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Abstract. TS1 CE5The growing competition for finite land
and water resources and the need to feed an ever-growing
population require new techniques to monitor the perfor-
mance of irrigation schemes and improve land and water
productivity. Datasets from FAO’s portal to monitor Wa-5

ter Productivity through Open access Remotely sensed de-
rived data (WaPOR) are increasingly applied as a cost-
effective means to support irrigation performance assessment
and identify possible pathways for improvement. This study
presents a framework that applies WaPOR data to assess irri-10

gation performance indicators, including uniformity, equity,
adequacy, and land and water productivity differentiated by
irrigation method (furrow, sprinkler, and centre pivot) at the
Xinavane sugarcane estate, Mozambique. The WaPOR data
on water, land, and climate are in near-real time and spa-15

tially distributed, with the finest spatial resolution in the area
of 100 m. The WaPOR data were first validated agronomi-
cally by examining the biomass response to water, and then
the data were used to systematically analyse seasonal indica-
tors for the period 2015 to 2018 on ∼ 8000 ha. The WaPOR-20

based yield estimates were found to be comparable to the
estate-measured yields with ±20 % difference, a root mean
square error of 19± 2.5 t ha−1 and a mean absolute error of
15± 1.6 t ha−1. A climate normalization factor that enables
the spatial and temporal comparison of performance indica-25

tors are applied. The assessment highlights that in Xinavane
no single irrigation method performs the best across all per-

formance indicators. Centre pivot compared to sprinkler and
furrow irrigation shows higher adequacy, equity, and land
productivity but lower water productivity. The three irriga- 30

tion methods have excellent uniformity (∼ 94 %) in the four
seasons and acceptable adequacy for most periods of the sea-
son except in 2016, when a drought was observed. While this
study is done for sugarcane in one irrigation scheme, the ap-
proach can be broadened to compare other crops across fields 35

or irrigation schemes across Africa with diverse management
units in the different agroclimatic zones within FAO WaPOR
coverage. We conclude that the framework is useful for as-
sessing irrigation performance using the WaPOR dataset.

1 Introduction 40

Increasing agricultural production to feed the growing global
population can be achieved through either expanding agricul-
tural land or by increasing productivity of the existing agri-
cultural areas. With growing competition and scarcity of fi-
nite water and land resources, as well as the environmental 45

and social costs of expanding agricultural land (Hess et al.,
2016), improving irrigation performance indicators including
land and water productivity has a clear preference.

The increasing global demand for sugar is also reflected
in the steady increase in sugarcane production in Mozam- 50

bique at an average annual rate of 10 % (FAO, 2019). The

1
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majority of this increase comes from expanding agricultural
land (Hess et al., 2016). Whilst Moraes et al. (2018) estimate
there is a vast potential for expanding sugarcane production
in Mozambique (∼ 15 % of the land area is suitable for sugar-
cane production), water and land resources in the country are5

under increasing strain due to land degradation (Sutton et al.,
2016), sectoral competition, and climate effects (e.g. drought
and flood) (Van der Zaag and Carmo Vaz, 2003; Arndt et al.,
2011). With the land productivity well below the global av-
erage (Binswanger-Mkhize and Savastano, 2017; Nkamleu,10

2013), and amongst the lowest in the southern African region
(Johnson et al., 2014), there is an opportunity to meet the de-
mand without expanding the agricultural land. Thus, raising
sugarcane productivity per unit of land and water on exist-
ing croplands needs to be explored by conducting irrigation15

performance assessment.
Monitoring irrigation performance indicators is key in

checking general health, comparing the spatial and tem-
poral performances of the scheme, and looking for causes
and providing corrective action that aims at improving over-20

all service provision and productivity (Molden et al., 1998;
Bos et al., 2005). Traditional irrigation performance assess-
ment considers indicators that can be categorized as (i) wa-
ter balance, water service, and maintenance, (ii) environ-
ment, and (iii) economic indicators. The water balance, wa-25

ter service, and maintenance indicators are water fluxesCE6

and production-based indicators. The water deliveryCE7 and
production-based indicators include uniformity (evenness of
water distribution within fields), equity (uniformity of water
distribution between fields), adequacy (sufficiency of irriga-30

tion delivery compared to the requirement), land productiv-
ity (production per unit area), water productivity (production
per unit water use), and efficiency (the fraction of productive
water use) (Molden and Gates, 1990; Bos, 1997; Molden et
al., 1998). These irrigation performance indicators were as-35

sessed using field data such as flow (discharge), crop yield,
and plot level water consumption estimates using lysimeters
or crop models (Araya et al., 2011; Dejen, 2015; Edreira et
al., 2018).

Recent developments and improvements of remote-40

sensing (RS) products offer a viable alternative (Bastiaanssen
et al., 1996; Karimi et al., 2011). RS-derived data have been
increasingly applied as a cost-effective means for irrigation
performance assessment. RS-derived irrigation performance
assessment is based on production and actual water con-45

sumption, the latter of which is fairlyCE8 considered the net
outcome and result of effective rainfall and irrigation, allow-
ing for a hydrological assessment and quantification of the
net water abstracted by irrigated crops. In addition, it pro-
vides spatially distributed data, covers long periods and wide50

areas, and can be done retrospectively (Bastiaanssen et al.,
1996; Karimi et al., 2011). Field data, in contrast, do not rep-
resent the spatial variation across an irrigation system well
and are costly to obtain (Bastiaanssen et al., 2000). Tradi-
tional and RS-based performance assessments are comple-55

mentary as the former has strength in observing the hori-
zontal water fluxes such as discharges, while the latter has
strength in observing high-resolution vertical water fluxes
and biomass production.

