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Abstract. The role of aquifers in the seasonal and multiyear dynamics of streamflow is undisputed: in many temperate catch-

ments, aquifers store water during the wet periods and release it all year long, making a major contribution to low flows.

The complexity of groundwater modelling has long prevented surface hydrological modellers from including groundwater

level data, especially in lumped conceptual rainfall–runoff models. In this article, we investigate whether using groundwater

level data in the daily GR6J model, through a composite calibration framework, can improve the performance of streamflow5

simulation. We tested the new calibration process on 107 French catchments. Our results show that these additional data are

superfluous if we look only at model performance for streamflow simulation. However, parameter stability is improved and the

model shows a surprising ability to simulate groundwater levels with a satisfying performance, in a wide variety of hydrogeo-

logical and hydroclimatic contexts. Finally, we make several recommendations regarding the model calibration process to be

used, according to the hydrogeological context of the modelled catchment.10

1 Introduction

1.1 Why use piezometry in low-flow modelling?

"Geology is the fundamental base of hydrology" (Castany, 1963): what happens in the sub-soil is an essential part of the

behaviour of many hydrological systems. At the catchment scale, aquifers have the ability to store water in the long run

and to release it afterwards, thereby contributing to streamflow. The hydrological processes taking place underground, whose15

complexity is not straightforward to describe, are often aggregated in surface hydrology models and represented by a simple

reservoir, which fills during each rainfall event and slowly empties during rainless periods. This conceptualisation is called into

question by the ability of underground water to contribute heavily to flood events – see e.g. Habets et al. (2010), Roche et al.

(2012) or Guérin et al. (2019) – but it remains an acceptable representation of aquifer-river exchanges during droughts. Indeed,

the fundamental role of aquifers in supporting river flows during the dry season is well-known: the trailblazer hydrologist20

Maillet (1905) observed it on several springs in the Paris basin. More recently, Carlier et al. (2018) and Wirth et al. (2020) linked

low-flow statistics to hydrogeological descriptors in Swiss catchments and reported that their low-flow behaviour was heavily

dependent on the hydrogeological context, with a particular role of sandstone and quaternary aquifers in inter-seasonal water

storage; Tague and Grant (2009) and Hayashi (2020) showed the buffering role of small aquifers in mountainous catchments
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and underlined their ability to support low flows and to supplement the snow reservoir that is dried up by climate change. Tobin25

and Schwartz (2020) and Käser and Hunkeler (2016) highlighted that even aquifers with a small spatial extent at the catchment

scale can support low flows significantly, even during long dry periods. Tracer studies (see e.g. Soulsby et al., 2006; Tobin and

Schwartz, 2020) confirmed that groundwater contributes significantly to streamflow during the dry season and that the extent

of this contribution depends on the hydrogeological configuration, i.e. the geological nature of the catchment’s subsoil. The

buffering or storage role of aquifers contributes to the phenomenon known as catchment memory, i.e. the smoothing of the30

input climatic signal by the catchment response (Tomasella et al., 2008; Lo and Famiglietti, 2010; Creutzfeldt et al., 2012).

Using other words, Roche et al. (2012) highlight that, at least in temperate regions, severe droughts are often the result of

several drier-than-normal years that lead to aquifers reaching exceptionally low levels.

Despite the level of evidence of the role of aquifers in low-flow dynamics, many hydrological modelling tools that are

commonly – and quite successfully – used to simulate and forecast droughts have no explicit representation of groundwater35

dynamics. The cultural differences between hydrogeologists and surface hydrologists, highlighted e.g. by Barthel (2014),

contribute to this situation: different systems with different characteristics and different problems to be solved lead to different

models whose coupling is not straightforward. In particular, the main goal of surface hydrology modelling – streamflow –

is almost directly and dynamically accessible, which makes elementary calibration of all kinds of models possible, while

measuring the state of an aquifer is only possible using a limited number of piezometers that measure the hydraulic head at a40

point. Satellite remote sensing is now able to monitor groundwater changes (Swenson et al., 2006; Syed et al., 2008) but the

temporal availability and the spatial resolution of such products limit their use in hydrological modelling at local to regional

scales.

The difficulty in using piezometric data is one of the reasons why hydrologists often prefer to retrieve the river-groundwater

flux by solving the inverse problem, i.e. using the surface data to infer the state of the aquifer. The most common approach45

is hydrograph separation, which consists in splitting streamflow into two components: a slow one, named baseflow and a

quick one, named quickflow. Baseflow is then regarded as the result of the slowest hydrological processes operating in the

catchment, generally underground processes. This approach can be useful for analysing the hydrological behaviour of large

sets of catchments and a high proportion of baseflow in total streamflow is often correlated with a geological context favourable

to a high contribution of aquifers (Pelletier and Andréassian, 2020). However, assimilating conceptual baseflow into aquifer50

contribution is generally unsuitable (Beven, 1991), since it results from a confusion between catchment time response and

water molecule transit time (McDonnell and Beven, 2014). To provide a hydrological model with new information about the

catchment state, here its underground state, it is necessary to provide new data, such as, when it is available, piezometry.

1.2 What are the existing modelling approaches?

Hydrological models are often classified depending on their level of spatial discretisation – lumped versus distributed models –55

and their ambition to represent more or less explicitly the physical processes taking place in the catchment – empirical and con-

ceptual versus physically based models – (Roche et al., 2012). Lumped models have no spatial discretisation at the catchment

scale – i.e. the catchment is treated as a single unit with spatially averaged descriptors – whereas distributed models discretise
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the catchment into grid units, each of them described by several variables (Beven, 2012). Semi-distributed models constitute

an intermediate option, in which the catchment under study is divided into sub-catchments, each of them becoming the object60

of lumped computations (see e.g. de Lavenne et al., 2016). Physically based or process-based models strive to reproduce the

physical processes taking place in the catchment, by solving a version of fluid mechanics equations, while conceptual models

develop their own empirical equations to reproduce the total water balance without any reductionist ambition. Because every

grid element of a distributed model needs to be parametrised, it usually carries a large number of parameters that cannot all

be calibrated on observations and need to be set a priori; lumped models, on the other hand, often have a smaller number of65

parameters that are easier to calibrate automatically from observations. Since physical laws need to be solved at local scale and

lumped models are generally designed for their simplicity in operational purposes, there is a general correspondence between

distributed and physically based models on the one hand and lumped and conceptual models on the other (Beven, 2012).

Hydrogeological models dedicated to groundwater simulation are generally classified as physically based – see Mackay

et al. (2014) for a rare example of a conceptual model. Therefore, the surface/groundwater interaction is more naturally rep-70

resented in physically based distributed hydrological models (Dassargues et al., 1999). At local scale, this can be achieved by

fluid mechanics equations (Bartlett and Porporato, 2018) but at catchment scale, distributed models generally use simplified

versions of these equations. Barthel and Banzhaf (2015) performed an extensive review of models taking into account the

surface/groundwater interaction at regional scale. We will not summarise the review here, but a salient point is the distinction

between fully coupled schemes, where equations are solved simultaneously for surface and groundwater flows (see e.g. Hy-75

droGeoSphere by Brunner and Simmons, 2011), and loosely coupled schemes, where several models are coupled only via the

exchange of results (see e.g. Isba-Modcou in Habets et al., 2010). All these approaches are difficult to implement on large sets

of catchments, because of parametrisation requirements.

Using conceptual lumped rainfall–runoff models to simulate the surface/groundwater interaction is less straightforward,

since fluid mechanics equations cannot be used; a conceptual representation of the aquifer, often using a reservoir, is therefore80

necessary. Water exchange with an aquifer can be computed solving the inverse problem, i.e. inferring the fluxes from the

amount of water needed by the model to close the water budget – see e.g. Perrin et al. (2003), Le Moine (2008), Le Moine et al.

