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Abstract. Wind drift has a significant influence on the rainfall-runoff relationship in urban high-rise building areas since the 

oblique rainfall caused by the wind drift can interact with the building walls. However, the impact of the rainfall inclination 10 

angle on the rainfall-runoff process in urban high-rise building areas has not been studied. In this study, the relationship 

between wind and the rainfall-runoff process in such areas was explored. A theoretical framework was developed to describe 

their relationship, including a computational fluid dynamics (CFD) method to obtain the relationship between wind speed 

and rainfall inclination and a newly derived equation to describe the relationship between rainfall inclination and the runoff 

coefficient. Subsequently, a laboratory scale model experiment was conducted to verify the proposed framework. The main 15 

results are that (1) the runoff coefficient calculated by the proposed theoretical framework is highly consistent with that 

obtained from the laboratory experiment; (2) the runoff coefficient of urban high-rise building areas increases with wind 

speed and the increase rate is linear with the tangent of the rainfall inclination angle; (3) the change of the runoff coefficient 

for the experiment with larger raindrop is 0.047 when the wind speed increases from 0 to 5.9 m/s while that for the 

experiment with smaller raindrop is 0.064, which means that the rainfall with larger droplets is less influenced by the wind. 20 

1 Introduction 

In recent years, due to global warming, the frequency and magnitude of extreme storms, characterized by heavy precipitation 

and strong winds, have increased in urban areas. In the storm environment, raindrops are influenced by the wind’s drag force 

and obtain a horizontal velocity, leading to oblique rainfall which is usually called wind-driven rain (WDR) (Blocken & 

Carmeliet, 2004). WDR can have a significant impact on the rainfall-runoff process in urban areas. The local wind field can 25 

be disturbed by complex, unlevel urban terrains and affect the spatial distribution of rainfall. The change in rainfall 

distribution accompanied with catchment heterogeneity can affect the hydrological response of an urban catchment 

(Cristiano et al., 2017). Many studies have shown that the spatial variability of rainfall can translate into large streamflow 

variations (Kavetski et al., 2006; Smith et al., 2004; Syed et al., 2003), especially in urban areas (Cristiano et al., 2017; 

Ochoa-Rodriguez et al., 2015). Moreover, wind flow can alter the rainfall inclination angle. High-rise buildings can interact 30 
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with the oblique rainfall, leading to runoff on the wall. Changes in the rainfall inclination angle can alter the distribution of 

rainfall intensity on the wall and thus change the rainfall-runoff process in urban areas (Blocken and Carmeliet, 2004; 

Blocken et al., 2013, Zhou et al., 2018, 2019). Isidoro et al. (2012) explored the impact of WDR on the hydrological 

response in a high density urbanized area using a scale model in the laboratory and concluded that the spatial and temporal 

rainfall distribution caused by storm movement and wind has an obvious influence on the rainfall-runoff process. However, 35 

their study only illustrates the impact of wind on the hydrological response of an urban area with experimental data and the 

influence mechanism of the wind on the rainfall-runoff process in urban catchments is not clearly explained. 

Theoretically, the impact of wind on the rainfall-runoff process can be divided into two aspects: the impact of wind on 

raindrop trajectories (rainfall inclination) and the impact of rainfall inclination on runoff generation. The first aspect has been 

fully studied in building science in recent decades. Some researchers measured WDR using the WDR gauge, a special gauge 40 

with a vertical aperture (Blocken and Carmeliet, 2005, 2006; Kubilay et al., 2014; Nore et al., 2007). With the measured 

WDR, the rainfall inclination angle can be analyzed through the ratio of the rainfall amount measured by WDR and normal 

rain gauges. However, Blocken and Carmeliet (2006) indicated that WDR measurements suffered from large errors (up to 

100%) caused by water adhesion and evapotranspiration. Because of the limitations of the direct measurement of WDR, 

numerical analysis based on computational fluid dynamics (CFD) has been employed to study raindrop trajectories. Choi 45 

(1993, 1994a, 1994b, 1997) developed a Euler-Lagrange-based framework to numerically simulate raindrop trajectories 

around a building using CFD. In the framework, the wind flow pattern around a building is assumed to be steady and can be 

calculated by solving the continuity equation, the Reynolds Averaged Navier-Stokes equations, and the standard k-ε 

turbulence model; raindrop trajectories are then calculated by solving motion equations, considering the wind field forces 

acting on the raindrops that were obtained in the previous step. With the proposed framework, Choi analyzed the wind flow 50 

pattern around rectangular buildings of different sizes and the corresponding raindrop trajectories for raindrops of different 

diameters. The results demonstrate that raindrop diameters and building shapes have a significant impact on raindrop 

trajectories and thus on the impinging angle of raindrops on building faces. Blocken and Carmeliet (2000a, 2000b) extended 

the framework to consider the spatial and temporal distribution of WDR and verified it by comparing the numerical 

simulations and experimental data. Verification of Choi’s framework has also been conducted by Lakehal et al. (1995), and 55 

Hangan (1999). However, previous studies on the runoff generated by WDR have focused on the runoff from the wall of the 

building (Blocken et al., 2013), and the impact of the rainfall inclination angle on the rainfall-runoff process in an urban 

high-rise building area has not been studied. Since the runoff from the wall of the building generally flows directly into the 

drainage system through dispersal and cut-off ditches around buildings, the impact of the rainfall inclination angle on the 

rainfall-runoff process in an urban high-rise building area cannot be ignored. Yoo et al. (2021) reveals the impact of high-60 

rise buildings on runoff hydrograph though a newly improved hydrological model and a laboratory experiment. However, 

their work ignores the infiltration and focuses on changes of peak flow mainly caused by changes of flow path in high-rise 

building areas. The paper does not elucidate the effect of wind on runoff generation in high-rise building areas at the 

physical level. 