Earlier studies provide insight into the application of RS- 60

derived data to assess irrigation performance indicators. In
this research, the earlier RS-based irrigation performance as-
sessment studies are strengthened by considering a simple
consistency check to validate the RS-derived data for estab-
lished biomass response to water consumption (Steduto and 65

Albrizio, 2005) and by introducing a comprehensive frame-
work that guides the step-by-step translation of RS-derived
datasets into irrigated agricultural performance indicators. In
addition, the current study introduces a climate normaliza-
tion factor that enables the spatial and seasonal comparison 70

of irrigation performance indicators. The climate normaliza-
tion factor is applied to distinguish climatic factors from agri-
cultural management factors in their effect on irrigation per-
formance.

This study first evaluates the FAO’s portal to monitor Wa- 75

ter Productivity through Open access Remotely sensed de-
rived data (WaPOR) for consistency based on the established
agronomic principle (biomass response to water consump-
tion). It is then used to develop a framework to assess irriga-
tion performance indicators, including adequacy, uniformity, 80

equity, and land and water productivity. This framework is
then used to assess the irrigation performance at Xinavane
sugarcane estate differentiated by irrigation method.

2 Materials and methods

2.1 Study area 85

The study focusses on one of the largest sugarcane estates in
Maputo province in Mozambique, the Xinavane estate. The
estate is located on the banks of the Incomati River, approx-
imately 136 km northwest of Maputo. This region is char-
acterized by optimal conditions for sugarcane production in 90

terms of climate, soils, and water availability. With a seasonal
long-term average precipitation of 721 mm yr−1 (den Besten
et al., 2020), sugarcane production requires irrigation water,
especially during the dry season, supplied by the Incomati
River. 95

The most important water infrastructure in the Incomati
Basin in Mozambique is the Corumana Dam, which was built
for improving flood control and regulating downstream ir-
rigation abstractions (including Xinavane) and hydropower
production (de Boer and Droogers, 2016). Xinavane sugar- 100

cane estate, despite receiving allocations from the dam, re-
mains largely vulnerable to climate variability. During a re-
cent drought in 2016, reservoir levels in the Corumana Dam
dropped drastically, and little water was available for irriga-
tion in the Xinavane sugarcane estate. This resulted in a sig- 105

nificant reduction in sugarcane production in 2016 compared
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Figure 1. Irrigated areas (estate-operated) with different application methods at Xinavane sugarcane estate, Mozambique, shown on the
larger-scale map of Mozambique (map data © 2021 Google, AfriGIS (Pty) Ltd.).

to previous years (Tongaat Hullet, 2018). Such events are ex-
pected to continue to occur. To partially address this, Mozam-
bique put drought mitigation measures in place for the Xi-
navane area, including the construction of the new Moamba
Major Dam (760× 106 m3 TS2 ) and the heightening of the5

Corumana Dam wall, which will result in a capacity increase
from 879×106 m3 to 1260×106 m3 (Tongaat Hullet, 2018).

The widely used irrigation methods at the Xinavane sug-
arcane estate are furrow, overhead sprinkler (hereinafter re-
ferred to as sprinkler), and centre pivot irrigation (Fig. 1).10

A total of 8027 ha categorized into 387 georeferenced fields
and three irrigation application methods are considered in our
analysis. Furrow, sprinkler, and centre pivot irrigation cov-
ers 3343, 3629, and 1055 ha, respectively. The average field
size under furrow, sprinkler, and centre pivot irrigation meth-15

ods is 17, 18.3, and 55.8 ha, respectively. All fields in the
sample are operated and managed by the estate; fields oper-
ated by outgrowers were excluded from the analyses.

2.2 WaPOR datasets

TS3Datasets from FAO’s portal to monitor Water Productiv-20

ity through Open access Remotely sensed derived data (Wa-
POR; URL: https://wapor.apps.fao.org/home/WAPOR_2/1,
TS4 ) are used for the analyses as it provides the required
layers to estimate both land and water productivity. The
database covers Africa and the Near East regions in near-25

real time for the period from 2009 to date (2021) (FAO,
2020c). WaPOR datasets are available at the continental scale
(Level 1 at 250 m), country scale (Level 2 at 100 m), and
project level (Level 3 at 30 m). The latest WaPOR version
(WaPOR v2.1) is an improvement from WaPOR v1.0, fol-30

lowing the quality assessments by IHE Delft and ITC (Mul
and Bastiaanssen, 2019; FAO, 2020a). The methodology

used for compiling the actual evapotranspiration of WaPOR
is based on the ETLook method (Bastiaanssen et al., 2012)
and further developed by the FRAME consortium (the full 35

description of the methodology is provided in FAO, 2020b).
WaPOR v2.1 was found suitable for inter-plot comparison
of irrigation performance indicators for plots larger than 2 ha
(Blatchford et al., 2020).

At Xinavane, the finest resolution of the WaPOR data is 40

100 m (Level 2). The WaPOR Level 2 datasets used in this
study include layers for actual evaporation (E), transpira-
tion (T ), and net primary production (NPP) at a dekadal
(10 d) timescale. In addition, daily precipitation at 5 km res-
olution, daily reference evapotranspiration at 20 km resolu- 45

tion, and annual land cover classification (LCC) at 100 m res-
olution were used. The precipitation (P) and reference evap-
otranspiration (RET) datasets were resampled to 100 m res-
olution using the nearest-neighbour resampling techniques
(GDAL, 2021). An overview of the WaPOR data used in the 50

analyses is presented in Table 1.
Although there is a continuous WaPOR L2 dataset (100 m)

available from 2009 to date (2021), only the data from 2014
are derived that stemsCE9 from the PROBA-V satellite. The
data prior to 2014 are derived from resampled L1 (250 m) 55

data, which are obtained from the MODIS satellite. Since this
creates a discontinuity in the data as observed by Chukalla et
al. (2020b), the pre-2014 data have been discarded in this
analysis, and only data starting from the 2014–2015 growing
season onwards have been selected. 60

2.3 A framework for assessing irrigation performance
using WaPOR data

Figure 2 shows the flowchart describing the approach to as-
sessing WaPOR-based irrigation performance indicators at

https://wapor.apps.fao.org/home/WAPOR_2/1
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Table 1. The WaPOR layers used for the analyses.

