual representation of the three models used: (left) GR4 model lumped model structure from Lemoine et al. (2007), (middle)

SMASH model structure with 3 flow operators from Jay Allemand et al. (2019), (right) MARINE model structure from Douinot et al. (2018).

2.1.1 GR4H model

The GR4H model (Mathevet, 2005) is a lumped continuous model that runs at the hourly time step and based on the GR4J105

model formulation of Perrin et al. (2003). This model has been used in many studies such as flash flood modeling in four
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tropical mountainous watersheds in New Caledonia (Desclaux et al., 2018), for testing the transferability of the GR4H model

parameters for extreme events in Mediterranean island of Cyprus (Caligiuri et al., 2019) or for comparison of two satellite

estimated precipitation products in hydrological simulations in Rimac Basin, Peru (Astorayme and Felipe, 2019), among many

others.110

The partition of the input neutralized rain Pn (cf. A1.1) is done between an infiltration part Ps filling the production reser-

voir and an effective rainfall Pr = Pn−Ps inflowing the transfer components. The production function is the classical GR

production function (Edijatno and Michel, 1989), which is a soil moisture accounting model recalled in section A1 that gives

the effective rainfall Pr which is then splitted into two different kinds of flows. The splitting of the effective rainfall takes into

account quick and slow flow components. The 10% of the effective rainfall Pr resulting from the excess of the production and115

the percolation is routed linearly using a unit hydrograph UH2 of time base 2x4, the remaining 90% is initially routed using

UH1 of time base x4 and then using a non linear routing store of reference capacity x3. The ordinates of the UH are derived

from their respective S hydrographs which also are functions of x4. A groundwater flow exchange term F from the reservoir

which depends on both the actual level in the routing store R, the reference level of the non-linear routing store x3 and a water

exchange coefficient x2 is taken into account in both flow components. Finally, the total stream flow Q is obtained as the sum120

of the resulting flows from the routing reservoir Qr and the output of the UH2 Qd.

Table 1. Description of the GR4H model parameters and range used for sensitivity analysis

Parameter Description Unit Range

x1 production storage capacity mm 1 - 1500

x2 groundwater exchange coefficient mm -10 - 10

x3 max. capacity of the routing store mm 0 - 500

x4 time base of the unit hydrograph UH1 hours 0 - 10

For the GR4H model, four parameters x1, x2, x3, x4 are optimized (see Table 1). The calibration is done using the “Michel

calibration algorithm”, which starts with random starting points in the parameter space and optimum search is performed with

a simple descent method. The choice of the initial conditions of the model for example the production store level S greatly

affects the result for the first year of simulation - warm up.125

2.1.2 SMASH model

SMASH (Spatially-distributed Modeling and ASsimilation for Hydrology) is a computational software framework dedicated to

spatially distributed continuous hydrological modeling including variational data assimilation (Jay-Allemand et al., 2020). We

use the 3 components model (production, transfer, routing) from Jay-Allemand et al. (2020). For a given pixel i of coordinates

x ∈ Ω two reservoirs P and T , of capacity cp and ctr, are considered for simulating respectively the production of runoff and130

its transfer within a cell. Their stages are respectively denoted hp and htr. The runoff amount is then routed between pixels.
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The spatial resolution is set to ∆x= 1km² and the simulation time step is set at ∆t= 1h correspondingly to the space-time

resolution of rainfall data.

The partition of the input neutralized rain Pn (cf. A1.1) between an infiltration part Ps filling the production reservoir and an

effective rainfall Pr = Pn−Ps filling the transfer reservoir is done with a production operator. In this study, a Green and Ampt135

infiltration model (eq. A3) enabling to simulate ponding when rainfall intensity exceeds infiltration rate, has been implemented

in the model (differentiation of source code with TAPENADE, classical tests performed - not shown). The production reservoir

is then emptied from an actual evaporation Ep calculated with a “GR” evaporation operator (eq. A2).

The effective rainfall after production is transferred within a pixel through a conceptual reservoir of maximum capacity ctr

(eq. A4), while routing is done with a linear unit Gaussian hydrograph whose delay τi from node i− 1 to node i is controlled140

by the routing velocity v and the distance di between the cells. The model formulations are described in Appendix A1.

The complexity of a hydrological modeling approach also lies in its spatialization. The variational algorithm presented in

Jay-Allemand et al. (2020) and enabling the calibration of spatially distributed model parameters, that is high dimensional

optimization problems, under various constrains is performed. This variational calibration algorithm starts from a spatially

uniform prior guess on the sought parameters (Jay-Allemand et al., 2020). This prior guess is obtained with a simple global145

calibration algorithm as in Jay-Allemand et al. (2020). The minimization of the cost function is then done using the LBFGS-B

(Limited memory Broyden-Fletcher-Goldfarb-Shanno Bound-constrained) descent algorithm (Zhu et al., 1994) making use of

the gradient of the cost function that is obtained from the adjoint model thanks to the Tapenade automatic differentiation engine

(Hascoet and Pascual, 2013).

However, using only downstream discharge for calibration leads to well known controlability issues in spatially distributed150

hydrological modeling. A reduction of the control space is done by applying spatial masks derived from prior physiographic

information to group the sought parameters by classes (Jay-Allemand, 2020). Note that the same reduction of the control space

is used for the sensitivity analysis performed before calibrations in this study. For example, in the case of Gardon (543 km2,

hence 543 pixels of 1 km2) instead of calibrating (4×543 = 2172 parameters), a mask is used for each parameter. If the mask

for the routing parameter v has only two classes (one for the drainage network and another for the hillslope), then only two v155

parameters will be optimized (instead of 543 pixel values). A key task is to find relevant spatial information to define the mask

for the parameters of a model that is conceptual (SMASH). In Jay-Allemand (2020), different masks have been proposed and

tested. However for the present intercomparison study, similar physiographic maps used for the MARINE model are used to

define the parameter masks for SMASH. They are summarized in the Table 2. Four free parameters cp, ctr, v, ks times their

respective number of classes defined by their masks (Table 3) are considered for calibration. Suction Sf and porosity Poros160

are not calibrated, based on previous sensitivity analysis of Green and Ampt model in a similar context (Garambois et al., 2015;

Roux et al., 2011). While Sf is defined using prior soil information (Table 2), Poros is simply kept at a value of 1 (see A1.2).

This calibration method from Jay-Allemand (2020) considering semi-distributed patterns of the SMASH model parameters is

called “masked” calibration in the following. The use of physiographic maps to define spatial patterns is detailed after.
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Table 2. Prior Information used to define parameter masks for SMASH parameters. The soil classes are defined from the soil texture using

the Rawls and Brakensiek (1983) relations, from which the ks,and Sf are obtained. Only the first 4 (resp. three) parameters cp, ctr , v, ks

(resp. cp, ctr, v) are calibrated as a result of the sensitivity analysis.

Parameter description Prior information

cp Production reservoir capacity Map of soil thickness

ctr Capacity of the transfer reservoir Map of slope

v Routing velocity Flow accumulation maps

ks Saturated hydraulic conductivity Map of the soil hydraulic conductivity from texture map

Sf Soil suction Map of the suction from texture map

2.1.3 MARINE model165

MARINE is an event, physically based, parsimonious and fully distributed model designed for flash flood prediction based on

the supposedly main hydrological processes involved in Mediterranean catchments. It is borne out of the need to address the

peculiarities identified by Roux et al. (2011) in different models ranging from domain of applicability (floods), difficulty of

accessing data for model calibration and inability of the present models to help improve the understanding of the hydrological

processes that are specific to Mediterranean catchments. The processes of infiltration, subsurface runoff, overland flow and flow170

in drainage networks are represented while the processes of evaporation and deep percolation are considered not important at

the event scale and therefore not represented.

MARINE being an event based model, the local infiltration function used is a typical event based model, accounting for the

infiltration at the local scale and described by the Green and Ampt model (Equation A3).

The surface runoff is divided into overland flow and drainage flow, in both cases, the kinematic wave model is used assuming175

a 1-dimensional kinematic wave which is approximated with the Manning friction law while the subsurface flow is based on

the Darcy’s law. The model formulations are given in Appendix A1.

Input data are sourced from information of surface topology, soil survey, vegetation and land use, and the model is initialized

using soil moisture outputs of the SIM model. Finally, the model requires only five parameters to be calibrated for the whole

catchment; three correction coefficients applied to the distributed maps of saturated hydraulic conductivity Ck, the soil thick-180

ness Cz, and the soil lateral transmissions Ckss, the other two parameters include Manning-Strickler’s friction coefficient for

the river bed KD1 and for the flood plain KD2. These correction coefficients are applied during the calibration process such

that the absolute values of the parameter in question is modified while the spatial pattern as sourced is preserved. The use of

physiographic maps to define spatial patterns is detailed after.

The model has been used in several studies (e.g. Le Xuan et al. (2006); Garambois (2012); Garambois et al. (2013, 2014, 2015);185

Boithias et al. (2017); Douinot et al. (2018); Eeckman et al. (2020)). The spatial resolution is set to ∆x= 500m2 and the fixed

simulation time step is set to ∆t= 6 min (CFL check and automatic temporal sub-iterations if needed for kinematic wave

resolution), i.e. finer than rainfall space-time resolution.
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Calibration of the MARINE model is done by comparing the simulated and observed discharge with NSE as the objective

function. The optimization algorithm in the case of this model is based on a gradient-based descent algorithm BFGS (Broyden-190

Fletcher-Goldfarb-Shanmo) from multiple starting points (Roux et al., 2011). The gradient is evaluated by finite differences.

The calibration involves estimating for a given event the values of the three correction coefficients applied to the distributed

maps of saturated hydraulic conductivity Ck, the soil thickness Cz, and the soil lateral transmissions Ckss. The other two

parameters include Manning-Strickler’s friction coefficient for the river bed KD1 and for the flood plain KD2.