Optiplex 3080
高亮

Optiplex 3080
附注
Please use past tense when referring others' work.
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In this paper, we developed a framework to clarify the impact of rainfall inclination caused by wind on runoff generation in 65 

urban high-rise building areas. The runoff coefficient was selected as the representative of the rainfall-runoff relationship to 

eliminate the effect of variation in rainfall intensity caused by the local wind field. The proposed framework consists of two 

parts: a CFD method which was used to explore the relationship between wind speed and rainfall inclination, and a newly 

derived theoretical equation used to describe the relationship between rainfall inclination and the runoff coefficient. 

Additionally, we conducted a laboratory experiment based on a physical scale model of an urban high-rise building area and 70 

compared the experimental results with that derived from the proposed theoretical framework. 

The paper is organized as follows. Section 2 describes the derivation of the theoretical equation, the CFD model, and the 

laboratory experiment. Section 3 presents the results of the laboratory experiment and CFD numerical experiment and 

verifies the proposed theoretical equation with the experiment results. Further discussion is given in Section 4, and a short 

conclusion is presented in Section 5. 75 

2 Materials and Methods 

Our goal is to develop a theoretical framework concerning the relationship between the wind speed and the rainfall-runoff 

process in urban high-rise building areas. It consists of two parts: a CFD method used to simulate raindrop trajectories in the 

wind and a theoretical equation used to describe the relationship between the runoff coefficient and rainfall inclination. To 

verify the proposed framework, a laboratory experiment apparatus, including a rainfall simulator system, an electric fan 80 

system, a physical scale model of an urban high-rise building area, and a data collection and processing system was built and 

the relationship between the wind speed and the corresponding rainfall-runoff was determined. 

2.1 The theory of the CFD method 

We used a CFD model to explore the relationship between wind speed and rainfall inclination. Assuming that the wind flow 

around buildings is steady, the motion of raindrops in the wind field can be simulated by two steps: (1) the wind flow around 85 

buildings is simulated by solving the continuity equation, the Reynolds Averaged Navier-Stokes equations, and the standard 

k-ε turbulence model; (2) the movement of raindrops is then calculated by motion equations based on the wind field obtained 

from the previous step. 

2.1.1 Wind flow simulation around buildings 

The continuity equation (Eq. [1]), the Reynolds Averaged Navier-Stokes equations (Eq. [2]), and the standard k-ε turbulence 90 

model (Eqs. [3]-[6]) used to simulate the wind flow around buildings are as follows (Lakehal et al., 1995): 
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where 𝑈𝑖  is the average speed of the wind flow in direction 𝑖(𝑖 = 1,2,3); 𝑢𝑖  is the turbulent speed of the wind flow in 

direction 𝑖(𝑖 = 1,2,3); 𝑃 is the pressure; −𝑢𝑖𝑢𝑗is the Reynolds stress; 𝑘 is the turbulent kinetic energy; 𝜀 is the dissipation 

rate of the turbulent kinetic energy; 𝑣𝑡 is the turbulent eddy viscosity; 𝜈 is the kinematic viscosity. The set of coefficients in 100 

the standard model can be defined as follows (Lakehal et al., 1995; Hanjalic and Launder, 1972): 

𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1.0, 𝜎𝜀 = 1.3                                                                                                   (7) 

2.1.2 Simulation of raindrop movement in the wind field 

The raindrop trajectories in the wind field were simulated by considering raindrops as particles driven by gravitational force 

and the wind’s drag force. The control equations of the movement are as follows (Choi, 1993): 105 
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where r  is the radius of the raindrop; 𝜌𝑎, 𝜌𝑤 represent the density of air and water, respectively; 𝜇 is the air viscosity; 𝑈 , 𝑉, 

𝑊 represent the wind velocity in the 𝑥, 𝑦, 𝑧 direction; 𝑚 is the mass of raindrops; R is the Reynolds number which is 

determined by the relative velocity between the raindrop and the wind flow; and 𝐶𝐷 is the drag coefficient acting on the 

raindrop, which can be obtained from the study of Gunn and Kinzer (1949). 

2.2 The theoretical equation for the relationship between rainfall inclination and the runoff coefficient 115 

The derivation of the theoretical equation for the relationship between rainfall inclination and the runoff coefficient is 

described in this section. In order to derive the equation, the following assumptions were made: 
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(1) the interaction between buildings is ignored, so that the urban high-rise building area can be simplified: it contains only 

one building (Fig. 1). 

(2) the forces on the raindrop are in equilibrium before the raindrop arrives at the top level of the building, and the impact of 120 

the local wind field deformation on the motion of the raindrop after it arrives at the top level of the building can be ignored. 

(3) the diameters of all raindrops are the same in a rainfall event. 

(4) the wall and the roof of the building are impervious. 

(5) the wind direction is perpendicular to the wall and does not change during the rainfall event. 