WaPOR layer Spatial Temporal resolution
resolution (coverage)

Evaporation (E) 100 m

Dekadal (2014–2018) TS5

Transpiration (T ) 100 m
Net primary production (NPP) 100 m
Precipitation (P ) 5 km
Reference evapotranspiration (RET) 20 km
Land cover map (LCC) 100 TS6

Figure 2. Schematic representation of WaPOR-based irrigation performance assessment framework.

the Xinavane sugarcane estate. Irrigation performance in-
dicators are derived from WaPOR and field data in three
main steps. First, actual evapotranspiration (ETa = E+ T ),
reference evapotranspiration (RET), and net primary pro-
duction (NPP) layers of FAO WaPOR are preprocessed to5

match the spatial resolution, remove non-crop pixels using
crop map or land cover classification (LCC), and undergo a
quality check. Second, the seasonal ETa (ETa,s), seasonal po-
tential evapotranspiration (ETp,s), and seasonal NPP (NPPs)
are calculated from their respective WaPOR layers between10

the start of the season (SOS) and end of the season (EOS)
for each plot. ETp,s is derived from RET and crop coeffi-
cient (Kc). Finally, the irrigation performance indicators are
analysed. At this stage, NPPs is translated to above-ground
biomass (hereafter referred to as biomass – B) using crop-15

specific information – above over total biomass (AOT) for
non-root corps or below over total for root and tuber crops,
light use efficiency correction factor (fc), and moisture con-
tent of fresh biomass (mc). The biomass is multiplied by har-
vest index (HI) to derive the crop yield. The remainder of20

this section describes the input data and equations used in
each step in more detail.

2.3.1 Seasonal water consumption and crop yield

Growing season

The sugarcane estate operates on a ratooning system. Thus, 25

the start of the growing season (1 d after harvesting) and end
of season (next year’s harvesting date) vary per field. The ac-
tual growing period of each field was used to calculate the
production per unit of land and per unit of water consumed.
The average length of the growing season is 347±32 d. This 30

study covers four growing seasons: season 1 (2014/15), sea-
son 2 (2015/16), season 3 (2016/17), and season 4 (2017/18),
reported as 2015, 2016, 2017, and 2018, respectively, i.e. the
year the fields are harvested (Fig. 3).

Seasonal water consumption 35

Actual water consumption refers to the amount of water that
is depleted from the root zone through the process of transpi-
ration by a crop and direct evaporation from the soil repre-
sented by WaPOR E+T (ETa). The seasonal ETa is the total
actual water consumption during the cropping season. 40
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Figure 3. The start and end of season for individual fields for the four growing seasons at Xinavane estate.

Crop yield

The season NPP layer from WaPOR, accumulated over the
crop-growing period (Fig. 3), is converted to above-ground
biomass (B) in kilograms per hectare (kg ha−1) and crop
yield (Y ) in kilograms per hectare using Eqs. (1) and (2) (Mul5

and Bastiaanssen, 2019):

B = AOT · fc ·
NPP · 22.222
(1−mc)

, (1)

where mc [–] is the moisture content of the fresh biomass,
fc [–] is the light use efficiency (LUE) correction factor cal-
culated by dividing the LUE of the crop (in this case sug-10

arcane) by the LUE of a generic crop type that WaPOR
NPP layer uses (2.7 MJ g−1 biomass; FAO, 2018, 2020b),
and AOT [–] is the ratio of above-ground over total biomass.
B and Y can be expressed in tonnes per hectare (t ha−1), by
dividing the amount in kilograms per hectare by 1000. Crop15

yield is calculated by multiplying the biomass by the harvest
index (HI [–]):

Y = B ·HI. (2)

In absence of field data, literature was consulted to estimate
these crop parameters. Table 2 presents the values and the20

source of the parameters.
The WaPOR-based sugar cane yield was validated with

sugarcane yields as measured by the Xinavane estate for
four seasons on 387 fields. In addition, the WaPOR-based
biomass and water consumption were checked for consis-25

tency with agronomic principles. An increasingly strong lin-
ear relationship is expected between biomass and evapotran-
spiration (Steduto and Albrizio, 2005), between biomass and
transpiration (De Wit, 1958), and between biomass and nor-
malized transpiration (Steduto and Albrizio, 2005), whereby30

the normalized transpiration is the sum of the daily ratio of
transpiration over reference evapotranspiration over the crop
season (Steduto et al., 2007).

2.3.2 Performance assessment indicators

The irrigation performance indicators selected for this study 35

are uniformity, equity, adequacy, and productivity; these
were selected as these could be assessed (sometimes with
a slight modification) using the WaPOR data. These perfor-
mance indicators are further explained below, and the set of
equations for water-consumption-based performance indica- 40

tors are presented in Table A1.
Uniformity measures the evenness of water consumption

within an irrigated field. It is calculated by assessing the co-
efficients of variation (CV) of seasonal ETa within a field.
Thus, uniformity is 1 minus the CV (Ascough and Kiker, 45

2002). It serves as a measure for the heterogeneity of soil
water storage capacity and thus water storage efficiency in a
field. It can serve as a proxy for irrigation distribution uni-
formity (Burt et al., 1997) in farms where the management is
central and the same level of inputs is consistently applied 50

(e.g. variable rate input application in notCE10 practices).
Other factors like soil type, fertility, pest, and crop variety
can also affect actual water consumption and thus uniformity.
Thus, the CV of seasonal ETa indicates the combined effect
of all factors (water, fertility, pests, diseases, and salinity). 55

According to Pitts et al. (1996), the acceptable standard
uniformity of irrigation application distribution for centre
pivot, sprinkler, drip, and furrow irrigation methods is 75 %,
75 %, 85 %, and 65 %, respectively. The distribution unifor-
mity exceeding the standard threshold is considered excel- 60

lent.
Equity measures the evenness of water consumption be-

tween fields within an irrigation scheme with a homogenous
crop, which could be a proxy for an even distribution of water
to the different irrigated fields. It is calculated as the CV of 65

the average ET of each field, which is an indication of equity
in the scheme. A CV of 0 % to 10 % is defined as good eq-
uity, CV of 10 % to 25 % as fair equity, and CV> 25 % as
poor equity (Bastiaanssen et al., 1996; Karimi et al., 2019).
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Table 2. Parameters used in the biomass and yield analyses of sugarcane.