(2008) and Herron and Croke (2009) – but it is far from sufficient for simulating the actual level of an aquifer. Bergström and

Sandberg (1983) added a groundwater simulation module to the HBV model (Bergström and Forsman, 1973) and implemented

it on three aquifers; they obtained a satisfactory performance in reproducing past piezometric time series, despite parametri-85

sation issues caused by computation cost, which are no longer mentioned in recent studies (Széles et al., 2020), considering

advances in computer science. Thiéry (1988) used the ground reservoir of the Gardenia model (Thiéry, 2014) to simulate

and forecast the piezometry of the Paris basin chalk aquifer, using a linear regression between the reservoir levels and the

aquifer levels. Borzì et al. (2019) designed a modified version of the IHACRES model (Jakeman and Hornberger, 1993) with

an explicit representation of a volcanic deep aquifer in Sicily, through an additional conceptual reservoir. In order to represent90

the specific role of groundwater in intermittent streams, Moore and Bell (2002) added a piezometry simulation module to the

PDM rainfall–runoff model (Moore, 1999), which was able to represent pumped abstractions. The path followed by Hughes

(2004) and Efstratiadis et al. (2008) is intermediate, with a semi-distributed conceptual hydrological model connected to a
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semi-distributed – with a different spatial discretisation – conceptual aquifer representation; this model is easier to implement

and needs fewer data than a fully distributed one, allowing for many experiments simulating anthropogenic influence, but it is95

far from straightforward to implement on any catchment with few data.

These modelling schemes have shown noteworthy simulation abilities for both aquifers and streamflow. However, they have

not been tested on large sets of catchments in various contexts to value their robustness and generalisation capacity. Moreover,

groundwater simulation is, in most hydrological modelling studies, a side product of rainfall–runoff modelling. There is little

evidence on how the addition of groundwater data can actually help obtain a better streamflow simulation.100

1.3 How are measured data used in hydrological modelling?

Most hydrological models are parametric and their parameters are calibrated using measured streamflow data (Roche et al.,

2012). To find the best set of parameters with which to reproduce the streamflow time series, a calibration criterion, which

is a function of measured and simulated – or forecasted – streamflow, is optimised, the most common one being the Nash–

Sutcliffe efficiency or NSE (Nash and Sutcliffe, 1970). Gupta et al. (2009) and Kling et al. (2012), investigating the drawbacks105

of NSE, proposed another criterion, henceforth known as Kling–Gupta efficiency (KGE), which is a Euclidean combination

of three criteria that all compare measured and simulated streamflow. Computed with untransformed time series, these criteria

are focused on the peaks of the hydrograph; to get a better calibration on the lower part of the latter, i.e. low flows, streamflow

time series can be transformed using concave functions (Pushpalatha et al., 2012), such as square root or logarithm.

Traditional calibration approaches are generally single-objective, i.e. only one objective function is used. However, all cri-110

teria can be regarded as flawed, since they focus on only one aspect of the hydrograph representation. Linear or Euclidean

combinations of criteria can be used (Nicolle et al., 2014), for instance the mean between NSE and KGE, which is called com-

posite calibration. Multi-objective calibration (Madsen, 2003) tries to optimise several criteria at the same time. It is generally

impossible to get a unique optimal set of parameters as the result of a multi-objective calibration problem; a Pareto front, i.e.

an ensemble of parameter sets, is formed, each one representing a different compromise between objective functions. For oper-115

ational purposes, it is necessary to choose a parameter set in this Pareto front, generally using a determined weighting between

objective functions – either a linear combination or a Euclidean distance to a reference point – which is similar to composite

calibration.

Complex, distributed hydrological models, especially when they claim to be physically based, often explicitly simulate phys-

ical variables. Therefore, measured data can be directly associated to these variables without having to build an observation120

function between model variables and measured data and designing a calibration process for such models is more straightfor-

ward. Even if they are rarely available on large sets of catchments, in-field measurements are often used in models for specific

instrumented catchments. For instance, the isoWATFLOOD model (Stadnyk et al., 2013; Stadnyk and Holmes, 2020) is cali-

brated using both streamflow and isotopic – δ18O - data, but a visual – and thus, rather subjective – evaluation of calibration

by the modeller is necessary; Jian et al. (2017) used, in a catchment where only few streamflow measurements were available,125

river level data and added three new parameters to a hydrological model to simulate the rating curve. Whereas in-field mea-

surements are not always common, satellite data are broadly available around the world and numerous studies have used them
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in hydrological models: Immerzeel and Droogers (2008) used satellite evaporation to calibrate the SWAT distributed model

through a composite criterion and got a closer representation of actual evaporation and less equifinality in parameter deter-

mination; Mostafaie et al. (2018) performed a multi-objective calibration using NSE for streamflow and total water storage130

from GRACE satellite data; Milzow et al. (2011) combined several satellite datasets – surface soil moisture, radar altimetry

and total water storage – to calibrate a semi-distributed model in a catchment with few streamflow measurements through a

composition of nine criteria; Demirel et al. (2019) explored different combinations of objective functions, computed on several

satellite products measuring soil moisture and water storage, to calibrate a conceptual model, with little gain on the streamflow

simulation performance; Dembélé et al. (2020) performed a composite calibration of a distributed model with four datasets135

– measured streamflow and satellite evaporation, soil moisture and water storage – and improved the model representation of

processes at the expense of a small degradation of the streamflow simulation performance.

Using other data than streamflow is less straightforward in empirical or conceptual models that do not explicitly simulate

physical fluxes or states. A particular state of the model is generally linked to the available physical variable. In catchments

affected by snow and/or glaciers, related data – i.e. snow depth or glacier state – can be used in model calibration (Riboust140

et al., 2018; Tiel et al., 2020). Beyond calibration, extra data can be assimilated into the model to correct its trajectory during

runtime; several studies showed an improved performance of hydrological models with assimilation of soil moisture (Aubert

et al., 2003a, b; Oudin et al., 2003) or snowpack (Thirel et al., 2013).

As far as piezometry is concerned, distributed hydrological models are rarely calibrated using piezometry time series. Most

gridded models have a physical parametrisation: parameter values are, directly or indirectly, inferred from local properties145

measured in situ (Moreda et al., 2006) – for instance, topography, soil types, vegetation or geological properties. At a pinch,

the parameter set can be adjusted, with a limited variation margin adapted to the physicalness of parameters, to better represent

streamflow; but given the often large number of parameters to be adjusted, distributed models cannot be fully calibrated

without suffering from equifinality (Beven, 1993). In these conditions, several studies underlined the possibility of calibrating

a distributed hydrological model using both piezometry and streamflow, with semi-automatic (Feyen et al., 2000; El-Nasr et al.,150

2005; Li et al., 2017) or automatic multi-objective calibration procedures (Khu et al., 2008). Lumped conceptual models, with a

reduced number of parameters, are easier to calibrate directly without prior determination of the parameters. When a particular

state of the model, in general a groundwater reservoir, can be coerced to a measured piezometry time series, calibration using

both piezometry and streamflow is possible, generally through a linear composite objective function combining criteria on

streamflow and piezometry (Thiéry, 1988; Moore and Bell, 2002; Széles et al., 2020). Despite significant improvements in155

piezometry simulation, these studies found that adding piezometric information to the calibration process did not significantly

impact streamflow simulation.

1.4 Scope of the paper

In view of the undisputed role of aquifers in low-flow dynamics in many catchments, it seems reasonable to try to improve the

performance of a hydrological model by adding piezometric data to the calibration process. However, most of the approaches160

reviewed in the previous section are difficult to implement due to a relatively large number of parameters and because the
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performance gain offered by the new data has not been assessed on a large set of catchments, which is necessary for model

evaluation (Barthel and Banzhaf, 2015).