2.1.4 SIM Model195

SIM, acronym for SAFRAN- ISBA -MODCOU (Habets et al., 2008), is an operational modeling chain that simulates both flow

of water and energy at the surface, as well as the flow of rivers and the major aquifers. It is forced by the atmospheric reanalysis

from SAFRAN, uses ISBA to simulate the exchange of water and energy between the soil and atmosphere; and MODCOU as

the hydrological model.

The two versions of the SIM model are used in the present study, that is SIM1 and SIM2. The first version SIM1 is used200

simply for the initialization of the MARINE model as has been used by several authors (see Garambois (2012); Garambois

et al. (2013); Douinot et al. (2018); Eeckman et al. (2020) ), while the second version, SIM2 is used as the benchmark to

compare the simulated soil moisture outputs of the SMASH, GR4H, and the MARINE model.

The first version, SIM1, uses the force-restore version of ISBA, ISBA-3L (Noilhan and Mahfouf, 1996; Noilhan and Planton,

1989) in which the soil is discretized into three layers corresponding to surface, root and deep zone. SIM2 on the other hand uses205

the diffusive version of ISBA, ISBA-DIF (Decharme et al., 2011), with a vertical soil column discretization into a maximum

of 14 layers. In the case of this study, the humidity of the root zone is considered as the sum of the humidities of the layers

between 10 cm and 30 cm deep.

The two outputs (SIM1 and SIM2) available for this study are at a daily time step (06 UTC) and a spatial resolution of 8 km

square grid.210

2.2 Study Area and Data

2.2.1 Catchments

The study catchments (Gardon at Anduze and Ardeche at Vogue) are located in the Cevennes region, prone to flash flood and

are influenced by a Mediterranean climate. Data types and sources are described in the next paragraph.

The Ardeche catchment at Vogue drains an area of 622 km2, and is exposed to intense precipitation events due to the215

convection of humid sea air masses over the Cevennes mountain slopes (Eeckman et al., 2020). It presents a mixed geology,

with metamorphic rocks and schist on the upper part of the catchment, and sedimentary plains downstream. The land cover is

mainly mixed forest, natural grasslands and shrubs. The elevation varies between 1530 m at the upstream to 150 m downstream.

The depth of the soil in the catchment ranges between as low as 5 cm to as deep as 50 cm with an average depth of 28 cm.
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The soil texture is mainly sandy-loam with silt deposits downstream. The mean saturated hydrological conductivity is around220

8.6 mm/hr.

The Gardon with its outlet at Anduze drains an area of 540 km2. It is well gauged and has a Mediterranean climate with a lot

of intense rainfalls in the autumn and winter. It is characterized by the occurrence of flash floods and the highest rainfall rates

in autumn, while the summer is mostly hot and dry (see Roux et al. (2011)). The catchment geology is mainly dominated by

fractured metamorphic formation, classically the schistose, however there are some karstic zones around the junction of Saint225

Jean and Mialet (Le Xuan et al., 2006). It has a highly marked topography consisting of high mountain peaks, narrow valleys

and steep hill slopes. The vegetation is dense and composed mainly of beech, chestnut trees, holm oaks and conifers (Moussa,

2010). The elevation varies between 129 m at Anduze to 1202 m at the highest point. The average slope of the basin is about

20%, but can be up to 50% at the upstream. The soil (made of by silty-clay loam and sandy loam) has a mean thickness of

around 28 cm and a mean saturated hydraulic conductivity 5 mm/hr.230

Figure 2. Map of the two study catchments, both located in the South of France. Top left: map of France showing the location of the two

catchments in red. Top right: Ardeche at Vogue, Bottom left: Gardon at Anduze. The area of both catchment are shown. On both catchments,

the position of the outlets is shown by the red circle. The legend represents the elevation in m, with a spatial resolution of 500 m2, with

respect to mean sea level.

2.2.2 Data

To provide a fair assessment of the models, the same input of discharge, rainfall and for the specific case of the continuous

models (SMASH and GR4H), potential evapotransipiration (PET), are used. The hourly discharge have been extracted from the

HYDRO database of the french ministry in charge of environment while the rainfall data from the radar observation reanalysis

ANTILOPE J+1, which merges radar and insitu gauge observations, is provided by Météo-France. The interannual temperature235

data is provided by the SAFRAN reanalysis and then used to calculate the potential evapotranspiration using the Oudin formula
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Oudin et al. (2005). The rainfall and PET are at a spatial resolution of 1 km2 square grid, and processed into hourly time step.

Spatial averages of the rainfall and PET over the catchments are used as input for the lumped GR4H model. The soil thickness

and texture maps are derived from the surveys provided by the INRA and BRGM. Soil classes and consequently the suction,

porosity and saturated conductivity are derived from the soil texture using the Rawls and Brakensiek (1983) relations. The240

vegetation and land use from the (2000 Corine Land Cover: Service de l’Observation et des statistiques) is used to derive the

surface friction. This is exactly the same data used and sourced from Roux et al. (2011). The resulting maps are used as inputs

for the MARINE model to provide physical operator parameters values, while they are used as mask inputs for the SMASH

model in the calibration by classes (masked calibration) (Refer to Table 2 . As explained in section 2.1.4, the SIM1 soil moisture

outputs are used for the initialization of the MARINE model, while the SIM2 outputs are used for model inter-comparison.245

3 Numerical Experiments Methodology

Sequel to the motivations and the objectives of the study as outlined in the introduction, the following numerical experiments

are designed to help answer the questions raised. The first experiment is designed to investigate the global sensitivity of the

three models. Experiments for the calibration and validation of the models within the study period are then followed, and finally

the methodology to compare the model performance at the event scale is described. The evaluation criteria used are also briefly250

described.

3.1 Regionalized Sensitivity Analysis

The sensitivity analysis of the model parameters is based on the regionalized sensitivity analysis (RSA) approach (see Appendix

3.1). The aim is to identify the parameters to which the model is most sensitive to. In this section, we describe how the sensitivity

analysis methodology is applied to each model.255

Table 3. Description of SMASH parameters and ranges used for calibration and sensitivity analysis on the study catchments

parameter Description Range
No of classes

Ardeche Gardon

cp Capacity of the production reservoir (mm) 1 - 2000 4 124

ks Saturated hydraulic conductivity (mm/hr) 0.1 - 20 12 12

ctr Capacity of the transfer reservoir (mm) 1 -1000 5 5

v Routing velocity (m/s) 1/6 - 5 2 2

First, in the case of the GR4H model which is lumped, 10,000 simulation runs are done using randomly (uniform) generated

parameters of the model within their range (see Table 1). The parameters are x1, x2, x3 and x4. For the current and subsequent

experiments, a threshold of 0.7 NSE (eq. 1) is used for the classification of the runs in to behavorial (runs with NSE ≥ 0.7)

and non-behavioral (NSE < 0.7) groups. As noted by Beven (2001), the KS test can be very sensitive to small differences, and
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will thus report significant differences between the two classes. Hence, the magnitude of the KS statistics D, representing the260

maximum difference between the cdf of the two classes is used to rank the parameters based on their sensitivity.

Secondly, in the case of the SMASH model, which is a fully distributed model at a spatial grid of 1 km2, classical reduction

of the high dimensional control space is adopted using physiographic masks (as described in section 2.1.2). The sensitivity

analysis is then performed on the resulting parameters. The two reduction approaches are described below:

1. In the first instant, the parameters of the model are taken as being spatially uniform, and therefore, the RSA is done265

assuming one parameter set at a time for the whole catchment considered. The four parameters are: cp, ctr, v, and

ks. The sampling of the parameters within their ranges specified in Table 3 and assuming uniform distribution is done

for 10,000 Montecarlo simulation runs. The classical RSA described in section B is followed. The same threshold of

NSE = 0.7 is used for the classification of the runs into behavioral and non-behavioral groups. The KS test statistics is

then calculated to rank the parameters’ sensitivity.270

2. In the second approach, the dimension reduction is through the use of parameter regionalization approach, defined

by prior information on the parameters spatial distribution from basin predictors. The predictors include soil texture,

thickness, land cover and topography. Pedotransfer functions (eg. Rawl and Brakensiek) are then used to relate the

model parameters and the basin predictors, and then an upscaling operator (arithmetic mean) is used to upscale from the

predictor scale to the modeling scale (1 km2). The soil thickness map is used for the production reservoir capacity cp, the275

map of saturated conductivity for the Green and Ampt saturated conductivity ks, the map of the flow accumulation for

the routing parameter v and the map of the slopes for the transfer parameter ctr. Afterwards, for each parameter, uniform

random values within the specified range (see Table 3) is generated for each class. For example, if for a catchment,

the classes of the soil thickness are five, then five random values are generated, each one for a class, yielding a total

of five generated values per run for the cp parameter (the soil thickness being the predictor of cp). The five values will280

be mapped to their grid location in the parameter map. 10,000 simulations are then run and the corresponding NSE is

calculated. In presenting the scatter plots (for identifiability investigations), average of the mask (raster values) weighted

by the class percentage is shown since it is not possible to show the whole raster on the plot.

Lastly, the sensitivity of the five MARINE model parameters (see Table 4) is investigated using the NSE criteria. The

eight events for Gardon and seven events for Ardeche are used for the analysis (see Table 5). 5000 runs were conducted as285

previously done by Roux et al. (2011) and Boithias et al. (2017) for each event. The same threshold value of 0.7 is used and

a classification is done for each event. Unlike the case of Boithias et al. (2017) and the references reported therein, where

the result of the sensitivity analysis was used to choose calibration/validation events, our methodology here is basically to

investigate the parameter sensitivity. The method for the choice of the calibration/validation events is described in section 3.2.