Parameter Description Value Source

mc Moisture content of fresh crop biomass 59 % Yilma (2017), Mul and Bastiaanssen (2019)
fc Light use efficiency correction factor 1.6 Villalobos and Fereres (2016 TS7 )
AOT Ratio of above-ground over total biomass (AOT) 1 FAO (2020c)
HI Harvest index 1 FAO (2020c)

Adequacy (A) is the measure of the degree of agreement
between the actual water use and crop water requirement
(Bastiaanssen and Bos, 1999; Clemmens and Molden, 2007).
Adequacy is estimated as the ratio of seasonal actual evapo-
transpiration (ETa,s) over seasonal potential evapotranspira-5

tion (ETp,s) (Kharrou et al., 2013; Karimi et al., 2019). Po-
tential evapotranspiration is the maximum crop evapotran-
spiration from disease-free and well-fertilized cropped fields
under optimum soil water conditions; it is calculated by mul-
tiplying reference evapotranspiration by the crop coefficient10

(Allen et al., 1998). The seasonal ETp,s of sugarcane is aggre-
gated from the monthly value of crop coefficient multiplied
by the reference evapotranspiration (Table A2). Good ade-
quacy performance is defined for the range of 0.8<A≤ 1
TS8 , acceptable range 0.68<A≤ 0.8 TS9 , and poor perfor-15

mance A≤ 0.68 TS10 (Karimi et al., 2019).
Productivity is a measure of benefit generated per unit of

resource used. The benefit could be biophysical, economic,
and/or social; the resource base could be consumed or sup-
plied water or land covered by the crop (Zwart and Basti-20

aanssen, 2004; Hellegers et al., 2009; Karimi et al., 2011).
This study focussed on biophysical production per unit of
land or evapotranspiration, also known as land and water pro-
ductivity.

Land productivity is defined as biomass production or25

crop yield per unit of land. For water, we similarly distin-
guish biomass water productivity (WPb) and crop yield wa-
ter productivity (WP). WPb is defined as the ratio of biomass
over seasonal ETa,s, whereas WP is defined as the yield
over ETa,s. Since for sugarcane we use a harvest index of 1,30

WPb is equal to WP here.
Spatial–temporal variations can be caused by both man-

agement practices and climate. Figure B1 shows a correlation
between water productivity and reference evapotranspiration
(r2 of 0.5, 0.7, and 0.8 for furrow-, sprinkler-, and centre-35

pivot-irrigated fields, respectively). The correlation between
actual evapotranspiration and reference evapotranspiration
(Fig. B2) is even stronger (r2 > 0.8). Thus, to exclude the
climate-related factor, we normalized the water productivity
and evapotranspiration using a climate normalization factor.40

This is defined as the ratio of the weighted average refer-
ence evapotranspiration (weighted based on the field size and
growing length of the fields) to the reference evapotranspira-
tion at the field (Eq. 3).

fnorm =

(
RET
RETi

)
, (3) 45

where fnorm [–] is the normalizing factor for the selected in-
dicator, RET is weighted average reference evapotranspira-
tion, and RETi is reference evapotranspiration at a field in
millimetres per season.

2.4 Consistency check of WaPOR data 50

Figure 4 shows the relationship between biomass (B;
WaPOR-derived and WaPOR-observed) and water consump-
tion of irrigated fields categorized by irrigation method for
the year 2018 (with the Supplement, Fig. S1, showing the
other 3 years from 2015 to 2017). In furrow- and sprinkler- 55

irrigated fields, the WaPOR-derived biomass and actual evap-
otranspiration show a high correlation (a minimum r2 of ∼
0.83 (n≈ 150) in 2015, 2017, and 2018 and r2

≈ 0.63 in the
relatively dry year of 2016), indicating consistency between
the two independently generated datasets. For the centre- 60

pivot-irrigated fields, r2 is much lower, with a value of≈ 0.6
in 2015, 2016, and 2017 and the lowest r2 of 0.2 (n≈ 19)
in 2018. The low number of fields irrigated by centre piv-
ots may have contributed to the low correlation. Moreover,
the estate-observed yield at Xinavane sugar estate versus ETa 65

shows a high spread and thus a low correlation (r2
≈ 0.13).

Table S1 in the Supplement provide the analyses of the
relationship between biomass and transpiration and biomass
and normalized transpiration for the entire period of analy-
ses (2015–2018). In contrast to expectations based on agro- 70

nomic principles, the correlation decreases when consider-
ing biomass and transpiration (∼ 0.80) and biomass and nor-
malized transpiration (

∑
Ta/RET) (∼ 0.71) (see furtherCE11

Supplement). The accuracy of the evaporation and transpi-
ration split in WaPOR is therefore questioned; this was also 75

observed by Mul and Bastiaanssen (2019). Further analyses
will therefore only focus on indicators that use evapotran-
spiration, not evaporation and transpiration, as input. For in-
stance, the beneficial fraction (i.e. the ratio of transpiration
over evapotranspiration) is not included in the analysis. Yet, 80

two tests based on WaPOR-derived biomass and total actual
evapotranspiration (ETa) have confirmed the agronomic ex-
pectations (Table S2). The first is that the correlation coeffi-
cient of the linear regression line passing through the origin
for the biomass vs. normalized actual water consumption is 85
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Figure 4. The relationship between biomass (as measured by the estate and derived from WaPOR) and actual evapotranspiration (derived
from WaPOR) of furrow- (a), sprinkler- (b) and centre-pivot-irrigated (c) fields at Xinavane sugar estate, harvested in 2018.