In this study, we aim to develop a new modelling approach based on a simple structure with an easy parametrisation,

assessed on a large sample of catchments to ensure the generality of conclusions. We propose an adaptation of the structure of165

the conceptual daily rainfall–runoff model GR6J (Pushpalatha et al., 2011) to make it simulate groundwater table levels. Since

no element of the existing model structure was designed to explicitly simulate groundwater level, an adaptation of the model

structure is necessary. Section 2 recounts the process that led to designing this adaptation and the calibration and evaluation

schemes of the new model. Section 3 presents the hydroclimatic dataset of 107 catchments over mainland France that was used

to evaluate the new calibration with respect to the original one, performed only on streamflow. Section 4 summarises the results170

and proposes recommendations for model calibration in various contexts.

2 Hydroclimatic dataset

2.1 Context

The French mainland territory hosts a large diversity of climatic, topographic and geological contexts, with catchments rep-

resenting various hydrological and hydrogeological configurations. Several major aquifers are known to have a significant175

influence on surface waters, especially on low flows. The Paris basin, with its pile of secondary and tertiary sedimentary for-

mations, hosts several major aquifers for surface hydrology: the Late Cretaceous chalk aquifer is known to govern the multiyear

dynamics of the Somme and part of the Seine and Loire basins, with a noteworthy long flood event after the exceptionally wet

years of 1999 and 2000 (Pinault et al., 2005; Habets et al., 2010); the Beauce tertiary limestone aquifer controls the hydrol-

ogy of a key agricultural region astride the Loire and the Seine basin, with a major groundwater contribution to low flows180

(Lalot et al., 2015); the Cenomanian sand aquifer in the Perche region, which is directly connected to the Eure and Huisne

basins, is regarded as an essential groundwater reserve for the region and its declining trend is a major threat for Perche rivers

(Lenhardt et al., 2009). The second largest French sedimentary basin, the Aquitaine Basin, has a more complex configuration

with thick multi-layer aquifers covered by poorly permeable formations, such as Pyrenean molasses. The outcropping areas of

these formations are visible in figure 1.185

The large sedimentary basins are not the only geological areas in France which host aquifers that are of interest for surface

hydrology modelling. Aquifers located in alluvial plains, such as the international Rhineland aquifer – and its French part in

the Alsace plain quaternary alluvium – or the Bresse graben gravels, play a major role in the streamflow dynamics of the Saone

and the Rhine basins. As highlighted in the Introduction, even small alluvial aquifers outside plains can have an influence

on rivers: for example, several small left-bank tributaries of the Rhone are mostly ruled by the Bièvre moraine aquifer, with190

visible consequences on water quality (Bel et al., 1999). Regions in which geological formations are composed of metamorphic

or igneous rocks, such as Brittany or the Ardennes, can host fractured bedrock aquifers, linked to surface rivers. The wide

monitoring network of rivers and groundwater in France, described below, allowed us to select a test dataset of catchments

which is representative of this diversity.
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Figure 1. Outcropping areas of several major aquifers in mainland France and locations of example catchments shown in figure 2.

2.2 Data sources195

Climatic data – daily cumulative precipitation, average temperature and fraction of solid precipitation – were taken from the

SAFRAN (Système d’Analyse Fournissant des Renseignements Adaptés à la Nivologie) re-analysis (Vidal et al., 2009) by

Météo France; they are available at a daily time step for the 1958–2018 period. Daily potential evaporation was computed

using the formula by Oudin et al. (2005). Streamflow data were retrieved from the French national database Banque Hydro

(Leleu et al., 2014; SCHAPI, 2021). These hydroclimatic data are aggregated at the catchment scale and at a daily time step200

for mainland France in the HydroSafran database (Delaigue et al., 2021), maintained by INRAE (Institut national de recherche

pour l’agriculture, l’alimentation et l’environnement).

Groundwater level data are from the French national database ADES (BRGM, 2021) (Accès aux données sur les eaux souter-

raines), which gathers piezometric data from many providers in the French territory. Selected piezometers were taken from two

reference networks, to ensure the quality of data: RNESOUPMOBRGM (national quantitative monitoring network managed205

by BRGM, the French national geological survey) and RNESP (heritage national network for groundwater monitoring).
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2.3 Dataset selection

Catchments were selected on the basis of data availability criteria, exposed below, and an analysis of the hydrogeological

context through he French national reference cartography of hydrogeological formations BDLISA (Brugeron et al., 2018) (Base

de données des limites des systèmes aquifères). For each catchment, one or several piezometers were chosen, assessing the210

connection of the monitored aquifers with surface water bodies. First, using the provided metadata, each piezometer extracted

from the ADES database was associated with a hydrogeological entity in BDLISA, representing an aquifer. Catchments in

which anthropogenic activities – dams, major direct withdrawals or inflows – are known to have a significant influence on

streamflow and catchments in which more than 10% of precipitation falls as snow were discarded. Then, for each catchment,

piezometers associated with aquifers emerging inside the catchment boundaries were listed and maps – see an example in figure215

2 – were produced to assess the importance of each hydrogeological formation for the catchment. Piezometers associated with

formations with outcropping or sub-outcropping areas representing less than 5 % of the catchment area were discarded, along

with those located on the wrong side of underground watersheds, as identified by BDLISA.

Figure 2. Two examples of hydrogeological maps of catchments used for dataset selection. Their location in the French mainland territory is

shown in figure 1.
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After this spatial selection, the available groundwater level and streamflow data were examined. An initial visual inspection

of the time series was performed to eliminate data of too low quality, relying on the expertise of database maintainers. Then,220

catchments and piezometers were selected according to the following criteria :

– At least 20 years of continuously available streamflow data with less than 10 % of missing data;

– At least 20 years of continuously available groundwater level data with less than 10 % of missing data;

– At least 10 years of continuous contemporaneity between streamflow and groundwater level.

Figure 2 shows two situations encountered at this stage: on the left, the Sensée river is connected to one monitored aquifer but225

three piezometers are available. In this case, the piezometer with the longest time series, with respect to contemporaneity with

streamflow data, was selected to represent the aquifer. On the right, the Seudre river is connected to two monitored aquifers

with one piezometer for each one; in that case, the two piezometers are kept. The choice of keeping only one piezometer per

aquifer in the catchment was made for the sake of simplicity; in most catchments, when visually comparing the dynamics of the

groundwater level time series, no major difference was encountered between piezometers monitoring the same aquifer within230

the same catchment. A correlation study between groundwater level time series led to the same conclusions.

Table 1. Geographical characteristics of the 107 catchments dataset

Catchment area (km2) Outlet altitude (m) Mean altitude (m) Maximum altitude (m)

Minimum 27.0 0 39 65

1st quarter 168.2 27 113 169

Median 326.0 62 136 236

Mean 617.0 81 175 236

3rd quarter 685.7 114 202 330

Maximum 7,907 367 667 1421

Finally, this selection process yielded to a set of 107 catchments and 160 piezometer/catchment pairs. The majority of

catchments – 73 – are associated with only one piezometer; 22 of them with two; eight of them with three; one of them with

four and three of them with five piezometers. Tables 1 and 2 show geographical and hydrogeological characteristics of the set.