3.2 Calibration and Validation290

For each of the three hydrological models GR4H, SMASH and MARINE, parameters calibration is performed with their

dedicated methods presented in section 2.1. Those methods enable adequate calibrations for each model as shown after. In
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Table 4. Range of parameters for the sensitivity analysis of MARINE model

Parameter Description Gardon

Ck Correction coefficient of the hydraulic conductivities 0.1-10

Cz Correction coefficient of the soil thicknesses 0.1-10

Ckss Correction coefficient of the soil lateral transmissivities 100-10000

KD1 Strickler’s friction coefficient of the river bed 1-30

KD2 Strickler’s friction coefficient of the flood plain 1-20

order to perform fair comparisons, considering comparable amount of hydrological information learnt by the models in the

calibration phase, the calibration and validation is done using a split-sample test procedure by dividing the data into two

(Klemeš, 1986). Time series of 13 years at hourly time step is considered and the sub-periods of 7 years each for the calibration295

and validation are defined as period 1 (1st August 2006 to 1st August 2013) while period 2 (1st August 2012 to 1st August

2019). Calibration is done first using period 1 and then validation on period 2, the reverse is then done in which period 2 is taken

as calibration period while period 1 is taken for validation. For each calibration period, 1 year is used as the warm up period to

initialize the model which is adequate for hydrological models as reported by Kim et al. (2018). In the case of MARINE, the

events (see Table 5) are classified into two periods (similar to the continuous models) and a multi-event calibration and cross300

validation is done. Similar multi-events calibration of MARINE has been carried out by Garambois et al. (2013). For all the

calibrations, we used the NSE as the objective function.

3.3 Comparison of models at event scale

These experiments are designed to compare the three models at flash flood modeling. The inter-comparison involves the

assessment of key indices of peak flow estimation as well as its timing and the internal fluxes simulated. In addition to the305

NSE criteria, the percentage peak difference (PPD), peak delay (PD) as well as synchronous percentage of the peak discharge

(SPPD) introduced in section 3.4 are used.

The "soil moisture" simulated by the model are also compared with outputs of the SIM model. While SIM outputs are at a

spatial resolution of 8 km, those of SMASH and MARINE are at 1 and 0.5 km respectively. In the case of GR4 that is lumped,

the resolution is at the scale of the catchment size. We compare the soil moisture by looking at the temporal evolution of the310

spatially averaged outputs of each model, and how close it is to those of the SIM2 outputs, which in our case is the reference

benchmark.

Specific flood events of return period higher than 2 years are chosen within the period of 13 years (2006-2019) for both

catchments, They are given in Table 5. These selected events provided distinct characteristics in terms of the flood peak

magnitudes, the volume of water exported, the number of peaks, the gradients of the rising and falling limbs as well as the315

spatial and temporal patterns of the underlying precipitation events.

In order to provide a fair comparison, the same rainfall forcing and discharge data are used for all the models.
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Table 5. Selected flood events for comparison of the model performance at event scale.

Gardon Season Duration (days) Qpeak
obs (m3/s) Vol (×106m3)

Ev_31_10_2008 Autumn 4 1011 57.1

Ev_02_11_2011 Autumn 6 1026 127.4

Ev_17_09_2014 Autumn 5 1012 44.4

Ev_09_10_2014 Autumn 7 1146 78.6

Ev_11_09_2015 Autumn 2 980 29.6

Ev_27_10_2015 Autumn 2 1356 33.4

Ev_22_11_2018 Autumn 2 655 38.4

Ev_08_11_2018 Autumn 2 809 27.6

Ardeche Season Duration (days) Qpeak
obs (m3/s) Vol (×106m3)

Ev_2008_10_19 Autumn 5 954 68.8

Ev_2010_05_11 Spring 2 420 18.3

Ev_2010_09_06 Autumn 2 1272 29.8

Ev_2011_11_02 Autumn 6 867 157.1

Ev_2014_09_18 Autumn 3 1524 77.7

Ev_2014_11_14 Autumn 2 1194 61.5

Ev_2019_04_23 Spring 6 514 56.7

3.4 Performance Evaluation Criteria

In the course of all the calibration and the validation of the hydrological models used, the objective function used for the

calibration is the widely used Nash and Sutcliffe efficiency criterion: which puts more weights on the high flows than on low320

flows, and is adapted to our objective of assessing the ability of the model to simulate flash floods.

NSE = 1−
∑T
i=1

(
Qs(i)−Qo(i)

)2
∑T
i=1

(
Qo(i)− Q̄o

)2 (1)

where Q̄o is the mean of observed discharges, Qs(i) and Qo(i) are simulated and observed discharges at time step i respec-

tively.

In the case of inter-model performance evaluation between the SMASH, GR4H and MARINE at event scale, other criteria325

are used. They include:

– The Kling-Gupta Efficiency (KGE) (Gupta et al., 2009) which provides an alternative to the NSE and gives balance to

the correlation, flow variability and water balance.

KGE = 1−
√

(r− 1)2 + (β− 1)2 + (α− 1)2 (2)
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r = cov(Qo,Qs)
σ2

oσ
2
s

, the Pearson correlation coefficient, evaluates the error in shape and timing between observed (Qo ) and330

simulated (Qs) flows, cov is the co-variance between observation and simulation and σ is the standard deviation, β = µs

µo
,

evaluates the bias between observed and simulated flows where µ is the mean. α= σs

σo
, the ratio between the simulated and

observed standard deviations, evaluates the flow variability error.

– Percentage Peak Difference: This criteria is given as PPD = Qp;sim

Qp;obs
and is mainly to judge the percentage of the ob-

served peak predicted by the model, the duo must not coincide in time of occurrence.335

– Peak Delay (PD): Given as tp;sim− tp;obs and simply computes the difference in time or delay between the simulated

and observed peak

– A more rigorous criteria in terms of safety is the synchronous percentage of the peak discharge (SPPD) that accounts for

the ratio of the estimated discharge and observed discharge at the time of the observed peak discharge. It has been used

first by Artigue et al. (2012) and then subsequently by Jay-Allemand et al. (2020) and can be written as Qsim

Qp;obs
340

Finally we also use as a metric, the runoff coefficient (CR).

4 Results and Discussion

The results obtained after conducting the numerical experiments described in section 3 are presented here, along side relevant

discussions.

The calibration and validation efficiencies as well as the event signatures are also presented and discussed. Finally, the345

comparison of the simulated soil moisture, as compared to the gridded outputs of SIM model are presented and discussed.

4.1 Sensitivity Analysis

The results obtained from the regionalized sensitivity analysis of the three models are presented in this section.

Table 6. Sensitivity ranks of the SMASH model parameters (left) and GR4 (right) computed according to the Kolmogorov-Smirnov test

statistics, D, accounting for the maximum distance between the behavioral and non-behavioral distributions. (1 is the most sensitive, 4 is the

least sensitive). In the case of SMASH, the result obtained through dimension reduction using spatially uniform and masked parameters are

shown

Catchment Mode cp ctr v ks

Gardon Uniform 3 1 2 4

Masked 3 1 4 2

Ardeche Uniform 2 3 1 4

Masked 1 2 4 3

Catchment x1 x2 x3 x4

Gardon 3 1 2 4

Ardeche 2 1 3 4
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Table 7. Sensitivity ranks of the MARINE model parameters computed according to the Kolmogorov-Smirnov test statistics, D, accounting

for the maximum distance between the behavioral and non-behavioral distributions. (1 is the most sensitive, 5 is the least sensitive)

Gardon CZ Ck Ckss KD1 KD2

Ev_10_11_2008 2 3 1 5 4

Ev_01_11_2011 1 3 2 4 5

Ev_16_09_2014 2 3 1 5 4

Ev_09_10_2014 4 3 1 2 5

Ev_10_09_2015 2 4 1 3 5

Ev_27_10_2015 2 3 1 5 4

Ev_22_11_2018 2 4 1 3 5

Ev_08_11_2018 2 3 1 5 4

Average 2.1 3.3 1.1 4.0 4.5

Ardeche CZ Ck Ckss KD1 KD2

Ev_2008_10_19 3 1 2 5 4

Ev_2010_05_11 2 1 5 3 4

Ev_2010_09_06 2 1 4 5 3

Ev_2011_11_02 1 4 4 3 2

Ev_2014_09_18 2 1 4 3 5

Ev_2014_11_14 4 2 5 3 1

Ev_2019_04_23 3 1 2 4 5

Average 2.4 1.6 3.7 3.7 3.4

4.1.1 SMASH (uniform and masked)

Uniform Parameters350

Figure 3 gives the results of the sensitivity analysis under spatially uniform parameter sets. In the case of the Gardon catchment,

the scatter plot (first row) shows clear identifiability for the transfer parameter ctr. The two production parameters cp and ks

shows the least identifiability, while the routing parameter v shows exclusive poor performance for small values. Under our

tested methodology, peaky scatter plots for a parameter indicates a good identifiability. The scatter plots in the case of the

Ardeche catchment shows a drop in performance for values of cp higher than 1200, below this value, both good and poor355

performances can be obtained. In the case of the ks parameter, the scatter plot shows clear non-identifiability due to clear

randomness throughout the parameter range. The transfer parameter ctr appears to be peaky for this catchment also. Finally,

similar to Gardon, the routing parameter v shows significant drop in performance for small values.