Figure 5. Seasonal actual and potential evapotranspiration and precipitation at Xinavane sugar estate from 2015 to 2018. The error bar
indicates the variation across the fields irrigated by different methods.

higher than that of the correlation coefficient for the biomass
vs. actual water consumption. Second, the crop water pro-
ductivity normalized by reference evapotranspiration (WP∗)
is confirmed to be conservative and within the range of val-
ues for C4 crops (30–35 g m2), including sugarcane (Steduto5

et al., 2007, 2009).

3 Results

3.1 Seasonal water consumption

Figure 5 shows the seasonal actual and potential evapotran-
spiration and seasonal precipitation at Xinavane sugarcane10

estate, distinguished by the three irrigation application meth-
ods. The four-season (2015 to 2018) average precipitation is

640 mm per season and ranges from the minimum of 500 mm
per season in 2016 to the maximum precipitation of 875 mm
per season in 2017. The four-season average ETa at Xina- 15

vane is 1350 mm per season, and its average seasonal val-
ues range between 1255 mm per season in 2018 at furrow-
irrigated fields to 1533 mm per season in 2016 at fields ir-
rigated using centre pivots. In the four seasons the ETa is
significantly the highest (P value< 0.05) at fields irrigated 20

using centre pivots, followed by sprinklers and furrows (Ta-
ble A4).

The high average ETa over Xinavane irrigation scheme
in 2016 coincides with the reported drought year. This mainly
manifested itself with high ETpot as the annual precipitation 25

that falls within the command area was not much lower than
in 2015 and 2018. After normalization for climate variation,
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Figure 6. Normalized actual evapotranspiration at Xinavane sugar estate categorized by irrigation method from 2015 to 2018.

Figure 7. Coefficient of variation of actual water consumption per pixel inside a field at Xinavane sugar estate categorized by irrigation
method from 2015 to 2018. The lower and upper whiskers in the box plot show the minimum and maximum values. The lower, middle, and
upper bar of the box show the 25th, 50th, and 75th percentiles of the values.

the normalized ETa is actually lowest for 2016, indicating
higher water deficit (lowest actual per unit of potential evapo-
transpiration), with the drought having more impact on sprin-
kler and furrow irrigation than on centre pivot irrigation. De-
spite the ETa being the highest in 2016, when normalized5

by climate, the results show that 2016 experiences the high-
est water deficit. The four-season average actual water con-
sumption of centre pivots remains the highest followed by
sprinklers and furrows, except for 2016, when the sprinkler-
normalized ETa is at the same level as furrow ETa (Fig. 6).10

This indicates that the sprinkler system was more affected by
the drought conditions in 2016 compared to the other sys-
tems.

3.2 Performance of irrigation delivery

3.2.1 Uniformity 15

The uniformity of water consumption within the fields is ∼
94 % for all three irrigation methods (Fig. 7). The calculated
uniformity is above the standard values per irrigation method
and is therefore considered excellent. Centre pivots show an
even higher uniformity than the other irrigation methods. 20

3.2.2 Equity

The average seasonal coefficient of variation (CV) of ETa,s
among fields irrigated by the same irrigation method is 15 %
(Fig. 8). Fields irrigated using furrows, with a CV of 18 %,
have the highest heterogeneity in water consumption com- 25

pared to areas irrigated using the sprinkler (CV= 14 %) and
centre pivot irrigation method (CV= 13 %). The coefficient
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Figure 8. Coefficient of variation of actual water consumption be-
tween fields irrigated by different methods at Xinavane sugar estate
from 2015 to 2018.

Figure 9. Adequacy [–] at Xinavane sugar estate categorized by
irrigation method.

of variation of water consumption between fields irrigated
by a particular irrigation method and thus equity of water use
among the fields is considered fair.

3.2.3 Adequacy

The four-season average adequacy varies spatially across the5

Xinavane irrigation scheme, with visible differences between
fields irrigated using centre pivots compared to fields irri-
gated using furrows and sprinklers for the period analysed.
Figure 9 shows the highest adequacy for fields irrigated using
centre pivots (0.75) followed by fields irrigated using sprin-10

klers and furrows (∼ 0.69). In the study period, the adequacy
performance at fields under centre pivots falls in the accept-
able range (from 0.68 and 0.8) for sugarcane (Karimi et al.,
2019). The adequacy in fields under sprinkler and furrow ir-
rigation also is acceptable except in the year 2016, which is15

recognized as a drought year, when adequacy was poor.

3.2.4 Land productivity

The 4-year seasonal average WaPOR-based yield is 89 t ha−1

(86 t ha−1 for fields irrigated using furrows, 88 t ha−1 for
areas irrigated using sprinklers, and 93 t ha−1 for fields ir-20

rigated using centre pivots). For all years (except 2017),
the highest sugarcane yield (land productivity) at Xinavane

is found in fields irrigated by centre pivots, followed by
fields irrigated by sprinkler and furrow irrigation methods
(Fig. 10). 25

The 4-year seasonal WaPOR yield is in the same order
of magnitude compared to the estate-measured sugarcane
yield: 86 t ha−1 vs. 81.4 t ha−1, 88 t ha−1 vs. 93 t ha−1, and
93 t ha−1 vs. 99 t ha−1 for fields irrigated using furrow, sprin-
kler, and centre pivot irrigation methods, respectively. Part 30

of the minor discrepancy between the WaPOR- and estate-
measured yield could be due to the selection of crop param-
eters such as harvest index and moisture content. Yet, the
comparison between both yields shows acceptable statistics
(Table A3 in the Appendix), with a root mean square error of 35

19± 2.5 t ha−1 and mean absolute error of 15± 1.6 t ha−1.
Whilst the average values for WaPOR-based yields are of

the same magnitude as the estate-observed data (65 % of
yield differences at the fields are within ±20 %), WaPOR
overestimates relatively low yields (marks on scatter plot 40

above 1 : 1 line) and underestimates relatively high yields
(marks on scatter plot below 1 : 1 line) (Fig. 11). WaPOR
yields thus show a marked less variation in yields than re-
ported by the estate.