The necessity to choose catchments which are not anthropogenically regulated led to a selection mainly composed of small235

headwater catchments, representative of the climatic diversity of the French territory. Dismissing the mountainous catchments

to avoid the influence of snow favoured the selection of lowland catchments, although several Vosges catchments, whose

downstream part is linked to the Alsace plain aquifer, reach maximum altitudes above 1,000 m. However, the average altitude

remains low enough not to overtake 10 % of solid precipitation. The variability of the mean annual potential evaporation is

low, since the dataset does not contain neither high-altitude catchments – in which low yearly PET values are observed – nor240

catchments located in the South-East of France – where the highest PET values are reached (Brigode et al., 2021).
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Table 2. Hydrological characteristics of the catchment dataset. The aridity index is defined as the quotient of annual rainfall and annual

potential evaporation (PET). Catchment yield is the quotient of annual streamflow and annual rainfall.

Mean annual
streamflow (mm)

Mean annual
rainfall (mm)

Mean annual
potential evaporation (mm)

Catchment
yield (%)

Aridity
index

Minimum 29 626 600 4.6 0.90

1st quarter 146 723 638 21 1.09

Median 210 808 658 27 1.18

Mean 238 828 667 28 1.25

3rd quarter 316 921 693 34 1.40

Maximum 795 1,413 792 56 2.35

Figure 3. Map of the catchment and piezometer dataset. Example catchments of figure 2 are shown.
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Figure 3 shows a map of the selected catchments and piezometers. The northern part of mainland France, especially the Paris

basin, is over-represented because of data availability; in particular, the chalk and tertiary limestone aquifers in this basin are

the hydrogeological formations that have been monitored for the longest time in the territory. However, attention was paid to

represent the diversity of hydrogeological contexts, with smaller local aquifers or fractured bedrock aquifers, in order to assess245

the proposed modelling approach in the widest possible range of configurations.

3 Methodology

3.1 Presentation of the original GR6J model

3.1.1 General presentation

Figure 4. Structure of the original GR6J model – in black – and built-in piezometry simulation module – in red. See table C for the meaning

of parameters and variables.
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GR6J – for modèle du Génie Rural à 6 paramètres Journalier – is a daily six-parameter rainfall–runoff model. It was250

developed by Pushpalatha et al. (2011), as an evolution of previous GR4J (Perrin et al., 2003) and GR5J (Le Moine, 2008)

versions, using a conceptual description of the hydrological processes taking place in the catchment: the model structure,

visible in black in figure 4, is composed of stores, unit hydrographs and empirical equations that link them. The model is

lumped and operates at a daily time step, taking as inputs precipitation P and potential evaporation E, averaged on the time

step and the spatial extent of the catchment. Potential evaporation is computed using the formula by Oudin et al. (2005). GR6J255

is also parametric, i.e. for each catchment, 6 independent parameters have to be identified. All variables and parameters are

expressed either as water depth, in millimetres, or are unitless.

This section does not intend to report the modelling tests that have led to the development of the GR6J structure, since

the original paper by Michel (1983) – such discussions can be found in Perrin et al. (2003), Le Moine (2008) or Pushpalatha

et al. (2011). A summary description of the model computations is available in appendix A; a table of variables is available260

in appendix C. Computing codes can be found in the open-source airGR package (Coron et al., 2017, 2021) available in R

(Slater et al., 2019; R Core Team, 2021).

3.1.2 Parametrisation strategy

For each catchment, the model is calibrated to fit measured streamflow: the six parameters are determined through an optimisa-

tion process, by minimising an error criterion between measured and simulated streamflow, in a reference period. Commonly265

used criteria are the Nash–Sutcliffe efficiency or NSE (Nash and Sutcliffe, 1970), the Kling–Gupta efficiency or KGE (Gupta

et al., 2009; Kling et al., 2012) and the root mean square error (RMSE). In this study, the Nash–Sutcliffe efficiency was used

for streamflow.

Since the six parameters have very different dimensions and variation ranges, each of them is transformed with a bijec-

tive function to fit into the [−9.99;9.99] interval. Thereby, the optimisation space for optimal parameter research becomes270

[−9.99;9.99]6, which helps most optimisation algorithms find the global optimum. Detailed transformations and ranges are

available in appendix B. Several optimisation algorithms are used to calibrate the GR6J model, examples can be found in Coron

et al. (2021).

3.2 Study of the model correlation with piezometry

To adapt the existing model structure for groundwater level simulation, we followed an approach similar to other lumped275

conceptual models, i.e. using a store as a representation of the aquifer, regarding the water content in the store as a proxy

for groundwater level. With this aim in mind, a correlation study was performed on the dataset presented in section 2, in

order to identify which of the three conceptual reservoirs of the model structure was the most correlated with piezometry. The

production store is part of the production function, which computes the balance between rainfall and evaporation to determine

the amount of water available for streamflow; the routing and the exponential stores are part of the routing function, which280

models the time repartition of this available water to simulate streamflow.
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Figure 5. Distributions of correlations between piezometry and several states of the model

GR6J was calibrated for the 107 catchments of the dataset using the Nash–Sutcliffe efficiency criterion computed on the

square root of streamflow. The algorithm by Michel (1991), as implemented in airGR R package (Coron et al., 2021; R Core

Team, 2021), was used on the whole period of available climatic data (1958–2018). Then, the time series of model states

obtained – the levels of the three conceptual stores and simulated streamflow as control data – and the groundwater level time285

series were aggregated at a monthly time step, to avoid problems caused by missing piezometry measurements. Afterwards,

for each of the 160 catchment/piezometer pairs, Spearman’s correlation (Spearman, 1907) between piezometry and each state

series was computed; the results are summarised as boxplots in figure 5. The exponential store (Michel et al., 2003) – see

figure 4 for a description of the model – is the most correlated with piezometry and, moreover, it is the only store to be more

correlated with groundwater level than with streamflow. The median correlation obtained is 0.762 and 80% of pairs reach a290

value higher than 0.5.

A high Spearman correlation may highlight a non-linear relationship, since it is a rank correlation. However, it does not seem

to be the case here: other investigations not detailed here show that the relationship between the exponential store content and

the groundwater level can be regarded as linear, all the more so as the correlation is high. Therefore, it was decided to use the

exponential store to simulate piezometry, with an adapted scheme presented in the following section.295
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3.3 Adaptation of the model scheme

A built-in module is added to the existing model structure to simulate groundwater level. The streamflow simulation chain is

not modified, but a new output is added to the model, through a linear transformation of the exponential store level.

Groundwater level absolute values strongly depend on the piezometer location – its altitude, but also its position with

respect to the catchment topography. Indeed, two piezometers monitoring the same aquifer and therefore representing the same300

dynamics can have different mean levels and their fluctuations can have different ranges – for instance, if the first one is located

on a plateau while the second one is on a slope. To avoid having to take into account these problems, it was decided to work

with normalised groundwater level δz, where z is absolute groundwater level, z̄ is its mean and σz its standard deviation:

δz =
z− z̄

σz
(1)

To represent the relationship between the exponential store level Exp – in mm – and simulated normalised groundwater305

level δz,sim, several polynomial relationships were investigated. It appeared that using a function of degree 2 or more was not

useful to improve performance. Therefore, an affine relationship is added to the model, with two additional parameters X7 and

X8, using the following equation:

δz,sim =
1

X7

(
Exp

X6
+X8

)
(2)

Simulated piezometry zsim can be computed by reversing equation 1:310

zsim = σzδz,sim + z̄ (3)

X7 is the groundwater linear coefficient; trials have shown that it generally takes values between 0 and 1 but can reach 4.

X8 is called the groundwater linear offset and takes non-negative values, with an upper bound at 20. The new built-in module

is shown in red in figure 4.