According to these assumptions, the raindrop trajectory near the building can be regarded as a straight line, which is shown 125 

in Fig. 1. It can easily be seen that a part of rainfall lands on the wall of the building instead of the ground in windy 

conditions. The water from the building walls generally goes directly to the drainage system, which changes the partitioning 

of runoff and infiltration in urban high-rise building areas.  Assuming that subsurface runoff in a rainfall-runoff process in 

urban high-rise building areas can be ignored, the runoff of the urban high-rise building area shown in Fig. 2, with and 

without the influence of the wind, can be mathematically expressed as follows: 130 

𝑞 = 𝑃𝐵𝐿 − 𝑓𝐵𝐿 + 𝑓𝑛𝑏𝑙-s                                                                                                                                                      (13) 

𝑞𝑤 = 𝑃𝑤(𝐵𝐿-n𝑏ℎ 𝑡𝑎𝑛 𝜃) − 𝑓(𝐵𝐿 − 𝑛𝑏𝑙 − 𝑛𝑏ℎ 𝑡𝑎𝑛 𝜃) + 𝑃ℎ𝑛𝑏ℎ-s                                                                                        (14) 

where 𝑞 and 𝑞𝑤 are instant runoff rates of the whole catchment without and with the influence of wind, respectively; 𝑃 and 

𝑃𝑤  are rainfall intensity without and with the influence of wind, respectively. It should be noted that 𝑃𝑤  refers to the 

component of the rainfall intensity vector causing rainfall flux through the horizontal plane and can also be measured by the 135 

rainfall gauge. 𝑃𝑤 is the same as 𝑃 according to conservation of mass if the local wind field is not affected by the building 

and raindrop trajectories are parallel (Fig. 1[c]). 𝑃ℎ is the component of the rainfall intensity vector causing rainfall flux 

through the vertical plane. The value of 𝑃ℎ can be inferred from 𝑃𝑤 according to the theory of vector decomposition (Fig. 

1[c] and Eq. [15]). 𝜃 is the inclination angle of the raindrop trajectory (Fig. 1); 𝑓 is the infiltration rate; n  is the number of 

buildings (n =1 in Fig. 1); and s  is the water retained in the model in unit time. Eq. (14) means that the greater the wind, the 140 

more oblique the rainfall, leading to more rainfall to be intercepted by the impervious building wall and less infiltration, 

which leads to more runoff. 

The first term of the right side of Eq. (14) represents the total precipitation falling on the horizontal plane, including the 

ground and the roof; the second term represents the total infiltration; the third term represents the total precipitation falling 

on the building walls. It should be noted that the runoff mentioned here includes surface runoff and the runoff collected by 145 

the drainage system.  

𝑃ℎ = 𝑃𝑤 𝑡𝑎𝑛 𝜃                                                                                                                                                                     (15)  

According to Eq. (15), Eq. (14) can be simplified as: 

𝑞𝑤 = 𝑃𝑤𝐵𝐿 − 𝑓𝐵𝐿 + 𝑓𝑛𝑏𝑙 + 𝑓𝑛𝑏ℎ 𝑡𝑎𝑛 𝜃 − 𝑠                                                                                                                  (16) 

The runoff coefficient of the urban high-rise building area can thus be obtained:  150 
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𝑟 = 𝐾𝑎𝐾𝑙𝐾𝑖 𝑡𝑎𝑛 𝜃 + 𝐾𝑎𝐾𝑖 − 𝐾𝑖 − 𝐾𝑠 + 1                                                                                                                         (17) 

where 𝐾𝑎 = 𝑛𝑏𝑙/𝐵𝐿 represents the ratio of the building areas to the urban high-rise building area (i.e., the impervious area 

ration); 𝐾𝑙 = ℎ/𝑙  represents the ratio of the area of building walls on the windward side to the horizontal area of the 

buildings; 𝐾𝑖 = ∫ 𝑓
𝑡+𝛥𝑡

𝑡
𝑑𝑡/ ∫ 𝑃

𝑡+𝛥𝑡

𝑡
𝑑𝑡  represents the ratio of the infiltration water volume to the rainfall water volume 

within a certain time (𝛥𝑡) during which 𝑓 and 𝑃 are constants (the value of 𝐾𝑖 ranges from 0 to 1 and when 𝐾𝑖 > 1, it is set at 155 

1); and 𝐾𝑠 = ∫ 𝑠
𝑡+𝛥𝑡

𝑡
𝑑𝑡/ ∫ 𝑃

𝑡+𝛥𝑡

𝑡
𝐵𝐿𝑑𝑡 represents the ratio of the water ponded on the surface and stored in the drainage 

system to the rainfall water volume within a certain time (𝛥𝑡). The CFD model can identify 𝑡𝑎𝑛 𝜃. It should be noted that 

𝑡𝑎𝑛 𝜃 in Eq. (17) is linked with wind speed. In the whole storm event, 𝑡𝑎𝑛 𝜃 and thus 𝑟 need to be calculated in sections 

according to the wind speed. In addition, the runoff coefficient in Eq. (17) is an instant runoff coefficient and is only 

meaningful within the duration of the rainfall since the physical base of the equation is the inclination of the raindrop 160 

trajectory. The runoff generation occurs within the duration of the rainfall in an urban flood, so that the study of the runoff 

coefficient within the duration of the rainfall is of practical significance. 