The cumulative distribution of the behavioral and non-behavioral classes (second row) are based on the NSE threshold of

0.7. In the case of the Gardon catchment, cp exhibits flat slope for small (< 125) and high (> 1750) values with near uniform360

distribution in between, while the distribution of the non-behavorial classes is uniform showing that poor NSE can be obtained

throughout the parameter range. In the case of the ctr parameters, which is also the most sensitive, the slope is non-zero only

within very small range (between 200 and 400), outside this range, all realizations are poor. Relatively flat slope is observed

within this range for the non-behavioral realizations confirming the absence of poor realizations within the range. The KS

statistics D is largest for ctr confirming that it is the most sensitive. For the case of Ardeche, although the scatter plot shows365

that ctr is most identifiable due to its peakedness, the test statistics shows v to be the most sensitive and closely followed by

cp. However, ks still remains the least sensitive.
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The transfer parameter observed to be the most sensitive has to do with the fact that the performance measure used is the

NSE which gives more weight to high values. In the SMASH model, ctr controls the amount of the effective rainfall that is

transferred for routing and thus affects the magnitude and timing of the peak flows.370

1. Scatter plots

2.Cumulative distribution of the behavorial and non behavorial classes

Figure 3. RSA of the four SMASH spatially uniform parameters on the two study catchments (left column: Gardon, right column: Ardeche).

For each catchment, the first row shows the scatter plot of the NSE efficiency and the second row, the NSE cumulative distribution of the

behavioral and non behavioral classes indicating the Kolmogorov-Smirnov statistics D.
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Masked Parameters

The second RSA investigated is under the reduction of the control space through the use of masks due to high dimensionality

resulting from the fully distributed nature of the model. As described in the methodology under section 3.1, the results are

shown for the average of the mask (raster values) weighted by the class percentage as it is not possible to show the whole

raster on the plots. The scatter plots and the cdf shown in the first and second rows of Figure 4 respectively have the same375

interpretation as discussed and presented in the preceding paragraph 4.1.1. Peaky plots indicates identifiability and the larger

the difference between the behavioral and non-behavioral classes, the more sensitive the parameter is. However, in this case

there are some differences in the sensitivity of the model parameters. In the case of the Gardon catchment, ctr remained the

most sensitive, but the routing parameter became the least sensitive. For Ardeche, v which hitherto was the most sensitive

according to the KS test under uniform configuration, became the least sensitive, parameter while cp is the most sensitive.380

The differences between behavioural and non-behavioural distributions are less pronounced than with the uniform strategy,

possibly because the results shown are the average of all the raster values.

4.1.2 GR4

In the case of the GR4H model, the RSA results for both catchments are presented in Figure 5. For both catchments, the time

base of the unit hydrograph x4 is the least sensitive, while the ground water coefficient x2 is the most sensitive. For the Gardon385

catchment specifically, the size of the production reservoir x1 is less sensitive compared to the exchange coefficient x2 and the

routing store capacity x3, whereas in the case of the Ardeche catchment, the sensitivity of x1 is very close to that of x2, the

capacity of the routing store x3 beeing the third most sensitive.

4.1.3 MARINE

The result of the sensitivity analysis of the MARINE model for both catchments is presented in Figure 6 and the summary390

of the parameter sensitivity ranks computed according to the KS test statistics D is shown in Table 7. The ranking of the

parameters is event dependent for each of the two catchments. In the case of the Gardon, the coefficient applied to the lateral

subsurface flow, Ckss emerged as the most sensitive for all the events except the Nov 2011 flood. It is then followed by the

coefficient applied to the soil thickness, Cz . In other words, the three most sensitive parameters are related to the soil storage

capacity. The two Manning-Strickler’s friction coefficients for the river bed KD1 and the flood plain KD2 emerged as the least395

sensitive in the ranking. In the case of the Ardeche catchment, different sensitivity ranks of the parameters are obtained. For

this catchment, the correction coefficient Ck of the hydraulic conductivity (infiltration) emerged as the most sensitive, which

is then followed by Cz. Unlike the case of the Gardon, Ckss, along with KD1 are the least sensitive.

The flood events in the Gardon are all autumn events, however the October 2014 flood appeared entirely different in terms of

the distribution of the behavioral realizations, because very few observations above the NSE threshold of 0.7 are obtained for400

this specific event. Ardeche on the other hand has two events occuring in spring, while the rest are autumnal. There is however

no significant observable difference between the distributions of these events.
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1. Scatter plots

2.Cumulative distribution of the behavorial and non behavorial classes

Figure 4. RSA of the four SMASH spatially masked parameters on the two study catchements (left column: Gardon, right column: Ardeche).

For each catchment, the first row shows the scatter plot of the NSE efficiency; second row, the NSE cumulative distribution of the behavorial

and non behavoiral classes indicating the Kolmogorov-Smirnov statistics D. Note: for each parameter, the point that is shown in the parameter

space is the average of the mask (raster values) weighted by the class percentage for that specific run.

4.1.4 Sensitivity analysis summary

Table 6 and 7 gives the parameter sensitivity ranking of the three models according to the Kolmogorov-Smirnov test statistics

D, the results of the three models resulted in somehow similar conclusions. In the case of the Gardon, parameters of the model405
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1. Scatter plots

2.Cumulative distribution of the behavorial and non behavorial classes

Figure 5. RSA of the four GR4H parameters on the two study catchements (left column: Gardon, right column: Atrdeche). For each catch-

ment, the first row shows the scatter plot of the NSE efficiency; second row, the NSE cumulative distribution of the behavorial and non

behavoiral classes indicating the Kolmogorov-Smirnov statistics D

that affects the transfer are sensitive (ctr for SMASH; x3 for GR4H and Ckss for MARINE). Ardeche on the other hand has

parameters that affects the production components of the model as generally sensitive ( cp for SMASH; x1 for GR4H and Ck
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Figure 6. MARINE sensitivity analysis result showing the cumulative distributions of the behavorial and non behavorial classes of the five

parameters for Gardon (left) and Ardeche (right)

for MARINE). As Beven (2001) rightly pointed out, the insensitivity of a particular parameter within a certain range might be

due to inactivation of the model component associated with that parameter.

4.2 Response surface and functionning points410

Figure 7, 8 and 9 shows the response surface plot of the three study models’ parameters; SMASH, GR4H and MARINE

respectively, for the two study catchments. The first row of Figure 7 shows the response surface resulting from spatially uniform

parameters of SMASH model, while the second row is for the SMASH model, but for masked parameters. As the number of

free parameters for both models is four (five) for SMASH and GR4H (MARINE), the visualization of the plot is complex at this

high dimension, and so the plots are shown in 2D of two parameters per plot. The response surface highlights the complexity415

the calibration algorithm is subjected to in the search of the minima of the cost function during the optimization process. For all

the models, the response surface indicates the existence of multiple peaks in multiple locations within the parameter space. This

highlights the need for efficient algorithms able to detect global optimum during the calibration of the model parameters. The

diamond shaped points shown on the plots indicate the functioning points obtained with the respective calibration algorithms.

The fact that, these points lie within the hills/peaks, shows that the algorithms are able to locate ’sufficient minima’, although420

few parameters are stuck at the bound. An exception is in the case of the masked calibration, although some of the values (eg

ks) lie outside the hills, it is possible the actual values has been distorted by the average, as a reminder, what we show on the

plots are the spatial averages of the parameters. Again, the equifinality issue encountered in these optimizations as highlighted

by the response plots.
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1. Response plot of the SMASH uniform parameters in pairs

2. Response plot of the SMASH masked parameters in pairs

Figure 7. Response surface of the parameters of SMASH on the two study catchements (left column: Gardon, right column: Ardeche). For

each catchment, the first row shows the response plot of SMASH uniform parameters in pairs; while the second row, the response plot of

SMASH masked parameters in pairs. The black diamond point shows the functioning point obtained by calibration.

4.3 Calibration and validation425

4.3.1 SMASH

The result of the calibration of the SMASH model parameters is given in Table 8 for the two study catchments.
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Figure 8. Response surface of the parameters of GR4H in pairs, on the two study catchements (left: Gardon, right: Ardeche. ). The black

diamond point shows the functioning point obtained by calibration.

Figure 9. Response surface of the parameters of MARINE model for two selected events. Left (Gardon Ev 2015-10-27), Right (Ardeche Ev

2011-11-02) The black diamond point shows the functioning point obtained by calibration.
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Table 8. SMASH parameter sets, calibration and validation NSE obtained using split-sample test for the catchments using split test. For each

parameter, the mean and standard deviations of its map are shown

Catchment Period cp ctr v ks NSE

calibration

NSE

Validation

Ardeche P1 164.5±127 359.0±88 4.64± 0.03 3.93± 0.5 0.873 0.839

P2 203.0±85 365.4± 143 4.65± 0.03 1.33± 0.3 0.914 0.881

Gardon P1 1514.3±112 332.0±119 4.95±0.02 1.11±1.5 0.860 0.788

P2 1193.6±247 262.9±121 4.89±0.03 1.05±1.1 0.776 0.737

The class by class (mask) calibration efficiencies for the two periods vary for the two catchments but both are more than 0.7.

The resulting temporal validation efficiencies are also relatively high. Ardeche presents better calibration/validation efficiencies

than the Gardon catchments. The maps resulting from the calibration are given in Figure 10 for both periods (P1 and P2) and430

their summaries in Table 8. The results for the Gardon (left) shows that the calibrated reservoirs capacities cp and ctr changes

in magnitude with the calibration period (both are smaller in period 2), whereas the routing parameter v remains fairly stable

(as found in Jay-Allemand et al. (2020)). The converse is true in the case of Ardeche for cp and ctr. The ks parameter however

decreased in period 2 for both catchments. Jay-Allemand et al. (2020) has observed the same difference while studying the

Gardon catchment under fully distributed calibration and has concluded that the differences is a result of different rainfall435

pattern between the two periods rather than from the calibration algorithm.