3.4 Composite calibration strategy315

Now that two additional parameters have been added to the model structure to simulate piezometry, it is necessary to determine

their value through an adapted parametrisation strategy. A composite objective function is chosen for calibration, using a linear

combination of a criterion on streamflow – the Nash–Sutcliffe efficiency computed on the square root of streamflow – and a

criterion on piezometry, called ZError and defined as:

ZError = 1−
∑
t

(δz,sim(t)− δz,obs(t))
2 (4)320
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Computations detailed in appendix D show that this criterion is in fact Nash-Sutcliffe efficiency, expressed for groundwater

level instead of streamflow. Since the two criteria on streamflow and piezometry have the same variation ranges – ]−∞;1] –

and the same properties, the objective function C for composite calibration can be taken as a linear combination of the two

criteria, with a weight α:

C(α) = α ZError+(1−α) NSE (5)325

α can take any value between 0 and 1: α= 0 means that the calibration is performed only on streamflow and α= 1 only on

piezometry. In order to find a compromise between these two objectives, 51 values are explored from 0 to 1 by a step of 0.02.

For each value of α, C(α) is maximised as a function of eight parameters. The parameter space transformations described

in appendix B are used to convert the optimisation space into the hypercube [−9.99;9.99]8. The differential evolution global

optimisation algorithm – implemented in the RcppDE R package (Price et al., 2006; Mullen et al., 2011; Ardia et al., 2011a, b;330

Eddelbuettel, 2018; Slater et al., 2019; Ardia et al., 2020; R Core Team, 2021) – is then executed to find the global optimal

point for the eight parameters.

3.5 Split-sample test evaluation scheme

To assess the effect on streamflow simulation performance of the new calibration scheme described above, a split-sample test

(Klemeš, 1986) is conducted for each catchment/piezometer pair of the assessment dataset described in section 2. For each pair,335

the available data are divided into two time periods P1 and P2 of equal length, defined so as to encompass the same number

of data points for which both groundwater level and streamflow are available. Thereby, both periods contain the same amount

of information and can be equally used for calibration and validation. The exact duration of periods depends on the pair, since

the data availability time periods are diverse: durations spread from 5.6 to 28.5 years by period. Before each period, a warm-up

timespan of 5 years is set: the model is run on this period but the resulting simulated values are not used to compute criteria.340

After determining these periods, the adapted model structure is calibrated on P1 using C(α), for each value of α; the

parameter set obtained is then used to run the model on P2 and compute several validation criteria. Then, the periods are

switched and the same procedure is executed. The following validation criteria are used:

– NSE(
√
Q) to evaluate the model performance on the whole streamflow spectrum;

– NSE( 3
√
Q) to evaluate the model performance on low-flows. It was preferred to zero-diverging transformations such as345

1
Q or log(Q) to avoid numerical problems with very low streamflow values;

– ZError to assess the model performance in groundwater level simulation.

Since the evaluation is performed for validation, the results presented in section 4 are, unless otherwise specified, validation

results.

15



To assess the benefit of using groundwater level data in the calibration process, the distributions of evaluation criteria values350

need to be compared to reference ones. For streamflow, the value α= 0 corresponds to the original calibration framework, only

performed on observed streamflow data. Parameters X7 and X8 are only used to simulate normalised groundwater level and

therefore, when α= 0, the sensibility of the calibration criterion to their values is zero. Thus, they are randomly determined by

the stochastic optimisation algorithm and no relevant normalised groundwater level is simulated, except a random affine trans-

formation of the exponential store level which cannot be compared to observed data. Therefore, another reference distribution355

than the one obtained for α= 0 is needed to evaluate groundwater level simulation. The value α= 1 is used, since it is the

case in which the model is calibrated only with observed groundwater level data and no streamflow; we thus expect the best

theoretically possible groundwater level simulation performance for this value of α.

The differences between evaluation criteria distributions are evaluated visually and then, in order to objectify them, a

Wilcoxon–Mann–Whitney test (Wilcoxon, 1945; Mann and Whitney, 1947; Bauer, 1972) is conducted. The distributions ob-360

tained for the values of α are compared with the reference ones: α= 0 for NSE; α= 1 for ZError. Therefore, for each value of

α, two tests are conducted: one to assess whether the streamflow simulation performance has significantly deteriorated and one

to evaluate whether the performance of groundwater level simulation is significantly lower than the one obtained for α= 1.

To assess the influence of the geological context, the test dataset of 160 catchment/piezometer pairs was divided into six

groups, detailed in table 3. The groups were established in accordance with the hydrogeological formation attributed to each365

piezometer, in the BDLISA reference inventory by Brugeron et al. (2018). This classification may look arbitrary or inaccurate,

since each piezometer corresponds to an idiosyncratic local situation; however, such a subgroup analysis of the test dataset

highlights the influence of geology on the model performance, as seen in figure 17.

Table 3. Groups of catchment/piezometer pairs, gathered by geological context

Number Number of pairs Description

1 26 Quaternary alluvia

2 11 Bedrock and Triassic sandstones

3 72 Chalk and Cretaceous limestones

4 20 Paleogene and Neogene limestones

5 19 Jurassic limestones

6 12 Cretaceous sands

4 Results and discussion

4.1 Is low-flow simulation improved?370

Model performance for streamflow simulation in validation is not improved by the proposed calibration scheme. Figure 6

shows that the distribution of Nash–Sutcliffe efficiency computed on the square root of streamflow does not appear to change
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Figure 6. Distributions of the NSE criterion values, obtained in validation by the modified model on the 107 catchments, for the 51 values of

α, the criterion weight. The red dashed line indicates the median NSE value for the original calibration strategy α= 0. Values below 0 were

cut off for readability.

significantly for values of α under 0.34; for higher values, the performances deteriorate, but it is surprising to note that they

slowly decrease while increasing α and they remain acceptable until α= 0.84 – even though the loss of about 0.2 is signifi-

cant. Beyond these values, the performances have considerably deteriorated: the calibration cannot be suitably performed on375

groundwater level time series only; this is an expected result, since the dynamics of groundwater level and streamflow signal

are different. The same trend is observed with performances in low flows, assessed through Nash–Sutcliffe efficiency computed

on the cubic root of streamflow.
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4.2 Is the model able to simulate groundwater levels?

Figure 7. Distributions of the ZError criterion values obtained, for 50 values of α, the criterion weight. α= 0 was discarded since no

groundwater level simulation is performed in that case. The red dashed line indicates the median ZError value obtained with α= 1. Values

below -0.5 were cut off for readability.

The model appears to be able to simulate groundwater levels with a satisfactory performance. Figure 7 shows the distributions380

of the ZError criterion for the 51 values of α, compared to the theoretically maximum possible performance which is obtained

with α= 1 – i.e. a calibration performed only on groundwater level with no streamflow information. The distribution of ZError

values appears to be similar for all α values above 0.34, with a median ZError around 0.70. For α between 0.12 and 0.34, the

performance decreases slightly but remains close to the best possible performance, with median ZError around 0.66. Finally,

for α under 0.1, with very little groundwater level information added to the calibration process, the performance is much lower,385

but even for α= 0.02, it is acceptable, with a median ZError around 0.5.

4.3 Recommended calibration framework and examples

Results of the statistical evaluation of differences between performance criteria distributions are presented as p-values in figure

8, with a significance threshold of 5%.

It appears that for values of α greater than 0.22, streamflow simulation performance has significantly deteriorated; for390

α lower than 0.12, groundwater level simulation performance is significantly below that obtained for higher values of α.

A narrow interval – α between 0.14 and 0.2 – corresponds to values for which the model performance for both outputs is

comparable to reference distributions: the model is as good at streamflow simulation as the original model and it cannot be

better at groundwater level simulation. Therefore, it was decided to choose the value α= 0.16 as the recommended calibration

framework, even though any value in the described interval could be chosen without significantly changing the results.395
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Figure 8. p-values of the Wilcoxon–Mann–Whitney (WMW) tests comparing the criteria value distributions obtained for the 51 values of α

with reference ones.