Physically, the first term of the right side of Eq. (17) represents the effect of building walls on the runoff coefficient; the 

second term of the right side of Eq. (17) represents the effect of building roofs on the runoff coefficient; the last three terms 

of the right side of Eq. (17) represent the runoff coefficient that is not affected by buildings. Letting 𝑟0 = 1 − 𝐾𝑖 − 𝐾𝑠, Eq. 165 

(17) can be expressed by: 

𝑟 = (1 − 𝐾𝑎 − 𝐾𝑎𝐾𝑙 𝑡𝑎𝑛 𝜃)𝑟0 + 𝐾𝑎𝐾𝑙(1 − 𝐾𝑠) 𝑡𝑎𝑛 𝜃 + 𝐾𝑎(1 − 𝐾𝑠)                                                                                   (18)  

where 0r  represents the initial runoff coefficient of the watershed without the effect of the wind and the building. This 

equation illustrates that Eq. (17) is essentially a modification of the initial runoff coefficient considering the effect of the 

wind and the building. 170 

 

Figure 1: Sketch of the urban high-rise building area. 
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2.3 Laboratory experiment 

2.3.1 The laboratory apparatus 

The laboratory apparatus, including a rainfall simulator system, a hypothetical 1:100 scale model of an urban high-rise 175 

building community, an electric fan system, and a measurement system, was designed to experimentally explore the 

relationship between wind speed and the corresponding runoff coefficient. An overview of the laboratory apparatus is shown 

in Fig. 2(a). 

1. The rainfall simulator system 

The rainfall simulator system (shown in Fig. 2[a]) can simulate rainfall with intensity from 0 to 250 mm/h and with a drop 180 

diameter from 0.5 to 5.5 mm. The rainfall height of the simulator system is 12.5 m. According to Ross and Gilbert (1949) 

and numerical simulations by CFD, raindrops in the experiment can reach their terminal speeds. The rainfall simulator 

system uses a pressurized water feed system: three types of full cone nozzles with different apertures are used to generate 

raindrops. Users can determine the water feed pressure and the combination of the three nozzles to generate different types 

of rainfall. In this study, the water feed pressure is set at 120 kPa and only two types of nozzles (the large one and the middle 185 

one) are used. 

2. The scale model 

A 1:100 scale physical model of a real urban high-rise building area was built. The model consists of a platform used to 

simulate the ground surface and a building model used to simulate the buildings. The size of the platform is 916×3066 mm2, 

representing an area of 91.6×306.6 m2. The platform consists of two layers. The upper layer is made of acrylic board with 190 

many small holes which are used to simulate infiltration. In the experiment, runoff, including runoff from the ground surface 

and the drainage system, is generated on the upper layer. The under layer consists of a steel tank which is used to collect the 

water that infiltrates from the upper layer. For each layer, there is a duct used to transfer the water collected by the layer into 

the measurement system. The building model is located at the center of the upper layer of the platform. The length, width, 

and height of the building model are 700 × 250 × 1000 mm, representing a cuboid building of 70×25×100 m3. Placed under 195 

the building model, a 720×270 mm2 tray collects the water from the building model above. The water collected by the tray 

can be transferred to the measurement system by two 10 mm diameter ducts which are hung on the upper layer of the 

platform. The design can separate the volumes of water from the build and that from the ground. The scale model is shown 

in Fig. 2(a) and the model size is indicated in Fig. 3. 

3. The electric fan system 200 

The electric fan system consists of four industrial axial fans with a diameter of 1.0 m and a frequency converter. The fans are 

grouped together in a 2×2 configuration (Fig. 2[b]). The frequency converter is used to control the four fans to generate a 

relatively uniform wind field. The electric fan system can generate a wind field with a speed up to 7 m/s. 

4 The measurement system 
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The measurement system includes a wind speed measuring device for a surface, a flow measuring device, a raindrop 205 

disdrometer, and a data collection and processing system. The wind speed measuring device consists of sixteen anemometers 

grouped in a 4×4 configuration (Fig. 2[c]). The accuracy of the anemometers is 3% and the interval between them is 600 

mm. The flow measuring device consists of two water tanks used to collect runoff and infiltration and two water level 

gauges; each tank contains one water level gauge (Fig. 2[d]). Both tanks are the same size, with a length, width, and height 

of 500, 500, and 600 mm, respectively. The accuracy of the water level gauge is 1 mm. An RT800 data logger was used to 210 

collect the measured water level and wind speed and to transfer the collected data to a computer. The above-mentioned 

equipment was provided by Nanjing Quanshui Technologies Co., Ltd. The RD-80 raindrop disdrometer, produced by 

Distromet Ltd., Switzerland (https://distromet.com/), was used to obtain the distribution of the raindrop size. The accuracy of 

the raindrop disdrometer is 5%. 

https://distromet.com/
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 215 

Figure 2: Laboratory apparatus. (a), (b), (c) and (d) show the overall experimental device, the electric fan system, the wind speed 

measuring device, and the flow measuring device, respectively. 
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Figure 3: The size of the scale model. 