3.2.5 Water productivity 45

The seasonal and four-season average water productivity
at Xinavane is shown in Fig. 12. The four-season average
water productivity is the highest for furrow-irrigated fields
(6.9 kg m−3), compared to the values for fields irrigated with
sprinklers (6.7 kg m−3) and centre pivots (6.6 kg m−3). One 50

of the reasons for such differences is the fraction of ETa be-
ing utilized for productive purposes (transpiration) compared
to non-productive evaporation. Raes et al. (2013 TS11 ) report
that centre pivot and sprinkler irrigation wets 100 % of the
field compared to furrow irrigation that wets ∼ 80 % of the 55

field and thus results in higher evaporation rates, which is in
line with our observations.

The large variation of WP over the years (Fig. 12) is also
apparent after normalization for climate variation (Fig. 13).
The normalized WP is highest in a relatively dry year (2016) 60

compared to the other 3 years; this is opposite to WP, where
2016 has the lowest WP. It indicates that climate-related pa-
rameters expressed through potential evapotranspiration have
a large impact on the WP. The normalized WP shows the
variations which are related to management practices; during 65

the drought of 2016, the Xinavane estate practised deficit irri-
gation, which is reflected in the high normalized WP values.

4 Discussion

4.1 The framework

The presented framework was used to conduct an irrigation 70

performance assessment using WaPOR data. Our analysis
shows that fields irrigated using centre pivots have the high-
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Figure 10. Box plot of yield at Xinavane sugar estate categorized by irrigation method from 2015 to 2018: WaPOR yield (a) and estate-
measured (observed) yield (b). The lower and upper whisker in the box plot show the minimum and maximum values across the fields
irrigated by different methods. The lower, middle, and upper bar of the box show the 25th, 50th, and 75th percentiles of the values across the
fields irrigated by different methods.

est equity, adequacy, and land productivity, followed by fields
irrigated using sprinklers and furrows. This outcome agrees
with the conclusion by Karimi et al. (2019), who assessed
performance of irrigated sugarcane in Eswatini (Swaziland)
by differentiating areas according to management regimes in-5

cluding irrigation methods. The adequacy performance un-
der the three irrigation methods was generally acceptable,
except in 2016, when performance of all three irrigation
methods was poor. Fields under centre pivots do, however,
have the lowest water productivity, followed by sprinkler10

and furrow irrigation, which is contrary to the finding by
Karimi et al. (2019), who reported the WP of centre piv-
ots to exceed that of furrow irrigation. In fact, it is claimed
that pressurized irrigation (sprinklers and centre pivots) im-
proves uniform distribution and application efficiency of irri-15

gation water and increases crop yield (Magwenzi and Nkam-
bule, 2003; Playán and Mateos, 2006). Yet, these irrigation
methods increase seasonal evaporation (Playán and Mateos,
2006), which could be due to differences in percentage of
land wetted. Our findings show that the uniformity of water20

consumption on the fields under the three irrigation methods
is reasonably comparable and high (∼ 94 %), which can be
regarded as excellent according to the standard set by Pitts
et al. (1996). The high uniformity of water consumption in
furrow-irrigated fields is in the same range as that of cen-25

tre pivots and sprinklers, which is unlike what was found in
South Africa (Griffiths and Lecler, 2001).

The results of normalization for climate differences of the
water consumption and water productivity allows for com-
parison of the results under different climate conditions (dif-30

ferent years). While the ranking for the different irrigation
technologies according to the indicators remains the same, it
clearly shows the impact of the climate. In particular, during
the drought year of 2016 when the potential evapotranspira-
tion was relatively high, the normalized water consumption35

was low, indicating higher water deficit compared to the other
years. The impact on sprinkler-irrigated fields was the high-

est. On the other hand, the normalized WP during 2016 was
the highest of all the years, even though the WP was lowest
for the same biomass in 2016, indicating the climate having 40

a large impact on non-beneficial evaporation.
This finding seems to suggest that production constraints

can be addressed by taking certain measures, including im-
proved farm practices. However, one factor that influences
crop yield but that is difficult to influence, and that has not 45

been assessed by this study, is the age of the crop. It is known
that the early ratoons (harvests after first planting the cane)
achieve significantly higher yields than subsequent ratoons
(Mehareb and Galal, 2017). So, achieving the 90th percentile
targets may not be easy for fields with older crops, even 50

though the Xinavane EstateCE12 uses a higher target yield
than the 90th percentile crop yield.

This study shows that the presented framework offers a
systematic approach to assess irrigation performance indi-
cators using WaPOR and field data. Five WaPOR-derived 55

irrigation performance indicators, namely uniformity, eq-
uity, adequacy, and land and water productivity, are used
to monitor the quality of the irrigation and agronomic ser-
vices. Our framework builds on earlier studies that assess ir-
rigation performance indicators based on RS (Karimi et al., 60

2019; Blatchford et al., 2020) and provides a comprehen-
sive and simple step-by-step framework to conduct an agro-
nomic evaluation using WaPOR data. The approaches in the
framework are scripted with Python in Jupyter Notebooks
that can be run on local machines, and Google Colabora- 65

tory (Colab) is published together with observed yield data
in GitHub (Chukalla et al., 2020a). It shows that with limited
field information (crop type and cropping season) and some
parameters obtained from the literature, the analyses can be
implemented. 70

4.1.1 Limitations of the WaPOR database

The linear relationship between the independently derived
WaPOR biomass and water consumption agrees with the
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Figure 11. WaPOR yield compared to estate-observed yield: (a) the difference between estate-measured and WaPOR yield and (b) scatter
plot of WaPOR yield vs. estate-measured yield.