Figure 9. Observed and simulated streamflow of the Sensée River in Étaing, obtained with the original and the new calibration frameworks.

Log-scale is used to focus on low flows.

Figures 9 and 10 present an example of the new calibration framework applied to the Sensée catchment in Étaing, in the north

of mainland France. The Sensée River is a tributary of the Scheldt (Escaut), which is influenced by the Seno-Turonian chalk
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Figure 10. Observed and simulated groundwater level in the Sensée catchment, obtained with the new calibration framework.

aquifer – see figure 2. This catchment is an outlier with respect to the model performance distribution, since Nash–Sutcliffe

efficiency is improved by 0.14 for the period shown in the figures. However, this large difference is difficult to visualise, since

the two simulated hydrographs are close. The ZError obtained is average – 0.630 – and multiyear groundwater dynamics are400

reproduced, but the model struggles to simulate the peaks of the observed piezometry time series.

Figure 11. Observed and simulated streamflow of the Seudre River in Saint-André-de-Lidon, obtained with the original and the new calibra-

tion frameworks, for the two selected piezometers in the catchment. Log-scale is used to focus on low flows.

Another example catchment is presented in figures 11, 12 and 13: the Seudre River in Saint-André-de-Lidon. It is a small

coastal river located in Saintonge, linked to two regional aquifers of the Aquitaine basin – see figure 2: the Cenomanian sands

and limestones and the Late Cretaceous multi-layer limestones, each one being monitored by one selected piezometer. Figure

11 shows the results on streamflow: adding piezometry to the calibration process did not significantly improve the performance405
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Figure 12. Observed and simulated groundwater level in the Seudre catchment, obtained with the new calibration framework: first piezometer.

Figure 13. Observed and simulated groundwater level in the Seudre catchment, obtained with the new calibration framework: second

piezometer.

and the simulated hydrographs are not distinguishable. However, the results for groundwater simulation shown in figures 12

and 13 are satisfactory, with respective ZError values of 0.734 for Cenomanian sands and limestones and 0.787 for Late

Cretaceous limestone. In addition, the main failure period for groundwater level simulation – between 2010 and 2012 – in

which piezometry in underestimated, is also unsatisfactory for streamflow simulation, since the model is unable to reproduce

the whole variability of the hydrograph during this period.410
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Figure 14. Comparison of the values obtained for the six model parameters through calibration on the two periods of the split-sample test,

with the original calibration framework – α= 0. Log-scale is used for visual readability of some plots. Pearson correlation between periods

is indicated.

Figure 15. Comparison of the values obtained for the eight model parameters through calibration on the two periods of the split-sample test,

with the composite calibration framework – α= 0.16. Log-scale is used for visual readability of some plots. Pearson correlation between

periods is indicated.

22



4.4 Is the new parametrisation stable?

The parametrisation stability between periods is another measure of the robustness of the model: if the parameter values depend

on the calibration period, it will cast doubt on the model capacity to extrapolate streamflow values outside this period and thus,

to be used, for instance, as a forecasting tool. The split-sample test allows us to assess this stability by comparing the parameter

values between the two calibration periods P1 and P2. Figure 14 shows the results of this comparison for the six parameters415

of GR6J and the original calibration framework – obtained with α= 0; figure 15 does so for the modified calibration, with

the two added parameters. For each parameter, the Pearson correlation between the values obtained for the two periods was

computed.

The original calibration framework leads to a rather stable parametrisation, except for the exchange threshold X5 with a

non-significant correlation between the two periods. The modified calibration, using groundwater level data, yields more stable420

parameter values, with increased correlations between the two periods, except for the two parameters ruling the inter-catchment

exchange function, X2 and X5, for which the correlations have slightly deteriorated. The two added parameters, X7 and X8,

are also very stable between periods, with a correlation of 0.73. Since the modified calibration framework is a new constraint

on the routing function, it is not surprising to note that the three routing parameters – X3, X4 and X6 – become significantly

more stable between periods, which is a sign of an improved model robustness.425

The difficult transferability of the exchange function parameter values, i.e. the relevance of using them while they were

calibrated on another period of time, was highlighted by de Lavenne et al. (2016). This function is sometimes regarded as the

flux between catchments as they are defined by surface topography, which may not correspond to underground watersheds – for

instance, in karstic contexts, see e.g. Le Moine et al. (2008) – or as a representation between the catchment and an externalised

aquifer. But it is merely used by the model as a way to correct the global water budget. Poncelet (2016) underlined the relatively430

marginal role of the exchange threshold X5, introduced by Le Moine (2008), in the general performance of the model. The

stability issues exposed by the present study highlight the need for further development of this exchange function to take into

account the henceforth explicit representation of groundwater level through the exponential reservoir.

4.5 Is performance dependent on the regional and (hydro)geological context?

There is no clear spatial pattern in the results shown in figure 16. Since the streamflow simulation performance differences435

between the original and the composite calibration frameworks are small – and non-significant – the geographical distributions

of their performance are similar. High values of performance criteria are noted in the Aquitaine basin, in Brittany, in Upper

Champagne and for the downstream tributaries of the Loire River – Maine and Indre basins. Lower values of NSE are found in

the Beauce plain, in the Somme basin, in the inland part of the North region – mostly in the Scheldt (Escaut) basin – and in the

Saone and Rhone basin, with the particular case of the Bièvre morainic plain in which the minimum performance is reached.440

Other parts of the Paris basin, the North Sea coastal rivers and the Alsace plain have a mixed situation but generally do not

reach the extreme points of the NSE distributions.
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Figure 16. Map of the results. From top-left to bottom-right: value of the Nash–Sutcliffe efficiency at each gauge station, computed on the

square root of streamflow, for the original calibration, i.e. α= 0; value of the Nash–Sutcliffe efficiency at each gauge station, computed on

the square root of streamflow, for the composite calibration, with α= 0.16; value of the ZError criterion at each piezometer, for α= 0.16;

difference between NSE obtained with the composite and the original calibration frameworks. For each point, the maximum value among

catchment/piezometer pairs was chosen.

Catchments in which the performance gain between the two calibration frameworks is significant, i.e. beyond 0.05, are all

located either on the Picardy and Normandy chalk or in the Beauce plain. It is interesting to note this significant improvement

is observed in catchments in which the initial model performances was low. However, these areas also host catchments for445

which the composite calibration framework produces a significant deterioration of streamflow simulation performance.
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Figure 17. Distributions of results for groups detailed in table 3. From top-left to bottom-right: value of the Nash–Sutcliffe efficiency for

each pair, computed on the square root of streamflow, for the original calibration, i.e. α= 0; value of the Nash–Sutcliffe efficiency for each

pair, computed on the square root of streamflow, for the composite calibration, with α= 0.16; value of the ZError criterion for each pair, for

α= 0.16; difference between NSE obtained with the composite and the original calibration frameworks.
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As for the groundwater level simulation, the performance does not follow the same spatial distribution as streamflow. High

ZError values are observed in Brittany and in the western part of the Paris basin, along a crescent running from Artois to

Touraine. Lower scores are reached in the Bièvre plain, in Upper Champagne and in the extreme south of Paris basin on the

Massif Central piedmont. Other regions have mixed results with no clear spatial pattern.450

The sub-group analysis yields clearer results, visible on figure 17. For the absolute streamflow simulation performance, the

original calibration framework yields high values of NSE for groups 2, 4 and 6, medium ones for group 1 and lower scores

for groups 3 and 5. These patterns are found again for the composite calibration framework, even though the distribution

of performances for group 5 is narrower. Regarding the difference between the two calibration frameworks, a significant

improvement for a small part of the dataset is observed in groups 3 and 5 too, with no deterioration of the median performance455

in the group, while in groups 1, 2, 4 and 6, the median performance is reduced. A significant decrease in performance is

observed for a quarter of group 2 and more than a decile of group 4. As for groundwater level simulation, groups 3, 4 and 6

have narrow distributions centred around a high median score – around 0.7 – while other groups have much wider distributions

including simultaneously high, medium and low scores.