4.3.2 GR4H

In the case of the calibration of the GR4H model on the two catchments, the parameters and efficiencies obtained both in

calibration and validation are shown in Table 9. All calibration and validation efficiencies are higher than 0.7. In the case of

Ardeche, there is relative stability/robustness in the calibration and validation efficiencies. The groundwater exchange coeffi-440

cient x2 are positive in both calibration periods for the Ardeche (export), while they are negative (import) in the case of Gardon.

According to this model, positive values show water import, while positive values indicate water export.

Table 9. GR4H parameter sets, calibration and validation NSE obtained using split test for the catchments using split test.

Catchment Period x1 x2 x3 x4 NSE

Calibration

NSE

Validation

Ardeche P1 310.6 2.12 221.6 4.87 0.868 0.849

P2 216.2 1.37 311.6 3.89 0.899 0.868

Gardon P1 478.5 -3.46 139.9 5.0 0.908 0.835

P2 230.4 -6.49 136.1 4.33 0.777 0.733
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Figure 10. Maps of the SMASH calibrated parameters for Gardon (left) and Ardeche (right)

Figure 11. QQ plot of observed and simulated discharges in validation for period 1 (2006 to 2013) simulated with the calibrated parameters

obtained from period 2 (2012 to 2019). Simulations obtained with the continuous SMASH and GR4H models for (left) Gardon and (right)

Ardeche.
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4.3.3 MARINE

The calibration of this event-based model followed the procedure described in the methodology, the events were divided into

period 1 and period 2 events and each group was calibrated together by minimizing the cost function of 1−NSE using the445

events. The resulting global efficiencies are presented in Table 10 for both catchments. Event specific NSE (not shown here)

has an average of 0.87 and 0.78 for the Gardon events of period 1 and period 2 respectively. Subsequently cross validation was

done using the calibrated parameters from each group. This is to ensure the same calibration validation approach is done for

the three models. During the calibration of the model and for each set, at least 10 starting points in the parameter sets were

tested in order to ensure that the optimization is not stuck to local optima within the response surface.450

The period 1 and period 2 events of the Gardon catchment resulted in very similar values, except the Cz parameter which is

almost twice in period 1 compared to period 2. For the Ardeche, higher calibration efficiencies are obtained compared to the

Gardon, although the parameters between the two periods are dissimilar.

Validation efficiencies in terms of the Nash are presented in Table 11 for both catchments. The efficiencies are event depen-

dent. For Gardon, NSE as high as 0.91 is obtained and as low as 0.09 , with the average of 0.58 for the eight (8) events. The two455

Nov 2018 events presenting the least efficiencies have the least observed peak magnitudes (655 and 809) compared to the max

of 1356 m3/s observed with the Oct 2015 event. It is thus possible that the soil thickness coefficient used (8.0) is too large for

these events. In the case of Ardeche, the NSE in validation is also event dependent, the min/max obtained is 0.47/0.87 with an

average of 0.77. Finally, the temporal performance decrease in validation is smaller in Ardeche (from 0.96 to 0.77 on average)

compared to Gardon (0.85 to 0.58)460

Table 10. Catchment parameter sets and NSE for multiple event calibration based on split test using MARINE

Period KD1 KD2 CZ Ck CKSS Global Nash No of Events

Gardon P1 19.42 9.45 8.0 4.99 1497 0.88 2

P2 19.44 9.43 4.83 4.99 1500 0.82 6

Ardeche P1 27.39 7.73 4.91 1.02 2638 0.97 4

P2 18.43 14.57 2.23 4.36 1719 0.95 3

4.3.4 Comparison in calibration and validation

Considering the two continous models, SMASH and GR4H, the global efficiencies in time obtained in calibration are similar.

However, they are slightly lower than SMASH for the Ardeche catchment, while they are higher for the Gardon catchment.

The temporal validation efficiencies are however catchment dependent, they are higher in period 1 for GR4H compared to

SMASH, while being lower in period 2. But summing up on both periods and on both catchments, MARINE has its efficiency465

in validation decreased by around 25%, while SMASH and GR4H have a decrease of 5.2% and 4.8% respectively.
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Table 11. NSE event performance criteria in validation of the outlet discharge for the study catchments. For each catchment, the events

marked with (*) are period 1 events, while the others are period 2 events.

Gardon Ardeche

Event MARINE SMASH GR4H Event MARINE SMASH GR4H

Ev_10_11_2008* 0.82 0.90 0.66 Ev_2008_10_19* 0.79 0.92 0.74

Ev_01_11_2011* 0.66 0.91 0.61 Ev_2010_05_11* 0.47 0.68 0.16

Ev_16_09_2014 0.50 0.66 0.07 Ev_2010_09_06* 0.73 0.66 0.28

Ev_09_10_2014 0.69 0.72 0.68 Ev_2011_11_02* 0.84 0.94 0.72

Ev_10_09_2015 0.91 0.60 0.16 Ev_2014_09_18 0.86 0.38 0.71

Ev_27_10_2015 0.79 0.58 0.67 Ev_2014_11_14 0.87 0.80 0.55

Ev_22_11_2018 0.09 0.81 0.82 Ev_2019_04_23 0.85 0.93 0.89

Ev_08_11_2018 0.19 0.91 0.93

Average 0.58 0.76 0.58 Average 0.77 0.76 0.58

With regards to the obtained parameters, the same decrease of the production reservoir capacity x1 period two for the

Gardon is obtained as observed with SMASH, Ardeche however presents a decrease of x1 in the second period compared to

the observed increase with SMASH. Both models however resulted in larger x1 for the Gardon compared to Ardeche (although

the difference is much larger with SMASH). The routing reservoir x3 is however larger in the case of Ardeche. The ground470

water exchange are positive for Ardeche, indicating water import, while negative for Gardon, indicating water export. Finally

the time base of the unit hydrograph x4 is between 4 and 5 hours for both catchments.

Compared to the values of the saturated hydraulic conductivity ks parameter obtained with MARINE (see section 4.3.3), the

values obtained here with SMASH seamed rather low, although both use a Green and Ampt infiltration model, but MARINE is

calibrated specifically on flood events and so the activation of Hortonian flow would be different compared to SMASH that is475

calibrated on both high and low flow events. Also, in addition to the surface flow, a component to allow for lateral subsurface

flow is available in MARINE, hence the contribution to the flood hydrograph is a combination of the two. The choices made

in SMASH with regards to the value of the porosity in the Green and Ampt model (kept at a value of 1), and suction values

obtained from the map of the soil texture according to Rawls and Brakensiek might also affect the final calibrated value of the

ks. Note that the values with MARINE are for the multiplicative constant Ck which in principle is multiplied to the gridded480

values of the saturated conductivity maps.

4.4 Comparison at event scale

In this section, the event scale performance of the models is compared. This is done through the signatures of the simulated

discharge and the simulated soil moisture. While the simulated hydrographs are compared with the observed hydrographs

through the computed metrics, the soil moisture is compared to the outputs of the SIM2 model.485
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4.4.1 Discharge Simulation

Figure 12. Flood events, measured at the outlets, simulated with MARINE, SMASH, and GR4H for Gardon (left) and Ardeche (right)

Figure 12 compares the simulated discharges with the three models against the observed discharges for Gardon (left) and

Ardeche (right). The performance of all the models seems to be fair, and the superiority of the models depends on the event.

It is however difficult to judge objectively from the figures of the hydrographs. In order to judge objectively, different metrics

have been computed and are shown for both catchments in Figure 13 and 14. The performance of the models is therefore490

judged and discussed according to these metrics in the following paragraphs.

First, looking at Figure 13 in terms of NSE, the superiority in performance of the models over one another is quite event

dependent, however, for most of the events in the Gardon catchment, SMASH has better NSE values. The average NSE for the

eight events is 0.76 for Gardon against 0.58 for both MARINE and GR4H. For Ardeche catchment, MARINE is slightly better

with 0.77 average against SMASH with 0.76. GR4H remained the lowest with 0.58 average. In terms of the NSE, SMASH495

performed better compared than the other models, while GR4H is the least.

An alternative to NSE is the KGE metric. Although NSE is used in calibration, the KGE criteria is also used to evaluate

the performance. This metric gives an aggregated measure in performance in terms of the correlation, mean (water balance),

and flow variability bias. Considering Gardon, SMASH has an average of 0.65 against 0.48 for GR4H and 0.44 for MARINE.

For Ardeche on the other hand, SMASH remains better for most of the events, compared to the other models. The average500
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for SMASH is at 0.73 compared to 0.67 and 0.53 for MARINE and GR4H respectively. Again for the Ardeche, MARINE

outperformed GR4H on average.

The three components of the KGE, also reveals some relevant information on the performance of the models. In terms of

the correlation coefficient r, which assesses the error in terms of the shape and timing of the hydrographs, all the models have

relatively high values. MARINE however has on average better performance based on this criteria in both catchments (0.94505

and 0.96). GR4H remains the least in both (0.83 and 0.89). With this high average, it can be inferred that all the models are

capable in terms of reproducing the shape and timing of the hydrographs. β measures the bias in terms of the mean (water

balance). SMASH has the least bias compared to both catchments (1.08 and 0.99), while MARINE has the highest bias (0.78

and 1.13). Finally the measure of bias in the flow variablity α, indicates that for most of the events, SMASH has the least bias.

On average however, the bias is the same for GR4H an MARINE.510

Other indicators to objectively compare the models are shown in Figure 14 and given in Table C2 and Table C4 for Gardon

and Ardeche respectively. In terms of the percentage difference in peak magnitude, PPD, MARINE model approximates the

observed peak better than the other models for most of the events in the two catchments. The difference in the timing of

the observed and simulated peak is also less observed with MARINE simulations, SMASH on average has less differences

compared to GR4H. The percentage difference between the observed and simulated peak at the time of the observed peak515

measured by the SSPD criteria indicates more accurate simulations with MARINE. SMASH is yet, more accurate than GR4H

based on this criteria. This criteria is relevant because, it is important to know not only the difference between the observed

and simulated peak, but also what peak is simulated at the time the observed peak occurs. Lastly, the runoff coefficient (CR),

measures the ratio of the total flow over the total precipitation. SMASH gives the closest CR to the observations for most of

the events in the two catchments compared to the other models, it is also the closest to the observations in terms of the average520

of the CR for both catchments. GR4H closely follows, while MARINE is the least of the two models for both catchments.