2.3.2 Experiment arrangement 220 

In total, 12 rainfall-runoff simulations were conducted with different combinations of rainfall and wind speeds to obtain the 

hydrographs in the scale model basin. Two types of rainfall and a total of six wind speeds (including no wind) were used in 

the experiment. The details of the combinations of the control rainfall intensities, the raindrop diameters, and the wind 

speeds are shown in Table 1. The control rainfall intensity refers to the rainfall intensity not disturbed by the wind. The two 

control rainfall intensities represent rainfall intensities of a 10-year and 200-year return period in Beijing, according to the 225 

storm equation of Beijing (Yuan F. et al., 2020). The two return periods are used since they represent a relatively common 

extreme rainfall and an especially extreme rainfall intensity. It should be noted that there are slight differences in the rainfall 

intensities calculated by the storm equation and those used in the experiment due to the limitations of the rainfall simulator 

system. The distribution of raindrop diameters was set to be uniform in the simulated rainfall process to simplify the analysis 

of the data, since the dynamic characteristics of raindrops in the wind field are significantly influenced by their diameters. 230 

The rainfall intensity atop the model is not the same as the control rainfall intensity since the raindrop trajectories are 

disturbed by the wind. Part of the raindrops are intercepted by building walls and part of raindrops flow out of the platform 

range. The spatial distribution of the rainfall intensity atop the model is very uneven. Table 1 gives the spatial mean value of 

the rainfall intensity atop the model, which was obtained by adding the runoff and the infiltration collected by the two tanks 

after the water retained in the model has infiltrated, to illustrate the impact of the wind and the buildings on rainfall 235 



11 

 

intensities in urban high-rise building area. The infiltration rate was obtained from calibration test of the experiment platform 

under different control rainfall intensities prior the experiment. We can find that the infiltration rates for the two different 

rainfall are not the same. It may be caused by the different dynamic characteristics of the two rainfall, i.e., larger raindrop 

diameter leads to larger final speed and thus larger infiltration rate. Each experiment was repeated three times. The final 

experiment result was determined according to the following rules: If the deviations of the three results are less than 10%, 240 

the average of the three results will be recorded as the final result; if the deviation of one of the three results is greater than 

10%, this result will be discarded and the average of the other two results will be recorded as the final result; if the deviations 

of two or three results are greater than 10%, the experiment will be repeated three times again and the final result will be 

determined according to the same rules. 

 Table 1. The Combinations of Rainfall, Wind Speeds and Infiltration Rates 245 

Simulations Control 

Rainfall 

intensity 

(mm/h) 

Rainfall intensity 

atop the model 

(mm/h) 

Raindrop 

diameter 

(mm) 

Rainfall 

identifier 

Wind 

speed 

(m/s) 

Wind 

identifier 

Infiltration 

rate (mm/h) 

1 51.7 51.7 2.0 1 0 0 27.5 

2 51.7 49.0 2.0 1 1.84 1 27.5 

3 51.7 49.8 2.0 1 2.50 2 27.5 

4 51.7 45.1 2.0 1 4.01 3 27.5 

5 51.7 39.4 2.0 1 4.87 4 27.5 

6 51.7 33.6 2.0 1 5.90 5 27.5 

7 93.5 93.5 2.8 2 0 0 49.9 

8 93.5 93.0 2.8 2 1.84 1 49.9 

9 93.5 91.6 2.8 2 2.50 2 49.9 

10 93.5 89.4 2.8 2 4.01 3 49.9 

11 93.5 90.3 2.8 2 4.87 4 49.9 

12 93.5 89.4 2.8 2 5.90 5 49.9 

2.4 The CFD model for the laboratory experiment 

A 2D CFD model was built for the laboratory experiment described in Section 2.3 to obtain the inclination angle of the 

raindrop trajectory. The building was positioned at a distance of 15H (H = the height of the building) from the outlet 

boundary (Tominaga et al., 2008). The top boundary, represented by the ceiling of the experiment hall, was 15H from the 

building and the inlet boundary was 2.5H from the building according to the experiment. The inlet profile of the wind speed 250 

was defined by a piecewise function (Eq. 19), consistent with the laboratory experiment. Turbulent kinetic energy and 

turbulent dissipation were used to establish the turbulent boundary (Wang et al., 2015). Non-slip conditions were imposed on 

the ground and building surfaces, and the top boundary and the standard wall functions proposed by Launder and Spalding 

(1983) were applied to them. The raindrop was simulated by spherical particles released from a virtual face that was 12.5 

meters above the ground, the same as the rainfall height in the experiment. The initial velocity of the particles was set at 0 255 

m/s. 
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𝑈 = {
𝑈0      0 ≤ 𝑦 ≤ 2𝐻
0              𝑦 > 2𝐻

                                                                                                                                                          (19) 

Where 𝑈 is the inlet profile of the wind speed; 𝑈0 is the wind speed used in the laboratory experiment shown in Table 1. The 

characteristic of inlet wind speed profile is caused by the size of the electric fan system. The height of the electric fan system 

is 2H and the wind speed outside this range is 0. 260 

The commercial software FLUENT was used for the CFD code in this study. The calculation region was discretized by 

structural grids with a size up to 15×15 mm2. In order to identify the grid size, the calculation results of different models with 

grid sizes from 20×20 mm2 to 10×10 mm2 were compared. The gap between the results becomes exceedingly small when the 

grid size becomes less than 15×15 mm2. This illustrates that the calculation result of the model is independent of the grid size 

when the grid size is less than 15×15 mm2. The second-order upwind method was used to discretize the governing equations 265 

and the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm was used to solve the equations. 

3 Results 

3.1 Experimental relationship between the wind speed and the runoff coefficient 

The hydrographs of the runoff and the infiltration of the scale model for the 12 different combinations of rainfall and wind 

speed are compared in Fig. 4 and 5, with each sub-figure representing one rainfall type. The results demonstrate that the peak 270 

flow rate of the runoff and the infiltration varies with wind speeds for both types of rainfall. However, no obvious 

relationship can be found between the peak flow rate of the runoff and the infiltration and the wind speed for either type of 

rainfall. The variable range of the two types of peak flow for rainfall 1 is less than that for rainfall 2, indicating that the 

rainfall with larger droplets is less affected by wind. Since the local wind field can disturb the distribution of raindrops and 

thus affect rainfall intensity, the spatial mean values of the actual rainfall intensities atop the scale model for different wind 275 

speeds were compared (Fig. 6). Figure 6 reveals that the rainfall intensities atop the model demonstrate a decreasing trend 

with the increase of the wind speed for both types of rainfall, though there are some fluctuations. 
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Figure 4: The hydrographs of the runoff of the scale model for different wind speeds under rainfall types 1 (a) and 2 (b). 
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Figure 5: The hydrographs of the infiltration of the scale model for different wind speeds under rainfall types 1 (a) and 2 (b). 