The analysis of results between groups of catchments with similar hydrogeological contexts allows to formulate general rec-460

ommendations to model users, exposed in section 5.2. However, the differences between sub-groups have not been successfully

linked to hydrogeological characteristics of aquifers, such as permeability or transmissivity. In fact, these data are difficulty

available over the French territory, except in experimental, heavily-instrumented catchments.

4.6 Are these results model-specific? Or dataset-specific?

The results presented in the previous sections can be seen as disappointing with reference to the objective of the study. Bringing465

a new information, observed groundwater level data, to the GR6J model yielded no improvement in streamflow simulation

performance. Of course, a question arises that we do not wish to avoid in this paper: is this disappointing conclusion model-

specific, i.e. is it due to the conceptual nature of the GR6J model? Would a less conceptual and more descriptive model have

yielded more satisfactory results? Would a more heavily parameterised model have yielded more satisfactory results? Let us

first answer this second question: equifinality is a plague in all modelling efforts, and we would not claim as a success an470

operation that would consist in improving marginally the situation of a model that was previously impossible to calibrate.

Thus, we reject the critique on model complexity as unworthy for a modeller. Concerning the physical realism of the model,

no a priori conclusion can be drawn on more physically-based models performance without any empirical evaluation on a

large set of catchments. However, the fact that the exponential reservoir – introduced in GR6J structure to represent the slow

aquifer transfers – represents either well or very well the dynamics of piezometers on a large catchment set cannot be the sheer475

consequence of luck. If the piezometric measurements are well represented, both on the calibration and the validation period,

this means that our mathematical representation is adequate to describe the underlying physical processes, even without having

been designed to do so.

Similar studies performed on other conceptual models did not result in different conclusions: Thiéry (1988) does not mention

an improvement in streamflow simulation when calibrating GARDÉNIA with groundwater level data; the study by Moore and480
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Bell (2002) on the PDM model is not conclusive since the new model structure is not compared to a reference one; finally,

the calibration framework proposed by Széles et al. (2020) for HBV model gave a similar conclusion to the one of this study:

using groundwater level data for calibration helps representing aquifer storage in the model, but did not result in improving

streamflow simulation.

Regarding the catchment dataset, we tried to constitute a set of catchments that is the widest possible with respect to our485

data sources and the selection criteria exposed in section 2.3. A selection bias in the present study is possible, mainly because

aquifers regarded as important for surface water resources are the ones that have been monitored for the longest time, in the

largest number of measurement points: the chalk aquifer in Picardy, the Alsace plain alluvium of the Beauce tertiary limestones.

However, the catchment dataset used in this study is diverse enough to draw general conclusions, at least in climatic and

hydrogeological conditions similar to the ones observed in mainland France. Further evaluation on different contexts, in other490

countries, would help putting our results into perspective.

5 Conclusions

5.1 Synthesis

The study presented here concerns the implementation of a new calibration procedure for an existing streamflow simulation

model, GR6J; it is not about the development of a completely new model. For each catchment, among all parameter sets that495

yield equivalent streamflow simulations, we identified a particular parameter set which is able to simulate, additionally, ground-

water level. This new modelling capacity does not induce a significant deterioration in the streamflow simulation performance,

neither does it improve it, except in a few particular cases. However, an advantage of the composite calibration framework

was highlighted: since we identified a particular parameter set among equivalent sets for streamflow, we probably reduced

equifinality in the model calibration, which is suggested by the parameter stability improvement. We may thus expect a more500

robust model, even if a specific equifinality study would help enforce this conclusion.

The results presented in this paper can be seen as truly encouraging – realistic representation of the piezometric variability

as one of the states of the model – but scientific honesty requires us to mention that to us they were – at least initially –

truly disappointing, because we aimed at improving the overall representation of streamflow through inclusion of piezometric

information and not the other way around.505

5.2 Recommendations to users: which calibration should be used in which context?

The analyses performed in this study lead to the following recommendations for the GR6J model calibration:

– in most catchments, no improvement in streamflow simulation is expected using a composite calibration framework with

groundwater level data;

– in catchments in which the original model already performs well, adding groundwater level data to the calibration is510

probably useless to improve streamflow simulation performance;
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– in catchments in which the model reaches lower validation scores, a performance improvement is possible but not

probable and it is most likely to happen in a chalk or tertiary limestone context;

– the model, with composite calibration, is able to simulate groundwater level with satisfactory performance for chalk,

tertiary limestones and Cretaceous sand aquifers;515

– groundwater level simulation is more uncertain for other geological contexts (quaternary formations, bedrock, Triassic

sandstones or Jurassic limestones). Good results have been observed in the bedrock context of Brittany.

5.3 Perspectives

Beyond streamflow simulation, being able to simulate groundwater level using such a lumped conceptual model – much simpler

and lighter to implement than usual groundwater models – is likely to lead to new uses of GR6J. Thereby, since GR6J is part520

of the operational low-flow forecasting platform Premhyce (Nicolle et al., 2020; Tilmant et al., 2020), it is conceivable to use

it as a groundwater level sub-seasonal forecasting tool in some chosen points in France, which is crucial for an anticipative

management of groundwater resources. Further studies are needed to evaluate the framework in forecasting mode; a data

assimilation process may be necessary to improve the forecast liability and smoothness. Although this study does not include

any modification of the streamflow simulation scheme, it offers an overview of possible modifications: the division coefficient525

between the routing and the exponential stores remained fixed in the present study and may become a new model parameter to

rule the size of the aquifer–river flux; the role of the exchange function needs to be clarified and its formulation has to become

more stable and readable.

Code and data availability. Streamflow data are available on the Banque HYDRO website (SCHAPI, 2021), their use is limited to particular

conditions exposed on the website. Climatic data are avaiblable upon request to Météo France for research use. Groundwater level data are530

available on the ADES website (BRGM, 2021); their use is conditioned to the Etalab open licence. The original version of GR6J is available

in the open-source R package airGR (Coron et al., 2021). The national hydrogeological reference map is available on the BD LISA website

https://bdlisa.eaufrance.fr (Brugeron et al., 2018).

Appendix A: Detailed operation of the GR6J model

A1 Production function535

The production function is mainly composed of a production store, whose capacity X1 is the first parameter of the model.

Inputs are P the daily rainfall depth and E the daily potential evaporation. Rainfall is neutralised by evaporation to compute

net rainfall Pn and net evaporation En, through a case disjunction:

– If P > E, then Pn = P −E and En = 0;
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– Otherwise, Pn = 0 and En = E−P .540

If Pn is positive, a part of it, Ps, feeds the production store, which has a level S and a parameter X1:

Ps =

X1

(
1−

(
S
X1

)2)
tanh

(
Pn

X1

)
1+ S

X1
tanh

(
Pn

X1

) ; Es = 0 (A1)

Otherwise, a part Es of En is taken from the production store:

Es =
S
(
2− S

X1

)
tanh

(
En

X1

)
1+

(
1− S

X1

)
tanh

(
En

X1

) ; Ps = 0 (A2)

The content of the production store is then updated by S = S−Es +Ps. Part of the water content of the production store545

Perc percolates to the routing function:

Perc= S

1−

(
1+

(
4S

9X1

)4
)− 1

4

 (A3)

The content of the production store is updated again by S = S−Perc. The quantity of water Pr that reaches the routing

part of the model is finally Pr = Perc+Pn −Ps.