Figure 12. Box plot of water productivity in kilograms per cubic metre (kg m−3) at Xinavane sugarcane estate categorized by (a) irrigation
methods in 2015 to 2018 and (b) the four-season average. The lower and upper whiskers in the box plot show the minimum and maximum
values across the fields irrigated by different methods. The lower, middle, and upper bars of the box show the 25th, 50th, and 75th percentiles
of the values across the fields irrigated by different methods.
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Figure 13. Normalized water productivity at Xinavane sugarcane estate categorized by irrigation method in 2015 to 2018.

expected agronomic principles (De Wit, 1958; Steduto and
Albrizio, 2005). However, the correlation coefficient of the
biomass versus actual evapotranspiration is higher than the
correlation coefficient of the biomass versus transpiration
and biomass versus normalized transpiration. This implies5

an inaccurate estimation of transpiration (T ) and evapora-
tion (E) in WaPOR. WaPOR separates the available energy
into T and E using a factor α ·LAI, where α is the light ex-
tinction factor (FAO, 2018; Mul and Bastiaanssen, 2019). A
review on values for α shows large differences between dif-10

ferent land use classes and within land use classes (Zhang
et al., 2016). Thus, WaPOR applying only one fixed value
for α could have serious implications for the use of the T and
E layers of WaPOR, such as in quantifying beneficial frac-
tion (the ratio of transpiration over evapotranspiration).15

Even though the analyses seem to be consistent with
the understanding of how the different irrigation technolo-
gies perform, there are some known limitations of RS and
WaPOR data in particular, which need to be mentioned
here. These may stem from (i) the Land Surface Temper-20

ature (LST) data used by WaPOR (which are taken from
MODIS and have a resolution of 1 km, used to derive mois-
ture stress and thus to calculate the actual evapotranspiration
and net primary production; this could be the cause for the
reduced variation of WaPOR biomass data and may affect25

the spatial variation of evapotranspiration as well); (ii) land
cover noise of non-sugarcane land use such as farm roads and
irrigation and drainage infrastructures within a pixel; (iii) the
number of cloud-free RS images on which the analysis and
numerical interpolation are based (the fewer the cloud-free30

images, the poorer the data quality and the higher the uncer-
tainty in the indicators one can expect); (iv) the time of day
when the images are taken (determinant for which part of the
daily ET curve is monitored and the time of day the water
stress is more or less severe); and (v) the angle of image cap-35

ture and its correction function.

The methods used in WaPOR for data production and sta-
tistical methods for the reconstruction of missing values are,
however, on a par with those used in other RS-based products
for monitoring agro-hydrological parameters developed by 40

the scientific community. As such, some of these limitations
are inherent to the use of remote sensing in general. Yet, our
analysis shows consistency between the different datasets.

4.1.2 Limitation of the crop-related information

Crop-specific parameters such as harvest index, the moisture 45

content of the fresh yield, and the ratio of above-ground over
total biomass were fixed values and determined using liter-
ature and fieldwork in Ethiopia. However, it is known that
these crop parameters can vary significantly based on cli-
matic or field management conditions. Other variations may 50

stem from differential exposure to pests and diseases and soil
and rooting conditions caused by waterlogging (den Besten
et al., 2021) and soil salinity, which are not catered for. We
were unable to determine how much these assumptions affect
the results. All these factors are potential sources of (slight) 55

deviations in the numerical output of WaPOR that may lead
to over- and underestimations of crop yield and WP.

Having noted this, we did perform a validation of the Wa-
POR biomass data using observed harvested cane data of
more than 300 fields over four seasons. WaPOR biomass data 60

for ∼ 65 % of the field level comparison differed within a
±20 % range. The comparison between the estate-measured
yield and WaPOR biomass showed acceptable statistics (Ta-
ble A3).

4.2 The way forward 65

Investments in high-quality public domain global and re-
gional remote-sensing data products for water and lands,
usCE13 e.g. WaPOR datasets, have made it possible to con-
duct spatio-temporal analysis of irrigation performance at
multiple scales from an irrigation scheme to district scale, 70
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basin scale, and the whole country. This provides a great
advantage, especially in areas where both water and land
resources are scarce and in situ data are scant. This study
presents a RS-based assessment framework and showcases
the power of using the WaPOR dataset in providing spatial5

and temporal irrigation performance indicators. Such infor-
mation cannot be generated with the data collected tradition-
ally (point data) or would come at a significant cost.

Yet, accurate interpretation of the results, diagnosis of the
causes of the performance variation, and formulation of prac-10

tical solutions cannot be done unless the WaPOR analyses
and results are complemented with observed data of field
conditions (e.g. the level of water and nutrient inputs, wa-
terlogging, and salinity levels) that can help explore the con-
straints. Though this limitation puts a disclaimer on our find-15

ings, the procedures in this study can provide a useful refer-
ence for similar future studies.

Subsequent studies could additionally consider socio-
economic performance indicators, such as social water pro-
ductivity (e.g. employment per unit water or land use) and20

economic water productivity (economic return per unit water
or land use), which could help to implement comprehensive
performance assessment of irrigation schemes.

5 Conclusions

Remote-sensing datasets are increasingly applied as an in-25

novative tool for monitoring the performance of irrigation
schemes in order to improve land and water productivity
amid the growing competition for finite and even dwindling
resources (land and water). In this study, first, the remotely
sensed FAO WaPOR dataset was successfully validated by30

comparing WaPOR-derived sugarcane yield with field obser-
vations, as well as agronomicallyCE14 . The yield response
to water confirms agronomic expectations: (i) the correlation
between biomass and actual water consumption normalized
for climate is stronger than the correlation between biomass35

and actual water consumption, and (ii) the water productiv-
ity of sugarcane normalized by reference evapotranspiration
falls within the conservative values reported for C4 crops.
Second, the WaPOR-derived datasets were applied to assess
irrigation performance indicators, including uniformity, eq-40

uity, adequacy, and land and water productivity at Xinavane
sugarcane estate, segmented by irrigation method. We con-
clude that the systematic approach demonstrated in the cur-
rent study can serve as a framework to operationalize the use
of WaPOR-derived data and other increasingly available RS-45

derived products for irrigation performance monitoring and
assessment.