 285 

Figure 6: The actual rainfall intensity atop the scale model for different wind speeds under rainfalls 1 and 2.  

 

To avoid potential misunderstandings about the relationship between rainfall inclination and the rainfall-runoff process 

caused by changes in rainfall intensity, the runoff coefficients of the scale model for the 12 different combinations of rainfall 

and wind speed were calculated (Fig. 7). Considering the theoretical equations and the fact that the water retained in the 290 

model can hardly be measured, the runoff coefficient, when the surface runoff is stable, is used to verify Eq. (17). The steady 

state of the surface runoff indicates that the water retained in the model remains unchanged under the conditions of the 

experiment.   Specifically, the runoff coefficient is calculated by dividing the water collected in the water tank used to collect 

the runoff by the sum of the water collected by the two tanks when the runoff is stable. The sum of the water collected by the 

two tanks when the runoff is stable can be regarded as the total rainfall during this time period, since the water retained in the 295 
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model remains unchanged at this stage. By using the volume of the water instead of the runoff (infiltration) rate to estimate 

the runoff coefficient, measurement error caused by the oscillation of the water in the two water tanks can be reduced. The 

results indicate that the runoff coefficient for rainfall 1 ranges from 0.501 to 0.565 while that for rainfall 2 ranges from 0.499 

to 0.546. The runoff coefficient increases with wind speed for both types of rainfall. The variable range of the runoff 

coefficient for rainfall 1 (0.064) is greater than rainfall 2 (0.047), indicating that the runoff coefficient for rainfall with a 300 

smaller droplet diameter is more affected by the wind. 

 

Figure 7: The runoff coefficients of the scale model for different wind speeds under the two types of rainfall. 

3.2 The relationship between the wind speed and the rainfall inclination 

The wind fields of the scale model under different wind speed boundary conditions were first simulated by the CFD model 305 

described in Section 2.3. The velocity of the wind around the building model is shown in Fig. 8 (taking the velocity input 

boundary of winds 3 and 5 as an example). The results indicate that wind flow is obviously disturbed by the building. The 
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velocity of the wind varies significantly near the upper corner on the windward side of the building. The horizontal wind 

velocity clearly increases above the corner and decreases in the windward surface of the corner. The increase of the wind 

speed above the building can be explained as follows: since the air moving at low speed can be regarded as incompressible, 310 

the product of the velocity and the area of the flow section remains constant at different locations according to the law of 

conservation of mass. The area of the flow section just above the building is less than that at the front of the building, which 

creates a faster wind speed for the former in comparison to the latter. Moreover, the horizontal wind velocity recorded in the 

direct leeward of the building decreases to approximately 0 because the building blocks the wind flow. The vertical velocity 

appears near the top of the building and dissipates in the distance. The maximum magnitudes of horizontal and vertical 315 

velocities are comparable. 
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Figure 8: Simulated wind velocity. (a) and (b) represent horizontal and vertical velocities, respectively, for wind 3; (c) and (d) 

represent horizontal and vertical velocities, respectively, for wind 5. Location x means horizonal position while Location y means 

vertical position in a two-dimensional plane space. 320 

 

The raindrop trajectories of the different combinations of rainfall and wind speed were calculated based on the obtained wind 

fields. The raindrop trajectories and velocities are presented in Fig. 9 (taking rainfalls 1 and 2 under wind 5 as examples). 

The results indicate that the raindrops have achieved their ultimate vertical speed before reaching the scale model and drift 

with the wind. The final horizontal speed and drift distance of the raindrops vary with the diameter of the raindrops. A larger 325 

raindrop diameter leads to a lower horizontal velocity and shorter drift distance. The maximum horizontal speeds for rainfall 

1 and rainfall 2 under the wind speed 5 are 2.55 m/s and 1.87 m/s, respectively. The average raindrop drift distances for the 

two types of rainfall under different wind speeds are illustrated in Fig. 10. The figure demonstrates that the average wind 

drift distances for the two types of rainfall increase as the wind speed increases. The distance for rainfall 1 under the wind 

speed 5 is 1.32 m, while that for rainfall 2 is 0.67 m. These indicate that lighter raindrops are more sensitive to wind than 330 

heavier raindrops.  

The 𝑡𝑎𝑛 𝜃 (shown in Fig. 2) for different combinations of rainfall and wind speeds were compared and the results are 

presented in Fig. 11. It should be noted that the secant from the building to the ground of the raindrop trajectory, which is 

just across the upper corner on the leeward side of building, was used to calculate 𝑡𝑎𝑛 𝜃. The results demonstrate that rainfall 

inclination increases with wind speed for both types of rainfall and that rainfall with larger raindrops is less inclined.  335 
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Figure 9: The trajectory and velocity of raindrops. The line represents the trajectory and the color represents the velocity. (a) and 

(b) represent the horizontal and vertical velocity, respectively, for the drops of rainfall 1 under wind 5; (c) and (d) represent the 

horizontal and vertical velocity, respectively, for the drops of rainfall 2 under wind 5. Location x means horizonal position while 340 
Location y means vertical position in a two-dimensional plane space. 
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Figure 10: The wind drift of raindrops under different wind speeds under rainfalls 1 and 2. 