Inferring from the results, the event based MARINE has better performance with regards to the peak simulation and timing,

followed by SMASH. However, in terms of the volume of water exported and water balance, SMASH performed relatively

better and is followed by GR4H.

Although both SMASH and GR4H models used the same conceptual production reservoir thickness, the production reservoir525

in SMASH (used in this study) is filled according to the Green and Ampt infiltration function; (infiltration rate equals the rainfall

intensity provided ponding doesn’t occurs, when it does, the infiltration excess is transferred). GR4H on the other hand is based

on the saturation mechanism in which rainfall excess occurs only after saturation. This, in addition to the distributed nature

of SMASH, could partly explain why SMASH outperformed GR4H in terms of the indices of peak magnitude and timing.

This is despite the fact that GR4H, by construction, has more complexity in terms of processes represented and formulations530

used, including a non conservative exchange term (parameter x2) (see A1). MARINE, apart from the physical basis, processes

represented, and complexities in the formulations, is simply calibrated over flood events only. The continuous models are

however, calibrated on all the flows (both low and high) and would therefore perform better in terms of the volume of the flood.
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Figure 13. Integrated metrics of the simulated hydrographs in validation, of the three models for Gardon (left) and Ardeche (right). Metrics

are computed for the events shown in Table 5

Figure 14. Comparison in validation of the SMASH, GR4H and MARINE in terms of some hydrological signatures; the Percentage Peak

difference (PPD), the time difference of the peak (PD), the Synchronous Percentage of the Peak Discharge (SSPD) and the runoff coefficient

(CR), Gardon (left) and Ardeche (right) Black cross: observed runoff coefficient.
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4.4.2 “Soil moisture” comparison

The spatially averaged time series of the soil moisture predicted by the three models is shown in Figure 15. In case of the two535

distributed models, SMASH and MARINE, the spatial average over the area of the catchment at the hourly temporal scale is

shown. The spatial average of the soil moisture outputs of the two SIM products, SIM1 and SIM2 are also shown. In the case

of SIM1, which is used for initialization of the MARINE model, the single value per event (spatial average) corresponding to

the beginning of the event is shown, while for SIM2, which is used for comparison, the daily series (available for this study) is

shown at 06:00hr of every day for the event duration.540

First, the soil moisture output of SIM1 (shown at the beginning of every event) is always lower in amplitude compared to

the output of SIM2. While the former discretizes the soil into three layers, the middle layer corresponding to the root zone, the

later discretizes into 14 layers, the layers between 10-20 cm corresponding to the root zone.

Using the SIM2 series as benchmark for comparing the three models, MARINE performed best in terms of both the dynamics

and amplitude of the soil moisture in both catchments. It is closely followed by GR4H model, while SMASH is the least in545

comparison to the other models. To assess the goodness of fit between soil moisture series of the three models in comparison

to that of the SIM2 (shown in Figure 15), Figure 16 summarizes the root mean square error (RMSE) on the eight(seven) events

of Gardon(Ardeche), shown on the left and right of the figure respectively. For both catchments, MARINE is the most accurate

(lowest RMSE), followed by GR4H (looking at the median). In the case of Ardeche (right), the 0.75 quantile is lower than the

0.25 quantile of the other two models.550

Looking at the SMASH model, we see that in the case of Gardon catchment, the series remained relatively flat, and the

response between rainfall events is very week. Better response are however observed in the case of Ardeche compared to

Gardon. This could be possibly explained by the size of the calibrated production reservoir capacity cp of the two catchments.

Relatively large capacities of cp (1500 and 1200 mm for period 1 and 2 respectively ) for Gardon against (164 and 200mm)

for Ardeche are obtained. The depletion of the smaller capacity production reservoirs after or between rainfall events would be555

faster compared to the larger ones. Interestingly, GR4H calibration resulted in much smaller cp for Gardon (480 and 230mm

for period 1 and 2 respectively) compared to SMASH.

The difference in performance in the soil moisture outputs could be explained by the complexities and processes represented

in each of the models. MARINE, in addition to the surface flows (overland and in the channels), subsurface lateral transfers

are represented using an approximation of the Darcy’s law. Therefore, although evaporation is deemed negligible at the event560

scale, thus not represented, the lateral flows contributes to the emptying of the soil reservoir and hence the faster and sharper

decline between and after rainfall events. In addition to this, being a physical model, soil surveys are used as the basis for the

soil depths (corrected by a multiplicative factor cz). This makes the process and soil moisture variation potentially closer to

the real physical phenomena, unlike in the other two models in which the depths are fully conceptual - and more or less free to

vary in space.565

Although both SMASH and GR4H are emptied by the same evaporation function (see Equation A2), GR4H soil reservoir

is also emptied by a percolation leakage. This percolation leakage although weak, given the power law involved, is an added
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complexity in the model that might have resulted in the faster response between rainfall events compared to SMASH. The

process of soil emptying of the SMASH (distributed) model is thus more likely to be weaker than that of GR4H (lumped).

In the case of Gardon, the soil saturation of SMASH is generally lower than GR4H for most of the events. This is likely570

due to the size of the respective production reservoirs (1500mm for SMASH and 500mm for GR4H). Apparently, for the same

rainfall signal, the soil moisture will be higher in the smaller sized reservoir. An emphasis of this can be seen in Ardeche

catchment where SMASH soil moisture are higher for all the events. Interestingly, the production reservoir depth for this

catchment is 160mm for SMASH and 300mm for GR4. Hence, SMASH saturation are higher (due to smaller capacity). The

optimized reservoir depth from the model calibration therefore affects the accuracy of the soil moisture estimation.575

The controlability of the models also is different, although all the three models use the outlet discharge as the variable of

interest in the calibration, MARINE model has constraints on its parameters using field data (soil survey and vegetation and

land use) both in terms of their spatial distributions and their magnitude, although the later is corrected using some coefficients

during calibration. The production reservoir is constrained by the soil thickness map, the Green and Ampt parameter (porosity,

hydraulic conductivity and suction) are all constrained using the soil classes derived from the soil texture. The subsurface trans-580

fer have also been constrained by the soil classes and finally the Manning friction in the kinematic wave routing formulation

for overland flow by the land cover. This gives MARINE more constraints in its parameters thereby having parameters with

some level of physical meanings rather than being simply artifacts of the calibration algorithm. The fact that SMASH uses the

same maps during calibration doesn’t offer as much constrains as in MARINE model. In fact, the use of the maps is only to

reduce the high dimensionality resulting from fully distributed calibration. The constraints are thus applied only on the spatial585

pattern rather than on their magnitudes as done with MARINE. Again, even the choice of the field data eg (soil surveys of

thickness and texture) to use for the constraint on the spatial pattern of SMASH parameters is not as clear as that of MARINE,

since the parameters of the later have some physical meanings compared to more conceptual nature of the SMASH parameters.

The least constrain applied in terms of spatial pattern is thus on the GR4H model which is lumped, and thus rely solely on

the outlet discharge in the optimization process. Lastly, MARINE is also constrained using information from the SIM1 soil590

moisture output for its initialization.

To investigate the temporal evolution of the soil saturation, Figure 17 presents maps for two chosen events; Sep 2015 and

Sep 2014 for Gardon and Ardeche respectively. The figure shows the maps of the cumulative rainfall in mm, the map of the

soil moisture in % SIM2 (the reference) and those for the three competing models (SMASH, MARINE and GR4H). For each

model, two maps are shown, before and after the rainfall event. The maps reinforces the results seen in Figure 15, SMASH595

overestimates the soil moisture before and after the floods. Suprisingly, in the case of the Gardon catchment, at the end of the

Sep 2015 event, different pattern of the soil saturation is observed. While the saturation is higher upstream of the catchment

according to MARINE (mostly along the drainage networks), it is higher downstream according to SMASH.
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Figure 15. “Soil moisture (Internal signature)” time series, on average per catchment and event, simulated with MARINE, SMASH, GR4H,

and the daily outputs of the SIM1 and SIM2 models for Gardon (left) and Ardeche (right)

4.4.3 Available storage600

In this part, the sensitivity of the available storage to the perturbations of the model parameters is investigated for SMASH

model. The available storage gives an insight into what volume is available to dampen or filter the rainfall signal given the

behavior of the catchment, the parameters and the specific event. We try to investigate how the model parameterization affects

the change of this important component. For each model run, corresponding to a vector of parameters sampled within the given

range according to the classical RSA, the evolution of the soil saturation map at the beginning of an event and at the time of the605

maximum discharge for that event is considered, for simplicity, two considerations are made. First, the time of the observed

peak is assumed to correspond to the time of maximum soil saturation. This becomes necessary as it is difficult to anticipate

before hand, or to track the exact time of maximum saturation, given that 10,000 runs are made for a total period of 13 years

with different parameters for each run, and the event duration is a very small fraction of that time. Secondly, the evolution of

the available storage is considered between two time steps, the beginning of the event and the time of the maximum observed610

peak. Knowing that the model is spatially distributed, spatial average of the moisture saturation is considered for the analysis.