The comprehensive WaPOR-based irrigation performance
assessment in this sugarcane state finds that fields irrigated
by centre pivots have the highest adequacy, land productivity, 50

and equity, followed by sprinkler- and furrow-irrigated fields,
but the lowest water productivity.

We identified that part of the spatial and seasonal vari-
ation of indicators, water productivity, and seasonal water
consumption in particular is explained by non-climatic fac- 55

tors that can be influenced by management interventions. In-
vestigating the root causes of the land productivity variation
and whether proper management of inputs and controlling
of salinity and drainage could improve productivity and the
overall performance require further study, including field- 60

based observations.
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Appendix A: Tables

Table A1. Water-consumption-based irrigation performance assessment criteria and indicators.

Criteria Indicator Equation∗ Reference

Uniformity CV of ET CV of seasonal average ETa per pixel in a field Karimi et al. (2019) TS12

Equity CV of ET CV of seasonal average ETa per field inside the Karimi et al. (2019 TS13 )
scheme/block

Adequacy The ratio of ETa,s over RET= ETa,s
ETp,s

Karimi et al. (2019) TS14

ETa,p or relative ETa,s =
EOS∑
SOS

ETa

evapotranspiration ETp,s =
EOS∑
SOS

ETp,m

(RET) ETp,m =
EOS∑
SOS

kc,m ·RETm

Land Biomass production B = AOT · fc ·
NPPs·22.222
(1−MC) Mul and

productivity (B) AOT is above over total biomass, fc is light use Bastiaanssen
efficiency correction factor, and MC is moisture (2019)
content in fresh biomass.

Yield Yield= B ·HI
HI is harvest index.

FAO 66
Water Biomass WP (WPb) WPb =

B
ETa,s

productivity Crop yield WP (WP) WP= Y
ETa,s

∗ where SOS and EOS are the start of season and end of season, ETa,s is seasonal actual evapotranspiration, ETp,s and ETp,m are seasonal and monthly
potential evapotranspiration, RETm is monthly reference evapotranspiration, kc,m is the crop coefficient, and NPPs is seasonal net primary production.

Table A2. Crop coefficients of sugarcane.

Crop stages Duration of crop Kc values
development stages [–]

Default in %
CROPWAT 8.0

(Smith, 1992)
[d]

Initial 30 8 0.4
Development 60 16 [0.4–1.25]
Mid-season 180 49 1.25
Late season 95 26 [1.25–0.75]

365
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Table A3. Statistical comparison of WaPOR yield and estate-measured yield.

Season Irrigation Number Root Mean
method of fields mean absolute

compared square error
(n) error [t ha−1

]

[t ha−1
]

2015 Furrow 175 18.5 14
(n= 352) Centre pivot 16 14.7 13

Sprinkler 160 22.5 18

2016 Furrow 153 20.3 15
(n= 351) Centre pivot 17 16.7 13

Sprinkler 180 19.6 15

2017 Furrow 152 21 16.5
(n= 332) Centre pivot 19 16 13

Sprinkler 161 17 14

2018 Furrow 149 21.7 17
(n= 317) Centre pivot 19 16.7 14.5

Sprinkler 149 22 16
Average 18.9 14.9

SD 2.5 1.6

Table A4. Summary of the statistical tests to find whether the average seasonal actual water consumption (ETa) at Xinavane estate is
different. CE15

Summary: ANOVA – single factor for ETa [mm per season] in 2015

Groups Count Sum∗ Average Variance
[–] [mm per [mm per [mm per

season] season] season]2

Furrow 175 221 623 1266 17 823
Sprinkler 160 212 857 1330 16 236
Centre pivot 16 22 621 1414 8795

ANOVA

Source of SS df MS F P value F critical
variation

Between groups 550 210 2 275 105 16.46 1.47× 10−7 3.022
Within groups 5 814 685 348 16 709
Total 6 364 895 350
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Table A4. Continued.

Summary: ANOVA – single factor for ETa [mm per season] in 2016

Groups Count Sum∗ Average Variance
[–] [mm per [mm per [mm per

season] season] season]2

Furrow 153 20 1762 1319 28 102
Sprinkler 180 248 632 1381 32 201
Centre pivot 17 26 067 1533 29 346

ANOVA

Source of SS df MS F P value F critical
variation

Between groups 852 752 2 426 376 14.084 1.315× 10−6 3.022
Within groups 10 505 019 347 30 274
Total 11 357 771 349

Summary: ANOVA – single factor for ETa [mm per season] in 2017

Groups Count Sum∗ Average Variance
[–] [mm per [mm per [mm per

season] season] season]2

Furrow 152 196 271 1291 17 828
Sprinkler 161 212 875 1322 20 093
Centre pivot 19 26 044 1371 10 756

ANOVA

Source of SS df MS F P value F critical
variation

Between groups 147 266 2 73 633 3.97 0.020 3.02
Within groups 6 100 424 329 18 542
Total 6 247 690 331

Summary: ANOVA – single factor for ETa [mm per season] in 2018

Groups Count Sum∗ Average Variance
[–] [mm per [mm per [mm per

season] season] season]2

Furrow 149 187 113 1256 15 781
Sprinkler 149 193 172 1296 23 265
Centre pivot 19 27 304 1437 9258

ANOVA

Source of SS df MS F P value F critical
variation

Between groups 585 782 2 292 891 15.47 3.91× 10−7 3.02
Within groups 5 945 377 314 18 934
Total 6 531 158 316

∗ Sum is the product of count [–] and average [mm per season].
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Appendix B: Figures

Figure B1. Relationship between water productivity and seasonal reference evapotranspiration at Xinavane sugarcane estate, categorized by
irrigation method in 2015 to 2018.

Figure B2. Relationship between seasonal actual evapotranspiration and reference evapotranspiration at Xinavane sugarcane estate, catego-
rized by irrigation method in 2015 to 2018.
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