 345 
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Figure 11: The tangent of the raindrop trajectory inclination angle for different wind speeds under rainfalls 1 and 2. 

 

3.3 Comparison between the theoretical and experimental results 

The parameters of the theoretical equation derived in Section 2.1 were calculated according to the laboratory experiment. 350 

The values of the parameters for the experiment are presented in Table 2. The theoretical values of the runoff coefficients for 

the laboratory experiment were calculated according to these parameters. As mentioned in section 3.1, the runoff coefficient 

was used when the runoff was stable to verify the theoretical framework, so the value of 𝐾𝑠can be assumed to be 0. The 𝐾𝑖 

was obtained by dividing the infiltration rate by the control rainfall intensity shown in Table 1. The reason for not using the 

mean rainfall intensity atop the model is that infiltration occurs at ground surface. The raindrop trajectories (Fig. 9) show 355 

that the rainfall intensity on the ground surface (the upper layer of the platform) and the control rainfall intensity are not 
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much different, although the rainfall intensity is spatially distributed and the mean rainfall intensity is obviously less than the 

control rainfall intensity. 

The theoretical and experimental runoff coefficients for the scale model are compared in Fig. 12, with the same initial 

rainfall in one sub-figure. The results demonstrate that the theoretical runoff coefficients are in good agreement with the 360 

experimental values for both types of rainfall. Specifically, the theoretical runoff coefficients for rainfall 2 (with a larger 

raindrop diameter) are slightly more consistent with the corresponding experimental values than with rainfall 1 (with a 

smaller raindrop diameter). The relative bias between the theoretical and experimental runoff coefficient is 0.09% for rainfall 

1 and 0.03% for rainfall 2, which means that the proposed theory reflects the experiment well. 

 365 

Table 2. The Parameters of the Theoretical Equation for the Laboratory Experiment. 

Rainfall type 𝑲𝒂 𝑲𝒍 𝑲𝒊 𝑲𝒔 

Rainfall 1 0.062 4 0.532 0 

Rainfall 2 0.062 4 0.534 0 
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Figure 12: Comparison between the theoretical and experimental runoff coefficients for different wind speeds under rainfall types 

1 (a) and 2 (b). 

 370 

Figure 13: The rainfall intensity atop the scale model under different wind speeds for rainfall 1 of three replicate trials. 

 

4 Discussion 

One finding of the experiment indicates that the rainfall intensity atop the scale model decreases with the increase of the 

wind speed. Figure 9 and 10 can explain the decrease in rainfall intensity caused by wind. The figures show that the rainfall 375 

area increases as wind speed increases, resulting in a decrease in rainfall intensity according to the law of conservation of 

mass. Another significant finding of the experiment is that the runoff coefficient increases as the wind speed increases. This 

phenomenon occurs due to the inclination of raindrop trajectories to increase in conjunction with the increase of wind speed. 

The increase of the raindrop trajectory inclination leads to more rainfall being intercepted by impervious building walls. The 

rainfall intercepted by walls flows directly into the drainage system, resulting in less infiltration. Therefore, the proportion of 380 

runoff and thus the runoff coefficient increase with the increase of wind speed. 
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In this study, the distance between buildings is assumed to be large enough to render the impact of interactions between 

buildings as insignificant. In most urban areas, such assumptions are justified because the space between buildings should 

meet the requirements of plot ratio and daylight factors. However, in extreme situations, e.g., if the wind is strong and the 

raindrop size is small, interactions between buildings cannot be ignored. In these situations, the projection of the building 385 

overlaps with the adjacent building and the 𝑏ℎ 𝑡𝑎𝑛 𝜃𝐶𝐹𝐷 does not reflect the actual area where the rainfall is intercepted by 

the building wall. If ignoring these interactions between buildings, the impact of wind on runoff generation will be 

exaggerated. To address this problem, we can consider interactions between buildings by modifying tan  as follows: 

𝑡𝑎𝑛 𝜃 = {
𝑡𝑎𝑛 𝜃𝐶𝐹𝐷                   𝑡𝑎𝑛 𝜃𝐶𝐹𝐷 ≤ 𝑤/ℎ
(𝑛−1)𝑤/ℎ+𝑡𝑎𝑛 𝜃𝐶𝐹𝐷

𝑛
   𝑡𝑎𝑛 𝜃𝐶𝐹𝐷 > 𝑤/ℎ

                                                                                                                     (20) 

where 𝑡𝑎𝑛 𝜃𝐶𝐹𝐷 is the tangent of the rainfall inclination obtained from the CFD model; 𝑡𝑎𝑛 𝜃 is the tangent of the rainfall 390 

inclination used in Eq. (14); n is the number of buildings in the scale model; w  is the interval between the buildings in the 

scale model; and h  is the height of the buildings. It should be noted that the method proposed by Eq. (20) considers only the 

overlapping shading of buildings and cannot reduce errors from changes of the local wind field caused by surrounding 

buildings. 