This is coherent since the model parameters for this experiment are taken as spatially uniform. The events considered for this

study are the same events described in Table 5.
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Figure 16. Boxplots of the root mean square error (RMSE) computed on the soil moisture series shown on Fig 15 for Gardon (left) and

Ardeche (right). Optimum value of the RMSE is 0

The scatter plots resulting from the experiment are shown in Figure 18 for the seven events. For simplicity, the other model

parameters are not shown and only the production reservoir capacity cp is shown. The scatter plots for the other parameters615

showed non-identifiability irrespective of the event considered and of the parameter value within the considered range. In the

case of the cp parameter, apparent identifiability is observed for all the events. The points resulting from the multiple model

runs converged to a line for each event, showing that irrespective of other values taken by the other model parameters, the

change in available storage is the same for a particular value of cp. For very small values of cp, the change is very high (near

100%) and for high values, the change is comparatively low. This could be explained by the fact that, for the small values of620

cp, the storage is inherently small, and so the input signal of rainfall will easily result in saturation, and hence a large change

in the available storage. The resulting curves are interestingly different for the seven events, the May 2010 event shows the

least change in available storage while the Nov 2011 shows the highest irrespective of the capacity cp. These two events has

the least and largest transported volume respectively.

5 Conclusions625

The aim of the study was to understand how three models of varying complexities simulate the hydrological behavior of

two flash flood Mediterranean catchments; Gardon at Anduze and Ardeche at Vogue, both located in the South of France.

The methodology involved the investigation of global parameter sensitivity of the models, their efficiencies in calibration and

validation, and the assessment of key hydrological signatures at the event scale. Finally the soil moisutre simulated by the
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Sep 2015 Event at Gardon

Sep 2014 Event at Ardeche

Figure 17. Cumulative rainfall in mm, and “soil moisture (Internal signature)” maps before and after some selected events, simulated with

MARINE, SMASH, and GR4H. The daily outputs of SIM2 model is also shown. The events are Sep 2015 for Gardon (top) and Sep 2015

for Ardeche (down)

three models at the event scale were compared with the gridded soil moisture outputs of the hydrometeorological SIM model.630

The three hydrological models are the lumped conceptual model GR4H, spatially distributed conceptual model SMASH, and

process oriented distributed model MARINE.

The invested methodology followed and the results obtained lead to the following conclusions. First, the global sensitivity

analysis using RSA of the three models revealed contrasted parameter sensitivity to the same efficiency measure, and depending

on the catchment considered. In the case of SMASH model, the dimension reduction through the use of uniform parameters635

revealed that the ctr parameter that controls the transfer as the most sensitive for Gardon, and routing velocity v for Ardeche,

while under masked parameters, ctr remained the most sensitive for Gardon, and cp for Ardeche. Concerning the lumped

GR4H however, for both catchments, the time base of the unit hydrograph x4 is the least sensitive, while the ground water
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Figure 18. Scatter plot of the sensitivity of the change in available storage between the event beginning and the time of the maximum

observed peak, to the production reservoir capacity cp . Results are shown for the seven study events at Ardeche catchment within the 2006

to 2019 study period.

coefficient x2 ("non conservative" flow component) is the most sensitive. For the event based MARINE, the coefficient applied

to the lateral subsurface flow, Ckss emerged as the most sensitive for Gardon, while the correction coefficient of the hydraulic640

conductivity Ck emerged as the most sensitive in the case of Ardeche.

The response surface enhanced the existence of equifinality and highlighted the difficulty of the calibration problem es-

pecially for a distributed model to reach sufficient minimum of the cost function. For all the models, the functioning points

obtained with the calibration algorithms are within hill regions of the response surface.

All the three models showed good calibration and validation efficiencies. Their performances were however, generally better645

on Ardeche compared to Gardon. In calibration, MARINE achieved the highest efficiency and is followed by GR4H. Although

all the three models showed decrease in efficiencies at temporal validation, GR4H was more robust. Regarding the parameter

stability between the two periods, all the models showed some differences between the calibrated parameters of both periods.

At the event scale, seven events and eight events of contrasted behaviors on Ardeche and Gardon respectively were selected

to compare the performance of the three study models on the simulated discharge and the soil moisture pattern. Indices of650

discharge simulation showed that, the event based MARINE has better performance with regards to the peak simulation and

timing, and is followed by SMASH. However, in terms of the volume of water exported and water balance, SMASH performed

relatively better and is followed by GR4H.

Using the soil moisture output of the SIM2 model as benchmark for comparing the simulated moisture by the three models

at the event scale, MARINE emerged as the most accurate in-terms of both the dynamics and amplitude of the soil moisture655

in both catchments (recall MARINE soil water content is initialized with SIM1). It is closely followed by GR4H model, while

SMASH is the least compared to the other models. The SIM2 product from SIM model revealed to be a valuable information

to assess internal dynamics of model states.
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The difference in the model performances could stem from differences in the levels of complexity of the models, the pro-

cesses described and the constrains of the models, and thus highlights the need for future improvements in the models and660

calibration methods. These include improvements on the components of vertical and lateral flow of the MARINE model, as

well as those of the SMASH platform along with its calibration and assimilation algorithms. In addition to this, improved

constraints on the patterns and magnitudes of SMASH parameters, including those of the Green and Ampt model, are required

to fully utilize its capacity especially under intense rainfall events. An extended multi-catchment comparison would enable

a more fair assessment and model inter-comparison. For soil moisture comparison, using other products in addition to SIM,665

similar to the work of Eeckman et al. (2020) could provide more robust conclusions. Finally this study paves the way for

extended model hypothesis testing and intercomparison in the light of multi-sourced signatures to asses/discriminate internal

model behaviours, given multiple plausible parameters sets potentially corresponding to contrasted functioning points, hence

model components activation/interplay at given model structure for instance.

Appendix A: Model Formulations670

A1 SMASH

A1.1 GR water balance operators

Initially proposed for a minimal complexity description of catchment water balance functioning, based on empirical model-

ing, the “GR loss model” Edijatno and Michel (1989) considers a production reservoir P of maximum depth cp and water

level hp and is recalled here for clarity. The neutralized rainfall and evaporation are respectively denoted Pn and En. If675

P ≥ E then Pn = (P −E) and En = 0 and dhp =
(

1−
(
hp

cp

)2
)
dPn. If P < E then En = E−P and Pn = 0 and dhp =

−hp

cp

(
2− hp

cp

)
dEn . Assuming a stepwise approximation of the inputs P (t) and E(t) the temporal integration of these or-

dinary differential equations, enabling analytical solutions (calculation given in Edijatno (1991)), as reported by Perrin et al.

(2003) gives the infiltrating rainfall Pp and the actual evapotranspiration from the reservoir store Ep:

Pp = cp

(
1−

(
hp
cp

)2
)

tanh
(
Pn

cp

)

1 +
(
hp

cp

)
tanh

(
Pn

cp

) (A1)680

Ep = hp

(
2− hp

cp

) tanh
(
En

cp

)

1 +
(

1− hp

cp

)
tanh

(
En

cp

) (A2)

As remarked in Jay-Allemand et al. (2020), hp is the water level of the production reservoir at the begining of a time step

∆t and Pp and Ep are the amount of water gained or lost over ∆t and used to update hp before the next time step.

This is the water balance scheme of GR4 where the state hp and parameter cp are respectively denoted S and x1.685
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A1.2 Green and Ampt infiltration

Applying Darcy’s law, Green and Ampt (1911) proposed a simplified physical model for water infiltration from a ponded

surface into a deep homogeneous soil with uniform water content. The Green and Ampt model approximates the curved soil

moisture profiles of the wetting front that result in practice, and from solution to Richard’s equations, as a sharp interface with

saturation conditions θ = θs above the wetting front, and initial moisture content θ = θi below the wetting front. The initial690

moisture content is assumed to be uniform over the entire depth. The infiltration i(t) writes as:

i(t) =




r(t) t≤ tp
Ks(1 +ψ 4θI(t) ) t > tp

(A3)

Where r(t) is the rainfall rate (m/s), tp is the time to ponding (s), Ks is the saturated hydraulic conductivity (m/s), 4θ is the

change in the volumetric water content (m/m), ψ is the soil suction and I(t) is the cumulative infiltration depth (m).

This model is used in MARINE event-based model (Roux et al., 2011).695

It is also implemented in SMASH, following the algorithm presented in (Chow et al., 1998) involving a classical Newton-

Raphson algortihm to solve 4θ from non linear Green and Ampt integrated in time (Mein and Larson, 1973), and with

parameters explained in 3. Hence, the production reservoir P of maximum capacity cp (and porosity is simply set to η = 1)

is filled by the infiltrating rainfall obtained form Equation A3, and is emptied by the actual evaporation Ep obtained from

Equation A2.700

A1.3 Transfer

The Transfer function is represented by a reservoir of capacity ctr and actual level htr, and models the fast flow, it is supplied

by the excess flow after production step (GR evaporation A2, infiltration A3). The time evolution of the actual reservoirs levels

thanks to the mass conservation gives the flow rate qr from the fast reservoir at each time step such that:

qr(t) = htr(t)− (h−4
tr0 + c−4

tr )−
1
4 (A4)705

where htr0 is the reservoir levels at the beginning of the time step.

A1.4 Routing

Given known flow directions, classically obtained from DEM, the cell to cell routing is done with a linear unit Gaussian

hydrograph whose delay τi from node i− 1 to node i is controlled by the routing velocity vi and the distance di (see details in

Jay-Allemand et al. (2020)).710
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A2 GR4

A2.1 Production

The water balance is modeled with a production reservoir as described in section (A1.1) with equations A1 and A2, denoting

the state S and parameter x1 instead of respectively hp and cp.