A2 Unit hydrographs550

Pr is divided into two components: 90% are routed through the one-sided unit hydrograph UH1 and the remaining 10%,

through a two-sided unit hydrograph UH2. The cumulated ordinates of the unit hydrographs SH1(t) and SH2(t) are deter-

mined by the basetime X4, for t ∈ N:

SH1(t) =


0 if t= 0(

t
X4

) 5
2

if 0< t <X4

1 if t≥X4

(A4)

SH2(t) =



0 if t= 0

1
2

(
t

X4

) 5
2

if 0< t <X4

1− 1
2

(
2− t

X4

) 5
2

if X4 ≤ t < 2X4

1 if t≥ 2X4

(A5)555
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Ordinates UH1(t) and UH2(t) are then computed differentiating the cumulated ordinates:

UH1(t) = SH1(t)−SH1(t− 1) ; UH2(t) = SH2(t)−SH2(t− 1) (A6)

Finally, the respective outputs of the first unit hydrograph Q9 and the second one Q1 are computed through a convolution of

Pr:

Q9(t) = 0.9

⌊X4⌋+1∑
k=1

UH1(k)Pr(t− k+1) (A7)560

Q1(t) = 0.1

⌊2X4⌋+1∑
k=1

UH2(k)Pr(t− k+1) (A8)

A3 Routing stores

This part of the model structure is composed of two branches, that of the stores – fed by Q9 from the first unit hydrograph –

and the direct branch – fed by Q1 from the second unit hydrograph. In the stores’ branch, Q9 is partitioned between the two

stores, with 60% for the routing store and 40% for the exponential store. A potential exchange Exch is computed from the565

water content of the routing stores Rout, its capacity X3 and the exchange parameters X2 and X5:

Exch=X2

(
Rout

X3
−X5

)
(A9)

This flux can be negative, zero or positive. Since the routing store cannot have a water content Rout under zero, the actual

exchange flux from the routing store AExch1 is limited by the content of the latter, which gives the following equation:

AExch1 =

Exch if Rout+0.6 Q9 +Exch≥ 0

−Rout− 0.6 Q9 otherwise
(A10)570

The routing reservoir is then filled with:

Rout=Rout+Q9 +AExch1 (A11)

And the output QR of the routing reservoir is computed as:

QR =Rout

1−

(
1+

(
Rout

X3

)4
)− 1

4

 (A12)
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The water content of the reservoir is finally updated as Rout=Rout−QR.575

As for the exponential store, it is a bottomless reservoir whose water content Exp can be negative. Therefore, no case

disjunction is necessary and the store can be filled with:

Exp= Exp+0.4 Q9 +Exch (A13)

Its output is computed, using its capacity X6, as:

QRexp =X6 log

(
1+ exp

(
Exp

X6

))
(A14)580

The exponential store can now be updated using Exp= Exp−QRexp.

The second branch, fed by Q1, is also subject to exchange AExch2 with a case disjunction:

AExch2 =

Exch if Q1 +Exch≥ 0

−Q1 otherwise
(A15)

The output of the second branch Qd can now be computed using Qd =Q1 −AExch2. The simulated streamflow Qsim is

finally computed by adding the components from the three branches:585

Qsim =QR +QRexp +Qd (A16)
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Appendix B: Parameter ranges and transformations used for original and modified GR6J calibration

Table B1. Parameter ranges and transformation functions for GR6J model calibration. To make calibration easier, the parameter original

search ranges, exposed below, are transformed to [−9.99,9.99] by each transformation function. Found values are then re-transformed into

parameter values using reciprocal transformation. Details can be found in section 3.1.2.

Parameter Unit Description Search range Transformation function Reciprocal transformation

X1 mm Production store capacity R∗
+ x 7→ log(x) x 7→ exp(x)

X2 mm/day Inter-catchment exchange coefficient [−9.99;9.99] Id Id

X3 mm Routing store capacity R∗
+ x 7→ log(x) x 7→ exp(x)

X4 days Unit hydrographs time base [0.5;20] x 7→ 9.99+19.98
(
x−20
19.5

)
x 7→ 20+19.5

(
x−9.99
19.98

)
X5 unitless Inter-catchment exchange threshold [−2;2] x 7→ 5.0x x 7→ x/5.0

X6 mm Exponential store capacity R∗
+ x 7→ log(x) x 7→ exp(x)

X7 unitless Groundwater linear coefficient ]0;4] x 7→ 20
√
tanhx− 10 x 7→ argtanh

((
x+10.0
20.0

)2)
X8 unitless Groundwater linear offset ]0;20[ x 7→ x− 10 x 7→ x+10
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Appendix C: Table of variables

Table C1. Table of variables used in the document

Variable Unit Description

α unitless Composite calibration weight

AExch1 mm/day Actual exchange of the routing store

AExch2 mm/day Actual exchange of the direct branch

C(α) unitless Composite calibration objective function

δz unitless Normalised groundwater level

δz,obs unitless Observed normalised groundwater level

δz,sim unitless Simulated normalised groundwater level

E mm/day Daily potential evaporation used as model input

En mm/day Net evaporation

Es mm/day Part of evaporation withdrawn from the production store

Exch mm/day Potential exchange flux

Exp mm Exponential store level

NSE unitless Nash-Sutcliffe efficiency

P mm/day Daily rainfall used as model input

Pn mm/day Net rainfall

Pr mm/day Flux reaching the routing part of the model

Ps mm/day Part of rainfall filling the production store

Perc mm/day Percolation flux

Q1 mm/day Output of the two-sided unit hydrograph

Q9 mm/day Output of the one-sided unit hydrograph

Qd mm/day Output of the direct branch

QR mm/day Output of the routing store

QRexp mm/day Output of the exponential store

Qsim mm/day Daily simulated streamflow

Rout mm Routing store level

S mm Production store level

SH1(t) unitless Cumulative ordinates of the one-sided unit hydrograph

SH2(t) unitless Cumulative ordinates of the two-sided unit hydrograph

UH1(t) unitless Ordinates of the one-sided unit hydrograph

UH2(t) unitless Ordinates of the two-sided unit hydrograph

X1 mm Production store capacity

X2 mm/day Inter-catchment exchange coefficient

X3 mm Routing store capacity

X4 days Unit hydrographs time base

X5 unitless Inter-catchment exchange threshold

X6 mm Exponential store capacity

X7 unitless Groundwater linear coefficient

X8 unitless Groundwater linear offset

z m NGF Absolute groundwater level

z̄ m NGF Mean absolute groundwater level

ZError unitless Error criterion on groundwater level

zobs m NGF Absolute observed groundwater level

zsim m NGF Absolute simulated groundwater level
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Appendix D: Equivalence between ZError and Nash-Sutcliffe efficiency

The model structure proposed here does not simulate absolute groundwater level, but only its normalised version. Then, by590

reversing the normalisation equation 1, the equation 3 allows to get the absolute groundwater level. By combining equations 1,

3 and 4, the following expression of ZError is found:

ZError = 1−
∑
t

(
zsim − z

σz
− zobs − z

σz

)2

(D1)

Which gives:

ZError = 1−
∑

t (zsim − zobs)
2

σ2
z

(D2)595

By definition of standard deviation, we have:

σ2
z =

∑
t

(zobs − z)
2 (D3)

By combining the two previous equations, we get:

ZError = 1−
∑

t (zsim − zobs)
2∑

t (zobs − z)
2 (D4)

Which is exactly the definition of Nash-Sutcliffe efficiency or NSE (Nash and Sutcliffe, 1970), expressed for groundwater600

level instead of streamflow. This shows the correspondence between ZError and NSE.
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