Scaling effects in physical model experiments are very important and need to be carefully considered. The scaling question 395 

here is complicated due to at least two scaling aspects existing. The raindrop behavior in the wind stream would scale with 

Reynolds based on drop size (roughly 1:1), while the flow field across the building should scale with Reynolds based on 

building size (roughly 1:100). In this study, the wind speeds are designed according to the former scaling since the raindrop 

behavior is the main controlling factor of the experiment.  

Uncertainties are inevitable in experiments. For example, the theoretical and the experimental runoff coefficients shown in 400 

Fig. 12 are not completely consistent. These may be caused by experimental errors. In the study, each experiment was 

repeated three times and the average of two or three results was regarded as the final result of the experiment, according to 

the rules delineated in section 2.3.2. The use of the average values conceals the uncertainty of the experiment. Here, we use 

the actual rainfall intensity atop the model for rainfall 1 as an example to illustrate the uncertainty of the experiment, 

considering that the main source of the error is the turbulence of the wind and that rainfall with small droplets is more easily 405 

affected by the wind. Rainfall intensity rather than the runoff coefficient is used as an example because the rainfall intensity 

is directly affected by the turbulence of the wind. Results of the relationship between the actual rainfall intensity and the 

wind speed for rainfall 1 are presented in Fig. 13. The figure illustrates that the differences between the actual rainfall 

intensity for a certain wind speed are relatively small. The relative standard deviations (RSD) for the experimental values 

under different wind speeds are all less than 5%. Such minimal uncertainty may be unexpected since turbulence is an 410 

inherent property of the wind and raindrop trajectories may be different in different experiments affected by the turbulence 

of the wind. However, the rainfall intensity used in this study was determined from the water collected by the water tanks 

and was the average value of the rainfall intensity atop the scale model. Therefore, only the oscillation of raindrops near the 
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edges of the scale model has influence on the average rainfall intensity. Regardless, the accumulation of the rainfall over 

time can reduce the error caused by the oscillation of raindrops near the edges of the scale model, since the oscillation of 415 

raindrops caused by the wind turbulence can compromise them. 

When deriving the relationship between the runoff coefficient and rainfall inclination, the raindrop sizes in a rainfall event 

were assumed to be the same in order to simplify the problem. However, a natural rainfall event consists of raindrops with 

different sizes. Therefore, many different raindrop trajectories can be found in a natural rainfall event for a specific wind 

speed and the rainfall inclination angle used in Eq. (17) is no longer a fixed value. To further explore this, raindrop size 420 

distribution should be introduced in further studies. Prior studies have shown that raindrop size distribution follows some 

empirical formulae (Best, 1950). By incorporating raindrop size distribution, the distribution of rainfall inclination angle in 

natural rainfall can be obtained and the representative rainfall inclination angle that reflects real situations can be derived 

(Dai & Han, 2014; Dai et al., 2019). Another important assumption was made that raindrop trajectories are a group of 

parallel straight lines and are not disturbed by the deformation of the wind field near buildings. Under actual conditions, 425 

raindrop trajectories are not straight lines, as seen in Fig. 9. In this situation, the inclination angle of the raindrop trajectory in 

the front of the building is not necessarily the same as the inclination angle of the secant from the building to the ground of 

the raindrop trajectory which is just across the upper corner on the leeward side of the building. In such a case,   in Eq. (14) 

may be not the same as in Eq. (15), which introduces errors in Eq. (16). However, the error can be ignored from the 

perspective of the total rainfall falling on the wall because of the inconsistency of the inclination angles which counteract 430 

each other to some extent. The ratio of infiltration and rainfall is an important parameter in Eq. (17), and the larger ratio 

leads to the bigger runoff coefficient. In this study, the infiltration of the wall was assumed to be zero, which may not be 

reasonable in all real world situations (Domínguez-Hernández et al., 2017; Lacasse et al., 2003). In further studies, the initial 

loss of building walls should be considered. Under such circumstances, the infiltration in Eq. (17) should be the relative 

value of the infiltrations of the ground and the wall, i.e., the infiltration of the wall is subtracted from the infiltration of the 435 

ground. 

This study indicates that wind can increase the runoff coefficient in urban areas. However, the impact of wind on the runoff 

generation has never been considered in urban hydrological simulations, which may lead to the underestimation of peak flow 

in urban areas and risks to urban flood control. In the future, new hydrological models should be developed to consider the 

impact of wind on the runoff generation in urban areas. Moreover, this study provides a new perspective for low-impact 440 

development (LID) in urban areas. Most traditional LID facilities focus on horizontal planes in urban areas, such as roofs, 

roads, and the ground. We can learn from this study that walls of buildings are also sites that generate runoff, which supports 

the development of LID facilities that can be used on building walls. These facilities can be used to purify and reduce runoff, 

as well as to regulate the thermal environment of buildings. 
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5 Conclusions 445 

In this study, the relationship between wind and the rainfall-runoff process in urban high-rise building areas was explored. A 

theoretical framework, including a CFD method to determine the relationship between wind speed and rainfall inclination 

and a newly derived equation to describe the relationship between rainfall inclination and the runoff coefficient, was 

developed. A laboratory scale model experiment was conducted to verify the proposed framework. The main results are: (1) 

the runoff coefficient calculated by the proposed theoretical framework is highly consistent with that obtained from the 450 

laboratory experiment; (2) the runoff coefficient of urban high-rise building areas increases with wind speed, and the 

increase rate is linear with that of the tangent of the rainfall inclination angle; (3) the runoff coefficient of rainfall with larger 

raindrop size is less influenced by wind flow than that of rainfall with smaller raindrop size. 
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