A2.2 Water exchange715

A groundwater flow exchange term F from the routing reservoir which depends on both the actual level in the store R, the

reference level x3 and a water exchange coefficient x2 is taking into account both flow components

F = x2

(
R

x3

) 7
2

(A5)

A2.3 Linear Routing

The 10% of the effective rainfall Pr resulting from the excess of the production and the percolation is routed linearly using a720

unit hydrograph UH2 of time base 2x4, the remaining 90% is initially routed using UH1 of time base x4 .The ordinates of the

UH are derived from their respective S hydrographs which also are functions of x4

A2.4 Non-linear routing

R=max(0;R+Q9 +F ) (A6)

Qr =R



1−

[
1 +

(
R

x3

)4
]− 1

4



 (A7)725

Qd =max(0;Q1 +F ) (A8)

Total stream flow is given by

Q=Qr +Qd (A9)

A3 MARINE

A3.1 Infitration730

A Green and Ampt model is used and the infiltration i(t) is described by equation A3.
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A3.2 Subsurface flow

The subsurface flow is based on the Darcy’s law given by:

q(t) = Toexp

(
θs− θ
m

)
tanβ (A10)

where T0 is the local transmissivity of fully saturated soil (m2s−1), θs and θ are saturated and local water contents
(
m3m−3

)
,735

m is transmissivity decay parameter, and β is local slope angle (rad).

A3.3 Surface flow

The surface runoff is divided into overland flow and drainage flow, in both cases, the kinematic wave model is used assuming

a 1-dimensional kinematic wave which is approximated with the Manning friction law. The equation is thus:

∂h

∂t
+
S0.5
o

n0
× 5

3
h

2
3
∂h

∂x
= r− i (A11)740

where h is water depth (m), t is time (s), x is space variable (m), r is rainfall rate (ms−1), i is infiltration rate (ms−1 ), S0

stands for bed slope (mm−1) and no is the Manning friction parameter (m3/m−3) .

Appendix B: Regionalized Sensitivity Analysis

Sensitivity analysis in hydrological modeling is defined as the investigation of the response function that links the variation

in the model outputs to changes in the input variables and/or parameters (e.g. review bySong et al. (2015)). It allows the745

determination of the relative contributions of different uncertainty sources to the variation in outputs using qualitative or

quantitative approaches under a given set of assumptions and objectives.

A model can be sensitive to a parameter in two ways: a) the uncertainty in the parameter is propagated throughout the model

thereby contributing in the overall model uncertainty. b) small change in the parameter results in significant change in the

output because of the high correlation between the output and the parameter.750

A common method of global sensitivity analysis is the regionalized sensitivity analysis (RSA). This is also called generalized

sensitivity analysis and it is based on Monte Carlo simulations. Parameter values are taken here from uniform distributions

within chosen ranges and then Monte Carlo simulations are run using the parameter sets and based on a defined goodness of fit

criteria (GOF), the results are then classified as behavioral or non-behavioral based on a chosen threshold of the GOF criteria.

For each parameter, the difference between the cumulative distribution of the behavioral and non-behavioral sets is determined755

using a quantitative Kolmogorov-Smirnov (KS) statistic 3. A significant difference means the parameter is sensitive, and the
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larger the difference, the more sensitive the parameter is. This method has been widely used in hydrological modeling and is

easy to implement (Song et al., 2015), however the choice of the GOF criteria and threshold is highly subjective.

KS (xi) = max
y

∣∣Fy(y)−Fy|xi
(y)
∣∣ (B1)

This approach to sensitivity is used in the course of the present study to investigate the sensitivity of the parameters of the760

three models on the study catchments.

Appendix C: Tables of events comparisons

Table C1. Performance evaluation efficiencies of the three models at discharge simulations on the Gardon

NSE KGE r beta alpha

Event GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine

Ev_10_11_2008 0.66 0.90 0.82 0.58 0.89 0.56 0.92 0.95 0.98 1.31 0.99 1.4 1.28 0.90 1.17

Ev_01_11_2011 0.61 0.91 0.66 0.59 0.81 0.50 0.92 0.98 0.98 1.17 1.12 1.32 1.36 1.14 1.39

Ev_16_09_2014 0.07 0.66 0.50 -0.04 0.54 0.69 0.43 0.86 0.79 0.61 1.30 0.80 0.23 0.69 1.13

Ev_09_10_2014 0.68 0.72 0.69 0.52 0.62 0.47 0.91 0.89 0.94 0.72 0.88 0.63 0.62 0.65 0.62

Ev_10_09_2015 0.16 0.60 0.91 0 0.45 0.71 0.66 0.84 0.98 0.44 1.52 0.78 0.25 0.99 0.81

Ev_27_10_2015 0.67 0.58 0.79 0.43 0.39 0.45 0.94 0.87 0.98 0.75 0.73 0.58 0.49 0.47 0.64

Ev_22_11_2018 0.82 0.81 0.09 0.86 0.67 -0.01 0.91 0.94 0.95 1.05 1.06 0.33 0.91 0.68 0.24

Ev_08_11_2018 0.93 0.91 0.19 0.93 0.79 0.16 0.97 0.97 0.94 1.06 1.01 0.4 1.0 0.79 0.41

Average 0.58 0.76 0.58 0.48 0.65 0.44 0.83 0.91 0.94 0.89 1.08 0.78 0.77 0.79 0.80

Author contributions. AH performed the numerical simulations and prepared the paper. PAG implemented the Green and Ampt operator

and Monte Carlo algorithm to SMASH numerical assimilation platform. AH implemented the masked Monte Carlo algorithm. MJ-A imple-

mented the SMASH routing operator, the variational data assimilation algorithm along with the masked calibration method. HR provided765

MARINE model and physiographic data. PAG, HR, PJ surpervised the work. All authors participated to discussions, results analysis and

paper writing.
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Table C2. Comparison of the SMASH, GR4 and MARINE in terms of some hydrological signatures; the Percentage Peak difference (PPD),

the runoff coefficient (CR), the time difference of the peak (PD) and the Synchronous Percentage of the Peak Discharge (SSPD) on the

Gardon

PPD CR Peak Diff. (hr) SSPD (%)

Event GR4 SMASH Marine obs GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine

Ev_10_11_2008 114 76 117 0.37 0.48 0.36 0.52 -2 0 0 88 76 117

Ev_01_11_2011 120 110 149 0.50 0.59 0.56 0.67 -3 0 0 102 110 149

Ev_16_09_2014 15 57 141 0.31 0.19 0.41 0.25 58 1 -1 7 56 90

Ev_09_10_2014 40 38 60 0.59 0.43 0.52 0.38 1 0 0 40 38 60

Ev_10_09_2015 14 58 81 0.25 0.11 0.37 0.21 5 4 0 7 52 81

Ev_27_10_2015 39 36 67 0.37 0.28 0.27 0.22 0 0 -1 39 36 66

Ev_22_11_2018 69 54 23 0.51 0.54 0.54 0.17 -1 0 0 67 54 23

Ev_08_11_2018 94 77 43 0.48 0.51 0.48 0.19 -1 0 0 90 77 43

Average 63.1 63.3 85.1 0.42 0.39 0.44 0.33 -7.1 -0.63 0.25 55 62.4 78.6

Table C3. Performance evaluation efficiencies of the three models at discharge simulations on the Ardeche

NSE KGE r beta alpha

Event GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine

Ev_2008_10_19 0.74 0.92 0.79 0.57 0.81 0.53 0.92 0.97 0.95 0.84 0.89 1.41 0.61 0.86 0.78

Ev_2010_05_11 0.16 0.68 0.47 0.28 0.59 0.69 0.78 0.92 0.77 0.67 0.83 1.19 0.40 0.63 0.91

Ev_2010_09_06 0.28 0.66 0.73 0.07 0.63 0.45 0.87 0.82 0.96 0.43 0.91 1.48 0.28 0.69 1.26

Ev_2011_11_02 0.72 0.94 0.84 0.75 0.90 0.76 0.91 0.98 0.98 0.98 0.93 1.21 1.23 1.06 1.12

Ev_2014_09_18 0.71 0.38 0.86 0.79 0.34 0.76 0.86 0.91 0.95 1.15 1.48 1.13 0.97 1.44 0.80

Ev_2014_11_14 0.55 0.80 0.87 0.55 0.89 0.81 0.92 0.90 0.96 1.18 0.95 0.96 1.40 1.02 1.19

Ev_2019_04_23 0.89 0.93 0.85 0.72 0.92 0.67 0.98 0.97 0.67 0.85 0.94 1.08 0.76 1.04 0.68

Average 0.58 0.76 0.77 0.53 0.73 0.67 0.89 0.92 0.96 0.87 0.99 1.13 0.81 0.96 0.96
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Table C4. Comparison of the SMASH, GR4 and MARINE in terms of some hydrological signatures; the Percentage Peak difference (PPD),

the runoff coefficient (CR), the time difference of the peak (PD); and the Synchronous Percentage of the Peak Discharge (SSPD) on Ardeche

PPD CR Peak Diff. (hr) SSPD (%)

Event GR4 SMASH Marine obs GR4 SMASH Marine GR4 SMASH Marine GR4 SMASH Marine

Ev_2008_10_19 54 78 93 0.60 0.52 0.55 0.85 3 1 1 46 74 89

Ev_2010_05_11 45 57 71 0.50 0.34 0.42 0.59 -1 1 0 44 56 71

Ev_2010_09_06 20 47 105 0.21 0.09 0.19 0.31 1 1 1 19 42 94

Ev_2011_11_02 115 92 129 0.73 0.73 0.69 0.89 -1 3 -1 115 86 127

Ev_2014_09_18 80 115 70 0.43 0.51 0.66 0.53 2 2 -2 66 106 63

Ev_2014_11_14 110 75 116 0.79 0.94 0.76 0.76 -1 1 0 108 71 116

Ev_2019_04_23 72 94 86 0.61 0.53 0.59 0.66 2 2 0 68 84 86

Average 70.9 79.7 95.7 0.55 0.52 0.55 0.65 -0.71 -1.57 0.14 66.6 74 92.3
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